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Abstract

The primary endpoint is considered a time metric such as the time taken to reach

a well-defined endpoint in the presence of an intermediate clinical event (IE). A sub-

ject may experience an IE including an intervention during the period of follow-up.

When an IE occurs, it may change the survival distribution. When deriving the

statistics of Nam and Zelen (2001), the data was divided into two parts according

to an IE; one part was right-censored data that does not reach the time of experi-

encing an IE and the other part was left-truncated and right-censored data, which

is having an IE and truncation at that time. Considering the primary endpoint was

interval-censored, we extended the approach of Finkelstein (1986) as accommodat-

ing left-truncated data. After that, for convenience, we applied multiple imputation

techniques to left truncated and interval-censored data. Firstly, we proposed a uni-

form method to impute data of uniform weight in a characterized set. The second

method applies the non-parametric maximum likelihood estimator (NPMLE) from

the original data as weight. We applied two forms of variance, which are formed by

adding and subtracting within- and between variance for all proposed models. Both

variances worked efficiently, but the first one was slightly over- while the second one

was marginally underestimated. Through simulation, the stratified log-rank test is

unsatisfactory when the proportion of an IE is different between two groups. When

the survival distribution is changed after experiencing an IE in addition to the dif-

ference proportion of an IE for two groups, the log-rank test is not appropriate.

The proposed methods satisfied a nominal level of 0.05 and had superior power to

compare the proposed methods with the log-rank and stratified log-rank tests for all

v



scenarios.

KEY WORDS: Interval-censored, Intermediate clinical event, comparing survival functions
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1 Introduction

1.1 Background

We consider the primary endpoint is a time metric such as the time taken to

reach a well-defined endpoint in the presence of an intermediate clinical event (IE).

A subject may experience an IE including an intervention during the period of

follow-up. When an IE occurs, it may change the survival distribution.

For example, we can consider the objective response rate (ORR) in a randomized

cancer clinical trial with advanced cancers, which is often used as a primary or

secondary endpoint. Anderson et al. (1983) studied the landmark method of survival

by ORR, which is a measure of tumor shrinkage for the subject with a measurable

lesion. ORR is estimated by the proportion of responders who had a complete

response (disappearance of tumor) or partial response (30% or more reduction in

size from the baseline estimated using RECIST 1.1 (Eisenhauer et al., 2009)). When

a subject becomes a responder, it can be regarded as the subject experienced an IE.

To be a responder, subjects should survive at least the respond time. Shortly, an IE

needs guaranteed time to occur. Therefore, the length of survival itself will influence

the chance of an IE. This is called a length-biased problem.

An example of a length-biased problem is the heart transplantation study (Man-

tel and Byar, 1974). It is necessary to know whether a heart transplant would be

beneficial. The waiting time of subjects who eventually have heart transplant must

be long enough to receive treatment, whereas there is no requirement for not having

a heart transplant.

It can be considered sequential therapies in the last example. For randomized

sequential therapies, the total progression-free survival (PFS) as the primary end-
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point is usually defined as the interval between the randomization (the start date

of first-line therapy) to the disease progression or death during second-line therapy.

After first-line therapy, a subject can be dropped for various reasons and does not

receive second-line therapy. In this case, first-line events were used and subjects

without tumor progression or death during second-line therapy were censored. It is

difficult to know the pure effect of sequential therapies using standard approaches

because of its length-biased characteristics. Survivors have more chance of being

treated with second-line therapy.

For example, in SWITCH research (Eichelberg et al., 2015), the efficacy of So-

rafenib followed by Sunitinib (So-Su, n = 182) versus the reverse sequence (Su-So, n

= 183) was determined for treating metastatic renal cell cancer. The proportion that

was administered in second-line therapy was higher in So-Su (57% vs 42%, P value

< 0.01). The total PFS and PFS of first-line therapy did not show the statistically

significant difference (12.5 mo vs. 14.9 mo (P value = 0.5) and, 5.9 mo vs. 8.5 mo (P

value = 0.8), respectively), whereas the PFS of second-line therapy showed a shorter

duration in Su-So (5.4 mo vs. 2.8 mo, P value < 0.001). Therefore, in the current

paper, we will assess subjects receiving second-line therapy as experiencing an IE. If

we consider the subject receiving second-line therapy as experiencing an IE, we can

compare the difference of survival functions through the analysis of the proportion

of subjects having second-line therapy and the duration of first-/second-line therapy

with different hazards assumptions. As shown in the simulation, especially when

the proportion of subjects experiencing an IE is different, the standard log rank test

is not appropriate.
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1.2 Literature review

To resolve length-biased problems, Mantel and Byar (1974) studied time-dependent

cox regression. Anderson et al. (1983) researched the landmark study that selects

a fixed time after the initiation of therapy as a landmark. This study determined

the response of the subject at a landmark time and only survivors at the landmark

time were analyzed. Lefkopoulou and Zelen (1995), Nam and Zelen (2001) derived

statistical tests based on the score test to verify whether an IE induced a change in

the survival distribution.

In addition, when the primary outcome is interval-censored, the situation is

more complicated. Interval-censored data is data for which all that is known is

that the event occurred in some interval (Li, Ri] with Li < Ti ≤ Ri, but the exact

time is not known; where Ti is survival time, Li is the last visit that ith subject

does not have an event, Ri is the closest visit of observing the event for the ith

subject. If the event occurs exactly at the moment of a visit, then we have an

exact survival time with Ti = Li = Ri. However, the event of interest did not

occur until the last visit, Ri = ∞. PFS is considered interval-censored data. When

subjects are not in progression at the last assessment visit, but are in progression

at the next visit, it will only be known that the event occurs in the known interval.

Law and Brookmeyer (1992) studied a naïve simple midpoint imputation approach

for interval-censored data. It was shown that when the two groups had different

censoring mechanisms and intervals were wide and varied, the naïve imputation

method was invalid. Therefore, a specific method to process interval-censored data

is needed.

There is much literature to estimate and test the survival function of interval-

3



censored data. Peto (1973) proposed the non-parametric maximum likelihood es-

timator (NPMLE) using Newton-Rapshon algorithm. Turnbull (1976) character-

ized the NPMLE in the presence of arbitrarily censoring and truncation. The self-

consistent algorithm was used to estimate the NPMLE, which is a special case

of the Expectation-maximization (EM) algorithm (Dempster et al., 1976). It was

shown that the convergence of the EM algorithm does not guarantee convergence

to the global maximum if it does not meet Kuhn-Tucker conditions (Kuhn and

Tucker, 1951, Gentleman and Geyer, 1994). Finkelstein (1986) studied the weighted

log-rank test on interval-censored data under the proportional hazard model. Sun

(1996) studied a log-rank type test under the logistic model by applying Turnbull’s

algorithm to estimate the pseudo-risk and failure sets. Zhao and Sun (2004) im-

proved the previous study of Sun (1996) that could reduce to the original log-rank

test in the case of right-censored data by using a multiple imputation technique to

estimate the covariance matrix. Kim et al. (2006) studied a log-rank type test that

did not use an iterative algorithm. A uniform weights algorithm was proposed where

a subject contributed uniformly to each mass point sk; the set sk consisted of all

the distinct (Li, Ri] observed interval. Huang et al. (2008) proposed a log-rank type

test similar to Zhao and Sun (2004) but used different covariance matrix estimator.

Fay and Shaw (2010) released the interval R package to perform weighted log-rank

tests for interval-censored data. In the package, the score test with several options

(Fay (1996), Finkelstein (1986) and Sun (1996)), based on a general score test for

interval-censored data (Fay, 1999), permutation methods (Heinze et al., 2003) and

a weighted log-rank type test (Huang et al., 2008) was developed.

We also reviewed studies regarding left-truncated and interval-censored (LTIC)

data. When deriving the statistics of Nam and Zelen (2001), the data was divided
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into two parts according to an IE; one part was right-censored data where the sub-

ject did not reach the time of experiencing an IE (a subject might experience an IE

eventually, but did not experience an IE at that time) and the other part was left-

truncated and right-censored data where subjects had an IE and truncation at that

time. We considered the interval-censored data like PFS, and therefore will have

interval-censored data for not having an IE and LTIC data for having an IE. For

LTIC data, there is a limited literature. Frydman (1994) corrected Turnbull’s char-

acterization as accommodating both truncation and interval-censoring time points.

Alioum and Commenges (1996) extended it to the regression model under the pro-

portional assumption. Pan and Chappell (1999) noted that NPMLE was inconsistent

for the early time with LTIC data while conditional NPMLE was shown to be con-

sistent. Pan and Chappell (2002) considered the estimation of the parameters in

the Cox model with LTIC data. Shen (2014a) studied a rank-based test of survival

function in LTIC. However, the length-biased problem was not considered in those

methods.

The data was separable according to the IE in proposed method. This concept

has similarities with the multi-state model. Frydman (1995) and Joly et al. (2002)

studied for interval-censored intermediate event and exactly observed outcome (ab-

sorbing state). Joly et al. (2012) and Frydman et al. (2013) studied for all transition

times are interval censored for multi-state model. They did not use MI while Yu

et al. (2010) studied MI on illness-death model applied with PMDA and ANDA

methods (Wei and Tanner, 1991, Pan, 2000a). There was no studies an IE as exact

data and interval-censored end point.

Most of the proposed methods for interval-censored data used intensively iter-

ative computation. To avoid this, an imputation method was considered. For the
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survival analysis, the event times for interval-censored observations are unknown, so

they can be regarded as missing by assuming independent censoring mechanisms.

We can obtain complete or (left-truncated and) right-censored data after imputa-

tion of the (left-truncated and) interval-censored data. Then we can analyze the

imputed set using standard statistical methods. For missing data, Rubin (1987)

suggested multiple imputation (MI). MI accounts for true variability by incorporat-

ing the between-imputation variability (Rubin, 1987). For right-censored data, Wei

and Tanner (1991) proposed two semiparametric algorithm motivated by the data

augmentation algorithm of Tanner and Wong (1987). Two implementations were

considered for this, poor man’s data augmentation (PMDA) and asymptotic normal

data augmentation (ANDA). Pan (2000b) studied a two-sample test with interval-

censored data via MI based on the approximate Bayesian bootstrap. Pan (2000a)

also proposed a MI using cox regression for interval-censored data by adapting Wei

and Tanner (1991)’s method. Hsu et al. (2007) studied the MI for interval-censored

data with auxiliary variables. Zhao and Sun (2004) and Kim et al. (2006) used MI

techniques for computing the variance of statistics. Huang et al. (2008) proposed log-

rank tests via multiple imputations. After estimating the NPMLE using Turnbull’s

algorithm, they imputed the exact time for all data points including right-censoring

data, from the conditional probability of NPMLE. Yu et al. (2010), Shen (2014b)

extended the approaches of MI using cox regression (Pan, 2000a) to accommodate

left-truncation.
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1.3 Outlines

The purpose of the current paper is to investigate distribution-free methods with

interval-censored endpoints in the presence of an IE when comparing the survival for

two groups. In Section 2.1, we reviewed previous methods. In Section 2.2, we derived

the statistics based on score test for interval-censored data. After constructing the

likelihood, Finkelstein (1986)’s reparametrization was used with accommodating

left-truncation. Then we proposed several multiple imputation methods based on

those of Kim et al. (2006) and Huang et al. (2008) in Section 2.3. After imputation,

the statistics are based on those of Nam and Zelen (2001). The simulation study

provided a log-rank test, stratified log-rank test, and the proposed method. The

simulations to assess the performance of the proposed methods are presented in

Section 3. The real data application is in Section 4, followed by the the discussion.
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×Subject 1
T0 death

Intermediate event ×Subject 2
T0 T1 death

Figure 1: Representation of two subjects with or without an intermediate clinical
event (IE).

2 Methods

2.1 Previous methods

2.1.1 Analysis for length biased data

Nam and Zelen (2001) studied a length biased problem with right-censored data

in the presence of an IE. The random variables W and T were defined as the waiting

time for experiencing an IE and time to death. Z is the indicator of experiencing an

IE(Z = 1) or not(Z = 0). Z = 1 implies waiting time W is less than the event time T

(Z = I{W ≤ T}). The random variables T0 and T1 are defined as the times to death

conditional on Z = 0 or 1 respectively. For example, a subject who experienced an

IE at Wi and the failure time is Ti, T0i implies the duration from initiation to Wi,

T1i implies the duration from Wi to failure time Ti; i.e. T = (1−Z)T0+ZT1 (Figure

1).

