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ABSTRACT

Complex network analysis and topology-based data analysis

for identifying risk factors of delirium

Sunghyon Kyeong

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Jae-Jin Kim)

Objective: The human brain is a complex network of interlinked regions and

composed of the structural (or backbone) network and dynamic functional net-

works. Studies revealed that the abnormal brain network has associated with the

emergence of brain diseases. Delirium is one of brain diseases, and its etiolo-

gies are multifactorial. To identify risk factors of delirium, this study aimed to

investigate neural substrates of delirium using complex network analysis and in-

vestigate phenotypic subgroups of delirium using topology-based data analysis.

Materials and Methods: A total of fifty-eight hip fracture patients were re-

cruited in this study. Structural and functional neuroimaging data from all par-

ticipants were acquired before hip fracture surgery. Among the participants, only

thirty-two patients were scanned for postoperative MRI data acquisition. Neural

substrates in preoperative delirium, and functional connectivity re-organization

during an episode of delirium were studied using a framework of complex net-

work analysis. In topological data analysis, cognitive impairment, personality

scales such as neuroticism and conscientiousness, and delirium rating scale were

considered to identify phenotypic subgroups of delirium.
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Results: Among fifty-eight patients, twenty-five patients were identified as delir-

ium after hip fracture surgery. In the study of neural substrates of delirium,

the significant increase of characteristic path length in structural network was

observed in preoperative delirium (P < 0.05). Also, increased structural path

length densities connecting frontal to subcortical and visual sensory regions were

played a pivotal role in characterizing delirious patients (corrected P < 0.05).

Furthermore, functional connectivity density between the prefrontal cortex and

audiovisual sensory areas were significantly increased in preoperative delirium

(corrected P < 0.05). Interestingly, functional connectivity density between the

visual cortex and the frontal and auditory areas were strongly suppressed in

during-delirum patients (P < 0.05). Finally, topology-based data analysis identi-

fied three subgroups of delirium in dimensions of cognitive function and person-

ality.

Conclusion: This study investigated neuroimaging-based neural risk factors for

delirium. The increased path length of structural network in preoperative delir-

ium implies that there existed disruptions of the connection weights such as a

fractional anisotropy and the number of streamlines in the backbone network.

The significantly suppressed functional connectivity from the visual cortex to

the auditory cortex and frontal regions may play a pivotal role in characterizing

the delirious phenomena such as dysfunction in perception, a deficit in sustain-

ing the conscious mental state, and hallucination. Lastly, topological data analy-

sis suggests that neural substrates of delirium could be different for phenotypic

subgroups of delirium.

Key words: Complex network analysis, topology-based data analysis, human

connectome, delirium, hip fracture surgery
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ABBREVIATIONS

• AAL: Automated anatomical labeling

• ANOVA: Analysis of variance

• BFI: Big five inventory

• BFI-C: Conscientiousness item score of BFI

• BFI-N: Neuroticism item score of BFI

• BOLD: Blood Oxygen-Level Dependent

• DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

• DTI: Diffusion tensor imaging

• FA: Fractional anistropy

• FCD: Fractional connectivity density

• fMRI: Functional magnetic resonance imaging

• FN: Functional network

• S(FN): Sparse adjacency matrix of the functional network, which are the counterparts of
the corresponding structural network

• F (FN): Full adjacency matrix of the functional network

• HAS: Hamilton Anxiety Scale

• HRSD: Hamilton Rating Scale for Depression

• IQCODE: Informant Questionnaire on Cognitive Decline in the Elderly

• K-DRS: Korean version of Delirium Rating Scale

• MMSE: Mimi Mental State Examination

• MRI: Magnetic resonance imaging

• NMI: Normalized mutual information

• NOS-ROI: Number of streamlines corrected for volume of each region of interest

• Post-Op: Postoperative

• Pre-Op: Preoperative
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• ROC: Receiver operating characteristic

• ROI: Region of interest

• SN: Structural network

• SPLD: Structural path length density

• D(SN): A distance matrix obtained using Dijkstra shortest path length altorithm

• TDA: Topological data analysis
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Complex network analysis and topology-based data analysis

for identifying risk factors of delirium

Sunghyon Kyeong

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Jae-Jin Kim)

I. INTRODUCTION

Delirium is categorized into neurocognitive disorder according to the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5).1 Also, delirium is ac-

companying the dysfunctions in domains of cognition, attention and orientation to the

environment, and language. The prevalence of delirium is highest among hospitalized

elderly patients and varies depending on the individuals’ characteristics, setting of care,

and sensitivity of the detection method (Table 1). In this section, characteristics of post-

operative delirium, previous neuroimaging studies, and analysis methodologies will be

reviewed. Also, the research goals and outline of this thesis will be presented.

1. Overview of Delirium

Postoperative delirium is a common medical complication after various surgery. Postop-

erative delirium is associated with various adverse outcomes including a longer inten-

sive care unit stay, longer hospital stays, increased mortality, higher hospital costs, and a

greater need for nursing-home care afterwards.1 In general, symptoms of postoperative
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Table 1. Prevalence of delirium for various populations obtained from DSM-5

Population Prevalence Note

People in the overall community 1�2 % This number ideally should be 0 %

Individuals older than 85 years 14 %
General hospital people 6�56 %
People who just had surgery 15�53 % Increased in older indivuals

People in intensive care unit 70�87 % Increased in older indivuals

People in nursing homes 60 % or people in post-acute care settings

People who are at “end of life” 83 %

delirium arise shortly after surgery and usually persist for a few days. In some cases,

however, they can last up to several weeks.2

The probability of postoperative delirium increases if a patient is an older adult, already

has dementia or a physical disability, abuses alcohol, or has very abnormal blood tests.

Also, certain types of surgeries are more frequently associated with delirium. For exam-

ple, delirium is much more common after hip fracture3–7 and cardiac surgery.7–10

According to previous studies, the incidence of postoperative delirium after surgery

varies from 15 % to 53 % (Table 1), with the highest incidences among elderly pa-

tients.11–15 With an aging population, the number of elderly patients undergoing surgery

is growing, and this will continue to increase over time.16

Typical symptoms of delirium are characterized as following: Sudden onset over hours

to days; Disturbance in sleep-wake patterns; Audio and visual hallucinations; Slurred

speech and language difficulties; Dysfunctions in perception and environmental aware-

ness; Usually more alert in the morning than at night; Slow moving or very restless.

- 6 -



2. Related Researches

Over the last decades, various studies focusing on postoperative delirium found many

risk factors because the early detection and intervention of delirious patients related to

reducing the adverse outcome of delirium. Most studies used the clinically available

information. A few studies focused on finding preoperative delirium risk factors in the

neural basis.

Most of the literature, related to the neural correlates of delirium, has been summarized

by a systematic review.17 This review included 12 articles, mostly with small sample

sizes (a total of 127 cases). However, there was substantial heterogeneity in populations

and neuroimaging modalities such that conclusions remained to unclear.

In general, structural brain abnormalities such as atrophy and leukoaraiosis (or white

matter hyperintensities) might be associated with delirium.18 After publication of the

systematic review by Soiza, five further studies have been published.17 The largest-scale

report was VISIONS.19,20 This prospectively examined the neural correlates of delirium

in 47 participants after critical illness. A duration of delirium was related to measures

of white matter tract integrity and this in turn was related to poorer cognitive outcomes

at 3 and 12 months. Also, brain volumes were also assessed and related to cognitive

outcomes in the same manner. Overall, the study found that longer duration of delirium

was associated with smaller brain volume and a white matter disruption, and both these

correlated with worse cognitive scores 12 months later.

Two studies examined delirium risk as a postoperative complication after elective car-

diac surgery. These both showed that white matter damage predicted postoperative delir-

ium.21,22 So far, only one study investigated an alteration of the functional connectivity
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Figure 1. Distribution of the number of publications related to the human connectome.

during an episode of delirium. Choi revealed the decreased functional connectivity be-

tween the dorsolateral prefrontal cortex and posterior cingulate cortex during an episode

of delirium and its reversibility after recovery of delirium.23 A reversible reduction of

the functional connectivity has been revealed by using the follow-up MRI scanning after

recovering from delirium. However, there were no graph theoretical approaches focusing

on the functional network alteration in a comparison of preoperative and postoperative

measurements.

A. Human Connectome

With advancing neuroimaging technologies such as magnetic resonance imaging (MRI)

together with analysis methodologies, mysteries of the human brain are uncovered. Over

the two past decades, the study of structural and functional networks has enormously

grown as shown in Figure 1. However, studies were mostly focused in analyzing the

functional network.

There have been a lot of advances in the analysis of resting state functional connectivity.

- 8 -



A correlation analysis between a single seed region of interest to the whole-brain regions

was the first attempt to investigate the functional connectivity developed by Biswal.24

Later on, at the beginning of the 21st centuries, Calhoun applied the independent com-

ponent analysis to the resting state functional network data to unmix the independent

sources of functional connections in the human brain.25 After that, a graph theoretical

analysis was introduced in the connectome studies and currently it is widely used for

studying the resting state functional connectivity.26

Also, using the graph theoretical approach, researchers attempted to reveal the modular

organization of the whole-brain. Detecting modules (or communities) is based on the

anlaysis of the interactions or connections between elements of systems, and thus parti-

tioning modules has become an important approach in the various network study.27–30

Specifically, Davis revealed the different patterns of the whole-brain modular organiza-

tions for the low, intermediate, high impulsivity groups.31 Meunier found the age-related

changes in modular organization of human brain functional networks.32 Kyeong found

the significantly different patterns of the functional connectivity between two contrast-

ing temperament groups.33 In brain networks, densely connected brain regions, which

are sparsely connected to other regions, are considered to form the modules.

The study of the structural connectivity, in contrast to the functional connectivity, has

been rarely investigated. The history of the methodological advancement is very short.

The structural network is the set of nerve fibers linking neuronal units at a given time.

Therefore, the structural connectivity is the network backbone in the brain and rarely

changed over short time, whereas the functional network is the state dependent brain

networks.
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Before the advent of graph theoretical approaches in the human connectome, voxel- or

tract-based statistical comparisons of fractional anisotropy were the only structural prop-

erties that can be measured from the diffusion tensor imaging data. Recently, researchers

could construct a connection matrix using the streamlines that connect two brain regions.

The structural network is a sparse matrix (see Figure 4 in materials and methods section)

and thus we could easily apply the graph theoretical analysis without additional thresh-

olding steps.34

In this study, we fully analyze the structural and functional network properties in the

preoperative delirium and comparison groups. Then, overlaping the functional network

properties on the structural network.

B. Modular Organizations of the Human Brain

A graph theory (or complex network in Physics) is a methodological background of this

dissertation. The major methodological framework used in this study is the community

detection in the structural network of the human brain. There have been a few stud-

ies related to the community detection of the functional brain network: intrinsic modu-

lar organizations in the normal controls;35 impulsivity related modular organizations;31

age-related functional modular organizations;32 functional modular organization of two

contrasting temperament groups.33 In the study of structural community detection, the

cortical thickness network was widely used in many literatures.36,37 However, detecting

the structural modular organizations using the structural network from a streamline trac-

tography was rarely studied. Here, by extending the community detection method and

connectivity density analysis used in Kyeong, the development of community detection
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procedures from the structural network were achieved.33

C. Brain Network During an Episode of Delirium

Increasingly, the study of complex networks has expanded across diverse scientific fields.

The network science is concerned with the network of the network (i.e., coupled net-

work) because an interdependency of two networks could cause a catastrophic failure in

the coupled network system.38 Study of group differences between two preoperative pa-

tients’ is important to identify neural risk factors for delirium. However, since delirium

is accompanying an altered state of consciousness, investigating the functional connec-

tivity during an episode of delirium would enable us to gain a deeper understanding of

how the functional network reorganizes during an episode of delirium.

D. Topological Data Analysis

In the era of big data, finding the new insight from the huge amount of dataset is one

of the most fascinating research areas. Especially, in the medical data analytics, detect-

ing subtypes or hidden phenotypic subgroups within the heterogeneous patient group

is essential for the personalized treatment. Recently, the advanced unsupervised ma-

chine learning technique to identify subgroups using a mathematical framework called

as “topological data analysis” was developed and applied for detecting subtypes of breast

cancer39 and diabetes subtypes.40 Also, the topology-based data analysis was applied in

analyzing neuroimaging data.41,42

3. Research Goals and Approaches

There are three hypotheses in this dissertation. First, there existed a structural network

alteration in preoperative delirium (i.e., alteration of brain network backbone). Also,
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delirium prediction model would be established using preoperative neuroimaging data.

Second, although hip fracture surgery has no direct connection to brain function, it would

change the patterns of functional connectivity, and cause delirious phenomena. Third,

among preoperative delirium patients, there existed phenotypic subgroups in dimensions

of individual’s personality and levels of cognitive function.

The methodological approaches of each research goal are summarized as following.

First, to achieve an invention of a neuroimaging-based delirium prediction model, com-

prehensive analysis of structural and functional connectivity properties using preoper-

ative neuroimaging datasets was conducted. Second, to understand how the normally

working conscious brain becomes an acute confusion state after hip fracture surgery,

a new approach to computing the synchrony of structural and functional network was

developed. Also, since preoperative and postoperative functional networks are interde-

pendent to each other, modularity optimization of a multi-sliced network was introduced

to find the functional modules in delirium and non-delirium groups. Third, topological

data analysis method was used for identifying phenotypic subgroups of delirium.
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II. MATERIALS AND METHODS

This dissertation is a study about investigating the preoperative neural risk factor for

delirium, and functional network changes before and after hip fracture surgery. For this,

the multimodal neuroimaging data, demographic information, and various clinical scales

were obtained from fifty-eight hip fracture patients.

The functional and structural brain networks were constructed from the resting state

functional magnetic resonance imaging (MRI) and diffusion MRI, respectively. There

are many steps should be conducted to get the noise-free standardized brain network

connection matrix from the raw neuroimaging data. In this section, parameters for MRI

data acquisitions, steps in preprocessing of neuroimaging data, brain network construc-

tion, and analysis methods will be described.

1. Preoperative and Postoperative Dataset

A total of eighty-four hip fracture patients were enrolled from the inpatients unit of

Gangnam Severance Hospital at Yonsei University in Seoul, Korea from September

2013 to July 2014. All hip fracture patients were participated in the preoperative MRI

scanning. After hip fracture surgery, postoperative MRI scanning was conducted for the

thirty-two patients. Based on clinical interviews with trained psychiatrists, a diagnosis

of delirium was made according to DSM-IV criteria. In the preoperative dataset, twenty-

five patients were identified as postoperative delirium, and thirty-three patients were

identified as non-delirium according to the follow-up assessment of delirium. Also, in the

postoperative follow-up dataset, fourteen patients identified as postoperative delirium,

and eighteen patients were identified as non-delirium comparison patients. We obtained
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Altered brain network during delirium
using SN-FN coupling and  
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postoperative  
functional network

preoperative 
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Figure 2. Summary of clinical and neuroimaging datasets and description of how datasets
were used in three separate research topics. In the first research topic, structural modular
organizations were obtained by using DTI and various graph metrics were obtained from
structural and functional networks. In the second research topic, paired samples of pre-
and postoperative functional networks were used to obtain the multi-sliced functional
network modular organizations. Also, preoperative and postoperative SN-FN coupling
strengths were computed. In the third research topic, MMSE, IQCODE, and BFI were
used for topology-based data analysis. Abbreviations: BFI, big five inventory; DTI, dif-
fusion tensor imaging; IQCODE, informant questionnaire on cognitive decline in the
elderly; MMSE, mini mental state examination; SN-FN, structural network and func-
tional network.

written informed consent from the participants or their surrogates after giving them a

complete description of the study. The Institutional Review Board at Gangnam Sever-

ance Hospital approved this study. The summary of clinical and neuroimaging datasets

and description of how datasets were used in three separate research topics were illus-

trated in Figure 2.
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2. Preoperative Demographic and Clinical Information

Demographic variables such as age and sex were collected before hip fracture surgery.

