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ABSTRACT

The effect of DPP-4 inhibitor on angiogenic 

regeneration by bone marrow mesenchymal stem cell in 

hindlimb ischemia injury model

Heejung Lim

Graduate program of Science for Aging

The Graduate School, Yonsei University

(Directed by Professor Young-Guk Ko)

Background: Mesenchymal stem cells (MSCs) are known to have a therapeutic 

potential for severe limb ischemia. However, poor survival of implanted MSCs 

in the target tissue remains as an important factor that attenuates the angiogenic 
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potential of the cell therapy.

Thus, we investigated whether sitagliptin, a DPP-4 inhibitor, may enhance the 

angiogenic efficacy of MSC in a hind limb ischemia murine model by 

increasing production of SDF-1. 

Methods and Results: Mice with induced hind limb ischemia were devided 

into 4 groups; group 1 treated with oral saline and local injection of saline, 

group 2 treated with oral sitagliptin and local injection of saline, group 3 treated 

with oral saline and local injection of MSCs, and group 4 treated with oral 

sitagliptin and local injection of MSCs. Angiogenic responses were measured 

by laser-Doppler perfusion imaging, muscle capillary density, and protein and 

mRNA expression of SDF-1, CXCR4, and vascular endothelial growth factor

VEGF growth factors and compared among the treatment groups.

The combined treatment of oral sitagliptin and local injection of MSCs 

achieved more effective angiogenic response than oral sitagliptin administration 

or local MSC transplantation alone in a mouse hind limb ischemia model. The 

combination therapy also demonstrated increased expression of VEGF, SDF-1 

and CXCR4 in hind limb ischemia models.

Conclusion: The combination therapy of oral sitagliptin and local 
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transplantation of MSCs was more effective in enhancing angiogenic responses

to ischemia than oral sitagliptin or local transplantation of MSCs alone possibly 

due to up-regulation of SDF-1.

Key Words: Hind-limb ischemia, sitagliptin, SDF-1/CXCR4, angiogenesis, 

Laser Doppler
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The effect of DPP-4 inhibitor on angiogenic 

regeneration by bone marrow mesenchymal stem cell in 

hindlimb ischemia injury model

Heejung Lim

Graduate program in Science for Aging

The Graduate School, Yonsei University

(Directed by Professor Young-Guk Ko)

I. INTRODUCTION

Critical limb ischemia (CLI), disease known to affect quality of life and 

survival, is the most severe form of occlusive atherosclerosis. It is a terminal 
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peripheral artery disease and presents with chronic ischemic pain, ulcers and/or 

tissue gangrene 1-4. These patients frequently have multiple levels of vascular 

obstruction making collateral blood vessel formation difficult. When 

endovascular or surgical treatment fails or is not feasible, there are no other 

known therapies that may effectively rescue the ischemic limb.

Mesenchymal stem cells (MSC) are pluripotent stem cells that can 

differentiate into osteoblasts, chondrocytes, adipocytes, neurons, skeletal 

muscle cells, endothelial cells and vascular smooth muscle cells 3,5-10. They are 

also known to secrete various cytokines that promote angiogenesis and 

vasculogenesis. Furthermore, MSCs are considered advantageous for clinical 

application of cell therapy since they do not induce immunological responses 

and therefore do not need main histocompatibility match for allogeneic 

transplantation 9,11. Therapeutic angiogenesis or vasculogenesis is a treatment 

targeted to induce new blood vessel formation for improved perfusion of 

ischemic tissues 12,13 and has a promising potential for the treatment of CLI.

Several studies reported that transplanted MSCs induced angiogenesis and 

improved blood flow to ischemic limbs in rat models of hind limb ischemia

7,14,15. However, due to the local hypoxia, oxidative stress and inflammation in 
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the target ischemic tissue, the survival of transplanted MSCs is poor and the 

therapeutic effects remain attenuated. Thus, it is critical to find techniques to 

enhance survival of transplanted MSCs in the target tissue.

Stromal-derived factor (SDF)-1, is also known as CXCL12, a potent 

chemoattractant of stem cells and progenitor cells. SDF-1 is mainly expressed 

by bone marrow stromal cells and endothelial cells and its production is 

increased under ischemic conditions. SDF-1 plays a significant role in the 

process involving stem/progenitor cell chemotaxis and organ-specific homing 

in ischemic tissue through interaction with its receptor CXC chemokine 

receptor 4 (CXCR4) on the surface of stem/progenitor cells. Administration of 

SDF-1 has shown to increase the number of circulating endothelial progenitor 

cells (EPCs) and to improve endothelial function 16,17. SDF-1 also improved

cardiomyocyte survival, neovascularization, and cardiac function after 

myocardial infarction 18-21.