The probability density function and tail probabilities of W,T0, T1 are denoted

by g(w), q0(t), q1(t), and G(w), Q0(t), Q1(t), respectively. A subject who does not

experience an IE means that the waiting time for an IE has been right-censored;

i.e. f(t, z = 0) = q0(t)G(t). When a subject experienced an IE, Z = 1. Namely,

a subject experience an IE at Wi, the survival distribution is changed at w and

an event occurs at t; i.e. f(t, w, z = 1) = Q0(w)g(w)
q1(t)
Q1(w) . Next, the hypothesis

8



H0 : q0a(t) = q0b(t), q1a(t) = q1b(t) versus the general alternative which is the

complement of H0 could be considered. Note that the hypotheses are independent of

the waiting time distribution. Using this information, we can construct the likelihood

as below. Let δi = 0 or 1 depending on whether the ith subject is right-censored or

not.



{Q0(t)G(t)}(1−δ)(1−z) for δ = 0, z = 0

{q0(t)G(t)}δ(1−z) for δ = 1, z = 0{
Q0(w)g(w)

Q1(t)
Q1(w)

}(1−δ)z

for δ = 0, z = 1{
Q0(w)g(w)

q1(t)
Q1(w)

}δz

for δ = 1, z = 1

(1)

For δ = 0 and z = 0, it implies a subject does not experience an IE(G(t)) and

event(Q0(t)) until time t. If an event occurs at time t( = 1) without experiencing an

IE (z = 0), an IE is right censored at time t(G(t)). If a subject experienced an IE at

w(z = 1, g(w)), it means that the survival without an IE exceed the observed waiting

time (Q0(w)). The survival distribution is changed to Q1 as truncated at w( 1
Q1(w)).

After experiencing an IE, the subject may have an event at time t(q1(t)) or not

have an event until time t (Q1(t)). The score test was derived using a proportional

hazards model. Define Qia(t) = Qib(t)
βi for i = 0, 1, where βi = exp(γi). Define

x =

 1 if observation is from A

0 otherwise,
δ =

 1 if observation is non-censored

0 otherwise.

9



The loglikelihood for a single observation is

l(β0, β1|x, z, w, t, δ)

= x

{
(1− z)[δlogβ0 + β0logQ0b(t)}] + z[δlogβ1 + β1log

Q1b(t)

Q1b(w)
+ β0logQ0b(w)]

}
+ terms not involving (β0, β1).

After evaluating at β0 = β1 = 0, the score test is

S0 =

(
∂lN (β0, β1)

∂β0

)
β0=1

=

N∑
k=1

xk

{
(1− zk)[δk + logQ0b(tk)] + zklogQ0b(wk)

}

S1 =

(
∂lN (β0, β1)

∂β1

)
β1=1

=

N∑
k=1

xk

{
zkδk + log

Q1b(tk)

Q1b(wk)

}

The results can be rewritten using counting process notation. For this purpose,

define N(t) = I(T ≤ t, δ = 1), Z(t) = I(W ≤ t) and R(t) = I(T ≥ t). Let

sk = xkzk(tk)dNk(tk), nk =
∑N

j=1 xjRj(tk)zj(tk), and Nk =
∑N

j=1Rj(tk)zj(tk). The

statistics Ŝ1 can be written as

Ŝ1 =
N∑
k=1

xkzk(tk)dNk(tk)−
N∑
k=1

pkdNk(tk), pk = nk/Nk

and under the null hypothesis has mean zero and variance V (Ŝ1) =
∑N

k=1 pk(1 −

pk)dNk(tk). The statistics Ŝ0 can be written as

Ŝ0 =

N∑
k=1

xk(1− zk(tk))dNk(tk)−
N∑
k=1

πkdNk(tk), πk = mk/Mk,

where rk = xk(1 − zk(tk))dNk(tk),mk =
∑N

j=1 xjRj(tk)(1 − zj(tk)), and Mk =

10



∑N
j=1Rj(tk)(1− zj(tk)). The variance is V (Ŝ0) =

∑N
k=1 πk(1− πk)dNk(tk). Hence,

an appropriate chi-square statistic with 2 degress of freedom for testing H0 is χ2
2 =

Ŝ2
1/V (Ŝ1) + Ŝ2

0/V (Ŝ0) .

2.1.2 Analysis for interval-censored data

Finkelstein (1986) developed a method for fitting the proportional hazards regres-

sion model for interval-censored response time data. The data can be represented as

(Li, Ri] and Xi. Xi is the r-dimensional vector of covariates. For the right-censored

data, Ri = ∞, while for exact observations, Li = Ri. The independence of censoring

mechanism is assumed. The likelihood is proportional to

L =

N∏
i=1

[G(Li|xi)−G(Ri|xi)], (2)

where G(s|x) = Pr(S > s|X = x). It can be characterized the set of times 0 = s0 <

s1 < ... < sm = ∞ from each of Li and Ri. The contribution of the ith observation

to the likelihood (2) can be expressed as

m∑
j=1

αij [G(sj−1|xi)−G(sj |xi),

where αij =

 1 if (sj−1, sj ] ⊆ Ai

0 otherwise

Under the assumption of proportional hazards, the probability of surviving be-

yond time sj for an subject with covariates xi is G(sj |xi) = [G(sj)]
expxiβ. With

11



reparametrization γj = log[−logG(sj)], it can be expressed

L =
N∑
i=1

log
m∑
j=1

αij{exp[−exp(xiβ + γj−1)− exp[−exp(xiβ + γj)]}. (3)

Note that since G0 = 1(γ0 = ∞) and Gm = 0(γm = ∞), L is a function of γj and β

for j = 1,…,m. After calculating the first and second derivatives for the likelihood

(3), we can estimate γj and β using a Newton-Raphson algorithm. When comparing

the survival curves, a test for β = 0 is of interest. The score statistic for testing

β = 0 is

U =
∂logL
∂β

∣∣∣∣
β=0

=
m∑
j=1

[ ∑
i⊆F ′

j

xiwrij logp̂j −
∑
i⊆D′

j

xiwdij logp̂j/(1− p̂i)

]
, (4)

where wrij =

m∑
k=j

αij ĝk/
∑
n

αinĝn = Pr(S > sj |A),

wdij = αij ĝj/
∑
n

αinĝn = Pr(sj−1 < S ≤ sj |A),

ĝj = Ĝj−1 − Ĝj .

F ′
j is pseudo risk set of all subjects who have a nonzero probability of being at risk

at interval (sj−1, sj ]. D′
j is a pseudo response set of all subjects who have a nonzero

probability of having an event at interval (sj−1, sj ].

Kim et al. (2006) studied a log-rank type test that did not use an iterative

algorithm. They proposed uniform weights algorithm, where a subject contributed

uniformly to each mass point. sj for j = 1, ...,m consists of left and right endpoints

which may have masses. Let Ti ⊂ Ai, where Ai = (Li, Ri], δ = 0 or 1, 0 = s0 < s1 <

... < sm, αij = 1 if Li < sj ≤ Ri or 0 otherwise. The pseudo-risk set at each point is
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Figure 2: Example of uniform weights of three subjects.

∑m
k=j αik∑m
h=1 αih

while the pseudo-failure set at each point is δiαij∑m
h=1 αih

for δ = 1 if an event

is occurred, or δ = 0 if not. Figure 2 shows the example of uniform weight for 3

subjects. For example, there are 2 time points that may have a positive mass for

subject 1. Therefore, the weight is 1
2 for s2 and s3, respectively. The pseudo risk set

for (s2, s3) of subject 1 are (1, 12), respectively. The pseudo failure set for same time

points of subject 1 is (12 ,
1
2). With the pseudo-risk and pseudo-failure set, a log-rank

type test statistic can be derived. Through simulation, the satisfactory type I error

and power was shown.

2.1.3 Analysis for left truncated and interval-censored data

Let F be the cumulative distribution function of a real-valued random variable

X. Turnbull (1976) characterized a set C of disjoint intervals Ai = [Li, Ri] in which
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0

W1,W2

L1

W3

R1 L2 R2 L3 R3 +∞

Turnbull’s set
[ ] [ ] [ ]
L1 R1 L2 R2 L3 R3

Corrected set
] [ ] ] [ ] [ ]

W1,W2 L1 W3 R1 L2 R2 L3 R3

Figure 3: Example of characterizing sets of three subjects.

the NPMLE of F may have positive masses. The NPMLE can be obtained using the

self-consistency algorithm. However, as noted by Frydman (1994), when there exist

both truncation and censoring, the set C is not applicable. For example, we consider

a small disjoint data set with three observations: {(Ai, Bi), 1 ≤ i ≤ 3}. Ai = [Li, Ri]

with L1 < L2 < L3. Bi = (Wi,∞) with W1 = W2 = 0 < L1 < W3 < R2. The set

C from Turnbull is simply C = ∪3
i=3Ai. Please refer to Figure 3. The likelihood is

L(F ) =
∏3

i=1{F (Ri+)− F (Li−)}/{1− F (W3+)}. Note that F (W1) = F (W2) = 0.

For fixed values of F (Ri+) and F (Li−) the likelihood depends on the value of F at

W3. This violate Turnbull (1976)’s lemma 2 . The correct characterization of F̂ the

set C should be redefined as C ′ = [L1,W3] ∪ [L2, R2] ∪ [L3, R3].

2.1.4 Multiple imputation techniques

In the survival analysis, the event times for interval-censored observations is un-

known, so it can be regarded as missing by assuming independent censoring mech-

anisms. After imputation, the interval-censored data is reduced to right-censored
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data. True variability may be underestimated when using simple imputation. In

multiple imputations, the variance is adjusted to within-imputation covariance and

between-imputation variance. Pan (2000a) studied multiple imputation method to

estimate the coefficient of the cox regression with interval-censored data. They im-

puted m sets from the initial estimate of the cox proportional hazard model and

baseline survival. Right-censored data was maintained without manipulation. With

imputed exact time, a Cox model was fitted to obtain new estimates and the baseline

survival. The iteration was repeated until estimates converged. Huang et al. (2008)

studied a log-rank test via multiple imputation for interval censored data. After

estimating the NPMLE by using Turnbull’s algorithm, they imputed the exact time

for all data points including right-censored data from the conditional probability of

NPMLE. Unlike Pan (2000a), Huang et al. (2008) used a large imputation num-

ber (M=100). The covariance matrix estimator was formed of subtracting within-

imputation covariance and between-imputation variance (Follmann et al., 2003). In

rth imputation for r = 1, ...,M , U r and V r was obtained by a log-rank test from

the imputed-data set (i.e. data is exact or right-censored).

V̂ =

∑M
r=1 V

r

M
−

∑M
r=1[U

r − Ū ][U r − Ū ]T

M − 1
,where Ū =

∑M
r=1 U

r

M
.

They showed through intensive simulations (100,000 replications) that the subtract-

ing of within-imputation covariance and between-imputation variance is more suit-

able than adding that which was used by Zhao and Sun (2004). In a simulation

result, Zhao and Sun (2004)’s variance was marginally overestimated while Huang

et al. (2008)’s variance was slightly underestimated. In the current paper, we applied

both forms of variance.
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2.2 Notation and framework

For simplicity, we assumed that the IE is binary and only two treatment group

exists. Let W and T be a positive real-valued random variable as the waiting time

for an IE to occur and time to an event, respectively. Assume the binary random

variable Z to be Z = I{X ≤ T}. The random variables T0 and T1 are defined as

the times to event conditional on Z = 0 or 1 respectively, i.e. T = (1−Z)T0 +ZT1.

T0 means failure time was observed without an IE and T1 means failure time was

observed after an IE occurred. Survival time with an intermediate event implies

that the survival time should exceed the waiting time for an IE. This reflects length

bias phenomenon; i.e. an individual has to live long enough to have experienced the

IE.

The density functions of W , T0, T1 are g(x), q0(t), and q1(t) respectively. Also

the survival distribution functions are G(w) = Pr[W > w], Q0(t) = Pr[T0 > t] and

Q1(t) = Pr(T1 > t).