The participant’s cognitive level, prior to the hospitalization, was measured using short

Korean version of informant questionnaire on cognitive decline in the elderly (IQCODE).

Also, to assess comorbidity of dementia, a total of 30-points mini-mental state examina-

tion (MMSE) was acquired. The MMSE can detect cognitive impairment by evaluating

orientation, attention, recall, language and ability to follow commands. A score higher

than 23 is considered as normal, although individual performance varies with the pa-

tient’s age and education.43 Furthermore, anxiety and depression level were assessed

by Hamilton’s anxiety scale and Hamilton’s rating scale for depression, respectively.

Finally, individual’s personality was assessed by Big Five Inventory.

3. Assessments of Severity of Postoperative Delirium

The presence and severity of delirium after hip fracture surgery were assessed using

the Confusion Assessment Method and Delirium Rating Scale-Revised-98,44 which in-

cludes three diagnostic items and 13 severity items (scores range from 0 to 46). The

motor subtypes, such as hyperactive, hypoactive, and mixed were classified based on

the Delirium Motor Subtype Scale (“decreased or increased psychomotor activity”). Pa-

tients’ clinical status was assessed every other day. A MRI scan was obtained from pa-

tients during an episode of delirium, and a follow-up was obtained after resolution.

4. Neuroimaging Data Acquisition

The participants underwent resting state functional MRI, diffusion tensor imaging, and

high-resolution structural image scanning. For each neuroimaging modality, the underly-
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ing principles and scanning parameters will be described in the following subsections. A

total of thirty-two patients with and without delirium were scanned before and after hip

fracture surgery. For the delirious patients, the postoperative follow-up functional images

were acquired on the next day of diagnosing delirium at the moment when they were in

the best cooperative time of the day. Whereas, the postoperative follow-up functional

images were acquired at 5-th day after surgery if they were not diagnosed as delirium.

A. Diffusion Tensor Imaging

Diffusion tensor imaging (DTI), also referred to as diffusion MRI, allows the mapping

of the diffusion process of molecules in the white matter tissues. Molecular diffusion re-

flects interactions with cell membranes, axonal fibers and myelin in white matter tissues.

Tractography technique allows to represent neural tracts using DTI data. Fiber bundles

extracted through the tractography can be used to model a structural brain network. The

steps for the preprocessing and structural network construction were described in this

section.

B. Resting State Functional MRI

Resting state fMRI reflects the low-frequency fluctuation by the Blood-Oxygen-Level

Dependent (BOLD) contrast imaging during eyes closed resting state. The resting state

neural fluctuation is present even in the absence of an externally applied task, and thus

any brain region will have spontaneous fluctuations. Also, it influenced to the BOLD

signal. The resting state functional connectivity is the connection between brain regions

that share the fluctuation patterns of the BOLD signal. Specifically, it can be defined as

the temporal correlation between two time-series. There are various ways to access the
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functional connectivity using the resting state fMRI data: A seed region based correla-

tion analysis; independent component analysis; and graph theoretical approaches. Before

looking at the functional connectivity, the preprocessing in the spatial and temporal do-

mains should be conducted.

C. Imaging Parameters

Functional images were obtained over 5 minutes using gradient-echo echo-planar imag-

ing sequence in a Signa EXCITE 3.0 Tesla MR system (GE, Milwaukee) with the fol-

lowing parameters: matrix size, 64 ⇥ 64; echo time (TE), 17.6 msec; repetition time

(TR), 2,000 msec; field of view, 240 mm; slice thickness, 3 mm; flip angle, 90°; number

of slices, 50. All participants were instructed to rest with their eyes closed during the

scan. High-resolution anatomical images were obtained using a spoiled gradient-echo

sequence (matrix=512⇥512, TE=3.2 msec, TR=8.2 msec, field of view=240 mm, slice

thickness=1.2 mm, flip angle=20�, number of slices=116) to serve as an anatomical un-

derlay. Sixteen diffusion tensor imaging volumes were obtained for each participant,

including 15 volumes with diffusion gradients applied along 15 non-collinear directions

(b = 1000 s/mm2) and one volume without diffusion weighting (b = 0). A total of 64

continuous axial slices (slice thickness=2.6 mm) were acquired using a single shot spin-

echo echo planar imaging sequence with the following parameters: TR, 8000 msec; field

of view, 240 mm; matrix size, 128⇥128.

5. Preprocessing of Structural Neuroimaging

The preprocessing of diffusion tensor imaging (DTI) included the following steps. First,

DTI images were corrected for eddy-current distortions45 and realigned to the b = 0 im-
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Table 2. Summary of streamline statistics after structural network construction for each
group

Variable Pre-Op Delirium Comparison patients T statistic P value

Total number of tracts [⇥103] 314 (41) 313 (35) 0.096 0.924
Usable tracts [⇥103] 130 (23) 129 (19) 0.142 0.888

Usable tracts, % 41.3 (3.9) 41.3 (3.2) 0.039 0.969
Mean length, mm 19.2 (1.8) 19.3 (1.7) -0.197 0.844

The numbers represent mean (standard deviation) value.

age through FSL’s ‘eddy correct’ function. Second, the tractography program (Diffusion

Toolkit, Version 0.6.3)⇤ and the diffusion-weighted images were used for the fiber tract

extraction. The white matter tracts of the brain structural networks were reconstructed by

using the deterministic fiber tracking method, based on a fiber assignment by continuous

tracking (FACT) algorithm.46 Within each voxel in the brain mask (i.e., the total of gray

and white matter), one seed was started, evenly distributed over the volume of the voxel.

A streamline was started from each seed following the principal diffusion direction from

voxel to voxel, thus reconstructing white matter fibers. Stopping criteria were used as

following: an angular threshold of 60�, fractional anisotropy (FA) threshold of 0.1, and

the track length of 5 mm. Table 2 shows the summary of streamline statistics for each

group.

A. Cortical Parcellation

After the preprocessing steps, the cortical and sub-cortical brain areas were parcellated

into 90 regions of interest (ROIs) using the automated anatomical labeling (AAL) at-

las.47 A total of 90 anatomically defined ROIs covered the whole-brain except for the
⇤
http://www.trackvis.org
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cerebellum. In this study, we included the subcortical regions such as the thalamus, cau-

date, putamen, and pallidum48–50 even though some other studies ignores these parts

of the brain.34,51 Since the thalamus or the amygdales has keep vital connections with

cortical areas, subcortical structures were included in this study.48

B. Structural Network Construction

Figure 3 illustrates the procedures for individual structural network construction. The

structural networks were constructed through the following steps: (i) To obtain the trans-

formation matrix (T ), coregistration of the T1-weighted image to b = 0 image. (ii) nor-

malization of the coregistered T1-weighted image to the standard MNI template image.

(iii) The non-linear inverse transformation matrix was applied to the parcellation at-

las such as AAL to generate corresponding parcellation volumes in each individual’s

diffusion-weighted image native space. (iv) Then, individually fitted parcellation map

divides the whole-brain into 90 cortical regions in the individual space. (v) Finally, we

constructed the structural network using two weighting methods: W NOS�ROI , Weighted

by streamline counts, corrected for ROI volume.34,49 The number streamlines between

region i and j was normalized by the sum of the volumes of ROI i and j was computed

for all pairs of ROIs; W FA, Weighted by FA values.34,50 The voxel-wise FA values for

the existing streamlines were extracted and averaged for each edge connecting region i

and j. Edges having fewer than three streamlines were considered potentially spurious

and were deleted from the connection matrix.50,51
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(B) Inverse transformation: from MNI to individual space

NOS-ROI weighted

+

(A) Tractography from Diffusion Tensor Imaging

AAL in MNI space AAL in individual space

Diffusion images b=0 image Streamlines

T �1

Tractography

FA weighted

(C) Structural Network

Figure 3. A schematic diagram for structural network construction. (A) Fifty directional
diffusion images were registered to non-diffusion weighted (b = 0) image using non-
linear affine transformation. Then, the whole-brain tractography were obtained using the
FACT algorithm. (B) The inverse transformation matrix T �1 was applied to AAL atlas
to create corresponding AAL volume in individual’s diffusion-weighted image native
space. (C) Structural network constructions by determining the white matter connec-
tion for each pair of AAL volume. The connection weights for each pair of nodes were
obtained from two methods: Fractional Anisotropy (FA) and Number of Streamlines cor-
rected for volume of each ROI (NOS-ROI). Abbreviations: AAL, automated anatomical
labeling; FACT, fiber assignment by continuous tracking; MNI, montreal neurological
institute.

C. Group Representing Structural Network

For each preoperative group, a group representing structural network was obtained by

averaging the connection weights from the individual matrices that were present in at

least 75% of the group of subjects.34 These group representing brain networks will be

used for investigating the structural modular organizations.
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6. Preprocessing of Resting State Functional Neuroimaging

All acquired neuroimaging data were preprocessed using Statistical Parametric Mapping

(SPM12)†Matlab toolbox. Realignment to correct head motion artefacts were performed

for all volumes within a subject. The realigned fMRI data were normalized through

bilinear interpolation at a 2 ⇥ 2 ⇥ 2 mm3 resolution using the parameters from a spa-

tial normalization of T1-weighted images. The spatial smoothing was performed with

a Gaussian kernel of 6 mm full-width at half-maximum. Then, a linear detrending and

band-pass filtering (0.009⇠0.08 Hz) were applied to time series at each voxel. The ef-

fects of head motions, global signal activity, and the physiological noise from white

matter and ventricle regions were also removed to eliminate sources of spurious vari-

ances.

A. Functional Network Construction

The mean time series within each Region of Interest (ROI) were obtained from cortical

parcellation method. The adjacency matrix (Ai j) for each subject was computed with

Pearson’s correlation coefficients between the i-th and j-th mean time series for each

parcellation, respectively.

B. Group Representing Functional Network

The average adjacency matrix, computed as the mean functional network (FN) for each

group, showed the representative group FN.

FNl
i j =

1
nl

Â
k2Gl

Ak
i j (1)

†
http://www.fil.ion.ucl.ac.uk/spm/
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Figure 4. Illustration of (A) sparse and (B) dense graph. The structural network is the
example of sparse graph and the functional network is the example of dense graph.

where l is the group index; Gl is a set of subjects within group l; and nl is the number of

subjects in group l.

7. Neural Substrates of Preoperative Delirium

The applications of graph theory to the functional and structural brain networks are

growing rapidly to reveal the global or local features of the brain connectome. Global

and local properties of the brain networks were measured by graph theory and they were

considered to investigate the neurobiological substrates for preoperative delirium. To

begin with graph theoretical analysis, characteristics of sparse and dense graph will be

introduced in the following subsection because a structural and functional network can

be represented by a sparse and dense graph, respectively. Also, definitions of various

graph metrics, modular organization of the humrn brain, and connectivity density will

be described.

A. Sparse and Dense Graph

When we were dealing a complex network, which has a huge amount of nodes and

- 22 -



edges, there are several ways to extract informative features from them. The character-

istic path length and average clustering coefficients of the network usually explain the

integration and segregation of the network. These graph metrics are very useful when

we want to get comprehensive insight from a graph. However, before analyzing graphs,

an appropriate threshold on edge weights is necessary for the densely connected graph

(Figure 4). Because the functional connectivity matrix was computed by Pearson’s cor-

relations between time series, all nodes are interconnected with different connection

weights. Therefore, we have to apply a threshold on connection weights to yield a sparse

adjacency matrix when we extract graph metrics from the functional network. Figure 4B

illustrates the dense graph. In contrast, the connection matrix of the structural network

is intrinsically sparse since a single streamline does not connect all pairs of nodes.

B. Graph Theoretical Measures

Several graph metrics are frequently used in analyzing the brain network, such as the de-

gree, efficiency, characteristic path lengths, clustering coefficients, and modularity. The

characteristic path length and global efficiency are a measure of functional integration.

The clustering coefficient and the local efficiency are a measure of functional segrega-

tion. Modularity characterizes the segregation of a network.26,52

Clustering Coefficient: The conceptual meaning of the clustering coefficients of each

node (Ci) is known as a fraction of triangles around an individual node. The average

clustering coefficient is defined as following:

C =
1
n

Ci, Ci =
1

ki(ki �1) Â
j,h2N

(wi jwihw jh)
1/3,
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Figure 5. Description of Dijkstra algorithm to find geodesic shortest path length. Com-
puting (B) the inverse matrix from (A) connection weight matrix. Then, searching the
shortest path between links using Dijkstra algorithm.

where ki is the degree of node i.

Characteristic Path Length: Although there was no direct link between a pair of nodes

in a sparse graph, there existsed some geodesic path between that nodes. The character-

istic path length of the network is the average of all geodesic shortest path length (di j) as

following:

L = Â
i2N

Â
j2N,i6= j

di j

n(n�1)
,

where di j is the geodesic distance between nodes i and j obtained by Dijkstra algorithm.

In the evaluation of di j, the inverse of the similarity weight 1/wi j is used for a distance

metric as illustrated in Figure 5. Basically, the higher similarity values implies the shorter

the distance.
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Global Efficiency: The global efficiency of the network can be defined as the harnonic

mean of the shortest path as following:

E =
1

n(n�1) Â
i2N

Â
j2N, j 6=i

d�1
i j

where N is the set of all nodes in the graph, n is the number of nodes in the graph.

Local Efficiency: The local efficiency of node i is an efficiency of a subgraph including

all neighbor nodes of i.

Eloc =
1
n Â

i2N
Eloc,i =

1
n Â

i2N

Â j,h2N, j 6=i wi jwih[d jh(Ni)]�1

ki(ki �1)

where Eloc,i is the local efficiency of node i, ki = Â j2N ai j is the degree, and d jh(Ni) is the

length of the shortest path between node j and h, that contains only neighbors of node i.

Small-world Network Property: Small-world network shows a ratio g defined as C/Crandom

of >> 1 and a ratio l defined as L/Lrandom of 1, wich the clustering coefficient Crandom

and characteristic path length Lrandom of a random organized network of similar size.53,54

Crandom and Lrandom were computed as the average clustering coefficient and character-

istic path length of a set of 100 random networks with a comparable total degree and

degree distribution as that of the corresponding networks.

C. Thresholding on Functional Network

In contrast to the (sparse) structural network, which was constructed by an existence

of the streamlines between two nodes, the functional network has a dense connection

matrix. Thus, thresholding the weakly connected links should be conducted before com-

puting the graph metrics. For the functional network analysis, sparsity threshold (0.08 
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S  0.48) was used to compute network properties for each thresholding value.55,56 Then

the area under the curve for each graph metric was calculated for statistical comparison.

D. Modular Organizations

In addition to the graph metric, the modular organizations of the brain network are differ-

ent between controls and patients group or between two contrasting personality groups.

In the previous studies, impulsivity groups have the different modular characteristics.31

Also, in the normal controls, a functional modular organization of the two contrasting

temperament groups have different patterns of functional connectivity among the pre-

frontal cortex, basal ganglia, and limbic system.57

Modularity: Modularity was computed from the weighted networks using a Louvain

community detection algorithm.58

Q =
1

2m Â
i, j

⇣
Wi j �

sis j

2m

⌘
d (Ci,Cj),

where Wi j represents the connection weights between i and j; si = Â j Wi j is the sum of

the connection weights attached to node i; Ci is the modular (community) structure to

which node i is assigned; the delta function d (u,v) is 1 if u = v and 0 otherwise; and

m = 1
2 Âi j Wi j.

The group representive structural modular organizations were obtained from 1000 inde-

pendent modularity optimization runs for the group averaged NOS-ROI and FA weighted

structural networks, respectively. All reported modular organizations represent optimal

solutions, which have the maximum modularity Q for each optimization process. Since

Louvain method uses a heuristic strategy to maximize network modularity for a given
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initial condition, every independent optimization run produces a different modular orga-

nization.59 Normalized mutual information (NMI) was used to determine which commu-

nity had the most similar structure to the other.33,60 The community structure having the

largest average value of NMI over all other optimization results was called best partition

of the network.