Recent studies reported that oral sitagliptin, an inhibitor of dipeptidyl 

peptidase-4 (DPP-4) was able to increase circulating endothelial progenitor

cells possibly by up-regulation of SDF-1. DPP-4 is known to cleave various

bioactive molecules such as SDF-1 and glucagon-like peptide-1 (GLP-1) 16,22,23.
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Therefore, the purpose of this study is to investigate whether combined 

treatment of oral sitagliptin and local injection of MSCs may have synergistic 

effects on angiogenesis and blood perfusion recovery in a murine hind limb 

ischemia model by up-regulation of SDF-1.  
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II. MATERIALS AND METHODS

2.1. Reagents

Sitagliptin (Januvia®) was purchased from Merck. Anti-VEGF 

(1:1000), Anti-SDF-1 (1:1000), and Anti-CXCR4 (1:1000) antibodies were 

obtained from Abcam (Cambridge, MA, USA), and Anti-GAPDH was 

purchased from Santa Cruz Biotechnologies (Santa Cruz, CA, USA).

2.2. Animals

All female C57BL/6 mice at 7-week-old (20-22g body weight) were 

purchased from Orient Bio (Sungnam, Korea). A total of 28 mice were devided 

into 4 groups; group 1 treated with oral saline and local injection of saline, 

group 2 treated with oral sitagliptin and local injection of saline, group 3 treated 

with oral saline and local injection of MSCs, and group 4 treated with oral 

sitagliptin and local injection of MSCs. Experiments were approved by the 

Institutional Animals Care and Use Committee of Yonsei University College of 

Medicine and performed in accordance with “Guide for the Care and Use of 

Laboratory Animals” published by the US National Institutes of Health (NIH 

Publication No. 85-23, revised 1996).
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2.3. Cell Culture

Human mesenchymal stem cells (hMSCs) were obtained from Lonza 

Walkersville Inc. (Walkersville, MD, USA). The hMSCs were maintained under 

DMEM-low glucose (Gibco, Grand Island, NY, USA) with 10% fetal bovine 

serum (Gibco), 1% penicillin/streptomycin at 37℃ humidified atmosphere 

containing 5% CO2-95% air. DMEM was refreshed every one day until sub-

confluent. All experiments were performed using cells between passage 

numbers 5 to 7.

2.4. Mouse Hind limb Ischemia 

The mice were anesthetized by an intraperitoneal injection of 

0.05mg/kg (Zoletile Virbac, Carros Cedex, France) and xylazine 0.15ml/kg 

(Rompen, Bayer, Leverkusen, Germany). After the skin incision, the proximal 

and distal portions of the external femoral artery and all of the above saphenous 

artery was ligated. The femoral arterial and all side branches artery were 

dissected and excised 20.

2.5. Sitagliptin Administration and hMSC Transplantation

Sitagliptin (Januvia®) was obtained from Merck Sharp & Dohme Corp 

Korea. Sitagliptin 20 mg/kg body weight or 500 μl of saline per mouse was 
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administered daily after the onset of ischemia using oral gavage. Local injection 

of MSC (106 cells/200 μl) or saline 200 μl into the ischemic thigh muscle of 

four different sites was performed using with a 26 gauge needle under local 

anesthesia at 3 days after induction of the hind limb ischemia. Sitagliptin 

(20mg/kg BW), or saline was orally administered for 28day.

2.6. Measurement of Laser Doppler Blood Perfusion Imaging

A laser-Doppler image system (Moor LDI2, Moor Instruments, 

Axminster, UK) was used to measure blood flow perfusion before and at 7, 21, 

and 28 days after limb ischemia surgery. Before imaging, excess fur were 

removed from the limbs using depilatory cream, and mice were placed on a 

temperature controller at 37℃. Relative blood perfusion data were expressed as 

the ratio of the ischemic (left) to non-ischemic (right) limb blood flow.

2.7. Histological Assessment for Capillary Density

Ischemic limb gastrocnemius muscle were harvested 28 days after 

induction of ischemia, immersion-fixed with 4% buffered paraformaldehyde, 

and subsequently embedded in paraffin. Rabbit anti-mouse CD31 (dilution 

1:200; polyclonal; Abcam) was used to determine the capillary density on 2-

μm-thick paraffin-embedded sections using standard immunofluorescence. This 

measurement was determined in three randomly selected low-power (original 
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magnification x200) fields from each animal, and the average value was used as 

a single data for each animal.