We further assumed that the failure time T is interval-censored. Therefore,

for the ith subject, we did not observe Ti exactly but observed Ti ∈ Ai, where

Ai = (Li, Ri] was the interval in which the failure occurred. Note that for right-

censored observations, Ri = ∞, while for the exact observations, Li = Ri. Let

δi = 0 or 1 depending on whether the ith subject is right-censored or not. For the

model with Z = 1, it implies that the waiting time was observed before the failure

time. Therefore T1 is left truncated at the waiting time W and interval-censored.

Let {Bi, 1 ≤ i ≤ N} is the truncation sets, i.e. Bi = (Wi,∞).

We now characterized the set with all observed points including left-truncated

data as mentioned by Frydman (1994). We considered the set of N independent
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paired {Ai, Bi}. We assumed Ai ⊆ Bi. We characterized the following L̃k and R̃k,

where k = 0, 1. For the survival distribution of T0, it implied that subjects observed

an event before having an IE. In the case of having an IE, it was regarded as right

censoring at Wi; i.e. (Wi,∞].

L̃0 = {Li; 1 ≤ i ≤ N} ∪ {Wi; 1 ≤ i ≤ N}

R̃0 = {Ri; 1 ≤ i ≤ N} ∪ {∞}

For survival distribution of T1, a time point Wi, Li and Ri of a subject who experi-

enced an IE was included.

L̃1 = {Li; 1 ≤ i ≤ N}

R̃1 = {Ri; 1 ≤ i ≤ N} ∪ {Wi; 1 ≤ i ≤ N} ∪ {∞}

When an IE occurs, it implies that the survival distribution may change to T1.

Note that the initial survival distribution is Q0(t) = Pr(T0 > t). When an IE

occurs, the waiting time is a change point of distribution for survival. That is, for

the distribution of T0, the information of the event exceeding the waiting time can

no longer be observed. Therefore, the waiting time is treated as righted censored

for T0. The event time exceeding the waiting time is not included in set L̃0 and R̃0.

For the survival distribution having an IE, the waiting time W is a left-truncated

time. The subject who does not experience an IE is not included in set L̃1 and R̃1.

Therefore, the waiting time for an IE is included in L̃0 for T0 as right-censored at

W , whereas it is included in R̃1 for T1.

The distinct endponits were set as Ck in which all the timepoints L̃k and R̃k were

ordered and labeled 0 = sk0 < sk1 < ... < skm = ∞ for i = 1, ..., n, j = 1, ...,m, k = 0, 1.

We assumed that the censoring and truncating mechanisms were independent of the

failure times. Please see the Figure 4- 6.
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Figure 4: An example of 5 subjects with or without an intermediate clinical event.
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Figure 5: An example of constructing sets of 5 subjects for T0.
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Figure 6: An example of constructing sets of 5 subjects for T1.
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2.3 Proposed method

2.3.1 Likelihood with interval-censored data

The likelihood with an interval-censored outcome in the presence of an IE con-

sisted of two parts according to Z. The likelihood of the observation is proportional

to L =
∏
L1i

∏
L2i, where


L1i = {(Q0(Li)−Q0(Ri))G(Li)

1−δG(Ri)
δ}(1−z) for z = 0

L2i =

{
Q0(Wi)g(Wi)

Q1(Li)−Q1(Ri)
Q1(Wi)

}z

for z = 1
(5)

As mentioned before, Ri = ∞ for right-censored data. In the case of a subject who

did not experience an IE (z = 0) but an event occurred (δ = 1), we only know that

an IE did not occur until Ri. If a subject who did not experience an IE and an

event (z = 0, δ = 0), the last observed time point was Li where Ri = ∞. So the

likelihood has a term of G(Li)
1−δ and G(Ri)

δ. When a subject experienced an IE

at Wi, the subject survived without an IE until at that time. After experiencing an

IE, a survival distribution of the subject was changed to Q1.

The Q0(Li)−Q0(Ri) contribution of the ith observation to the likelihood can be

expressed as
∑

j α
k
ij{Q(skj−1)−Q(skj )} (Finkelstein, 1986) and for left truncation, it

can be expressed as
∑

j νij{Q(s1j−1) − Q(s1j )} that we accommodate truncate time

to the characterized set, where

αk
ij =

 1 if Li < skj ≤ Ri

0 otherwise
νij =

 1 if Wi < s1j

0 otherwise,

for i = 1, ..., n, j = 1, ...,m, k = 0, 1.
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Thus, the log of likelihood (5) is expressed as

L1i =
[
G(Li)

1−δG(Ri)
δ
∑
j

α0
ij{Q0(s

0
j−1)−Q0(s

0
j )}

](1−z)

l1 = log of
∏
i

L1i =
∑
i

logL1i

= (1− z)
∑
i

[
log

∑
j

α0
ij{Q0(s

0
j−1)−Q0(s

0
j )}

+ (1− δ)logG(Li) + δlogG(Ri)
]
.

Under proportional assumption, Qk(s
k
j ) = Q0

k(s
k
j )

exp(xiβk) where Q0
k is baseline sur-

vival function at time skj for k = 0, 1. For conveinence, Finkelstein reparametrization

is used as Q0
k(s

k
j ) = exp(−exp(γkj)). Therefore, logQk(s

k
j ) = exp(xiβk)logQ0

k(s
k
j ) =

exp(xiβk)(−exp(γkj)) = −exp(xiβk + γkj). The log of likelihood is rewritten as

l1 =
∑

logL1i

= (1− z)
∑
i

log
∑
j

α0
ij{exp(−exp(xiβ0 + γ0j−1))− exp(−exp(xiβ0 + γ0j))}

+ terms not involve β or γ. (6)

We now calculate the first and second derivatives for the likelihood function (6)

to estimate observed Fisher information matrix. It closely follows the paper by

Finkelstein (1986). To calculate derivatives of L1i, we need the information below.

We omit the k for convenience in calculating L1i part because all time points are in
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s0j for j = 1, ...,m at L1i .

let u0j = −exp(xiβ0 + γ0j) = logQ0(sj)

∂u0j
∂β0

= −xiexp(xiβ0 + γ0j) = xilogQ0(sj)

∂u0j
∂γ0j

= −exp(xiβ0 + γ0j) = logQ0(sj)

∂exp(u0j)
∂β0

=
∂u0j
∂β0

exp(u0j) = exp(u0j)xilogQ0(sj) = xiQ0(sj)logQ0(sj) = xihij

∂exp(u0j)
∂γ0j

= Q0(sj)logQ0(sj) = hij

∂
∑
αijgij
∂β0

=
∑

αij(xiQ0(sj−1)logQ0(sj−1)− xiQ0(sj)logQ0(sj))

= αij [hij−1 − hj ]xi

∂
∑
αijgij

∂γ0j
= −αijQ0(sj)logQ0(sj) + αij+1Q0(sj)logQ0(sj)

= (αij+1 − αij)hij

where gij = Q0(sj−1)−Q0(sj), hij = Q0(sj)logQ0(sj)(= u0jexpu0j)

First derivatives can be calculated by differentiation β0 and γ0j .

∂l1
∂β0

= (1− z)
∑
i

1∑
j αijgij

∑
j

αij [hij−1 − hij ]xi

∂l1
∂γ0j

= (1− z)
∑
i

(αij+1 − αij)hij∑
j αijgij

= (1− z)
∑
i

µijhij

where µij =
αij+1 − αij∑

j αijgij
.

21



To calculate the second derivatives

∂hij
∂β0

=
∂(u0jexp(u0j))

∂β0
=
∂u0j
∂β0

exp(u0j) + u0j
∂u0j
∂β0

exp(u0j)

= xiQ0(sj)logQ0(sj) + xi(logQ0(sj))
2Q0(sj)

= xibij

∂hij
∂γ0j

=
∂u0j
∂γ0j

expu0j + u0j
∂u0j
∂γ0j

expu0j

= Q0(sj)logQ0(sj) + (logQ0(sj))
2Q0(sj) = bij

∂µij
∂β0

= − αij+1 − αij

(
∑

j αijgij)2
∂
∑
αijgij
∂β0

= − αij+1 − αij

(
∑

j αijgij)2

∑
j

αij(hij−1 − hij)xi

∂µij
∂γ0j

=
αij+1 − αij

(
∑

j αijgij)2
∂
∑
αijgij

∂γ0j

= − αij+1 − αij

(
∑

j αijgij)2
(αij+1 − αij)hij =

(αij+1 − αij)
2

(
∑

j αijgij)2
hij = −µ2ijhij

Second derivatives can be written as

∂2l1
∂γ20j

= (1− z)
∑
i

(
− µ2ijh

2
ij + µijbij

)
∂2l1

∂β0∂γ0j
= (1− z)

∑
i

{(
− αij+1 − αij

(
∑

j αijgij)2

∑
j

αij(hij−1 − hij)xi
)
hij + µijxibij

}

= (1− z)
∑
i

xi

{
µijbij − µijhij

∑
j αij(hij−1 − hij)∑

j αijgij

}
∂2l1
∂β2

0

= (1− z)
∑
i

x2i

{
−

∑
j αij(bij−1 − bij)∑

j αijgij
+

[∑
j αij(hij−1 − hij)∑

j αijgij

]2}
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Then we can establish the observed Fisher information matrix Ak =

Ak,11 Ak,12

Ak,21 Ak,22

,

where Ak,11 = −∂2L/∂γ2, Ak,12 = Ak,21 = −∂2L/∂γ∂β,Ak,22 = −∂2L/∂β2.

For L2i, the log of likelihood is expressed as

l2 =
∑
i

logL2i

= z
∑
i

[
log

∑
j

νij{exp(−exp(xiβ0 + γ0j−1))− exp(−exp(xiβ0 + γ0j))

− log
∑
j

νij{exp(−exp(xiβ1 + γ1j−1))− exp(−exp(xiβ1 + γ1j))

+ log
∑
j

αij{exp(−exp(xiβ1 + γ1j−1))− exp(−exp(xiβ1 + γ1j))}

+ terms not involve β or γ. (7)
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The first derivatives of L2i are below.

∂l2
∂β0

= z
∑
i

1∑
j νijg

0
ij

∑
j

νij [h
0
ij−1 − h0j ]xi

∂l2
∂γ0j

= z
∑
i

(νij+1 − νij)h
0
ij∑

j νijg
0
ij

= z
∑
i

µ0ij(ν)h
0
ij

∂l2
∂β1

= z
∑
i

[
1∑

j α
1
ijg

1
ij

∑
j

α1
ij [h

1
ij−1 − h1j ]xi

− 1∑
j νijg

1
ij

∑
j

νij [h
1
ij−1 − h1ij ]xi

]
∂l2
∂γ1j

= z
∑
i

{µ1ij(α)h1ij − µ1ij(ν)h
1
ij)}

where hkij = Qk(s
k
j )logQk(s

k
j ), g

k
ij = Qk(s

k
j−1)−Qk(s

k
j )

µkij(parameter) =
parameterij+1 − parameterij∑

j parameterijg
k
ij

, parameter = α or ν.

The second derivatives of L2i are added logQ0(Wi) or −logQ1(Wi) term from l1.

The score statistics are,

S0 =
∂l

∂β0

∣∣∣∣
β0=0

= (1− z)
N∑
i=1

1∑
j α

0
ijg

0
ij

∑
j

α0
ij [h

0
ij−1 − h0ij ]xi

+ z

N∑
i=1

1∑
j νijg

0
ij

∑
j

νij [h
0
ij−1 − h0j ]xi

S1 =
∂l

∂β1

∣∣∣∣
β1=0

= z
∑
i

[
1∑

j α
1
ijg

1
ij

∑
j

α1
ij [h

1
ij−1 − h1j ]xi

− 1∑
j νijg

1
ij

∑
j

νij [h
1
ij−1 − h1ij ]xi

]
(8)

For Z = 0, we characterize the set C0 that the waiting time Wi is regarded as

right-censored at that time. So we can rewrite νij as α0
ij . Then we can reduce S0

24



as
∑N

i=1

∑
j αij [h

0
ij−1−h0

ij ]xi∑
j αijg0ij

. For Z = 1, we have both interval-censored and left trun-

cated terms. We developed the likelihood and score test based on the methods of

Finkelstein (1986). However, it is not easy to estimate the variance matrix in some

conditions. Finkelstein (1986) used a discrete baseline survival, and the estimation

was based on a full likelihood using the proportional hazards model. The number of

parameters could increase with the number of event times, rendering numerically un-

stable optimization. Kim et al. (2006), Huang et al. (2008) were studied to compare

several methods for interval-censored data through simulations, the results showed

that the Finkelstein method did not satisfy the nominal level for some conditions.