Jaccard index: Jaccard similarity coefficient (J) is a statistic used for comparing the

similarity and diversity of modular structures. The Jaccard coefficient is defined as the

size of the interaction divided by the size of the union of the modules (i.e., sets of nodes).

J(A,B) =
|A\B|
|A[B|

To compute the statistically significance of the Jaccard indices, we performed the 1000

independent permutation tests to get the null distribution. Finally, we identified the sim-

ilar modules between groups by using the permutation test results (P < 0.05).

E. Connectivity Density

The between-group comparison of structural and functional connectivity density was

performed as a post-hoc analysis. This analysis is necessary because the individual vari-

ations in the group-averaged brain network were ignored in the group averaged network.

Thus, to support the different patterns of modular organizations between groups and to

provide a quantitative statistics, the structural and functional connectivity density within-

and between-modules should be further investigated.
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Functional Connectivity Density: The functional connectivity density (FCD) was com-

puted by averating all within-module and between-modules connection weights as fol-

lowing:

FCDab =
1
N Â

i2CIa
Â

j2CIb

Ai j,

Structural Path Length Density: The structural path length density (SPLD) was com-

puted from the distance matrix di j for each weighting method.

SPLDab =
1
N Â

i2CIa
Â

j2CIb

di j,

where the distance matrix between nodes i and j (di j) is a set of the geodesic shortest

path length computed by Dijkstra algorithm (Figure 5).

8. Prediction Model for Preoperative Delirium

The prediction of delirium is important because early intervention of delirium reduces

the duration of delirium, length of hospitalization, and mortality in delirious patients.61

Therefore, there have been a lot of studies in investigating risk factors for delirium in

the domain of a demographic characteristic, cognitive deficit, medication status, and

comorbidity.62,63 Despite many studies, delirium remains frequently unrecognized and

poorly understood.7,64

The clinical presentation of delirium is varying but can be classified into three subtypes,

such as hypoactive, hyperactive and mixed, on the basis of psychomotor behavior.1

Among the three motor subtypes, the hypoactive subtypes most frequently occures in

elderly patients, and these patients are frequently overlooked or misdiagnosed as having

depression or a form of dementia.65 Although there has been a guideline for diagno-
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sis of delirium for the elderly patients, the clinical assessment for those patients with

hypoactive delirium is limited.64

For non-communicative patients with hypoactive delirium, the neuroimaging methods

without task stimulus would be useful for assessing a diagnosis and severity of delirium.

In this study, a prediction model for postoperative delirium will be introduced using

the preoperative neuroimaging data. The preoperative risk factors were computed for

predicting postoperative delirium using the structural and functional network properties.

A. Logistic Regression

The central statistical concept that underlies logistic regression is the logit, which is the

natural logarithm of an odds ratio. For the binary output variable Y , what is the best to

way to model the conditional probability P(Y = 1|X = x) as a function of x? The most

obvious idea is to let p be a linear function of x. Every increment of a component of x

would add or substract so much to the probability. The conceptual problem here is that

p must be between 0 and 1, and linear functions are unbounded. The next most obvious

idea is to let lnp be a linear function of x, so that changing an input variable multiplies the

probability be a fixed amount. The problem is that logarithms are unbounded in only one

direction, and linear functions are not. Finally, the easiest modification of lnp which has

an unbounded range is the logistic (or logit) transformation, ln p
1�p . This transformation

makes a linear function of x. Formally, the logistic regression model is can be written as

following:

logit(Y ) = ln(odds) = ln
✓

p
1�p

◆
= a +bX .
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If we solve the logit (Y ) for p - Probability(Y = 1|X = x,a specific value ofX), we have

p =
ea+bx

1+ ea+bx =
1

1+ e�(a+bx)
.

For the prediction of the disease, Y = 1 when p � 0.5 and Y = 0 when p < 0.5. This

means guessing 1 wherever a +bx is non-negative, and 0 otherwise.

Extending the logic of the simple logistic regression to multiple predictors (say X1 = age

and X2 = gender), a complex logistic regression for Y as following:

logit(Y ) = ln
✓

p
1�p

◆
= a +b1X1 +b2X2.

Therefore, p-Probability(Y = 1|X1 = x1,X2 = x2) becomes

p =
ea+b1x1+b2+x2

1+ ea+b1x1+b2x2
,

where p is once again the probability of the event, a and b s are regression coefficients,

and Xs are a set of predictors. Parameters a and b s are typically estimated by the maxi-

mum likelihood methods.

The target dataset of the prediction modeling includes 58 preoperative hip fracture pa-

tients. In the prediction model, the outcome variable was the incidence of postoperative

delirium and independent predictors are structural and functional connectivity densities.

As a first step towards establishing the association between the incidence of postopera-

tive delirium and the graph metrics obtained from the preoperative neuroimaging data.

Before conducting the multivariate logistic regression analysis, bivariate logistic regres-

sion analysis was conducted to produce unadjusted odds ratios and corresponding 95 %

confidence intervals. Then, multivariate logistic regression was performed to evaluate
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the outcome of postoperative delirium with the main explanatory variables measured in

the bivariate logistic regression.

B. Model Selection

To select a best prediction model for delirium, several measures of a goodness of predic-

tion models were considered. Classification tables using the predicted probabilities that

provide sensitivity and specificity, and area under the receiver operating characteristics

(ROC) curves. The area under ROC curve provides an overall measure of fit of the model.

In particular, the area under curve provides the probability that a randomly selected pair

of subjects, one truly positive, and one truly negative, will be correctly ordered by the

test. In this study, we used analysis of ROC to measure a goodness of fit. The overall

classification accuracy and area under ROC curve provides an overall measure of fit of

the model.

As explained earlier, logistic regression predicts the logit of an event outcome from a set

of predictors. Because the logit is the natural log of the odds (or p
1�p ), it can be trans-

formed back to the probability scale. The resultant predicted probabilities can then be

revalidated with the actual outcome to determine if high probabilities are indeed associ-

ated with events and low probabilities with non-events. The degree to which predicted

probabilities agree with actual outcomes is expressed as either a measure of area under

ROC curve or a classification table.
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9. Brain Network Alteration during an Episode of Delirium

In this section, a new approach to the structural network and functional network (SN-

FN) coupling and multi-sliced functional network modularity optimization methods will

be introduced. A total of thirty-two the preoperative and postoperative paired samples

(Delirium=14, Non-delirium=18) was used to investigate brain network alteration during

an episode of delirium.

A. SN–FN Coupling – Old Approach

In the structural network, a thresholding process was not necessary because the weighted

connection matrix is intrinsically sparse since most node pairs are not interconnected by

even a single streamline. In contrast, function network driven by resting state fMRI data

albeit a possibly small functional correlation is found between all network nodes, hence

necessitating the use of a thresholding procedure to yield a sparse adjacency matrix.

For pre- and postoperative brain imaging data, a pair of structural and functional network

used to compute a structure network and function network (SN-FN) coupling strength to

test the synchrony or desynchrony of FN from structural network. To evaluate a coupling

strength between the FN and SN for each subject a correlation analysis between the

weights of the SN connection matrix and their functional counterparts (i.e., S(FN), a

sparse FN), was conducted as illustrated in Figure 6A. All nonzero elements of the SN

connection matrix were selected, rescaled to a Gaussian distribution, and correlated with

their counterparts selected from the FN matrix as described elsewhere.49,66 This implies

a single SN–S(FN) coupling metric for individual’s the brain networks.
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FN-SN Coupling

S(FN) SN

FN-SN Coupling

FN D(SN)

(A) SN-FN Coupling: Old approach (B) SN-FN Coupling: New approach

SNFN

Figure 6. Graphical illustrations for a measure of coupling strength between structural
network (SN) and functional network (FN). SN-FN coupling strength was computed
by two different methods: (A) An old approach for SN-FN coupling analysis. In old
approach of SN-FN coupling analysis, sparse functional network connection matrix was
obtained from the counterparts of nonzero SN elements. (B) A proposed approach for
SN-FN coupling analysis. Full functional network elements and distance matrix from
SN was used for the new approach of SN-FN coupling anlaysis.

B. SN–FN Coupling – New Approach

The idea of the old approach for SN–FN coupling is to select a sparse FN from fully

connected FN in evalution of a synchrony between sparse SN and all-to-all connected

FN. Here, a new approach for SN–FN coupling is proposed. The essential part of the

proposed SN–FN coupling method is to convert sparse SN to a delsely connected dis-

tance network, D(SN), by Dijkstra shortest path length algorithm (Figure 5). Then, a

functional connectivity synchrony with structural backbone network was computed by

using fully connected FN, F (FN), and densely connected distance matrix of SN, D(SN).
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C. Multi-sliced Functional Modular Organizations

In this subsection, multi-slice (or time-dependent) modularity optimization network will

be introduced. The previously introduced modularity optimization method was not suit-

able for the multi-sliced network system. So, to identify the modular organizations of

delirium and non-delirium functional networks before and after a hip fracture surgery,

the generalized modularity optimization algorithm will be used. The generalized form

of modularity optimization algorithm was recently introduced and it could be applied to

multislice and multiplex network.67 The generalized modularity function is defined as

Qmulti =
1

2µ
= Â

i, j,s,r

✓
Ai js � gs

kisk js

2ms

◆
dsr +di jw jsr

�
d (Cis,Cjr)

where Cis indicates that community assignment of node i from slice s, the intraslice edge

strength of node j in slide s is k js = Âi Ai js, the corresponding interslice edge strength

is c js = Âr w jsr, and 2µ = Â jr k jr + c jr. In the multi-sliced modularity (Qmulti), one can

use a diferent resolution parameter gs in each slice. For a given slice s, the quantity Ai js

gives the edge weight between node i and j. For a given node j, the quantity w jsr give

the interslice coupling between the rth and sth slices.

The interslice edge strength (or coupling strength) between pre- and postoperative func-

tional networks was obtained by Pearson’s correlations for delirium and non-delirium

groups, respectively.
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Data has shape

33

Line LoopClusters Flares

Figure 7. Shape encodes structure and meaning of complex data: Line or linear shape,
clustered data, loop, and flares.

10. Topology-based Subgroups Identification in Delirium

Topology is a field of mathematics and a sort of geometry concerning the shape. Topolog-

ical data analysis refers to the adaptation of this discipline to analyzing high dimensional

and complex data.40,68 One of the key messages around topological data analysis is that

the data has a shape, and the shape matters (Figure 8). For understanding and interpreting

the data, the different statistical or mathematical methods should be applied to the differ-

ent shapes of data. Figure 8 showed four different shapes of data. A linear regression is

the best way to fit the data in the linearly distributed points cloud (see line-shaped point

clouds in Figure 8). Unfortunately, the data does not always cooperate and fit along a

line. For example, point clouds can be distributed in the shapes of clusters, loop, or

flares as shown in Figure 8. It is easy to see that no straight line represents these data.

Thus, some clustering algorithm should be used to describe the clustered points cloud.

Also, loopy or flare shaped data can not be explained by a straight line. For describing

flares, researchers might separate data for each flare and analyze them independently.

The modern technology called as machine intelligence combines topological data anal-

ysis and unsupervised machine learning methods to find patterns in data by various sta-
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tistical or mathematical approaches. Topology-based data analysis produces a compact

representation of the data that shows us all of those shapes at once. Whatever shape data

has, without having to know it in advance, topological data analysis can map that out for

us in a way that we can use as a foundation for further analysis.

In this section, topological data analysis will be introduced to get more insights about

delirium. The essence of topological data analysis is to extract a geometric shape from

the relationships among patients by using partial clustering method. Mapper is a tool

for topological data analysis that was introduced in bioinformatics39 and neuroimaging

data analytics.42

Figure 8 showed analysis procedures of topological data analysis. The first and second

steps toward for using topological data analysis is to define filter and distance functions.

There are various ways to define filter and distance functions.40 However, in this partic-

ular study, clinical variables such as IQCODE, MMSE, and K-DRS scales were used for

topological data analysis. The filter function is used to measure of overall magnitude of

delirium in combination of three clinical scales, and distance function is used to mea-

sure the relationships between patients. The step by step procedures of topological data

analysis are introduced in the following subsection.

A. Filter function

The first step for topological data analysis is to define the filter function. For five-

dimensional clinical variables of the patient i, dataset T become a matrix with dimen-

sions of 58⇥5 (i.e., number of patients ⇥ number of clinical variables).

T = {IQCODE,MMSE,K�DRS,BFI�C,BFI�N}.
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(A) Y-shape points cloud and filter function
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(C) Visualization of resulting topology

Figure 8. Schematic diagram of topological data analysis using Mapper. Steps for topo-
logical data analysis are as following: (A) The data is sampled from a noisy Y-shape
points cloud in the two-dimensional space, and the filter function is f (x,y) = y. The
range of filter was divided into five intervals with a 50 % overlap. (B) For each inter-
val, the partial clustering of the points lying within the domain of filter restriction to the
intervals was performed. Distributions of the distances from single linkage dendrogram
in each filter bin. For example, distance distributions for 1st and 9th filter bin were pre-
sented. The summation of frequencies appeared after zero bins is the number of clusters.
(C) The graphical illustration of the simplicial complex by connecting the clusters when-
ever they have non-empty intersection. The color of vertices represents the average filter
value.
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Now, to project multidimensional dataset to a linear space, principal component anlaysis

was applied and first eigen variate was selected for the value of the filter function.

B. Distance function

The second step to define the distance function. In this study and most other studies,

Euclidean distance was used to obtain dissimilarity matrix from all pairs of data points:

d(x,y) =
q

(x1 � y1)2 +(x2 � y2)2 + · · ·+(xn � yn)2,

where x and y indicate a vector Ti for each patient.

C. Clustering method

The third step is to define the clustering method. The single-linkage method was chosen

for clustering method that showed good performances in various topological data anal-

ysis studies.39,69 A detailed description of these particular clustering procedures can be

found in literatures.69

D. Visualization

The last step is to visualize the resulting topology using a graph as shown in Figure 8C.

For visualization, the two resolution parameters were required to zoom in and out the

hiddens pattersn in the dataset. In the visualization, each node in the graph is a subset of

patients and edges connect similar nodes. A color of each node encodes the value of the

filter function averaged across all the data points to the node, with blue representing a

low value and red denoting a large value.
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11. Statistical Analysis

Delirium and non-delirium group differences in various graph metrics, structural path

length density, and functional connectivity density were tested by an independent sample

T -test with a significance level of corrected P < 0.05. In general, demographic variables

such as age and sex were known to be related functional and structural connectivity.

However, in a case of group comparisons for graph metrics, covariates were not consid-

ered if two independent groups have no differences in demographic characteristics.70–72

A. Multiple Comparison Correction

In general, the modularity optimization of the whole-brain network produces five to

seven modules. This implies that a total of ten to twenty-one univariate comparisons of

the intra- and inter-module connectivity density would be conducted to find group dif-

ferences in functional connectivity density and structural path length density. Therefore,

a controlling the family-wise error rate is necessary. The network-based statistic (NBS)

is a method to control the family-wise error rate when mass-univariate testing is per-

formed at every connection comprising the graph.73 In the current study, the NBS was

applied and 10,000 permutation tests were performed to estimate the null distribution of

maximal component size.