2.8. Immunoblot analysis

For immunoblotting, homogenates and sonicator of limb muscle tissue 

were analyzed. Equal amounts of proteins were loaded and separated in 10%, 

12.5% and 15% SDS-polyacrylamide/bis-acrylamide gel electrophoresis and 

transferred to poly vinylidene difluoride membrane (Bio-Rad Laboratories, Inc. 

Hercules, CA, USA). The membrane was blocked for 1hr by 10% skim milk. 

Thereafter, the membrane was washed 3 times with TBS-tween 20 (TBS-T, 0.1% 

tween 20) for 7 min at room temperature. Membrane was incubated with 

primary antibodies for overnight at 4℃. Membrane was washed five times with 

TBS-T for 7 min, and incubated for 1hr at room temperature with horseradish 

peroxidase (HRP)-conjugated secondary antibodies. After extensive washing, 

the bands were evaluated.

2.9. Reverse transcription polymerase reaction (RT-PCR)

Total RNA from frozen muscle was isolated using the Qiazol-Reagent. 

cDNA synthesis was then performed using 1ug of RNA with the TaKaRa Ex 

Taq™ polymerase (Takara Bio, Otsu, Shiga, Japan). Levels of mRNA were 

analyzed by RT-PCR using the primers shown in Table 1. PCR products were 
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separated by electrophoresis in a 1.2% agarose-gel containing Gel-red (Biotium, 

Hayward, CA, USA).
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Table 1. PCR primers used in this study

Gene Primer Size(bp) Temp.(℃)

VEGF 5'- GTA CCT CCA CCA TGC CAA GT -3' 340 58

5'- GCA TTC ACA TCT GCT GTG CT -3'

SDF-1 5' -GCT CTG CAT CAG TGA CGG TA -3' 306 58

5'- CTT TTC TGG GCA GCC TTT CT -3'

CXCR4 5'- TCC TGC CCA CCA TCT ACT TC -3' 342 58

5'- TTT CAG CCA GCA GTT TCC TT -3'

GAPDH 5'- ACT CCA CTC ACG GCA AAT TC-3' 370 58

5'- CCT TCC ACA ATG CCA AAG TT -3'
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2.10. Statistical Analysis

Statistical analysis was performed using IBM PASW Statistics 20.0 

software (IBM Corp, Armonk, NY, USA). All results are expressed as means ± 

standard deviation. Comparisons of continuous variables among the groups 

were performed using Student’s t test or ANOVA. A P value of <0.05 was 

considered statistically significant.
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III. RESULTS

1. Sitagliptin-hMSCs administration promoted reperfusion of blood flow in 

the ischemia limbs 

Representative images of laser Doppler perfusion scan before and 

immediately after induction of hind limb ischemia were shown in Figure 1A. 

Serial follow-up images of laser Doppler perfusion scan at 7, 14, 21, and 28 

days were presented in Figure 1B. At 28 day, group 4 with combined therapy of 

oral sitagliptin and local hMSCs showed the highest blood perfusion ratio (0.60 

± 0.1; P < 0.05 vs. other groups). The blood perfusion ratio in group 2 and 3 

was 0.48 ± 0.08 and 0.55 ± 0.09, respectively. These values were significantly 

higher than that of group 1 (0.44 ± 0.12, P < 0.05). However, the combined use 

of sitagaliptin-hMSCs further improved angiogenesis (perfusion ratio of). There 

was no significant difference in blood flow for sitagliptin administration and 

saline between days 7 and 28 (Figure 1C).
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Figure 1 legend (the following page)
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Figure 1 legend (the following page)
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Figure 1 legend (the following page)
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Figure 1. Femoral artery blood flow by laser-Doppler perfusion imaging in 

combination of sitagliptin-hMSCs increases neovascularization in hind

limb ischemia. (A) Representative results of laser Doppler perfusion imaging

before and immediately after induction of hind limb ischemia (left, ischemic;

right non-ischemic hind limbs); (B) Representative results of laser Doppler 

perfusion imaging at 7, 14, 21 and 28days after hind limb ischemia surgery. In 

color-coded images, normal blood perfusion is displayed as red, whereas low or 

absent blood perfusion is displayed as blue; (C) Laser-Doppler ischemic/non-

ischemic limb blood perfusion ratios. (**P<0.01 for saline vs. sitagliptin + 

hMSCs; +p<0.05 for saline vs. sitagliptin + hMSCs; *p<0.01 for saline vs.