Kim et al. (2006) showed that Finkelstein’s method overestimated the nominal level

0.05 for most configurations (They had 54 configurations varying shape parameter

of a Weibull distribution, censoring fraction, and depth for n = 50 or n = 100).

Similar result was observed in Huang et al. (2008). They showed that estimated size

of the Finkelstein test was biased over 0.05 for various censoring fraction conditions

with 100,000 replications (n = 50 or 100). The current study focuses on comparing

two survival curves in the presence of an IE. Here, we did not use Finkelstein’s form

directly, and move to another simple way.

2.3.2 Multiple imputation

MI converts interval-censored data to right-censored data so standard methods

can be applied. This method can simplify the complicated situation and some non-

iterative methods have been suggested (Pan, 2000b, Kim et al., 2006, Huang et al.,

2008). We considered uniform weight method and weighted weight method. The

uniform method closely followed that of Kim et al. (2006) who proposed a log-

rank type test using uniform assumptions with controlling type I error, and having
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acceptable power. The proposed method did not need intensive computation and

was easy to implement. The weighted method closely followed Huang et al. (2008)

with accomodating left truncation. After imputation, the proposed score statistics

by Nam and Zelen (2001) was used.

2.3.3 Uniform weight method

Kim et al. (2006) assumed the true failure time of a subject may be uniformly

distributed over {sj , Li < sj ≤ Ri, for j = 1, ...,m} for each subject. They calculated

a pseudo-risk and failure set based on uniform weights. They used MI techniques

to estimate a variance matrix. In the current paper, we used MI techniques for the

whole process includiing imputing a true failure time under the same assumption.

We use a moderate imputation number (M=10) as Pan (2000a) recommended.

Step0: Set r = 1, where r denotes an imputation number.

Step1. Charaterize the set Ck with L̃k, R̃k for each of Tk for k = 0, 1.

L̃0 = {Li; 1 ≤ i ≤ N} ∪ {Wi; 1 ≤ i ≤ N}, R̃0 = {Ri; 1 ≤ i ≤ N} ∪ {∞}

L̃1 = {Li; 1 ≤ i ≤ N}, R̃1 = {Ri; 1 ≤ i ≤ N} ∪ {Wi; 1 ≤ i ≤ N} ∪ {∞}.

The distinct endponits set Ck in which all the timepoints L̃k and R̃k are ordered

and labeled 0 = sk0 < sk1 < ... < skm = ∞ for i = 1, ..., n, j = 1, ...,m, k = 0, 1.

Step2: If the ith observation is interval-censored, generate a value randomly sampled

from a set Ck = {skj , Li < skj ≤ Ri, for j = 1, ...,m}. Note that after imputed exact

time, T (r)
0 is right-censored data while T (r)

1 is left-truncated and right-censored data.

For making T (r)
0 , we censored the data at Wi if Zi = 1. For making T (r)

1 , we only
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use the data with Zi = 1.

T
(r)
0 =



T
(r)
0i = Li if δi = 0, Zi = 0

T
(r)
0i =Wi, δi = 0 if Zi = 1

T
(r)
0i = random sample from the set

{s0j , Li < s0j ≤ Ri, for j = 1, ...,m} if δi = 1, Zi = 0

T
(r)
1 =


T
(r)
1i = Li if δi = 0, Zi = 1

T
(r)
1i = random sample from the set

{s1j , Li < s1j ≤ Ri, for j = 1, ...,m} if δi = 1, Zi = 1

Step3. Based on the rth imputed (left-truncated) right-censored data, compute the

Nam and Zelen (2001) statistics and its covariance S(r)
k , V (Ŝk)

(r) for r = 1, ...,M, k =

0, 1.

Step4. Repeate Step2 to Step3 M(> 0) times and obtain M paired of (S(r)
k , V (Ŝk)

(r)),

where r = 1, ...,M, k = 0, 1.

Step5: Compute the sum of the average within-imputation covariance associated

with Sk and the between-imputation variance of Sk.

S̄k =
1

M

M∑
r=1

S
(r)
k ,

V (Ŝk)mi,a =
1

M

M∑
r=1

V̂
(r)
Sk

+ (1 +
1

M
)

1

M − 1

M∑
r=1

(S
(r)
k − S̄k)

2

Here, we applied two types of variances. One added within- and between variance

and the other subtracted two variances as in Huang et al. (2008). The first term
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can be seen above, whereas the second term is formed as

V (Ŝk)mi,b =
1

M

M∑
r=1

V̂
(r)
Sk

− 1

M − 1

M∑
r=1

(S
(r)
k − S̄k)

2.

Thus, we can test H0 based on

χ2
2 = S̄0

2
/V (Ŝ0)mi,l + S̄1

2
/V (Ŝ1)mi,l for l = a, b.

2.3.4 Weighted weight method based on NPMLE

We proposed another weighted method based on NPMLE. We estimated the

NPMLE from the original data set by Turnbull’s algorithm and used the NPMLE

as weights for the imputation. The data was LTIC when having an IE, therefore

we characterized the set that may have a positive mass including truncated points

same as above method.

Step 1. Estimate the NPMLE from the original data set.

Step 2. Using the NPMLE as weight, impute the data conditional on {Li < T
(r)
i ≤

Ri}.


T
(r)
0i = Li if δi = 0, zi = 0

T
(r)
0i =Wi, δi = 0 if zi = 1

T
(r)
0i = random sampling from the distribution NPMLE

 T
(r)
1i = Li if δi = 0, zi = 1

T
(r)
1i = random sampling from the distribution NPMLE

28



Step 3. Based on the rth imputed (left-truncated) right-censored data, we can cal-

culate the average Nam and Zelen (2001) statistics and variance as uniform weight

method.
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3 Simulation studies

3.1 Data generation

The IE such as a heart transplant or the start of second-therapy can be observed

exactly. Hence, we can assume that the waiting time W for an IE is exactly observed

while the failure time T such as recurrence or progression is interval-censored. At

first, we generate the true failure time T0 and waiting time W from a survival

distribution below;

Gl(w) = e−µlw, Q0l(t0) = e−λ0lt for l = A,B.

Note that the probability of experiencing an IE is θl = µl
µl+λ0l

. If W > T0, then

T = T0. If W ≤ T0, generate a random variable T1 from the truncated probability

distribution function q1(t)/Q1(w) with W ≤ T1, where Q1t(t) = e−λ1lt for l = A,B.

Therfore, T1 should be larger than W , so we can generate Q1(t) ∼ U(0, Q1(W )). The

value of λ1l was chosen from the mean time to failure, m1 = {1, 1.25, 1.5, 2}. In our

simulations, θA = 0.5, θB = {0.3, 0.4, 0.5}, λ0A = λ0B = 1,m1A = 1,m1B = {1, 2}.

The first examination time E was Uniform(0, ψ). For a subject having an

IE, the first examination time E was equal to or greater than the waiting time

W (E ∼ Uniform(W,W + ψ)). The length of the time interval between two follow-

up examinations was assumed as a constant, len = 0.5. We fixed ψ as the same as

len. If we have p examinations, survival time Ti is accordingly observed in one of

intervals (0, Ei], (Ei, Ei + len), ..., (Ei + p ∗ len,∞). Here, we did not restrict the

number of follow-up visits, because a subject having an IE should survival at the

waiting time and has more chance to follow up for longer. We assumed that every

subject visited at the first examination time, E. After that, there is a probability

that a subject might not comply with the follow-up visits. For a visit that may be
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Table 1: Design parameters and their values included in the simulations.
Parameters Values Description
θB 0.3, 0.4, 0.5 The probability of experiencing an IE
µl 1, 3/7, 2/3 For the waiting time W
λ0 1 For the true failure time T0
m1, l 1,1.25, 1.5, 2 The mean time to failure of T1
len 0.5 The visit interval
d (0, 0), (0.1, 0.2) Follow-up missing rate at (first year, therafter)
cp 0, 0.3 Censoring fraction
n 50, 100, 200 Sample size for each group

missing we considered two settings. One was each subject would not miss any of the

follow-up visits. The other was a subject might miss any of the follow-up visits and

was more likely to miss later visits (i.e. 0.1 for first years, and then 0.2 thereafter).

Supposing that a censoring indicator δ having 0 or 1 is generated from the

Bernoulli distribution with a success probability cp. cp is set as 0 or 0.3. If δ = 0,

the observation on Ti is right-censored and δ = 1, the observation on Ti is observed

on (Li, Ri]. For right-censored data (δ = 0), we set L as it is but R to be infinity. For

δ = 1, we maintained the endpoints as they were. The sample sizes were chosen as

50, 100 and 200 for each group. The results reported were based on 1000 replications

for each scenario. All design parameters and their values included in simulation are

listed in Table 1.

For comparison, we included the log-rank test and stratified log-rank test (the

stratum is having an IE or not) along with our proposed tests. For the log-rank and

stratified log-rank test, the true failure times were used rather than the interval-

censored ones. We used two variance forms, which are formed by (1) adding and (2)

subtracting of within- and between variance.
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3.2 Results

The results of the simulations are summarized from Tables 2 to 9. Table 2

to 5 shows the estimate of the upper 5% of each of the five tests under the null

hypothesis, whereas Tables 6 to 9 shows the power under the alternative hypothesis

for each scenario. The proposed methods showed the appropriate 5% significant level

under all scenarios. For the variance with adding form (1), the methods marginally

overestimated the variance so the effect sizes were less than 0.05 for most of scenarios.

For the variance with subtracting form (2), the methods slightly underestimated the

variance.

When the proportion of an IE is different between two groups (i.e. θA is not

equal to θB.), the stratified log-rank test is unsatisfactory. Even though the survival

distribution is similar between two groups and only the proportion of an IE is differ-

ent, the stratified log-rank test determined incorrectly that the survival distribution

were different in many cases. The log-rank test satisfies the nominal significance

level when the survival functions are not changed after experiencing an IE regard-

less of the proportion. When the survival distribution is changed after experiencing

an IE (i.e., λ0A is not equal to λ1A.) in addition to the difference proportion of

an IE, however, the log-rank test is not appropriate. The comparison of the uni-

form and weighted weight multiple imputation methods, did not show considerable

differences.

When θA = θB = 0.5, the simulations in Table 2 confirmed that all tests gave the

correct 5% significance level. Hence, the power calculations were restricted to this

case. The value of the other parameters was: λ0A = λ0B = 1,m1A = 2. Only the

mean time to failure was changed for m2B. When the sample size is increased, the
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value of censoring fraction cp is decreased, or the difference of mean time to failure

is increased, it is expected that the power of the tests can be improved. In all cases,

the proposed methods have superior power by taking advantage of the knowledge of

the intermediate clinical event.