B. Correlation with Clinical Variables

The graph metrics and connectivity densities, which show the significant group differ-

ences, were further investigated. A Spearman’s correlation analysis was performed to

unfold the relationships between the network variables and clinical variables. The statis-

tical significance level was set to a P value less than 0.05.
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C. Mixed Design Analysis of Variance

Mixed design analysis of variance (ANOVA) was used to examine brain network alter-

ations. Mixed design ANOVA tested the differences in between-subjects effect (delirium

and non-delirium), within-subject effect (preoperative and postoperative), and interac-

tion effects between them. In mixed ANOVA, one repeated-measures independent vari-

able and one between-group independent variable were included. In this study, mixed

design ANOVA was used to investigate changes in mean values of the functional net-

work characteristics over two-time points (preoperative and postoperative) for delirium

and non-delirium groups. A within-subject effect (pre- and postoperative), a between-

subjects effect (delirium and non-delirium), and a group by time interactions were tested

with a significance level of P < 0.05.
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III. RESULTS

Various graph metrics and connectivity densities, which introduced in the materials and

methods, are summarized in this section. First, group differences in demographic and

clinical variables and medical history will be presented. Second, structural and functional

neural substrates of preoperative delirium will be shown through a between-group com-

parison. This includes the statistical comparison of graph metrics between preoperative

delirium and non-delirium patients, qualitative descriptions of the structural modular or-

ganization, and delirium prediction model obtained from a logistic regression approach.

Third, results from a study of brain network alteration during an episode of delirium

will be described. The mixed design analysis of variance was chosen for comparing the

paired sample of pre- and postoperative neuroimaging dataset. Lastly, a topology-based

delirium subgroups identification will be presented.

1. Demographic and Clinical Variables

Table 3 showed the summary of demographic variable and clinical scales. Age, sex, ed-

ucational year, and IQCODE showed no significant differences between groups. How-

ever, the significantly decreased MMSE was found in preoperative delirium compared to

preoperative non-delirium (P = 0.048). Medical history such as dementia, brain injury,

hypertension, and diabetes showed no significant group differences (Table 4). However,

the number of major mental disorder history found to be twice in delirium (n = 8 and

32 %) compared to non-delirium (n = 4 and 12 %). In the comparison of psycholog-

ical scales, Hamilton anxiety scale was marginally increased in preoperative delirium

(P = 0.065). Whereas, Hamilton Rating Scale for Depression was showed no differences
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Table 4. Summary of preoperative patients characteristics and operation-related infor-
mation

Medical history Delirium Non-delirium T or c2 P value
(n = 25) (n = 33)

Medical history, No. (%)
Major mental disorder history 8 (32.0) 4 (12.1) 3.43 0.064
Dementia history 7 (28.0) 6 (18.2) 0.79 0.375
Delirium history 4 (16.0) 2 (6.1) 1.32 0.251
Brain injury history 3 (12.0) 6 (18.2) 0.42 0.520
Hypertension 19 (76.0) 22 (66.7) 0.60 0.439
Diabetes 8 (32.0) 10 (30.3) 0.02 0.890

Preoperative psychological scales, mean (SD)
Hamilton Anxiety Scale 10.1 (8.1) 6.1 (7.5) 1.89 0.065
Hamilton Rating Scale for Depression 6.0 (5.3) 4.0 (4.7) 1.49 0.141

Operation-related data
Regional anesthesia, No. (%) 13 (52.0) 14 (42.4) 0.52 0.469
Anesthesia duration, mean (SD), min. 132.0 (40.4) 114.4 (26.5) 2.00 0.050

between delirium and non-delirium (Table 4). Finally, in the comparison of operation-

related variables, the significant increase of anesthesia duration was found in delirium

(P = 0.05).
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2. Neural Substrates of Preoperative Delirium

The independent samples T -test compares the mean values of graph metrics between

delirium and non-delirium groups. The significant differences between two groups will

be presented in the following subsections.

A. Structural Network Properties

The mean values of various graph metrics between the preoperative delirium and non-

delirium comparison patients were compared. Table 5 shows the statistical comparisons

of all graph metrics for two different weighting methods. Among the various network

properties, the characteristic path length was significantly increased in the preoperative

delirium compared to non-delirium comparison patients (P < 0.05).

B. Functional Network Properties

For functional networks, we measured graph metrics for various thresholding value and

computed the area under a curve for each graph metric. The statistical comparisons were

conducted for the area under a curve of each graph metric. As summarized in Table 6,

no significant differences between two groups in graph metrics were found.

C. Structural Modular Organizations

The modularity is a measure of how the community structure of a graph is different from

the random graph. Also, a quantitative value representing the modularity (Q) would not

provide the geometric topology of the brain connectivity. Therefore, the investigation

of brain network patterns was performed to understand the topological alteration of the

brain network in preoperative delirium. The best modular organizations of the struc-
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Table 5. Group averaged values of structural network properties and statistical compar-
isons between preoperative delirium and non-delirium

Graph measures Delirium Non-delirium T statistic P value
(n = 25) (n = 33)

NOS-ROI weighted
Global Efficiency 7.10 (1.07) 7.48 (0.65) -1.69 0.097
Local Efficiency 11.65 (1.47) 11.93 (0.91) -0.90 0.373
Characteristic Path Length 0.21 (0.07) 0.18 (0.02) 2.01 0.049
Clustering Coefficient 2.01 (0.22) 2.04 (0.15) -0.64 0.522
l 1.49 (0.31) 1.37 (0.11) 2.01 0.049
g 4.51 (0.31) 4.45 (0.25) 0.84 0.406
Modularity, Q 0.58 (0.02) 0.58 (0.02) -0.11 0.913

FA weighted
Global Efficiency 0.25 (0.04) 0.27 (0.02) -1.436 0.157
Local Efficiency 0.35 (0.05) 0.37 (0.03) -1.576 0.121
Characteristic Path Length 4.61 (0.60) 4.33 (0.37) 2.157 0.035
Clustering Coefficient 0.12 (0.01) 0.12 (0.01) -0.947 0.348
l 1.16 (0.03) 1.16 (0.03) 0.368 0.714
g 3.44 (0.29) 3.35 (0.18) 1.33 0.189
Modularity, Q 0.43 (0.03) 0.43 (0.03) 0.11 0.913

The numbers represent mean (standard deviation) value.
Abbreviations: FA, fractional anistropy; NOS-ROI, number of streamlines corrected for volume
of each region of interest, g , normalized clustering coefficient; l , normalized characteristic path
length.

tural network were obtained by maximizing the average normalized mutual information

(NMI) value over all optimization results. The best partition is the representative struc-

tural network modular organization for each group and each weighting method. The

structural modular architectures obtained from both weighting methods showed almost

symmetrical clustering except for the left visual and temporal regions. The detailed de-

scriptions of structural modular organizations are described in the below.
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Table 6. Group averaged values of functional network properties and statistical compar-
isons between preoperative delirium and non-delirium

Graph measures Delirium Non-delirium T statistic P value
(n = 25) (n = 33)

Global Efficiency 0.24 (0.01) 0.24 (0.01) 0.27 0.792
Local Efficiency 0.31 (0.01) 0.32 (0.01) -0.21 0.833
Characteristic Path Length 0.85 (0.07) 0.85 (0.04) 0.31 0.755
Clustering Coefficient 0.24 (0.02) 0.24 (0.02) -0.38 0.708
l 0.47 (0.04) 0.47 (0.02) 0.32 0.748
g 1.04 (0.09) 1.05 (0.08) -0.44 0.664
Modularity, Q 0.35 (0.03) 0.35 (0.04) -0.37 0.710

The numbers represent mean (standard deviation) value.
Abbreviations: g , normalized clustering coefficient; l , normalized characteristic path length.

Modular organizations - NOS-ROI weighted: As shown in Figure 9A-B, seven dis-

tinct structural communities were found. The overall patterns of the structural network

modular organizations showed almost indistinguishable between preoperative delirium

and non-delirium (NMI = 0.78).

Among seven distinct partitions, the modular organization of the right frontal-parietal

regions were the exactly the same between two groups (J = 1 and P < 0.05). Also, the

similarity of a module between two groups were significant (P < 0.05) in the left frontal-

parietal regions (J = 0.81), medial frontal-parietal regions (J = 0.72), orbitofrontal cor-

tex and basal ganglia regions (J = 0.76). However, there showed significant differences

in the temporal and visual regions. In the preoperative delirium, the left and right visual

cortex regions were divided into two separate modules. Whereas, in the non-delirium

comparison patients, visual-temporal regions were divided into three parts: The left tem-

poral lobe and left visual cortex, right temporal lobe and right lateral visual cortex, and
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Modular Organization - FA weighted

(C) Preoperative Delirium (D) Comparison Group

Modular Organization - NOS-ROI weighted

(A) Preoperative Delirium (B) Comparison Group

Figure 9. Visualization of structural network modular organizations for each weighting
method. See Tables A1–A2 for a detailed description of brain areas for each module.

the medial part of the visual cortex. The Jaccard indices for all modules in the preopera-

tive delirium and non-delirium comparison patients were summarized in Table 7.

Modular organizations - FA weighted: Figure 9C-D showed the FA weighted struc-

tural network modular organizations. The overall patterns of the structural network mod-

ular organizations were almost similar across two groups (NMI = 0.75). Unlike the

modular architectures obtained from the NOS-ROI weighted structural network, clear
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Table 7. Similarity of the structural modular organizations between the preoperative
delirium and non-delirium comparison groups

Module in preoperative delirium Modules in non-delirium comparison patients

NOS-ROI weighted
Lt. Frontal-Parietal (FP) Lt. FP (0.81*), Lt. Temporal (0.08)
Rt. Frontal-Parietal Rt. FP (1.0*)
Med. Frontal-Parietal Med. FP (0.72*), Med. Visual (0.15), Lt. FP (0.03)
OFC plus BG OFC plus BG (0.76*)
Lt. Visual-Temporal (VT) Lt. Temporal (0.47*), Med. Visual (0.16)
Rt. Visual-Temporal Rt. Temporal (0.62*), Med. Visual (0.25)
Lt. Limbic OFC plus BG (0.2), Lt. Temporal (0.19)

FA weighted
Lt. Frontal Lobe (FL) Lt. FL (0.82*), Lt. VT (0.05), Lt. OFC plus BG (0.04)
Rt. Frontal Lobe + BG (FL+BG) Rt. OFC plus BG (0.5*), Rt. FL (0.4*)
Lt. OFC plus BG Lt. OFC plus BG (0.9*)
Lt. Visual Lt. visuotemporal (0.45*)
Lt. Temporal Lt. visuotemporal (0.45*)
Rt. visuotemporal Rt. VT (0.76*), Rt. OFC plus BG (0.09), Rt. FL (0.06)

The number in the parenthesis indicate the Jaccard similarity statistic.
Abbreviations: BG, basal-ganglia; Lt, left; Med, medial; OFC, Orbitofrontal cortex; Rt, right.
⇤Values represent the significantly similar modular structures between the preoperative Delirium
and non-delirium comparison patients (P < 0.05).

hemispheric separations of the modules were observed.

Among them, the modular organizations of the left frontal lobe (J = 0.82), left or-

bitofrontal cortex plus basal ganglia (J = 0.9), and right visual-temporal modules (J =

0.76) were almost the same between two groups (P < 0.05). However, there showed

significantly different patterns of modules in the left temporal and visual regions. In the

preoperative delirium, the left visual and temporal areas were divided into two separate

modules. Whereas, in non-delirium comparison patients, the left visual-temporal regions

were clustered into a single module. Also, the brain regions covering the right frontal
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Figure 10. Connectivity density analysis for the best partitions obtained from (A) NOS-
ROI weighted and (B) FA weighted structural network. The dotted red curves repre-
sent increased structural path length density (SPLD) and the solid red curves represent
functional connectivity density (FCD) in preoperative delirium compared to the non-
delirium comparison patients.Abbreviations: BG, basal ganglia; FL, frontal lobe; FP,
frontal-parietal; L+BG, limbic areas plus basal ganglia; OFC, orbitofrontal cortex; TL,
temporal lobe; VT, visual-temporal; VC, visual cortex

lobe, orbital cortex, and the basal ganglia regions showed different patterns of the mod-

ular organizations. In preoperative delirium, all those brain regions were clustered into

a single module. Whereas, in non-delirium comparison patients, the right orbitofrontal

cortex plus basal ganglia regions were clustered into a single module, and the rest of

the brain regions in the right frontal lobe formed a separate module. The Jaccard indices

for all modules in the preoperative delirium and non-delirium comparison patients were

summarized in Table 7.

D. Connectivity Density Analysis

The statistical comparisons of the connectivity densities for the best partitions were con-

ducted for NOS-ROI and FA weighted structural networks, respectively. The statistical

comparisons of the connectivity densities for structural and functional networks were
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summarized in Tables 8–9. Where, structural path length density, which was calculated

from the distance matrix, was used for the alternative measures of structural connectivity

density instead of computing averaging connection weights itself. During the statistical

comparisons, functional connectivity density was computed for the corresponding mod-

ules obtained from the NOS-ROI and FA weighted structural network, respectively.

Connectivity Density in NOS-ROI weighted structural module: Figure 10A shows

the significant differences in the connectivity density between preoperative delirium

and non-delirium groups. Structural path length density connecting the medial frontal-

parietal regions to the right visual-temporal module and the left frontal-parietal modules

was significantly increased in preoperative delirium compared to non-delirium compari-

son patients (corrected P < 0.05). Also, functional connectivity density between the left

visual-temporal and orbitofrontal cortex plus basal ganglia modules was significantly

increased in the preoperative delirium (corrected P < 0.05). The rest of the statistical

comparisons are summarized in Table 8.

Connectivity Density in FA weighted structural module: Figure 10B shows the sig-

nificant differences in the connectivity density between preoperative delirium and non-

delirium groups. Structural path length density connecting the left frontal lobe to the

right frontal lobe plus basal ganglia was significantly increased in preoperative delirium

compared to non-delirium (corrected P < 0.05). In the analysis of functional connec-

tivity density, the right frontal lobe plus basal ganglia and the left visual cortex have

significantly increased in the preoperative delirium (corrected P < 0.05). The rest of the

statistical comparisons are summarized in Table 9.
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Table 8. Structural path length density (SPLD) and functional connectivity density for
NOS-ROI weighted structural modular organizations

Module SPLD (NOS-ROI weighted) Functional connectivity density
Delirium Non-delirium Delirium Non-delirium
(n = 25) (n = 33) (n = 25) (n = 33)

Intra-Module Connectivity Density
Left Frontal-Parietal (Lt. FP) 0.105 (0.036) 0.102 (0.027) 0.22 (0.10) 0.24 (0.12)
Right FP (Rt. FP) 0.237 (0.445) 0.137 (0.073) 0.22 (0.11) 0.24 (0.11)
Medial FP (Med. FP) 0.100 (0.017) 0.093 (0.013) 0.15 (0.10) 0.17 (0.08)
OFC and BG 0.102 (0.074) 0.107 (0.113) 0.30 (0.11) 0.30 (0.12)
Left Visuotemporal (Lt. VT) 0.099 (0.032) 0.094 (0.027) 0.25 (0.12) 0.27 (0.12)
Right Visuotemporal (Rt. VT) 0.123 (0.077) 0.098 (0.029) 0.22 (0.12) 0.20 (0.10)
Left Limbic+BG (Lt. L+BG) 0.076 (0.022) 0.066 (0.016) 0.30 (0.12) 0.32 (0.12)

inter-module Connectivity Density
Lt. FP $ Rt. FP 0.328 (0.268) 0.258 (0.040) -0.05 (0.11) -0.09 (0.15)
Lt. FP $ Med. FP 0.175 (0.031) 0.169 (0.028) -0.02 (0.07) -0.03 (0.07)
Lt. FP $ OFC plus BG 0.200 (0.039) 0.198 (0.069) 0.00 (0.09) -0.02 (0.09)
Lt. FP $ Lt. VT 0.165 (0.036) 0.159 (0.034) -0.02 (0.09) 0.00 (0.13)
Lt. FP $ Rt. VT 0.268 (0.054) 0.242 (0.039) -0.10 (0.07) -0.08 (0.10)
Lt. FP $ Lt. L+BG 0.157 (0.027) 0.149 (0.024) 0.06 (0.09) 0.08 (0.12)
Rt. FP $ Med. FP 0.251 (0.266) 0.181 (0.039) -0.05 (0.08) -0.04 (0.06)
Rt. FP $ OFC plus BG 0.261 (0.286) 0.194 (0.087) 0.02 (0.09) 0.04 (0.09)
Rt. FP $ Lt. VT 0.330 (0.266) 0.254 (0.048) -0.11 (0.09) -0.12 (0.11)
Rt. FP $ Rt. VT 0.248 (0.284) 0.170 (0.055) 0.01 (0.06) 0.02 (0.09)
Rt. FP $ Lt. L+BG 0.324 (0.276) 0.245 (0.046) -0.05 (0.08) -0.06 (0.10)
Med. FP $ OFC plus BG 0.169 (0.035) 0.166 (0.064) 0.03 (0.09) 0.02 (0.09)
Med. FP $ Lt. VT 0.213 (0.030) 0.203 (0.028) -0.01 (0.18) 0.01 (0.18)
Med. FP $ Rt. VTa 0.217 (0.049) 0.190 (0.022) -0.06 (0.15) -0.02 (0.12)
Med. FP $ Lt. L+BGa 0.204 (0.029) 0.186 (0.023) -0.13 (0.17) -0.14 (0.17)
OFC plus BG $ Lt. VTb 0.237 (0.042) 0.223 (0.065) -0.10 (0.13) -0.17 (0.11)
OFC plus BG $ Rt. VT 0.207 (0.088) 0.183 (0.069) 0.01 (0.12) -0.02 (0.10)
OFC plus BG $ Lt. L+BG 0.163 (0.053) 0.162 (0.078) 0.21 (0.12) 0.21 (0.10)
Lt. VT $ Rt. VT 0.225 (0.053) 0.198 (0.042) 0.04 (0.13) 0.03 (0.10)
Lt. VT $ Lt. L+BG 0.160 (0.035) 0.145 (0.031) 0.12 (0.14) 0.10 (0.13)
Rt. VT $ Lt. L+BG 0.248 (0.064) 0.215 (0.035) 0.04 (0.16) 0.01 (0.09)