In the appendices, the power of proposed methods was shown, which had accept-

able nominal levels for θA ̸= θB(Table 10-13). We also simulated larger imputation

numbers (M=100) with same scenarios and it showed similar results with moderate

imputation numbers (M=10) (Tables 14-25).
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Table 2: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
all events are observed in some intervals and there are no missed visits.
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.056 0.049 0.053 0.058 0.055 0.058
(0.5, 0.5) (1, 1) (1, 1) 0.061 0.047 0.044 0.051 0.047 0.051
(0.5, 0.4) (1, 1) (2, 2) 0.055 0.093 0.044 0.047 0.046 0.050
(0.5, 0.4) (1, 1) (1, 1) 0.066 0.111 0.048 0.060 0.051 0.058
(0.5, 0.3) (1, 1) (2, 2) 0.099 0.213 0.041 0.052 0.042 0.048
(0.5, 0.3) (1, 1) (1, 1) 0.045 0.245 0.044 0.054 0.045 0.054
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.057 0.058 0.052 0.058 0.052 0.056
(0.5, 0.5) (1, 1) (1, 1) 0.058 0.056 0.045 0.051 0.044 0.055
(0.5, 0.4) (1, 1) (2, 2) 0.076 0.133 0.048 0.054 0.049 0.054
(0.5, 0.4) (1, 1) (1, 1) 0.043 0.143 0.045 0.050 0.045 0.054
(0.5, 0.3) (1, 1) (2, 2) 0.139 0.365 0.049 0.052 0.047 0.054
(0.5, 0.3) (1, 1) (1, 1) 0.048 0.460 0.044 0.051 0.040 0.055
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.055 0.048 0.049 0.055 0.048 0.053
(0.5, 0.5) (1, 1) (1, 1) 0.043 0.052 0.049 0.058 0.050 0.057
(0.5, 0.4) (1, 1) (2, 2) 0.092 0.238 0.044 0.049 0.043 0.050
(0.5, 0.4) (1, 1) (1, 1) 0.053 0.293 0.044 0.050 0.044 0.055
(0.5, 0.3) (1, 1) (2, 2) 0.210 0.646 0.047 0.051 0.048 0.056
(0.5, 0.3) (1, 1) (1, 1) 0.056 0.726 0.048 0.050 0.043 0.048

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 3: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
all events are observed in some intervals and there are some missed visits with a
probability 0.1 for the first year and then 0.2 thereafter.
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.054 0.058 0.048 0.052 0.044 0.056
(0.5, 0.5) (1, 1) (1, 1) 0.055 0.050 0.042 0.052 0.044 0.053
(0.5, 0.4) (1, 1) (2, 2) 0.073 0.105 0.045 0.051 0.045 0.056
(0.5, 0.4) (1, 1) (1, 1) 0.060 0.124 0.042 0.058 0.042 0.060
(0.5, 0.3) (1, 1) (2, 2) 0.098 0.212 0.048 0.059 0.044 0.057
(0.5, 0.3) (1, 1) (1, 1) 0.057 0.236 0.046 0.057 0.047 0.055
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.051 0.048 0.051 0.058 0.052 0.058
(0.5, 0.5) (1, 1) (1, 1) 0.053 0.067 0.040 0.046 0.041 0.046
(0.5, 0.4) (1, 1) (2, 2) 0.069 0.148 0.044 0.049 0.046 0.049
(0.5, 0.4) (1, 1) (1, 1) 0.047 0.173 0.040 0.045 0.040 0.050
(0.5, 0.3) (1, 1) (2, 2) 0.137 0.372 0.049 0.056 0.050 0.060
(0.5, 0.3) (1, 1) (1, 1) 0.049 0.462 0.042 0.060 0.046 0.062
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.059 0.057 0.054 0.060 0.056 0.057
(0.5, 0.5) (1, 1) (1, 1) 0.055 0.042 0.042 0.049 0.043 0.056
(0.5, 0.4) (1, 1) (2, 2) 0.096 0.221 0.054 0.058 0.054 0.062
(0.5, 0.4) (1, 1) (1, 1) 0.061 0.282 0.045 0.053 0.044 0.052
(0.5, 0.3) (1, 1) (2, 2) 0.232 0.621 0.051 0.056 0.050 0.056
(0.5, 0.3) (1, 1) (1, 1) 0.053 0.747 0.045 0.051 0.043 0.052

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 4: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
censoring fraction is 0.3, but there are no missed visits.
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.055 0.054 0.050 0.056 0.050 0.054
(0.5, 0.5) (1, 1) (1, 1) 0.057 0.064 0.043 0.045 0.042 0.044
(0.5, 0.4) (1, 1) (2, 2) 0.057 0.085 0.053 0.055 0.051 0.054
(0.5, 0.4) (1, 1) (1, 1) 0.047 0.091 0.052 0.056 0.050 0.056
(0.5, 0.3) (1, 1) (2, 2) 0.085 0.181 0.048 0.055 0.052 0.058
(0.5, 0.3) (1, 1) (1, 1) 0.047 0.200 0.043 0.048 0.044 0.049
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.048 0.045 0.048 0.054 0.049 0.055
(0.5, 0.5) (1, 1) (1, 1) 0.058 0.056 0.047 0.055 0.048 0.055
(0.5, 0.4) (1, 1) (2, 2) 0.069 0.121 0.050 0.052 0.048 0.051
(0.5, 0.4) (1, 1) (1, 1) 0.049 0.134 0.044 0.049 0.044 0.050
(0.5, 0.3) (1, 1) (2, 2) 0.103 0.283 0.055 0.060 0.056 0.058
(0.5, 0.3) (1, 1) (1, 1) 0.040 0.341 0.043 0.050 0.044 0.047
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.046 0.051 0.047 0.050 0.048 0.049
(0.5, 0.5) (1, 1) (1, 1) 0.047 0.051 0.048 0.052 0.048 0.055
(0.5, 0.4) (1, 1) (2, 2) 0.081 0.193 0.041 0.045 0.045 0.047
(0.5, 0.4) (1, 1) (1, 1) 0.055 0.229 0.049 0.057 0.053 0.057
(0.5, 0.3) (1, 1) (2, 2) 0.166 0.494 0.042 0.048 0.048 0.050
(0.5, 0.3) (1, 1) (1, 1) 0.051 0.607 0.040 0.046 0.042 0.046

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 5: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
censoring fraction is 0.3 and there are some missed visits with a probability 0.1 for
the first year and then 0.2 thereafter.
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.050 0.056 0.049 0.055 0.045 0.055
(0.5, 0.5) (1, 1) (1, 1) 0.065 0.060 0.044 0.058 0.043 0.055
(0.5, 0.4) (1, 1) (2, 2) 0.058 0.100 0.051 0.060 0.049 0.062
(0.5, 0.4) (1, 1) (1, 1) 0.052 0.090 0.042 0.053 0.048 0.053
(0.5, 0.3) (1, 1) (2, 2) 0.079 0.162 0.049 0.054 0.052 0.055
(0.5, 0.3) (1, 1) (1, 1) 0.047 0.200 0.048 0.058 0.043 0.054
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.052 0.055 0.045 0.049 0.048 0.051
(0.5, 0.5) (1, 1) (1, 1) 0.044 0.052 0.044 0.054 0.044 0.054
(0.5, 0.4) (1, 1) (2, 2) 0.075 0.105 0.052 0.056 0.053 0.057
(0.5, 0.4) (1, 1) (1, 1) 0.052 0.133 0.045 0.060 0.049 0.060
(0.5, 0.3) (1, 1) (2, 2) 0.110 0.258 0.046 0.058 0.046 0.054
(0.5, 0.3) (1, 1) (1, 1) 0.052 0.336 0.041 0.052 0.042 0.051
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.059 0.059 0.042 0.047 0.045 0.048
(0.5, 0.5) (1, 1) (1, 1) 0.050 0.054 0.052 0.059 0.050 0.056
(0.5, 0.4) (1, 1) (2, 2) 0.078 0.180 0.048 0.054 0.050 0.053
(0.5, 0.4) (1, 1) (1, 1) 0.057 0.219 0.044 0.050 0.043 0.051
(0.5, 0.3) (1, 1) (2, 2) 0.168 0.485 0.047 0.051 0.050 0.052
(0.5, 0.3) (1, 1) (1, 1) 0.060 0.582 0.040 0.049 0.043 0.050

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 6: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are no missed visits.
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.106 0.101 0.113 0.117 0.113 0.124
(0.5, 0.5) (1, 1) (2, 1.25) 0.196 0.183 0.246 0.261 0.247 0.264
(0.5, 0.5) (1, 1) (2, 1.0) 0.367 0.298 0.514 0.526 0.514 0.525
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.169 0.156 0.197 0.206 0.203 0.209
(0.5, 0.5) (1, 1) (2, 1.25) 0.363 0.315 0.497 0.515 0.498 0.509
(0.5, 0.5) (1, 1) (2, 1.0) 0.645 0.557 0.838 0.851 0.837 0.850
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.286 0.254 0.386 0.398 0.385 0.400
(0.5, 0.5) (1, 1) (2, 1.25) 0.662 0.562 0.803 0.809 0.801 0.809
(0.5, 0.5) (1, 1) (2, 1.0) 0.932 0.858 0.990 0.990 0.990 0.991

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance

Table 7: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are some missed visits with a probability 0.1 for the first
year and then 0.2 thereafter.
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.120 0.108 0.111 0.136 0.110 0.128
(0.5, 0.5) (1, 1) (2, 1.25) 0.222 0.181 0.250 0.283 0.245 0.281
(0.5, 0.5) (1, 1) (2, 1.0) 0.386 0.320 0.480 0.513 0.484 0.509
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.181 0.146 0.201 0.214 0.204 0.216
(0.5, 0.5) (1, 1) (2, 1.25) 0.373 0.315 0.471 0.501 0.474 0.505
(0.5, 0.5) (1, 1) (2, 1.0) 0.647 0.564 0.824 0.841 0.826 0.841
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.310 0.289 0.364 0.387 0.360 0.384
(0.5, 0.5) (1, 1) (2, 1.25) 0.652 0.575 0.808 0.821 0.812 0.821
(0.5, 0.5) (1, 1) (2, 1.0) 0.925 0.860 0.991 0.991 0.990 0.991

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 8: Empirical power of tests by varying m1B when censoring fraction is 0.3,
but there are no missed visits.
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.077 0.099 0.120 0.126 0.118 0.124
(0.5, 0.5) (1, 1) (2, 1.25) 0.157 0.158 0.214 0.226 0.225 0.223
(0.5, 0.5) (1, 1) (2, 1.0) 0.268 0.249 0.405 0.425 0.409 0.425
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.127 0.117 0.165 0.172 0.165 0.174
(0.5, 0.5) (1, 1) (2, 1.25) 0.271 0.231 0.391 0.405 0.393 0.405
(0.5, 0.5) (1, 1) (2, 1.0) 0.493 0.421 0.703 0.713 0.705 0.711
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.243 0.194 0.311 0.322 0.311 0.320
(0.5, 0.5) (1, 1) (2, 1.25) 0.500 0.420 0.707 0.713 0.709 0.713
(0.5, 0.5) (1, 1) (2, 1.0) 0.797 0.677 0.950 0.955 0.951 0.954

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance

Table 9: Empirical power of tests by varying m1B when censoring fraction is 0.3 and
there are some missed visits with a probability 0.1 for the first year and then 0.2
thereafter.
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.101 0.099 0.110 0.120 0.110 0.119
(0.5, 0.5) (1, 1) (2, 1.25) 0.161 0.147 0.204 0.220 0.200 0.218
(0.5, 0.5) (1, 1) (2, 1.0) 0.266 0.229 0.388 0.417 0.391 0.414
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.113 0.114 0.145 0.160 0.143 0.155
(0.5, 0.5) (1, 1) (2, 1.25) 0.258 0.218 0.380 0.407 0.376 0.402
(0.5, 0.5) (1, 1) (2, 1.0) 0.474 0.400 0.707 0.724 0.704 0.723
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.248 0.202 0.297 0.312 0.301 0.310
(0.5, 0.5) (1, 1) (2, 1.25) 0.507 0.432 0.695 0.711 0.695 0.706
(0.5, 0.5) (1, 1) (2, 1.0) 0.802 0.720 0.957 0.960 0.956 0.959

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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4 Real example

In this section we illustrated the proposed method for the sequential therapy of

randomized clinical trial comparing Sorafenib (So) followed by Sunitinib (Su) (So-Su,

n = 182) versus the reverse sequence (Su-So, n = 183) for metastatic renal cell cancer

(SWITCH trial). The primary endpoint was total PFS which was defined as the

interval between the randomization (the start date of first-line therapy) to the disease

progression or death during second-line therapy. For subjects who did not switch

to per-protocol second-line therapy, first-line events were used. Subjects without

tumor progression or death during second-line therapy were censored. Secondary

endpoints included first-line PFS (time from randomization to progression or death

during first-line therapy); second-line PFS (time from first day of second-line therapy

to progression or death during second-line therapy). Details of the study have been

published in Eichelberg et al. (2015).

We have chosen this study to illustrate our methods because it presented in-

teresting aspects of intermediate clinical events. The proportion that has been

administered a second-line therapy was higher in So-Su (57% vs 42%, P value <

0.01). The total PFS and PFS of first-line did not show a statistically significant

difference (12.5 mo vs. 14.9 mo (P value = 0.5), 5.9 mo vs. 8.5 mo (P value = 0.9),

respectively), whereas the PFS of second-line therapy showed a shorter duration in

Su-So (5.4 mo vs. 2.8 mo, P value < 0.001). If we consider receiving second-line

therapy as experiencing an IE, we can compare the difference of survival functions

by taking advantage of the knowledge of the information of the proportion of having

second-line therapy and the duration of first-line/second-line therapy with different

hazards assumption.
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Unfortunately, it is difficult to obtain the raw data of this study. Therefore, we

regenerated the data using of the survival rate that was extracted from the Kaplan–

Meier (KM) graph by using program (http://arohatgi.info/WebPlotDigitizer/app/)

and number of patients at risk set for each time. The number events during the in-

terval could be estimated, which assumes that censoring is uniform over the intervals

defined by the numbers at risk (Williamson et al., 2002).

s∗j,i = s∗j,i−1

[
1−

d∗j,i
nj,i−1 − (c∗j,i/2)

]
nj,i = nj,i−1 − d∗j,i − c∗j,i

where d∗j,i =number of events in [ti−1, ti) and c∗j,i =number censored in [ti−1, ti).

Rearranging above equation gives

d∗j,i =
(nj,i−1 + nj,i)(s

∗
j,i−1 + s∗j,i)

(s∗j,i−1 + s∗j,i)

c∗j,i =
2(nj,i−1s

∗
j,i + nj,is

∗
j,i−1)

(s∗j,i−1 + s∗j,i)
.

The KM graphs on the total, first-line, and second-line PFS with risk tables were

provided in Eichelberg et al. (2015). The KM graphs from regenerated data have

confirmed the similar results. The interval of radiological assessment follow-up was

12 weeks. As in simulation, we assume that the loss rate of radiological assessment

was 0.1 for first year and then 0.2 thereafter.

As the result, proposed methods showed the significant difference of two arms

(P value < 0.01), whereas log rank test and stratified log rank test did not (P value

> 0.5). We also applied the method based on cox model (Yu et al., 2010, Shen,
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2014a) and the result was similar. The hypothesis on (β0, β1) are separable as noted

by Nam and Zelen (2001). Therefore we can test whether distribution is different

for each parameter; i.e., H0 : β1 = 0 versus H1 : β1 ̸= 0. One degree of freedom is

used in a chi-square test χ2
1 = Ŝ2

1/V (Ŝ1) of this hypothesis. In this case, we did not

reject the null hypothesis of β0 (P value = 0.6) but reject the null hypothesis of β1

(P value < 0.001).
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5 Discussion

We proposed a general method of comparing two interval-censored samples in

the presence of an intermediate clinical event. When an IE occurs, it may change

the survival distribution. One may want to know that whether an IE affects the

survival as longer lives have more opportunity of receiving intervention. Therefore,

we needed a specific method to resolve length-biased problems. For example, it can

be considered a second-line therapy as an IE. The focus of the current study was to

compare two survival functions incorporating the information of an IE. The outcome

of prior studies that assessed the length-biased problems was exact data. In a cancer

trial, the PFS is the popular outcome which is well known as interval censored data.

Therefore, we considered interval-censored outcomes. When the statistics of Nam

and Zelen (2001) was derived, the data was divided into two parts depending on

an IE; one part was right-censored data and the other part was left truncated and

right-censored data. For interval censored outcome, we have interval censored and

LTIC data. We extended the score test of Finkelstein (1986) accommodating with

left truncated.

We proposed non-iterative methods to impute LTIC data; uniform weight and

weighted weight method based on NPMLE, respectively. In the uniform weight

method, we assumed the true failure time of a subject might be uniformly distributed

over {sj , Li < sj ≤ Ri, for j = 1, ...,m} for each subject like Kim et al. (2006). We

used a MI technique for the whole process including imputing a true failure time

while Kim et al. (2006) used a MI technique to estimate variance matrix. Uniform

weight assumption in the characterized set is convenient to implement in practice.

It is simple and fast. It can be extended to other complicated problem.
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Second, we proposed a weighted weight method based on NPMLE. After charac-

terized the set that may have a positive mass including truncated points as pointed

by Frydman (1994), Turnbull’ s algorithm was used to estimate the NPMLE. The

performance of imputation procedures depends highly on the performance of the

NPMLE. In the case of left-truncated and interval-censored data, NPMLE is not

consistent, whereas conditional NPMLE is still consistent (Pan and Chappell, 1999).

However, the problem is limited to the early time point. Here we did not use any

special correction because our purpose was not to obtain NPMLE. As shown in the

simulation, it was not considerably different from other proposed methods.

Pan (2000a) imputed the exact failure time from the coefficient and the baseline

survival after fitting the cox model for interval censored data. They repeated the

algorithm until the coefficient βh converged, where h denotes number of iteration.

Yu et al. (2010), Shen (2014a) extended Pan’s method to accomodate left truncation.

We applied the method based on cox model to the real example and the result was

similar with proposed methods.

We appled two forms of variance that were formed by being added and sub-

tracted. Both variance methods function efficiently, but the first one was marginally

overestimated and the second one is slightly underestimated. This phenomenon is

same as Huang et al. (2008).

We proposed to impute interval-censored observations and keep right-censored

data as it is unlikely Huang et al. (2008). As Pan (2000b) illustrated, we can

apply standard software after imputation and there is insufficient information to

impute from right-censored observations. In clinical trials, many subjects may be

right-censored at the last follow-up time or study closing time, and we have no

information to impute exact survival times thereafter.
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In the simulation, we used a moderate (M=10) and large (M=100) imputation

numbers. The results were not considerably difference, so we recommended using a

moderate imputation number.

We assumed that the intermediate clinical event was exactly observed; i.e., we

can determine the exact date of transplant or the start date of second-line therapy.

Further research is needed when an IE is considered as interval-censored.
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Appendices

Table 10: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are no missed visits (M=10).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.114 0.129 0.119 0.131
(0.5, 0.4) (1, 1) (2, 1.25) 0.216 0.236 0.222 0.242
(0.5, 0.4) (1, 1) (2, 1.0) 0.445 0.467 0.443 0.469
(0.5, 0.3) (1, 1) (2, 1.5) 0.096 0.102 0.098 0.103
(0.5, 0.3) (1, 1) (2, 1.25) 0.186 0.203 0.188 0.206
(0.5, 0.3) (1, 1) (2, 1.0) 0.379 0.400 0.377 0.404
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.164 0.171 0.162 0.168
(0.5, 0.4) (1, 1) (2, 1.25) 0.466 0.479 0.469 0.484
(0.5, 0.4) (1, 1) (2, 1.0) 0.783 0.796 0.785 0.804
(0.5, 0.3) (1, 1) (2, 1.5) 0.172 0.182 0.174 0.184
(0.5, 0.3) (1, 1) (2, 1.25) 0.361 0.376 0.361 0.381
(0.5, 0.3) (1, 1) (2, 1.0) 0.682 0.703 0.687 0.706
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.379 0.387 0.379 0.399
(0.5, 0.4) (1, 1) (2, 1.25) 0.756 0.771 0.766 0.779
(0.5, 0.4) (1, 1) (2, 1.0) 0.985 0.987 0.985 0.988
(0.5, 0.3) (1, 1) (2, 1.5) 0.280 0.296 0.286 0.302
(0.5, 0.3) (1, 1) (2, 1.25) 0.655 0.662 0.657 0.664
(0.5, 0.3) (1, 1) (2, 1.0) 0.966 0.970 0.969 0.970

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 11: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are some missed visits with a probability 0.1 for the first
year and then 0.2 thereafter (M=10).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.095 0.100 0.094 0.103
(0.5, 0.4) (1, 1) (2, 1.25) 0.197 0.215 0.200 0.213
(0.5, 0.4) (1, 1) (2, 1.0) 0.346 0.358 0.345 0.358
(0.5, 0.3) (1, 1) (2, 1.5) 0.096 0.103 0.099 0.106
(0.5, 0.3) (1, 1) (2, 1.25) 0.132 0.139 0.130 0.138
(0.5, 0.3) (1, 1) (2, 1.0) 0.295 0.317 0.303 0.320
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.133 0.136 0.132 0.138
(0.5, 0.4) (1, 1) (2, 1.25) 0.340 0.353 0.346 0.356
(0.5, 0.4) (1, 1) (2, 1.0) 0.650 0.666 0.658 0.665
(0.5, 0.3) (1, 1) (2, 1.5) 0.136 0.141 0.139 0.144
(0.5, 0.3) (1, 1) (2, 1.25) 0.302 0.309 0.302 0.314
(0.5, 0.3) (1, 1) (2, 1.0) 0.559 0.566 0.560 0.572
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.287 0.296 0.289 0.298
(0.5, 0.4) (1, 1) (2, 1.25) 0.639 0.653 0.639 0.647
(0.5, 0.4) (1, 1) (2, 1.0) 0.950 0.954 0.953 0.956
(0.5, 0.3) (1, 1) (2, 1.5) 0.219 0.225 0.220 0.229
(0.5, 0.3) (1, 1) (2, 1.25) 0.539 0.554 0.541 0.553
(0.5, 0.3) (1, 1) (2, 1.0) 0.896 0.897 0.895 0.897

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 12: Empirical power of tests by varying m1B when censoring fraction is 0.3,
but there are no missed visits (M=10).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.095 0.113 0.093 0.109
(0.5, 0.4) (1, 1) (2, 1.25) 0.191 0.215 0.189 0.212
(0.5, 0.4) (1, 1) (2, 1.0) 0.414 0.446 0.421 0.446
(0.5, 0.3) (1, 1) (2, 1.5) 0.094 0.108 0.093 0.107
(0.5, 0.3) (1, 1) (2, 1.25) 0.182 0.209 0.185 0.207
(0.5, 0.3) (1, 1) (2, 1.0) 0.367 0.400 0.372 0.402
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.150 0.165 0.156 0.162
(0.5, 0.4) (1, 1) (2, 1.25) 0.442 0.466 0.440 0.473
(0.5, 0.4) (1, 1) (2, 1.0) 0.749 0.774 0.758 0.777
(0.5, 0.3) (1, 1) (2, 1.5) 0.159 0.178 0.159 0.174
(0.5, 0.3) (1, 1) (2, 1.25) 0.369 0.400 0.376 0.405
(0.5, 0.3) (1, 1) (2, 1.0) 0.667 0.697 0.679 0.711
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.338 0.364 0.345 0.374
(0.5, 0.4) (1, 1) (2, 1.25) 0.741 0.757 0.743 0.759
(0.5, 0.4) (1, 1) (2, 1.0) 0.981 0.983 0.980 0.983
(0.5, 0.3) (1, 1) (2, 1.5) 0.257 0.275 0.258 0.277
(0.5, 0.3) (1, 1) (2, 1.25) 0.638 0.661 0.652 0.673
(0.5, 0.3) (1, 1) (2, 1.0) 0.946 0.953 0.952 0.958

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 13: Empirical power of tests by varying m1B when censoring fraction is 0.3
and there are some missed visits with a probability 0.1 for the first year and then
0.2 thereafter (M=10).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.095 0.108 0.096 0.102
(0.5, 0.4) (1, 1) (2, 1.25) 0.190 0.201 0.193 0.206
(0.5, 0.4) (1, 1) (2, 1.0) 0.358 0.377 0.359 0.378
(0.5, 0.3) (1, 1) (2, 1.5) 0.081 0.094 0.083 0.096
(0.5, 0.3) (1, 1) (2, 1.25) 0.150 0.165 0.153 0.163
(0.5, 0.3) (1, 1) (2, 1.0) 0.259 0.290 0.264 0.290
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.144 0.158 0.150 0.158
(0.5, 0.4) (1, 1) (2, 1.25) 0.339 0.356 0.336 0.354
(0.5, 0.4) (1, 1) (2, 1.0) 0.670 0.688 0.672 0.687
(0.5, 0.3) (1, 1) (2, 1.5) 0.126 0.143 0.131 0.148
(0.5, 0.3) (1, 1) (2, 1.25) 0.277 0.294 0.285 0.301
(0.5, 0.3) (1, 1) (2, 1.0) 0.542 0.560 0.544 0.566
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.293 0.308 0.302 0.311
(0.5, 0.4) (1, 1) (2, 1.25) 0.655 0.671 0.659 0.673
(0.5, 0.4) (1, 1) (2, 1.0) 0.940 0.945 0.938 0.943
(0.5, 0.3) (1, 1) (2, 1.5) 0.196 0.212 0.193 0.211
(0.5, 0.3) (1, 1) (2, 1.25) 0.547 0.564 0.559 0.573
(0.5, 0.3) (1, 1) (2, 1.0) 0.879 0.884 0.878 0.884