The numbers represent mean (standard deviation) value.
Abbreviations: BG, basal ganglia; FP, frontal-parietal; Lt, left; L+BG, limbic areas plus basal
ganglia; Med, medial; OFC, orbitofrontal cortex; Rt, right.
aSignificantly different structural path length density (NOS-ROI weighted) between groups
(corrected P < 0.05).
bSignificantly different functional connectivity density between groups (corrected P < 0.05).
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Table 9. Structural path length density (SPLD) and functional connectivity density for
FA weighted structural modular organizations

Module SPLD (FA weighted) Functional connectivity density
Delirium Non-delirium Delirium Non-delirium
(n = 25) (n = 33) (n = 25) (n = 33)

Intra-Module Connectivity Density
Left Frontal lobe (Lt. FL) 3.28 (0.36) 3.11 (0.25) 0.20 (0.11) 0.20 (0.10)
Right FL and BG (Rt. FL+BG) 3.31 (0.50) 3.11 (0.44) 0.16 (0.08) 0.19 (0.09)
Left OFC and BG (Lt. OFC plus

BG)
2.29 (0.30) 2.35 (0.48) 0.31 (0.12) 0.29 (0.11)

Left Visual Cortexl (Lt. VC) 2.46 (0.45) 2.33 (0.33) 0.21 (0.09) 0.23 (0.13)
Left Temporal Lobe (Lt. TL) 3.01 (0.44) 2.89 (0.40) 0.24 (0.17) 0.21 (0.11)
Right visuotemporal (Rt. VT) 3.53 (0.53) 3.36 (0.34) 0.12 (0.06) 0.11 (0.08)

inter-module Connectivity Density
Lt. FL $ Rt. FL+BGa 4.87 (0.70) 4.46 (0.42) -0.02 (0.09) -0.03 (0.11)
Lt. FL $ Lt. OFC plus BG 3.79 (0.41) 3.59 (0.42) 0.09 (0.12) 0.08 (0.10)
Lt. FL $ Lt. VC 4.09 (0.64) 3.79 (0.45) -0.01 (0.09) 0.00 (0.13)
Lt. FL $ Lt. TL 4.76 (0.56) 4.42 (0.48) 0.01 (0.15) 0.01 (0.12)
Lt. FL $ Rt. VT 5.66 (0.87) 5.20 (0.57) -0.07 (0.07) -0.06 (0.09)
Rt. FL+BG $ Lt. OFC plus BG 4.56 (0.63) 4.32 (0.56) 0.16 (0.08) 0.17 (0.09)
Rt. FL+BG $ Lt. VCb 5.00 (0.93) 4.75 (0.56) -0.06 (0.07) -0.11 (0.07)
Rt. FL+BG $ Lt. TL 6.05 (0.88) 5.65 (0.59) -0.04 (0.09) -0.06 (0.07)
Rt. FL+BG $ Rt. VT 4.61 (0.67) 4.39 (0.45) 0.00 (0.06) 0.00 (0.05)
Lt. OFC plus BG $ Lt. VC 4.68 (0.83) 4.45 (0.66) -0.01 (0.09) -0.05 (0.11)
Lt. OFC plus BG $ Lt. TL 4.35 (0.69) 4.20 (0.57) 0.04 (0.11) 0.08 (0.13)
Lt. OFC plus BG $ Rt. VT 5.66 (0.81) 5.43 (0.66) -0.09 (0.10) -0.12 (0.10)
Lt. VC $ Lt. TL 4.09 (0.70) 3.86 (0.46) -0.05 (0.09) -0.03 (0.10)
Lt. VC $ Rt. VT 4.49 (0.95) 4.22 (0.48) -0.04 (0.07) -0.02 (0.10)
Lt. TL $ Rt. VT 5.86 (0.94) 5.52 (0.58) -0.01 (0.10) -0.02 (0.07)

The numbers represent mean (standard deviation) value.
Abbreviations: BG, basal ganglia; FL, frontal lobe; Lt, left; OFC, orbitofrontal cortex; Rt, right.
aSignificantly different structural path length density (FA weighted) between groups (corrected P < 0.05).
bSignificantly different functional connectivity density between groups (corrected P < 0.05).
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Table 10. Correlations between the clinical variables and the characteristic path length
of the preoperative structural network

Variable HAS HRSD IQCODE MMSE

(n = 56) (n = 58) (n = 55) (n = 58)

NOS-ROI weighted structural network
Characteristic Path Length -0.06 (0.671) -0.13 (0.345) 0.23 (0.090) -0.01 (0.949)

SPLD (Med. FP $ Rt. VT) -0.07 (0.590) -0.22 (0.101) 0.16 (0.235) 0.08 (0.546)

SPLD (Med. FP $ Lt. L+BG) -0.11 (0.439) -0.13 (0.330) 0.50 (<0.001) -0.15 (0.251)

FCD (OFC plus BG $ Lt. VT) 0.31 (0.022) 0.10 (0.478) 0.10 (0.464) -0.15 (0.271)

FA weighted structural network
Characteristic Path Length -0.06 (0.654) -0.08 (0.572) 0.42 (0.002) -0.28 (0.035)

SPLD (Lt. FL $ Rt. FL+BG) -0.15 (0.268) -0.20 (0.140) 0.36 (0.007) -0.15 (0.275)

FCD (Rt. FL+BG $ Lt. VC) 0.08 (0.551) -0.06 (0.678) 0.18 (0.193) -0.10 (0.460)

The numbers represent Spearman’s correlation coefficients (P value).
Abbreviations: FCD, functional connectivity density; FL, frontal lobe; FP, frontal-parietal; HAS, Hamilton
anxiety scale; HRSD, Hamilton rating scale for depression; IQCODE, informant questionnaire on cognitive
decline in the elderly; L, limbic areas; Lt, left; Med, medial; MMSE, mimi mental state examination; OFC,
orbitofrontal cortex; Rt, right; SPLD, structural path length density; VC, visual cortex; VT, visuotemporal
areas.

E. Relationships with Clinical Variables

Among the graph metrics, the path length of both NOS-ROI and FA weighted structural

networks showed the significant differences between preoperative delirium and compar-

ison patients (Table 10). Thus, the correlation analysis between the clinical variables

and path length was conducted for each group. In the FA weighted structural network,

the IQCODE was significantly correlated with the characteristic path length within the

preoperative delirium (r = 0.43 and P = 0.038). There were no significant correlations

observed between the graph metrics and a duration of delirium as well as K-DRS score.
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Table 11. Preoperative risk factors for postoperative delirium using logistic regression

Variable Name Abbreviation Odds Ratio (95 % CI) P-value

Demographic and Clinical Variables
Age 1.07 (0.98, 1.17) 0.097

Sex 0.36 (0.09, 1.39) 0.136

Mini mental state examination MMSE 0.92 (0.84, 1.00) 0.052

Major mental disorder history MMDH 3.41 (0.89, 13.05) 0.073

Hamilton anxiety scale HAS 1.07 (0.99, 1.15) 0.071

Connectivity Density (in NOS-ROI weighted Structural Module)
Med. Frontal-parietal $ Rt. Visuotemporal SPLD1 4.2E+12 (651.7, 2.6E+22) 0.012

Med. Frontal-parietal $ Lt. L+BG SPLD2 1.5E+12 (282, 8.1E+21) 0.014

OFC plus BG $ Lt. Visuotemporal FCD1 167.9 (1, 2.7E+04) 0.048

Connectivity Density (in FA weighted Structural Module)
Lt. Frontal Lobe $ Rt. FL+BG SPLD3 3.7 (1.3, 10.3) 0.013

Rt. FL+BG $ Lt. Visual Cortex FCD2 1.4E+05 (12.1, 1.6E+09) 0.013

Abbreviations: FCD, functional connectivity density; FL+BG, frontal lobe plus basal ganglia; Lt, left;
L+BG, limbic areas plus basal ganglia; Med, medial; OFC, orbitofrontal cortex; Rt, right; SPLD, structural
path length density.

3. Prediction Model for Preoperative Delirium

Modeling the preoperative delirium was performed using the graph metrics that showed

significant group differences in connectivity density (Tables 8-9). A total of three (two)

connectivity density values from FA (NOS-ROI) weighted structural modular partitions

were considered in the bivariate logistic regression. For the comparison purpose, delir-

ium prediction models using clinical and demographic variables were considered. For the

multivariate logistic regression analysis, various combinations of variables were consid-

ered including one variable from structural path length density, the other from functional

connectivity density, and another from their interaction term.
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A. Bivariate Logistic Regression

Table 11 shows the summary of bivariate logistic regression analysis to see delirium pre-

diction power of each variable. Among the demographic and clinical variables, MMSE

score was played a crucial role in predicting postoperative delirium (P = 0.052). Also,

age, Hamilton anxiety scale, and history of major mental disorder were marginally asso-

ciated with postoperative delirium (P < 0.1).

In the neuroimaging-based delirium prediction analysis, postoperative delirium was found

to be significantly associated with altered structural and functional connectivity density.

For NOS-ROI weighted modular organization, the increased inter-module structural path

length densities connecting the medial frontal-parietal to the right visuotemporal and left

limbic areas plus basal ganglia regions were found to be associated with postoperative

delirium (P < 0.05). Also, the increased functional connectivity density between the

orbitofrontal cortex plus basal ganglia and left visuotemporal region was found to be

associated with postoperative delirium (P = 0.048).

For FA weighted modular organization, the increased inter-module structural path length

density connecting the frontal region to right frontal lobe plus basal ganglia was found

to be associated with postoperative delirium (P = 0.013). Also, the increased functional

connectivity density between the right frontal lobe plus basal ganglia and left visual

cortex was found to be a neural risk factor for postoperative delirium (P = 0.013).

B. Model Selection

Based on the bivariate logistic regression, we created a prediction model using preop-

erative (1) demographic and clinical variables and (2) neuroimaging data. Each pre-
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Table 12. Delirium prediction models using multivariate logistic regression

Prediction model Sensitivity Specificity Accuracy ROC

(%) (%) (%) (%)

Model Using Demographic and Clinical Variables
MMSE + MMDH 56.0 78.8 69.0 72.2

MMSE + MMDH + HAM 52.2 81.8 69.6 72.4

MMSE + MMDH + HAM + Age 47.8 75.8 64.3 73.6

Model Using Preoperative Neuroimaging Data
FCD1 + SPLD1 + FCD2 + SPLD3 64.0 84.8 75.9 83.3

FCD1 + SPLD2 + FCD2 + SPLD3 68.0 84.8 77.6 81.9

FCD1⇥SPLD1 + FCD2⇥SPLD3 40.0 87.9 67.2 64.4

FCD1⇥SPLD2 + FCD2⇥SPLD3 40.0 87.9 67.2 63.8

FCD1 + FCD1⇥SPLD1 + FCD2 + FCD2⇥SPLD3 72.0 84.8 79.3 83.5

FCD1 + FCD1⇥SPLD2 + FCD2 + FCD2⇥SPLD3⇤ 84.0 84.8 84.5 85.7

SPLD1 + FCD1⇥SPLD1 + SPLD3 + FCD2⇥SPLD3 52.0 84.8 70.7 82.7

SPLD2 + FCD1⇥SPLD2 + SPLD3 + FCD2⇥SPLD3 68.0 84.8 77.6 81.2

Full name of FCDs and SPLDs are listed in Table 11.
Abbreviations: HAS, Hamilton anxiety scale; MMDH, major mental disorder history; MMSE, mini mental
state examination; ROC, receiver operating characteristic.
⇤The best prediction model for postoperative delirium with the highest average of the classification
accuracy and area under ROC curve.

diction model was validated regarding sensitivity, specificity, accuracy, and area under

ROC curve (Table 11). In neuroimaging-based delirium prediction model, four types of

variable combinations were considered as following. First, a total of four variables was

considered in the model: One functional connectivity density (FCD) and one structural

path length density (SPLD) from NOS-ROI weighted module, and one FCD and one

SPLD from FA weighted module. Second, two interaction variables were included in

the model: one interaction variable between FCD and SPLD from NOS-ROI weighted

module, and another interaction variable of FCD and SPLD from FA weighted mod-

ules. Third, two FCDs and two interactions were modeled: One inter-module FCD from
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NOS-ROI weighted module, and another inter-module FCD from FA weighted module,

and one interaction between FCD and SPLD from NOS-ROI weighted module, and an-

other interaction between FCD and SPLD from FA weighted module. Last, two SPLDs

and two interactions were modeled: One inter-module SPLD from NOS-ROI weighted

module, and another inter-module SPLD from FA weighted module, and one interaction

between FCD and SPLD from NOS-ROI weighted module, and another interaction be-

tween FCD and SPLD from FA weighted module. A total of eight models was tested to

find the most significant delirium prediction model (Table 12).

The best prediction model for postoperative delirium was selected with the highest av-

erage of the overall accuracy and area under ROC curve. The combination of functional

connectivity density and interaction of functional connectivity and structural path length

density from NOS-ROI and FA weighted modules showed the best performance delirium

prediction. Structural path length density between the left frontal lobe and left temporal

lobe, and functional connectivity density between right frontal lobe plus basal ganglia

and left visual cortex were the most important predictors of delirium. The combination

of these structural and functional factors allows us to predict delirium with a sensitivity

of 84.0 % and a specificity of 84.8 %. The area under a ROC curve was 85.7 %. The

neuroimaging-based delirium prediction model was 28 %p higher sensitivity and 3 %p

higher specificity compared to any prediction models that used demographic and clinical

variables (Table 12).
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4. Brain Network and Motor Subtypes of Delirium

Within delirium patients, statistical comparisons of brain network properties among

three motor subtypes of delirium using one-way ANOVA.

Structural network properties were not significantly different from motor subtypes of

delirium (Table 13). However, in a functional network, several graph metric showed

a significant difference among motor subtypes of delirium. Figure 11 shows post-hoc

analysis of the functional graph metric. Global efficiency was significantly increased in

mixed type compared to hypoactive type (P = 0.037). Also, characteristic path length

and modularity of a functional network were significantly decreased in mixed type com-

pared to hypoactive type (P < 0.05). Global efficiency, path length, and modularity in a

functional network of hyperactive type delirium were in the middle of a hypoactive and

mixed type of delirium.