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance

49



Table 14: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
all events are observed in some intervals and there are no missed visits (M=100).
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.040 0.050 0.048 0.051 0.044 0.050
(0.5, 0.5) (1, 1) (1, 1) 0.061 0.047 0.046 0.049 0.046 0.049
(0.5, 0.4) (1, 1) (2, 2) 0.055 0.093 0.044 0.048 0.044 0.050
(0.5, 0.4) (1, 1) (1, 1) 0.066 0.111 0.051 0.057 0.047 0.056
(0.5, 0.3) (1, 1) (2, 2) 0.099 0.213 0.043 0.049 0.044 0.047
(0.5, 0.3) (1, 1) (1, 1) 0.045 0.245 0.044 0.051 0.044 0.056
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.057 0.058 0.050 0.055 0.051 0.056
(0.5, 0.5) (1, 1) (1, 1) 0.058 0.056 0.043 0.054 0.046 0.057
(0.5, 0.4) (1, 1) (2, 2) 0.076 0.133 0.046 0.055 0.049 0.055
(0.5, 0.4) (1, 1) (1, 1) 0.043 0.143 0.045 0.052 0.045 0.053
(0.5, 0.3) (1, 1) (2, 2) 0.139 0.365 0.046 0.053 0.047 0.054
(0.5, 0.3) (1, 1) (1, 1) 0.048 0.460 0.040 0.049 0.040 0.053
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.055 0.048 0.050 0.052 0.049 0.055
(0.5, 0.5) (1, 1) (1, 1) 0.043 0.052 0.049 0.058 0.050 0.058
(0.5, 0.4) (1, 1) (2, 2) 0.090 0.221 0.052 0.058 0.053 0.057
(0.5, 0.4) (1, 1) (1, 1) 0.053 0.293 0.046 0.053 0.046 0.053
(0.5, 0.3) (1, 1) (2, 2) 0.210 0.646 0.046 0.054 0.046 0.054
(0.5, 0.3) (1, 1) (1, 1) 0.054 0.732 0.044 0.047 0.044 0.051

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 15: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5
when all events are observed in some intervals and there are some missed visits with
a probability 0.1 for the first year and then 0.2 thereafter (M=100).
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.054 0.058 0.045 0.054 0.044 0.053
(0.5, 0.5) (1, 1) (1, 1) 0.061 0.069 0.043 0.060 0.042 0.058
(0.5, 0.4) (1, 1) (2, 2) 0.073 0.105 0.045 0.056 0.047 0.054
(0.5, 0.4) (1, 1) (1, 1) 0.060 0.124 0.042 0.056 0.041 0.057
(0.5, 0.3) (1, 1) (2, 2) 0.098 0.212 0.045 0.055 0.046 0.055
(0.5, 0.3) (1, 1) (1, 1) 0.057 0.236 0.042 0.058 0.041 0.057
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.051 0.048 0.046 0.055 0.049 0.053
(0.5, 0.5) (1, 1) (1, 1) 0.053 0.067 0.039 0.048 0.042 0.049
(0.5, 0.4) (1, 1) (2, 2) 0.073 0.145 0.051 0.061 0.053 0.062
(0.5, 0.4) (1, 1) (1, 1) 0.047 0.173 0.038 0.048 0.040 0.048
(0.5, 0.3) (1, 1) (2, 2) 0.137 0.372 0.049 0.060 0.049 0.058
(0.5, 0.3) (1, 1) (1, 1) 0.049 0.462 0.041 0.056 0.045 0.056
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.059 0.057 0.054 0.060 0.053 0.058
(0.5, 0.5) (1, 1) (1, 1) 0.055 0.042 0.040 0.053 0.042 0.051
(0.5, 0.4) (1, 1) (2, 2) 0.096 0.221 0.051 0.057 0.050 0.058
(0.5, 0.4) (1, 1) (1, 1) 0.061 0.282 0.041 0.054 0.044 0.051
(0.5, 0.3) (1, 1) (2, 2) 0.232 0.621 0.051 0.053 0.047 0.055
(0.5, 0.3) (1, 1) (1, 1) 0.067 0.732 0.044 0.059 0.045 0.056

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 16: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
censoring fraction is 0.3, but there are no missed visits (M=100).
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.055 0.054 0.053 0.057 0.052 0.058
(0.5, 0.5) (1, 1) (1, 1) 0.057 0.064 0.043 0.046 0.041 0.044
(0.5, 0.4) (1, 1) (2, 2) 0.060 0.091 0.052 0.064 0.055 0.059
(0.5, 0.4) (1, 1) (1, 1) 0.047 0.091 0.048 0.053 0.046 0.056
(0.5, 0.3) (1, 1) (2, 2) 0.085 0.181 0.050 0.054 0.050 0.056
(0.5, 0.3) (1, 1) (1, 1) 0.047 0.200 0.044 0.047 0.043 0.048
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.048 0.045 0.049 0.055 0.048 0.054
(0.5, 0.5) (1, 1) (1, 1) 0.058 0.056 0.051 0.055 0.051 0.055
(0.5, 0.4) (1, 1) (2, 2) 0.069 0.121 0.050 0.051 0.049 0.052
(0.5, 0.4) (1, 1) (1, 1) 0.049 0.134 0.044 0.047 0.042 0.047
(0.5, 0.3) (1, 1) (2, 2) 0.103 0.283 0.058 0.060 0.056 0.061
(0.5, 0.3) (1, 1) (1, 1) 0.040 0.341 0.044 0.051 0.044 0.048
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.046 0.051 0.046 0.050 0.048 0.050
(0.5, 0.5) (1, 1) (1, 1) 0.047 0.051 0.047 0.058 0.050 0.056
(0.5, 0.4) (1, 1) (2, 2) 0.081 0.193 0.042 0.047 0.044 0.046
(0.5, 0.4) (1, 1) (1, 1) 0.055 0.229 0.051 0.058 0.051 0.056
(0.5, 0.3) (1, 1) (2, 2) 0.166 0.494 0.045 0.051 0.045 0.050
(0.5, 0.3) (1, 1) (1, 1) 0.051 0.607 0.041 0.045 0.043 0.047

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 17: Empirical 5% level tests by varying θB,m1A, and m1B with θA = 0.5 when
censoring fraction is 0.3 and there are some missed visits with a probability 0.1 for
the first year and then 0.2 thereafter (M=100).
(θA, θB) (λA, λB) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 2) 0.050 0.056 0.045 0.051 0.046 0.051
(0.5, 0.5) (1, 1) (1, 1) 0.065 0.060 0.044 0.055 0.045 0.056
(0.5, 0.4) (1, 1) (2, 2) 0.058 0.100 0.050 0.057 0.049 0.056
(0.5, 0.4) (1, 1) (1, 1) 0.052 0.090 0.045 0.053 0.046 0.052
(0.5, 0.3) (1, 1) (2, 2) 0.079 0.162 0.047 0.055 0.049 0.054
(0.5, 0.3) (1, 1) (1, 1) 0.047 0.200 0.044 0.058 0.041 0.057
n = 100
(0.5, 0.5) (1, 1) (2, 2) 0.052 0.055 0.045 0.049 0.043 0.050
(0.5, 0.5) (1, 1) (1, 1) 0.044 0.052 0.043 0.054 0.043 0.053
(0.5, 0.4) (1, 1) (2, 2) 0.075 0.105 0.050 0.056 0.051 0.059
(0.5, 0.4) (1, 1) (1, 1) 0.052 0.133 0.045 0.056 0.048 0.057
(0.5, 0.3) (1, 1) (2, 2) 0.110 0.258 0.047 0.055 0.049 0.052
(0.5, 0.3) (1, 1) (1, 1) 0.052 0.336 0.043 0.050 0.044 0.051
n = 200
(0.5, 0.5) (1, 1) (2, 2) 0.059 0.059 0.043 0.047 0.045 0.049
(0.5, 0.5) (1, 1) (1, 1) 0.054 0.062 0.051 0.058 0.048 0.060
(0.5, 0.4) (1, 1) (2, 2) 0.078 0.180 0.045 0.051 0.046 0.048
(0.5, 0.4) (1, 1) (1, 1) 0.057 0.219 0.045 0.048 0.044 0.051
(0.5, 0.3) (1, 1) (2, 2) 0.168 0.485 0.050 0.052 0.048 0.053
(0.5, 0.3) (1, 1) (1, 1) 0.060 0.582 0.042 0.053 0.044 0.049

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 18: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are no missed visits (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.106 0.101 0.112 0.121 0.116 0.125
(0.5, 0.5) (1, 1) (2, 1.25) 0.196 0.183 0.250 0.263 0.253 0.265
(0.5, 0.5) (1, 1) (2, 1.0) 0.367 0.298 0.506 0.528 0.508 0.526
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.169 0.156 0.198 0.207 0.199 0.210
(0.5, 0.5) (1, 1) (2, 1.25) 0.363 0.315 0.490 0.510 0.491 0.506
(0.5, 0.5) (1, 1) (2, 1.0) 0.645 0.557 0.840 0.848 0.839 0.850
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.286 0.254 0.388 0.398 0.391 0.399
(0.5, 0.5) (1, 1) (2, 1.25) 0.662 0.562 0.805 0.812 0.804 0.810
(0.5, 0.5) (1, 1) (2, 1.0) 0.932 0.858 0.988 0.991 0.990 0.991

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance

Table 19: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are some missed visits with a probability 0.1 for the first
year and then 0.2 thereafter (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.120 0.108 0.114 0.131 0.110 0.132
(0.5, 0.5) (1, 1) (2, 1.25) 0.222 0.181 0.249 0.279 0.249 0.284
(0.5, 0.5) (1, 1) (2, 1.0) 0.386 0.320 0.484 0.512 0.483 0.511
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.181 0.146 0.198 0.214 0.199 0.214
(0.5, 0.5) (1, 1) (2, 1.25) 0.373 0.315 0.471 0.499 0.475 0.498
(0.5, 0.5) (1, 1) (2, 1.0) 0.647 0.564 0.824 0.840 0.825 0.841
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.310 0.289 0.356 0.380 0.362 0.382
(0.5, 0.5) (1, 1) (2, 1.25) 0.652 0.575 0.814 0.827 0.812 0.825
(0.5, 0.5) (1, 1) (2, 1.0) 0.925 0.860 0.988 0.991 0.989 0.991

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 20: Empirical power of tests by varying m1B when censoring fraction is 0.3,
but there are no missed visits (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.077 0.099 0.122 0.125 0.122 0.126
(0.5, 0.5) (1, 1) (2, 1.25) 0.157 0.158 0.211 0.225 0.217 0.224
(0.5, 0.5) (1, 1) (2, 1.0) 0.268 0.249 0.410 0.426 0.408 0.421
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.127 0.117 0.166 0.177 0.169 0.174
(0.5, 0.5) (1, 1) (2, 1.25) 0.271 0.231 0.395 0.408 0.393 0.406
(0.5, 0.5) (1, 1) (2, 1.0) 0.493 0.421 0.704 0.710 0.705 0.716
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.243 0.194 0.314 0.320 0.313 0.323
(0.5, 0.5) (1, 1) (2, 1.25) 0.500 0.420 0.709 0.717 0.711 0.716
(0.5, 0.5) (1, 1) (2, 1.0) 0.797 0.677 0.949 0.951 0.948 0.953