 Sunghyon Kyeong (Yonsei University),    Topology based Delirium subtypes clustering and neural substrates of preoperative Delirium
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Figure 11. Comparisons of functional network properties among three motor subtypes
of delirium. The mean value and corresponding standard error were plotted on a graph.
Bonferroni corrected P values were presented in the graph.
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Table 13. Differences of preoperative structural and functional network properties as a
function of motor subtypes

Hypoactive Hyperactive Mixed F2,22 P value

(n = 9) (n = 3) (n = 13)

Structural Network (NOS-ROI weighted)
Global Efficiency 7.174 (1.523) 7.807 (0.832) 6.879 (0.662) 0.95 0.401

Local Efficiency 11.794 (2.068) 12.510 (1.080) 11.351 (0.980) 0.82 0.455

Path Length 0.233 (0.120) 0.170 (0.017) 0.200 (0.025) 0.98 0.391

Clustering Coefficient 2.000 (0.335) 2.137 (0.076) 1.994 (0.141) 0.50 0.613

l 1.629 (0.476) 1.350 (0.010) 1.429 (0.120) 1.56 0.232

g 4.503 (0.294) 4.410 (0.406) 4.542 (0.323) 0.21 0.811

Modularity, Q 0.573 (0.032) 0.577 (0.012) 0.581 (0.020) 0.25 0.782

Structural Network (FA weighted)
Global Efficiency 0.240 (0.046) 0.267 (0.064) 0.259 (0.032) 0.73 0.495

Local Efficiency 0.342 (0.055) 0.370 (0.069) 0.355 (0.033) 0.46 0.635

Path Length 4.786 (0.592) 4.427 (0.908) 4.530 (0.564) 0.61 0.551

Clustering Coefficient 0.116 (0.016) 0.123 (0.023) 0.115 (0.011) 0.39 0.681

l 1.173 (0.048) 1.171 (0.015) 1.153 (0.024) 1.08 0.358

g 3.461 (0.327) 3.275 (0.307) 3.455 (0.272) 0.51 0.610

Modularity, Q 0.426 (0.030) 0.420 (0.030) 0.430 (0.032) 0.14 0.867

Functional Network
Global Efficiency⇤ 0.236 (0.011) 0.242 (0.006) 0.245 (0.004) 3.74 0.040

Local Efficiency 0.320 (0.013) 0.316 (0.009) 0.311 (0.008) 1.96 0.165

Path Length⇤ 0.895 (0.095) 0.837 (0.046) 0.821 (0.035) 3.60 0.044

Clustering Coefficient 0.252 (0.027) 0.240 (0.019) 0.230 (0.015) 3.17 0.062

l 0.497 (0.051) 0.470 (0.026) 0.460 (0.020) 2.96 0.073

g 1.094 (0.109) 1.047 (0.076) 1.005 (0.066) 2.92 0.075

Modularity, Q⇤ 0.374 (0.030) 0.340 (0.026) 0.336 (0.030) 4.65 0.021

The numbers represent mean (standard deviation) value.
In ANOVA, network properties were included as dependent variables and a categorical variable for motor
subtypes (hypoactive, hyper, and mixed type) was considered as a independent variable
Abbreviations: l , normalized path length; g , normalized clustering coefficient.
⇤Values show the significant differences among three motor subtypes of delirium (P < 0.05).
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5. Delirium with Hallucination

For the preoperative delirium, patients with- and without hallucinations were divided

into two groups to investigate any differences in brain network properties. Among preop-

erative delirium, thirteen patients reported hallucination during an episode of delirium,

i.e., patients who have a non-zero perception and hallucination item score of K-DRS

(item score� 1), and ten patients were categorized into delirium without hallucination.

Table 14 showed the summary of statistical comparison. In NOS-ROI weighted struc-

tural network, global efficiency was significantly increased in delirium with halluci-

nation compared to delirium without hallucination (P = 0.049). Whereas, normalized

clustering coefficient (g) was significantly decreased in delirium with hallucination then

delirium without hallucination (P = 0.002). In FA weighted structural network, global

efficiency, local efficiency, clustering coefficient were significantly increased in delirium

with hallucination compared to delirium without hallucination (P < 0.05). Whereas, path

length and modularity were significantly decreased in delirium with hallucination then

delirium without hallucination (P < 0.05). However, no group differences were found in

the functional network properties.

The connectivity density variables that included in the final delirium prediction model

(Tables 11–12) were compared to identify the neural correlate of hallucination in delir-

ium. The inter-module structural path length density between the left frontal and left

temporal lobe was significantly decreased in patients with hallucination compared to

patients without hallucination (P = 0.004). However, the inter-module functional con-

nectivity density connecting the right frontal plus basal ganglia to right visual cortex was

not significantly different between hallucination groups (P = 0.274).
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Table 14. Statistical comparison of network properties between hallucination and non-
hallucination groups within preoperative delirium

With hallucination Without hallucination T statistic P value

(n = 13) (n = 10)

Structural Network (NOS-ROI weighted)
Global Efficiency⇤ 7.481 (0.995) 6.568 (1.091) 2.09 0.049

Local Efficiency 11.962 (1.485) 11.147 (1.518) 1.29 0.211

Path Length 0.180 (0.024) 0.236 (0.103) -1.90 0.071

Clustering Coefficient 2.053 (0.210) 1.985 (0.257) 0.70 0.492

l 1.367 (0.045) 1.567 (0.352) -2.04 0.054

g† 4.370 (0.297) 4.745 (0.193) -3.46 0.002

Modularity, Q 0.576 (0.019) 0.584 (0.028) -0.80 0.435

Structural Network (FA weighted)
Global Efficiency† 0.275 (0.039) 0.227 (0.029) 3.27 0.004

Local Efficiency† 0.378 (0.042) 0.325 (0.033) 3.24 0.004

Path Length† 4.255 (0.557) 5.010 (0.415) -3.58 0.002

Clustering Coefficient⇤ 0.124 (0.014) 0.108 (0.009) 3.02 0.007

l 1.162 (0.026) 1.161 (0.047) 0.08 0.940

g⇤ 3.311 (0.256) 3.633 (0.254) -3.00 0.007

Modularity, Q⇤ 0.421 (0.029) 0.443 (0.026) -1.91 0.070

Functional Network
Global Efficiency 0.243 (0.007) 0.239 (0.010) 1.18 0.251

Local Efficiency 0.311 (0.009) 0.320 (0.011) -2.03 0.055

Path Length 0.838 (0.065) 0.868 (0.083) -0.97 0.344

Clustering Coefficient 0.233 (0.019) 0.247 (0.025) -1.58 0.128

l 0.469 (0.033) 0.484 (0.045) -0.96 0.349

g 1.015 (0.082) 1.077 (0.098) -1.65 0.114

Modularity, Q 0.345 (0.034) 0.354 (0.035) -0.66 0.520

The numbers represent mean (standard deviation) value.
Abbreviations: l , normalized path length; g , normalized clustering coefficient.
⇤Values show the significant differences between two groups (P < 0.05).
†Values show the significant differences between two groups (P < 0.005).
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Table 15. A repeated-measures analysis of variance to test for group and time effects and
group by time interactions in functional network properties

Graph Metric Group Time Group ⇥ Time
F1,30 P value F1,30 P value F1,30 P value

Global Efficiency 0.00 0.987 0.22 0.643 0.01 0.932
Local Efficiency 0.01 0.929 3.75 0.062 0.21 0.650
Path Length 0.00 0.966 0.63 0.435 0.63 0.434
Clustering Coefficient 0.01 0.925 1.65 0.209 0.03 0.862
l 0.00 0.979 0.61 0.441 0.63 0.434
g 0.00 0.949 2.16 0.152 0.06 0.805
Modularity, Q 0.02 0.898 0.19 0.667 0.45 0.509

Where group variable indicates between-subjects effect (delirium and non-delirium), and time
variable indicates within-subject effect (preoperative and postoperative).

6. Brain Network Alteration during an Episode of Delirium

Results from the mixed design ANOVA will be presented in this section. Various graph

metrics and functional connectivity densities will be tested by mixed design ANOVA.

A. Preserved Graph Measures during an Episode of Delirium

The mixed design ANOVA revealed that hip fracture surgery would not change func-

tional network properties compared to that of preoperative characteristics. Also, func-

tional network properties in delirium were not found to be different from the non-

delirium group. Finally, no significant group by time interactions were found in func-

tional graph metrics. In short, the functional network properties were preserved regard-

less of hip fracture surgery (Table 15).
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Table 16. A repeated-measures analysis of variance to test for group, time, and group by
time interaction effects in functional connectivity density for structural modular organi-
zation

Module Name Group Time Group ⇥ Time

F1,30 P value F1,30 P value F1,30 P value

NOS-ROI Weighted Structural Modules
Orbitofrontal cortex + BG $ Left visuotemporal 0.01 0.916 1.41 0.244 2.74 0.108

FA Weighted Structural Modules
Right frontal lobe + BG $ Left visual cortex 0.61 0.443 0.04 0.845 5.71 0.023

Where group indicator represents between-subjects effect (delirium and non-delirium), and time indicator
represents within-subject effect (preoperative and postoperative).
Abbreviations: BG, basal-ganglia.

B. Altered Functional Connectivity during an Episode of Delirium

In this section, statistical comparisons to investigate whether or not hip fracture surgery

would change functional connectivity density. The intra- and inter-module functional

connectivity densities were entered in the mixed design ANOVA as dependent variables.

For this study, the inter-module functional connectivity densities, which were signifi-

cantly increased in preoperative delirium compared to preoperative non-delirium (Ta-

bles 8–9), were considered.

Functional connectivity density for NOS-ROI weighted structural modular organi-

zations: The inter-module functional connectivity density connecting the orbitofrontal

cortex plus basal ganglia to left visuotemporal area showed no significant group, time,

and group by time interaction effects (Table 16).

Functional connectivity density for FA weighted structural modular organizations:

The inter-module functional connectivity density connecting the right frontal lobe plus
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Figure 12. Significant group by time interactions for functional connectivity density.
Connectivity density was obtained from FA weighted structural modular partitions. Ab-
breviations: Lt, left; Rt, right; FL, frontal lobe; BG, basal ganglia; Pre-Op, preoperative;
Post-Op, postoperative; VC, visual cortex.

basal ganglia to left visual cortex showed no significant group and time effects (Ta-

ble 16). However, a significant group by time interaction effect was observed in the

inter-module functional connectivity density (Table 16). In a post-hoc analysis, the inter-

module functional connectivity density between the right frontal plus basal ganglia and

left visual cortex was found to be significantly suppressed in postoperative delirium com-

pared to that of postoperative non-delirium (Figure 12).
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Table 17. A repeated-measures analysis of variance to test for group and time effects and
group by time interactions in the SN–FN coupling strength

Coupling Method Group Time Group ⇥ Time
F1,30 P value F1,30 P value F1,30 P value

Proposed method using F (FN) and the distance matrix from SN
F (FN)a - D(SN) (NOS-ROI)c,⇤ 0.02 0.898 4.63 0.040 4.83 0.036
F (FN)a - D(SN) (FA)d 2.87 0.101 3.83 0.060 2.12 0.156

Old method using S(FN) and SN
S(FN)b - SN (NOS-ROI weighted) 2.52 0.123 1.52 0.227 0.59 0.449
S(FN)b - SN (FA weighted) 1.04 0.316 0.01 0.929 1.17 0.287

Where group indicator represents between-subjects effect (delirium and non-delirium), and time
indicator represents within-subject effect (preoperative and postoperative).
aF (FN), Full adjacency matrix of functional network.
bS(FN), Sparse adjacency matrix of functional network, which are the counterparts of the corre-
sponding structural network.
cD(SN) (NOS-ROI), a distance matrix obtained from NOS-ROI weighted structural network.
dD(SN) (FA), a distance matrix obtained from FA weighted structural network.
⇤Significant group (delirium and non-delirium) by time (preoperative and postoperative) interac-
tion effects with P value less than 0.05.

C. Altered SN-FN Coupling Strength during an Episode of Delirium

The mixed design ANOVA revealed that SN–FN coupling strength was changed after

hip fracture surgery. Also, significant group (delirium and non-delirium) by time (preop-

erative and postoperative) interactions were found in the new SN–FN coupling methods

as summarized in Table 17.

For the SN–FN coupling strength that showed significant group by time interactions,

post-hoc analysis was performed to investigate interaction effects (Figure 13). Within

delirium patients, there showed a significantly decreased SN-FN coupling strength. Whereas,

the alteration of SN–FN coupling after hip fracture surgery was not observed in non-

delirium patients.
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Figure 13. Significant group by time interactions for the coupling strength. The coupling
strengths between NOS-ROI weighted structural network and functional network were
evaluated by two different methods: (A) new approach and (B) old approach.

D. Multi-sliced Functional Modular Organization

Multi-sliced modularity optimization algorithm found functional modular organizations

using pre- and postoperative functional network data. Figure 14 shows multi-sliced func-

tional network modular organizations. The multi-sliced modularity algorithm optimized

the modularity for the interdependent networks such as pre- and postoperative functional

networks. The overall patterns of the multi-sliced functional modular architectures were

symmetrically organized and almost similar across two groups (NMI=0.95).

Among them, the modular organizations of the frontal lobe, sensorimotor area, and vi-

sual cortex were identical (J = 1). However, the right middle temporal gyrus and right in-

ferior temporal gyrus were clustered into the visual module in delirium group. Whereas,

- 66 -



 Sunghyon Kyeong (Yonsei University),    Topology based Delirium subtypes clustering and neural substrates of preoperative Delirium

Multilayered Functional Modules

37

(B)  Non-Delirium (Pre- and Postoperative)(A)  Delirium (Pre- and Postoperative)

Sensorimotor ModuleFrontal Lobe Temporal Lobe Visual Cortex

Figure 14. Multi-layred modularity optimization for (A) delirium and (B) non-delirium
using pre- and postoperative functional network data. See Table A3 for a detailed de-
scription of brain areas for each module.

those regions were clustered into a single temporal module in non-delirium group. In

short, the right temporal regions were partitioned into two parts in delirium group. The

superior temporal gyrus, superior temporal pole, and middle temporal pole were clus-

tered into the right temporal lobe 1 (superior part). Also, the middle temporal gyrus and

inferior temporal gyrus were clustered into the right temporal lobe 2 (inferior part).

Since the major differences in functional associations in the right temporal lobe and

visual cortex were observed, a post-hoc analysis to revealed the alterations of func-

tional connectivity densities was conducted. As described in Table 18, the mixed de-

sign ANOVA of the intra- and inter-module functional connectivity density found no

significant main effects in group (delirium and non-delirium). However, significant main

effects in time (preoperative and postoperative) were observed in the inter-module func-

tional connectivity density within the left temporal lobe (P = 0.051), and in the inter-

module functional connectivity density between the right temporal lobe 1 and right

temporal lobe 2 (P = 0.038). In the cross groups paired sample T -test analysis, the
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Figure 15. Significant group by time interactions for functional connectivity density
(FCD) of the multi-layred modular organizations. (A) Intra-module FCD within right
temporal lobe 1 (Rt. TL1). (B) inter-module FCD between the left visual cortex (Lt.
VC) and right temporal lobe 1 (Rt. TL1). (C) inter-module FCD between the right vi-
sual cortex (Rt. VC) and right temporal lobe 1 (Rt TL1). Bonferroni corrected statistical
significance values were presented.

marginally increased functional connectivity density within the left temporal lobe was

observed (T = 2.02 and P = 0.053). Also, the inter-module functional connectivity den-

sity between the temporal lobe 1 and 2 was significantly increased after a hip fracture

surgery (T = 2.08 and P = 0.046).

Interestingly, the mixed design ANOVA was revealed the significant group by time in-

teractions in the intra-module functional connectivity density within the right temporal

lobe 1 (P = 0.019). Also, the significant group by time interactions were found in the

inter-module functional connectivity densities connecting the right temporal lobe 1 to the
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Table 18. A repeated-measures analysis of variance to test for group and time effects and
group by time interactions in functional connectivity for multi-sliced functional modules

Graph Metric Group Time Group ⇥ Time

F1,30 P value F1,30 P value F1,30 P value

Intra-Module Functional Connectivity Density
Visual Cortex 0.00 0.961 0.56 0.459 1.789 0.191

Right Temporal Lobe 1 (Rt. TL1)a 3.19 0.084 0.03 0.867 6.109 0.019

Right Temporal Lobe 2 (Rt. TL2) 0.44 0.515 0.06 0.815 0.407 0.528

inter-module Functional Connectivity Density
Visual Cortex $ Rt. TL1a 0.74 0.397 0.14 0.707 6.496 0.016

Visual Cortex $ Rt. TL2b 0.73 0.398 3.97 0.055 0.575 0.454

Rt. TL1 $ Rt. TL2b 0.17 0.685 4.72 0.038 0.858 0.362

Where group indicator represents between-subjects effect (delirium and non-delirium), and time indicator
represents within-subject effect (preoperative and postoperative).
aSignificant group (delirium and non-delirium) by time (preoperative and postoperative) interaction effects
with P value less than 0.05.
bSignificant within-subject effects (preoperative vs postoperative) with P value less than 0.05.

left visual cortex (P = 0.02) and right visual cortex (P = 0.036). The post-hoc analysis

of those interactions was found the significant increase of intra-module functional con-

nectivity within the right temporal lobe 1 in postoperative delirium compared to that of

postoperative non-delirium (P < 0.005). However, the inter-module functional connec-

tivity densities connecting the right temporal lobe 1 to the bilateral visual areas were sig-

nificantly decreased in postoperative delirium compared to postoperative non-delirium

(P < 0.05).
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7. Topology-based Subgroups Identification in Delirium

In this subsection, the results of topological data analysis will be presented. Input vari-

able selection procedures, distribution for the image of filter function, and graphical

illustration of the resulting topology will be described.

A. Variable Selection

The purpose of topological data analysis is to identify hidden structures in the large

size data. Therefore, if the number of rows in a dataset is large enough, the inclusion

of all possible continuous variable would produce an insightful result. However, if the

number of rows in a dataset, the variable selection should be conducted before feed-

ing data into topological data analysis. The variables that associated with delirium were

selected based on the literature review. In general, age is a risk factor for postopera-

tive delirium. However, age was not included in topological data analysis because most

of the patients in our data were elderly enough (⇠ 80). To discriminate patients with

delirium from non-delirium, K-DRS score was included with inserting zero values for

non-delirium patients. Also, the severity of cognitive impairment measured by IQCODE

and dementia scale measured by MMSE were included in the topological data analysis.

Although a strong negative correlation between IQCODE and MMSE (r = �0.55 and

P < 0.001) was observed in the current dataset, both variables were included to extract

more significant first principal component from the data. Lastly, personality factors were

considered because personality has reported to be associated with an outcome of delir-

ium. Among various personality dimensions, the association between neuroticism and

delirium was reported.74 Furthermore, stress is associated with the development of post-
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Figure 16. Filter function. (A) Distribution of the filter function and (B) its correlation
with the prediction probability for postoperative delirium, where the prediction proba-
bility was obtained from preoperative structural and functional neuroimaging data.

operative delirium.75–78 Interestingly, a coping strategy for stress is closely related to a

conscientiousness.79,80 Other personality dimensions have not reported to be associated

with outcomes of delirium to the best of my knowledge. In general, older age is a risk

factor for delirium. However, this study included mostly elderly patients (> 70 years

old) and logistic regression analysis was revealed that age does not play a central role

in predicting delirium (Tables 11–12). Finally, a total of five variables, such as K-DRS,

IQCODE, MMSE, neuroticism, and conscientiousness were included in the topological

data analysis.

B. Distribution for Image of Filter Function

The filter function was successfully measured the deviation from non-delirious state, and

it showed Y-shape distribution as shown in Figure 16A. Also, the value of filter function

showed significant positive correlation with the prediction probability for preoperative

delirium (r = 0.57 and P < 0.001), where the prediction probability was obtained from
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Figure 17. Output of topological data analysis. An illustration of the relationships among
fifty-eight hip fracture patients, with labels and ellipses added to indicate the subgroups.
The patients in D1 subgroup have a lowered cognitive function and mild personality.
Whereas, the patients in D3 subgroup have an average cognitive function and a stronger
personality. The image of filter function was subdivided into ten intervals with 80 %
overlap. Several bins are disconnected from the main graph. The subgroup D3 contained
three delirium patients who experienced a hallucination during an episode of delirium.
Abbreviation: BFI, Big Five Inventory; BFI-C, consciousness in BFI; BFI-N, neuroti-
cism in BFI; IQCODE, Informant Questionnaire on Cognitive Decline in the Elderly;
K-DRS, Korean version of delirium rating scale; MMSE, Mini-Mental State Examina-
tion.

preoperative structural and functional network data.

C. Graphical Illustration of the Output Topology

Using the filter and distance functions, topological data analysis was applied to get new

insight from the clinical variables. Abnormal subgroups among the non-delirious pa-

tients were identified. Figure 17 shows a graphical illustration of TDA output. Topology-

based data analysis revealed three distinct subgroups of delirium. Seven patients with

delirium were clustered into delirium subgroups 1 (D1) and they showed a low cogni-
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tive function (i.e., high MMSE) and low neuroticism score. Three patients with delirium

were grouped into delirium subgroup 3 (D3) and they showed a high cognitive function

and strong personality (i.e., high neuroticism). Delirium subgroup D1 and D3 showed

the contrasting psychological and cognitive characteristics.

D. Post-hoc Analysis among Subgroups of Delirium

The one-way ANOVA were conducted to test the differences of graph metrics among

three subgroups of delirium. Table 19 shows a summary of one-way ANOVA. The nor-

malized clustering coefficient of NOS-ROI weighted structural network showed a sig-

nificant difference among three subgroups of delirium (F2,19 = 5.42 and P = 0.014). The

significant differences among three subgroups of delirium were found in the global ef-

ficiency (F2,19 = 3.59 and P = 0.048) and characteristic path length (F2,19 = 4.05 and

P = 0.034) of the FA weighted structural network. The significant differences of the

functional network properties among subgroups of delirium were found in the global ef-

ficiency (F2,19 = 3.86 and P = 0.039), local efficiency (F2,19 = 3.69 and P = 0.044), char-

acteristic path length (F2,19 = 3.54 and P = 0.049), clustering coefficient (F2,19 = 4.03

and P = 0.035), and normalized characteristic path length (F2,19 = 3.93 and P = 0.037).
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Table 19. Statistical comparisons of graph metrics among three phenotypic subgroups of
delirium

Graph measures D1 (n = 7) D2 (n = 12) D3 (n = 3) F2,19 P value

Structural network (NOS-ROI weighted)
Global Efficiency 7.35 (0.74) 6.82 (1.34) 7.72 (0.85) 0.98 0.394
Local Efficiency 11.99 (1.10) 11.38 (1.87) 12.00 (1.35) 0.40 0.677
Path Length 0.18 (0.02) 0.24 (0.10) 0.17 (0.02) 1.32 0.290
Clustering Coefficient 2.06 (0.15) 1.96 (0.29) 2.01 (0.13) 0.47 0.632
l 1.39 (0.04) 1.60 (0.42) 1.36 (0.01) 1.28 0.301
g 4.50 (0.29) 4.57 (0.25) 4.03 (0.17) 5.42 0.014
Modularity, Q 0.59 (0.01) 0.57 (0.03) 0.57 (0.01) 0.99 0.390

Structural network (FA weighted)
Global Efficiency 0.25 (0.03) 0.25 (0.04) 0.31 (0.04) 3.59 0.048
Local Efficiency 0.35 (0.03) 0.34 (0.05) 0.41 (0.04) 2.94 0.077
Path Length 4.66 (0.52) 4.68 (0.53) 3.74 (0.47) 4.05 0.034
Clustering Coefficient 0.12 (0.01) 0.11 (0.01) 0.13 (0.02) 2.69 0.094
l 1.18 (0.04) 1.15 (0.04) 1.15 (0.01) 1.75 0.201
g 3.44 (0.27) 3.47 (0.27) 3.06 (0.25) 2.91 0.079
Modularity, Q 0.43 (0.03) 0.43 (0.02) 0.39 (0.04) 1.92 0.174

Functional network
Global Efficiency 0.234 (0.010) 0.244 (0.007) 0.247 (0.001) 3.86 0.039
Local Efficiency 0.323 (0.015) 0.311 (0.007) 0.311 (0.001) 3.69 0.044
Path Length 0.906 (0.084) 0.832 (0.062) 0.805 (0.012) 3.54 0.049
Clustering Coefficient 0.257 (0.029) 0.232 (0.016) 0.227 (0.003) 4.03 0.035
l 0.506 (0.045) 0.463 (0.032) 0.453 (0.006) 3.93 0.037
g 1.113 (0.126) 1.012 (0.066) 1.010 (0.026) 3.23 0.062
Modularity, Q 0.366 (0.048) 0.346 (0.023) 0.363 (0.031) 0.89 0.427

The subgroups of delirlium, which are D1, D2, and D3, were identified by topological data
anlaysis.
The numbers represents mean (standard deviation) value.
Abbreviations: l , normalized path length; g , normalized clustering coefficient.
⇤Values show the significant differences among three motor subgroups of delirium (P < 0.05).
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IV. DISCUSSION

This dissertation investigated structural and functional neural risk factors of delirium,

and proposed the delirium prediction model using preoperative neuroimaging data. The

strength of this study is an inclusion of homogeneous delirium patients while many other

published studies dealt with heterogeneous delirium. The question about whether or not

there exists a preoperative neural substrate for delirium was somehow answered through-

out this dissertation. This study analyzed the multimodal neuroimaging data and tried to

combine the structural and functional network data.

Throughout this study, a new approach to computing the coupling strength between

structural and functional network were developed as a measure of brain network alter-

ation during an episode of delirium. Also, multi-sliced brain network analysis methods

were applied in the neuroimaging society for the first time to the best of my knowledge.

Figure 18 shows analysis methods and key results for three research topics. The com-

ments and discussion for these research topics will be described. First is about the study

of neural substrates in delirium. Second is about the investigation of functional con-

nectivity alterations during an episode of delirium. The last discussion point is about

identifying the subgroups of delirium using topological data analysis.

1. Neural Substrates of Preoperative Delirium

The increased characteristic path length in preoperative delirium suggests that the re-

duced number of streamlines and FA values in the structural network may be the poten-

tial sources of delirium. In the network science point of view, the increased path length

could be interpreted as following. Paths are known to be sequences of distinct nodes
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- Significant increase of path length was 
observed in delirium (P<0.05).

- SPLD between the frontal and 
subcortical regions, and FCD between 
frontal and sensory processing regions 
played a pivotal role in neuroimaging-
based delirium prediction model.

- SN-FN coupling strength was altered 
during an episode of delirium compared 
to preoperative state.

- Multi-sliced modularity optimization 
analysis identified functional modular 
organization in patients with delirium, 
and found a significantly surpassed FCD 
between the right temporal and visual 
cortex in patients with delirium.

- Three distinct subgroups of delirium 
were identified by TDA.

Complex network analysis (n=58) 
- computing graph metrics
- structural modular organization

Coupled network analysis (n=32) 

- SN-FN coupling strength (       )
- Multi-sliced functional modular  
  organization (       )

Topological data analysis (n=58) 
for studying shapes of clinical data

...

Pre-Op DTI Pre-Op rs-fMRI

...

Post-Op rs-fMRI

Clinical variables such as  
neuroticism, conscientiousness,  
MMSE, IQCODE, and K-DRS

Dataset Analysis Methods Key Results

Figure 18. Summary of analysis methods and key results. Abbreviations: DTI, diffusion
tensor imaging; FCD, functional connectivity density; IQCODE, informant question-
naire on cognitive decline in the elderly; K-DRS, korean version of delirium rating scale;
MMSE, mini mental state examination; Pre-Op, preoperative; Post-Op, postoperative;
rs-fMRI, resting state fMRI; SPLD, structural path length density; SN-FN, structural
network and functional network; TDA, topological data analysis.

and links, and in anatomical networks represent potential routes of information flow be-

tween pairs of brain regions. Path lengths estimate the potential for information flow

between brain regions, with shorter paths implying stronger potential for information

integration.26

Significant positive correlation between IQCODE and the characteristic path length of

FA weighted structural network indicates reduced FA values in the structural network

may be related to the cognitive impairment in preoperative delirium. Although any re-

lationships among graph metrics and delirium severity or duration were found in this

study, there is a comparable study that revealed the relationship between white matter
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integrity, delirium duration, and cognitive impairments in intensive care unit survivors.19

In short, hip fracture patients of postoperative delirium have a cognitive deficit6 and

it is related to the altered path length of the structural network. However, functional

information processing in the segregated subregions and information transferring among

remote regions are somehow appropriately working in preoperative delirium (Table 6).

A. Structural Modular Organization

The modularity optimization analyses of the structural network were revealed striking

differences of the whole-brain neural network organizations between preoperative delir-

ium and non-delirium (Figure 9). In the modularity optimization analysis, both FA and

NOS-ROI weighted structural networks were considered because those two connection

weights have different physiological meaning. For example, a higher FA value between

two regions indicates a good myelination, and a higher NOS-ROI between two regions

represents an existence of multiple streamlines indicating a possibility of parallel infor-

mation processing. Interestingly, the striking differences in a modular organization were

observed depending on the nature of connection weights regardless of group differences.

In FA weighted structural network, the major differences in module compositions were

observed in the left visual cortex and left temporal lobe regions. The left visual cortex

and left temporal lobe comprised a single module in preoperative non-delirium group.

However, in preoperative delirium, the left visual cortex and left temporal lobe were

separated into two modules.

B. Neuroimaging-based Delirium Prediction Model

Multivariate logistic regression showed the predictive factors for postoperative delirium
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using the preoperative structural and functional networks. Most existing studies used the

various clinical information for predicting postoperative delirium. No studies focused

on neuroimaging-based risk factors for postoperative delirium. A total of three factors

were considered in the multivariate delirium prediction model (Tables 11–12). One vari-

able was from the functional connectivity density, and another was from the interaction

between the functional connectivity density and structural path length density.

The best model predicts postoperative delirium with 80.4 % sensitivity and 84.8 % speci-

ficity. According to the best prediction model for postoperative delirium, structural path

length density connecting the frontal to subcortical regions and functional connectivity

density connecting prefrontal cortex plus subcortical regions to visuotemporal regions

were played a pivotal role in predicting delirium.

The structural path length density between the frontal and audio-visual sensory areas

was significantly increased in preoperative delirium. In the study of schizophrenia with

an auditory hallucination, alterations of the gray matter volume were observed in the

temporal and frontal regions.81,82 Particularly, the inverse correlation between volume

reduction of the superior temporal gyrus and hallucination severity was observed.81,83,84

In short, the increased shortcut pathway in the pathways between the auditory-sensory

regions and frontal areas is associated with the disruption of the myelination of fiber

tracts in preoperative delirium. This suggests that the altered structural pathway con-

necting the audio-visual sensory regions and frontal regions might be neural substrates

of hallucination in delirium.

Previously, the relationship between abnormality of visual cortex and the visual hallu-

cination were reported in Parkinson’s patients.85 Also, the visual cortex has activated
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during a rapid eye movement sleep or visual imagery.86,87 Also, the frontal area acti-

vation were observed during the episode of hallucination.88,89 The cortical infarctions

and brain stimulation to the visual association cortex were reported to be a trigger for vi-

sual hallucination.85 However, the increased functional connectivity density between the

frontal plus basal ganglia and visual cortex showed no relationships with hallucination

in delirium.