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance

Table 21: Empirical power of tests by varying m1B when censoring fraction is 0.3
and there are some missed visits with a probability 0.1 for the first year and then
0.2 thereafter (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) I II III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.5) (1, 1) (2, 1.5) 0.101 0.099 0.111 0.120 0.111 0.120
(0.5, 0.5) (1, 1) (2, 1.25) 0.161 0.147 0.207 0.218 0.205 0.218
(0.5, 0.5) (1, 1) (2, 1.0) 0.266 0.229 0.395 0.423 0.395 0.422
n = 100
(0.5, 0.5) (1, 1) (2, 1.5) 0.113 0.114 0.142 0.155 0.145 0.153
(0.5, 0.5) (1, 1) (2, 1.25) 0.258 0.218 0.387 0.402 0.383 0.396
(0.5, 0.5) (1, 1) (2, 1.0) 0.474 0.400 0.699 0.721 0.699 0.723
n = 200
(0.5, 0.5) (1, 1) (2, 1.5) 0.248 0.202 0.300 0.314 0.300 0.319
(0.5, 0.5) (1, 1) (2, 1.25) 0.507 0.432 0.699 0.712 0.695 0.710
(0.5, 0.5) (1, 1) (2, 1.0) 0.802 0.720 0.958 0.964 0.961 0.963

I = log-rank, II = Stratified log-rank, III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 22: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are no missed visits (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.116 0.129 0.116 0.132
(0.5, 0.4) (1, 1) (2, 1.25) 0.220 0.235 0.216 0.236
(0.5, 0.4) (1, 1) (2, 1.0) 0.444 0.468 0.444 0.471
(0.5, 0.3) (1, 1) (2, 1.5) 0.096 0.104 0.099 0.105
(0.5, 0.3) (1, 1) (2, 1.25) 0.178 0.203 0.185 0.202
(0.5, 0.3) (1, 1) (2, 1.0) 0.377 0.399 0.382 0.405
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.161 0.165 0.158 0.164
(0.5, 0.4) (1, 1) (2, 1.25) 0.466 0.480 0.461 0.485
(0.5, 0.4) (1, 1) (2, 1.0) 0.784 0.799 0.785 0.800
(0.5, 0.3) (1, 1) (2, 1.5) 0.172 0.180 0.175 0.185
(0.5, 0.3) (1, 1) (2, 1.25) 0.362 0.378 0.370 0.385
(0.5, 0.3) (1, 1) (2, 1.0) 0.680 0.696 0.685 0.701
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.380 0.390 0.382 0.392
(0.5, 0.4) (1, 1) (2, 1.25) 0.762 0.773 0.766 0.778
(0.5, 0.4) (1, 1) (2, 1.0) 0.980 0.983 0.982 0.983
(0.5, 0.3) (1, 1) (2, 1.5) 0.295 0.310 0.300 0.314
(0.5, 0.3) (1, 1) (2, 1.25) 0.654 0.667 0.658 0.669
(0.5, 0.3) (1, 1) (2, 1.0) 0.947 0.953 0.949 0.953

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 23: Empirical power of tests by varying m1B when all events are observed in
some intervals and there are some missed visits with a probability 0.1 for the first
year and then 0.2 thereafter (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.092 0.112 0.094 0.113
(0.5, 0.4) (1, 1) (2, 1.25) 0.187 0.212 0.190 0.218
(0.5, 0.4) (1, 1) (2, 1.0) 0.418 0.449 0.419 0.452
(0.5, 0.3) (1, 1) (2, 1.5) 0.093 0.109 0.096 0.114
(0.5, 0.3) (1, 1) (2, 1.25) 0.188 0.208 0.190 0.208
(0.5, 0.3) (1, 1) (2, 1.0) 0.372 0.401 0.376 0.402
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.151 0.162 0.156 0.167
(0.5, 0.4) (1, 1) (2, 1.25) 0.447 0.469 0.444 0.472
(0.5, 0.4) (1, 1) (2, 1.0) 0.750 0.771 0.758 0.776
(0.5, 0.3) (1, 1) (2, 1.5) 0.154 0.174 0.157 0.178
(0.5, 0.3) (1, 1) (2, 1.25) 0.367 0.395 0.376 0.406
(0.5, 0.3) (1, 1) (2, 1.0) 0.672 0.700 0.678 0.705
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.338 0.372 0.349 0.372
(0.5, 0.4) (1, 1) (2, 1.25) 0.743 0.754 0.745 0.761
(0.5, 0.4) (1, 1) (2, 1.0) 0.980 0.982 0.981 0.981
(0.5, 0.3) (1, 1) (2, 1.5) 0.287 0.308 0.296 0.320
(0.5, 0.3) (1, 1) (2, 1.25) 0.660 0.684 0.668 0.690
(0.5, 0.3) (1, 1) (2, 1.0) 0.946 0.952 0.946 0.954

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 24: Empirical power of tests by varying m1B when censoring fraction is 0.3,
but there are no missed visits (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.092 0.100 0.090 0.098
(0.5, 0.4) (1, 1) (2, 1.25) 0.198 0.215 0.201 0.215
(0.5, 0.4) (1, 1) (2, 1.0) 0.350 0.362 0.349 0.363
(0.5, 0.3) (1, 1) (2, 1.5) 0.097 0.101 0.099 0.101
(0.5, 0.3) (1, 1) (2, 1.25) 0.127 0.137 0.124 0.138
(0.5, 0.3) (1, 1) (2, 1.0) 0.299 0.314 0.302 0.323
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.132 0.136 0.133 0.139
(0.5, 0.4) (1, 1) (2, 1.25) 0.346 0.356 0.344 0.356
(0.5, 0.4) (1, 1) (2, 1.0) 0.654 0.668 0.656 0.667
(0.5, 0.3) (1, 1) (2, 1.5) 0.135 0.141 0.138 0.144
(0.5, 0.3) (1, 1) (2, 1.25) 0.307 0.311 0.308 0.318
(0.5, 0.3) (1, 1) (2, 1.0) 0.553 0.566 0.560 0.568
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.280 0.286 0.281 0.286
(0.5, 0.4) (1, 1) (2, 1.25) 0.639 0.648 0.642 0.647
(0.5, 0.4) (1, 1) (2, 1.0) 0.934 0.936 0.930 0.936
(0.5, 0.3) (1, 1) (2, 1.5) 0.222 0.229 0.224 0.233
(0.5, 0.3) (1, 1) (2, 1.25) 0.561 0.570 0.558 0.572
(0.5, 0.3) (1, 1) (2, 1.0) 0.896 0.902 0.896 0.904

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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Table 25: Empirical power of tests by varying m1B when censoring fraction is 0.3
and there are some missed visits with a probability 0.1 for the first year and then
0.2 thereafter (M=100).
(θA, θB) (λ0A, λ0B) (m1A,m1B) III-(1) III-(2) IV-(1) IV-(2)
n = 50
(0.5, 0.4) (1, 1) (2, 1.5) 0.096 0.108 0.099 0.111
(0.5, 0.4) (1, 1) (2, 1.25) 0.193 0.204 0.190 0.201
(0.5, 0.4) (1, 1) (2, 1.0) 0.360 0.377 0.358 0.377
(0.5, 0.3) (1, 1) (2, 1.5) 0.077 0.094 0.082 0.093
(0.5, 0.3) (1, 1) (2, 1.25) 0.149 0.163 0.149 0.167
(0.5, 0.3) (1, 1) (2, 1.0) 0.259 0.286 0.260 0.285
n = 100
(0.5, 0.4) (1, 1) (2, 1.5) 0.146 0.154 0.146 0.154
(0.5, 0.4) (1, 1) (2, 1.25) 0.336 0.355 0.337 0.351
(0.5, 0.4) (1, 1) (2, 1.0) 0.669 0.687 0.673 0.691
(0.5, 0.3) (1, 1) (2, 1.5) 0.127 0.145 0.129 0.142
(0.5, 0.3) (1, 1) (2, 1.25) 0.279 0.291 0.280 0.294
(0.5, 0.3) (1, 1) (2, 1.0) 0.544 0.563 0.547 0.563
n = 200
(0.5, 0.4) (1, 1) (2, 1.5) 0.271 0.282 0.274 0.286
(0.5, 0.4) (1, 1) (2, 1.25) 0.643 0.660 0.637 0.661
(0.5, 0.4) (1, 1) (2, 1.0) 0.931 0.935 0.931 0.936
(0.5, 0.3) (1, 1) (2, 1.5) 0.227 0.244 0.227 0.244
(0.5, 0.3) (1, 1) (2, 1.25) 0.548 0.562 0.546 0.566
(0.5, 0.3) (1, 1) (2, 1.0) 0.886 0.894 0.890 0.896

III = Uniform weight method, IV = Weighted weight method.
(1) added within- and between variance, (2) substracted within- and between variance
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국문 요약

구간 중도 절단된 자료에서 임상적으로 의미 있는 중도 사건

발생 여부에 따른 생존 분포 비교

본 연구에서는 임상적 중간 사건이 존재하면서 일차 목적이 시간에 대한 변수인

경우를 고려하였다. 추적조사 기간 동안 시험대상자는 특정한 임상적중간 사건을 경험할

수 있으며 이런 임상적 중간 사건이 발생할 경우 생존분포가 변할 수 있다. 임상적 중간

사건이 존재할 때는 기간 차이 치우침 (length biased) 문제를 함께 고려해야 한다.

여기서는 임상적 중간 사건에 대한 영향을 직접적으로 추정하기 보다는 임상적 중간

사건이 존재할 때 두 군의 생존 함수를 비교하는 방법에 대해 연구하고자 하였다.

남정모와 Zelen(2001)의 연구에서 임상적 중간 사건을 고려해서 식을 전개해보면

통계량이 두 부분으로 나뉘어 진다; 첫번째는 임상적 중간 사건을 경험하기 전에 대한

것으로 우측 중도 절단 (right censoring) 자료 형태를 가지며 두번째는 임상적 중간

사건을 경험한 후에 대한 것으로 좌측 절단 및 우측 중도 절단 (left truncation and

right censoring) 자료 형태를 가진다. 기간 차이 치우침을 가진 자료에서의 이전 연구는

일차 목적에 대한 변수가 정확하게 관측될 경우에 대해 연구하였는데 본 논문에서는

구간중도절단자료 형태를 고려하고자 한다. 그 경우 다뤄야 하는 자료 형태는는 구간

중도 절단 혹은 좌측 절단 및 구간 중도 절단 형태가 된다. 구간 중도 절단 자료 형태를

고려하지 않고 일반 방법을 쓰면 치우침이 발생할 수 있다는 것은 잘 알려져 있다.

(좌측 절단 및) 구간 중도 절단 자료 형태를 고려하여 먼저 Finkelstein 방법을 확장

하여 우도 함수를 얻고 통계량을 계산하였다. 일반적으로 구간 중도 절단 자료에서는

각 구간의 값을 추정하기 위해서 매우 반복이 많이 발생한다. 여기서는 실제적으로

구현이 쉬운 다중 대체 방법을 사용하여 (좌측 절단 및) 우측 중도 절단 형태로 자료를

대체하여 남정모와 Zelen(2001) 통계량을 적용하였다. 균등 가중치 방법, 비모수적
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최대우도추정치를 기반으로 한 가중치 방법을 제안하였다. 다양한 시나리오로 모의

실험을 진행하였고, 층화 로그 순위 방법의 경우 임상적 중간 사건 경험 후 생존함수가

변하지 않더라도 임상적 중간 사건의 발생 비율이 다르면 귀무 가설을 잘 못 기각하는

경우가 많았다. 두 군의 생존 함수는 동일하지만, 임상적 중간 사건의 발생 비율이

다르고 임상적 중간 사건 경험 후 생존 함수가 달라지는 경우에는, 로그 순위 방법도

귀무 가설을 잘 못 기각하는 경향을 보였다. 제안된 방법은 모든 시나리오에서 명목수준

0.05를 잘 만족하였고 로그순위 및 층화 로그순위 방법보다 더 높은 검정력을 보였다.

그룹 내 분산과 그룹 간 분산을 합하여 사용할 경우 분산이 과대추정되는 경향이 있어

Huang 등 (2008)이 제안한 바와 같이 그룹 내 분산과 그룹 간 분산의 차이로 구한 추정

분산으로도 결과를 요약하였다.

핵심이 되는 말: 구간 중도 절단, 임상적 중간 사건, 생존함수 비교

67