In short, the connectivity patterns observed in the frontal, auditory, and visual regions

played the important role in characterizing postoperative delirium at the preoperative

stage. Also, the information underflow in the auditory processing and information over-

flow in the visual processing are the most important indicators for predicting delirium.

C. Brain Network and Motor Subtypes of Delirium

The one-way ANOVA evaluated statistical differences of brain network properties. Inter-

estingly, neural correlates of motor subtypes of delirium were observed in the functional

network properties while the structural network properties were not different among

three motor subtypes. In the post-hoc comparison of the functional network properties,

hypoactive delirium showed the decreased global efficiency and increased characteris-

tic path length of the network. Why are decreased efficiency and increased path length

associated with the development of hypoactive delirium? The answer is likely that two

network properties are both markers of functional information integration. In general,

decreased global efficiency is known to be associated with a declined cognitive per-

formance90 and older age.91 The previous study reported that patients with hypoactive

delirium are more likely to have older age and anemia.92
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In short, this suggests that motor subtypes of delirium are independent of the structural

network backbone. However, decreased abilities of information integration in the preop-

erative functional network could be a neural predictor for the development of hypoactive

delirium.

D. Delirium and Hallucination

According to a review on hallucinating brain,81 structural and functional neuroimag-

ing studies have revealed neural substrates of auditory hallucination in patients with

schizophrenia. However, only a few studies have reported a visual hallucination in el-

derly patients with Alzheimer’s disease. Also, a hallucination in other psychiatric dis-

eases and multimodal neuroimaging studies for hallucinating brain have rarely been

investigated so far. In this study, the comparison of graph metrics between delirium

with hallucination and delirium without hallucination revealed the increased global ef-

ficiency and decreased path length of the structural network in delirium with halluci-

nation compared to delirium without hallucination. The increased global efficiency and

decreased path length in the brain network provides fast information transfer in the net-

work.26,27 However, another study has reported occipital periventricular white matter

hyperintensities93 and overall cerebral atrophy in Alzheimer’s disease patients with hal-

lucination.94 In schizophrenia studies, gray matter volume reduction in temporal regions

has observed.95–97

Taken together, these findings suggest that altered backbone network of the brain might

allow information overflow during a confusion state or an episode of delirium. Yet, ef-

ficiency for information processing in preoperative resting state functional network was
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not different between two delirium groups of patients with and without hallucinations.

2. Brain Network Alteration during an Episode of Delirium

The reduced functional connectivity between the dorsolateral prefrontal cortex and pos-

terior cingulate cortex was the only neural substrates for describing patients during an

episode of delirium23. However, the comparison of the preoperative structural and func-

tional neuroimaging data have not been included in Choi.23 To the best of my knowledge,

the alteration of functional network properties during an episode of delirium compared

to that of preoperative has never investigated. The importance of this study is the exam-

ination of functional connectivity re-organizations during an episode of delirium.

A. Alteration of Functional Network Properties

The mixed ANOVA of functional network properties revealed that no significant main

effects in group (delirium and non-delirium) and time (before and after a hip fracture

surgery), and group by time interaction. However, in the mixed ANOVA for functional

connectivity densities, the significant group by time interactions were observed. The

intra-module functional connectivity densities in the right frontal plus basal ganglia

and left visual cortex regions were significantly increased during an episode of delir-

ium compared to that of preoperative delirium. Interestingly, the inter-module functional

connectivity density between those two modules was significantly decreased in delirium

compared to non-delirium after a hip fracture surgery. These functional connectivity den-

sity was significantly higher in preoperative delirium compared to that of non-delirium

with full preoperative dataset (Table 9 and Figure 10B). This suggests that the increased

functional connectivity density between the visual and frontal regions and its alteration
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during an episode of delirium might be associated with visual hallucination in delirium.

Among the postoperative delirium patients, visual hallucinations are the most common

type of hallucination.98

Although the strong suppression of inter-module functional connectivity density con-

necting the frontal lobe plus basal ganglia and visual regions during an episode of delir-

ium was observed, the whole-brain functional network properties were preserved. This

suggests that the functional connectivity was reorganized to preserve the complexity of

the brain network before and after a hip fracture surgery. Nonetheless, this interpretation

is tentative since many aspects of connectivity alterations in a delirious brain have not

been investigated and remain poorly understood.

B. Altered Structural-Functional Coupling Strength

A new approach for SN-FN coupling methods was revealed the decreased synchroniza-

tion of the structural network and functional network during an episode of delirium.

By the way, a new approach SN-FN coupling method used a distance matrix rather

than a structural connection matrix itself. The significantly decreased SN-FN coupling

strength during an episode of delirium implies that the functional connectivity connect-

ing two regions become stronger if two areas have a short path length in the structural

network backbone. Where, a physical meaning of a short path length in the NOS-ROI

weighted structural network is a larger number of streamlines. Whereas, the path length

of the NOS-ROI weighted structural network in preoperative delirium was significantly

increased in preoperative delirium (Table 5).

Taken together, the decreased SN-FN coupling strength in delirium suggests the increase
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of the functional connectivity as a function of the number of fiber tracts during an episode

of delirium. The fast flowing of functional information during an episode of delirium

might change the brain as a confusion state.

C. Multi-sliced Functional Modular Organization

Multi-sliced functional modular organization analysis is independent of a structural net-

work modular organization. The importance of multi-sliced modularity optimization is

the inclusion of a coupling term in the modularity equation to estimate the best parti-

tions from the inter-dependent networks. Resting-state functional connectivity reflects

the dynamics of low-frequency fluctuations,24 and thus the altered brain state could pro-

duce different patterns of functional connectivity (i.e., different modular organizations).

According to the statistical comparisons of the intra- and inter-module functional con-

nectivity densities (Table 18 and Figure 15), a hip fracture surgery is enough to change

the normal brain into a different brain state like a chaotic or confusion state. After a hip

fracture surgery, the functional connectivity densities in the bilateral auditory cortices

have significantly increased regardless of delirium. The hyperconnectivity in the audi-

tory cortex associated with exposure to various sounds such as drilling or hammering

during surgery. Unwanted annoying noisy sounds cause stress, and psychological stress

was reported to associate with the auditory activation.99 In the animal study, the morpho-

metric changes in chronically stressed animals have found to be related to dysfunctions

in auditory attention.100

A significantly decreased functional connectivity densities between the right temporal

lobe and visual regions was found in postoperative delirium (Figure 12). This suggests
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that a re-allocation of auditory-visual sensory resources was occurred during an episode

of delirium.

3. Topology-based Subgroups Identification in Delirium

Topological data analysis is a powerful tool to find hidden patterns or identify subgroups

in the complex dataset. It was widely used in a various research field and applied to

identify the subgroups of breast cancer,39 basketball player subtypes,101 and imaging

based phenotypic subgroups.41,42

Using topological data analysis, subgroups of preoperative hip fracture patients were

identified. Patients with abnormal clinical characteristics classified as a separate sub-

group. Among patients with delirium, one subgroup includes patients with a stronger

personality and another subgroup includes patients with lower cognitive function. Per-

sonality dependent subgroups were observed in the normal population and their func-

tional connectivity patterns were also altered.33 Similarily, different patterns of func-

tional network among subgroups of delirium in dimensions of personality and cognitive

function was found in this study. Importantly, one subgroup was clustered delirium pa-

tients who were experienced a hallucination. However, motor subtypes of delirium were

not identified by topological data analysis. Topological data analysis suggests that neu-

ral substrates of delirium could be different for phenotypic subgroups of delirium even

though the important pathophysiology of ‘delirium’ might be explained by the same

neural substrates.

4. Limitations

This study has several limitations. First, diffusion tensor imaging data used in this study
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were the relatively low number of diffusion gradients (n = 15) due to minimizing the

total MRI scanning time. In principle, tracking fibers from the fifteen directional diffu-

sion images is possible because the minimum number of diffusion images to evaluate a

direction of a fiber tract at each voxel is six. However, more accurate tractography might

possible with more diffusion images. Also, a high-angular resolution diffusion imaging

protocol would enhance tractography for crossing-fibers.102,103 Second, this disserta-

tion would not give direct evidence for the sleep-wake cycle disturbance of delirium.

The more comprehensive understanding of delirium would be established by taking into

account for diurnal variation related biosignals such as the heart rate variability104 or

melatonin hormone concentration.105 Third, applications of topological data analysis

to clinical data would be a powerful tool in the search for demographical and clinical

phenotypes of neuropsychiatric disorders.41 However, this study with the small sample

size, a few distinct phenotypic patterns among motor subtypes were identified. Perhaps,

detecting more phenotypic subgroups, which have different characteristics of personal-

ity or symptoms, would be possible with a larger number of datasets (e.g., n ⇠ 100 or

more).
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V. CONCLUSION

This dissertation included comprehensive analyses to find the neural substrates of pre-

operative delirium using the various methodological considerations. The increased path

length of structural network in preoperative delirium implies that there existed disrup-

tions of the connection weights such a fractional anisotropy and the number of stream-

lines in the backbone network. At the same time, there existed functional connectivity

re-organization to preserve a cognitive function as a normal-like because no significant

differences in functional network measures have observed between preoperative delir-

ium and non-delirium.

The human brain is the most important example of multi-layer networks. The brain net-

work consisted of two interdependent networks. One is a structural network that is a

backbone of the large-scale brain network, another is a functional network that reflects

the dynamic properties of the brain function. In general, the coupled network has high

potential to catastrophic failures when the brain is at a critical point such as an acute con-

fusion state. Multi-sliced functional modular optimization analysis revealed the modular

re-organizations in sensory areas during an episode of delirium. Especially, the inter-

module functional connectivity density between the right temporal lobe and visual cor-

tex has shown the significant group by time interaction. This interaction suggests that a

re-allocation of auditory-visual sensory resources after hip fracture surgery plays a cen-

tral role in characterizing the delirious phenomena such as dysfunction in perception,

unconsciousness, and hallucination.

Topology-based data analysis identified phenotypic subgroups of delirium, and provided
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the fact that the patterns of brain networks in delirium have associated with cognitive

impairment and personality. Topological data analysis suggests that neural substrates of

delirium could be different for phenotypic subgroups of delirium even though the impor-

tant pathophysiology of ‘delirium’ might be explained by the same neural substrates.
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13. Schneider F, Böhner H, Habel U, Salloum JB, Stierstorfer A, Hummel TC, et al.
Risk factors for postoperative delirium in vascular surgery. Gen Hosp Psychiatry.
2002;24(1):28–34.
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APPENDICES

Appendices included detailed descriptions for structural and functional modular orga-

nizations. For obtaining structural modular organizatons, NOS-ROI and FA weighted

structural network data were used. Modularity optimization of NOS-ROI weighted struc-

tural network produced seven distinct community partitions (Table A1). Also, modular-

ity optimization of FA weighted structural network produced six distinct community

partitions (Table A2).

In multi-sliced functional modularity optimization anlaysis, preoperative and postoper-

ative functional network were used and four distinct functional communities were ob-

served as described in Table A3.
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ABSTRACT (IN KOREAN)

ı°ƒ$∏ÃlÑ�¸⌅¡⇠Y0⇠Xpt0Ñ�Dt©\

,›X⌅ÿxê‹Ö

h¿ƒP⇠ @¨ƒi

8�YP�Y–X¸Y¸

Ω1⌅

l 0Ω: x⌅X Ãî ÏÏ �Ì‰t ⌧\ 4�Xå ∞⇠¥ àî ı°ƒ

$∏Ãl\ ¸ ⇠ à<p, lp $∏Ãl@ ÌŸ� 0• $∏Ãl\ l1⇠

¥ à‰. Œ@ l–⌧ ��LÔt D�¡� Ã$∏Ãlî Ã»XX ⌧⌅¸

4�Xå �⇠¥ à‰. ,›t ‡Ωx¿ •`\ ÑX⇠‡ à¿Ã, ,›X

‡ΩY� —x ‹Ö lî Œt Ù‡⇠¿ JX‰. ¯ l–⌧î ,›X ⌅

ÿxê ⌧¨D ⌅t⌧, ı°ƒ $∏Ãl Ñ�D t©XÏ ,›X ‡Ω0⌅D

‹ÖX‡,⌅¡⇠Y0⇠Xpt0Ñ�D\©XÏ1©¸x¿0•�ƒ–

0x,›XX⌅¯˘D>‡¯π1D‹ÖX‡ê\‰.

¨Ã ✏ )ï: ¯ l–î � 58ÖX ‡�� Ë� Xê� 8Ïà‰. ®‡ ‡

��Ë�XêX⇠ ⌅lp✏0•Ã�¡pt0|ç›à‰.⌅¥⇠ 

Xê ⌘–⌧ 32Ö@ ⇠ ƒ 0• Ã�¡ pt0 !�–ƒ 8Ïà‰. ı°ƒ

$∏Ãl Ñ� 0ïD µt⌧ Ã�¡ 0⇠X ⇠ ⌅ ,› �!xê| >‡,

,›⌘Xê–å⌧ÙÏ¿î0•�∞1X¨p¡T–�\‡Ω0⌅D

là‰. ⌅¡⇠Y� pt0 Ñ�–⌧î x¿ 0• �ƒ, 1©X ‡Ωù¸

1‰1îå,,›⇣⇠|‡$XÏ,›XX⌅¯˘î¸Tl|ƒâà‰.
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∞¸: ⌅¥ 58Ö ⌘–⌧ ‡�� Ë� ⇠ tƒ– ,› ù¡t ò¿ú Xê

î 25Öt»‰. ⇠ ⌅ XêX lp $∏ÃlX π1 l–⌧î x‹⌅ …

‡ ∞ Ω\ 8t� ,›p–⌧  X¯Xå ù�⇠¥ àLt �0⇣‰(P <

0.05). ⇣\, ⌅P˝¸ <»X�Ì ¯¨‡ ⌅P˝¸ ‹� ⇣� �Ì⌅X ∞

Ω\ù��⇠ ⌅–,›Xê|�!Xîp⌘î\Ì`DhD⌧¨à‰

(corrected P < 0.05). T±t ⇠ ⌅ ,› Xêî ⌅P˝¸ ‹� ✏ ≠� ⇣

��Ì⌅X0•�∞1t�pp–Dt⌧ù�⇠¥àLt⌧¨⇠»‰

(corrected P < 0.05).e¯måƒ⇠ ⌅,›Xê–⌧ù�⇠¥àX⌅P˝

¸‹�✏≠�⇣��Ì¸X∞1¸‹��Ì¸≠�⇣��Ì¸X∞

1t⇠ ƒ,›Xê–å8 X¯Xå⇣å⇠»‰(P < 0.05).»¿…<\

⌅¡⇠Y0⇠Xpt0Ñ�@x¿0•¸1© �–0|⌧,›pD8

⌧XX⌅¯˘<\î¸Tà‰.

∞`:¯l–⌧î‡��Ë�XêX⇠ ⌅Ã�¡pt0\Ä0,›X

‡ΩY� �!xê| ��»‰. ⇠ ⌅ ,› XêX lp $∏Ãl π1 

l–⌧��ƒx‹⌅…‡∞Ω\8tXù�îlp$∏ÃlX0⇠t

⇠î1», XDÒ)ƒò‡Ω‰⌧⌧⇠�⇣åtàLD‹¨\‰.,›

⌘–⌧¨⌧‹��Ì¸≠��Ì⌅X0•�∞1⇣åî⇣�0�⌅X

�Ùò¨–8⌧�àLDX¯X‡tî,›Xê–å⌧Ùtîx¿•`,

X›•`,X�ÒXù¡X‡Ω0⌅t ⇠àLD‹¨\‰.⌅¡⇠Y�

pt0 Ñ� ∞¸î ,›X ‡Ω 0⌅t ,› XêX �»– 0|⌧ ‰tå

ò¿†⇠àLD‹¨\‰.

uÏ⇠î–: ı°ƒ $∏Ãl Ñ�, ⌅¡⇠Y 0⇠X pt0 Ñ�, ∞¥

Y,,›,‡��Ë�⇠ 
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