hMSCs, #p<0.05 for sitagliptin vs. sitagliptin + hMSCs)
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2. Sitagliptin-hMSCS improve angiogenesis in ischemic hind limb

Immunohistochemical staining of the shows CD31- and DAPI-positive 

cells (Figure 3A). The capillary density was significantly higher in group 3

(hMSCs) and 4 (sitagliptin-hMSCs) than in group 1 (saline) or 2 (sitagliptin)

(*p < 0.01 vs. saline group; ▲p < 0.01 vs. Sitagliptin; #p < 0.01 vs. MSC)

(Figure 3B). There was no significant difference in capillary density between 

group 3 and 4. However, there was a trend toward a higher capillary density in 

group 4.
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Figure 2 legend (the following page)
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Figure 2. Effects of sitaglitin-hMSCs on angiogenesis in ischemic limbs. (A) 

Capillaries (red) were identified by CD31staining, a marker for endothelial cells. 

CD31 was also observed with confocal microscopy using primary anti-

PECAM1 antibody and Alexa-conjugated secondary antibody. (B)

Quantitatively expressed as a capillary number per muscle fiber on 28days after 

operation (n=3; for each experimental group, original magnification, x200).
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3. Sitaglipin-hMSCs increases VEGF expression in hind limb ischemia 

muscle

Representative Western blot data of VEGF protein expression are 

shown in Figure 3. There was increased VEGF expression in group 2 and group 

4 compared to group 1 or group 3 (Figure 3A). Similarly to protein expression, 

that total RNA expression of VEGF was higher in group 2 and 4 group 

compared to that in group 1 and 3 (Figure 3B)
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Figure 3. Effects of sitagliptin-hMSCs on VEGF expression levels hind limb 

ischemia injury model. (A) Gastrocnemius muscle tissues were collected at 7

days after hind-limb ischemia injury. Muscle tissue lysates were separated by 

SDS-PAGE gel and analyzed by immunoblot analysis with antibodies against 

anti-VEGF and anti-GADPH antibody. (GADPH was loading control n=4). The 

protein expression of VEGF was slightly increased in group 2 (sitagliptin) and 

group 4 (sitagliptin-hMSCs) than in group 1 (saline) and group 3 (hMSCs). (B)

Total RNA was analyzed by Reverse transcription-polymerase chain reaction 
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(RT-PCR) using primers specific of VEGF and GAPDH gene in ischemic

muscle tissues (GAPDH was used as the internal control. n=4). The total RNA 

expressions of VEGF was slightly increased in group 2 (sitagliptin) and group 4 

(sitagliptin-hMSCs) than in other groups.
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4. Sitaglin-hMSCs increases SDF-1 expression and secretion in hind limb 

ischemia

Western blot data show no significant difference in SDF-1 protein 

expression among the groups (Figure 4A). However, there was increased RNA 

expression of SDF-1 in group 3 and 4 compared to that of group 1 and 2. 

However, SDF-1 RNA expression was similar between group 3 and 4 (Figure 

4B). Interestingly, western blot analysis using serum showed significantly 

increased protein level of SDF-1 in group 4 compared with other groups (Figure 

4C).
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Figure 4 legend (the following page)
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Figure 4. Effects of sitagliptin-hMSCs on SDF-1 expression levels in hind

limb ischemia model. (A) Representative Western blot of SDF-1 protein level 

in the gastrocnemius muscle tissues at 7 days after limb ischemic injury (n=2).

The protein expression of SDF-1 was lower in group 1 (saline) than in other 

groups. (GADPH was used as the internal control. n=2). (B) RNA was analyzed 

by Reverse transcription-polymerase chain reaction (RT-PCR) using primers 

specific of SDF and GAPDH gene in ischemic muscle tissues. (GAPDH was 

used as the internal control. n=4). (C) The protein expression of SDF-1 was

significant higher in sitagliptin-hMSCs combination therapy group than in other 

groups (n = 4) *P < 0.01
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5. Sitagliptin increases CXCR4 expression in hind limb ischemia muscle

There was increased expression level of CXCR4 in group 2 and 4 than 

in group 1 and 3 (Figure 5A). RNA expression level of CXCR4 similarly 

increased in group 2, 3, and 4 was higher than in group 1 (Figure 5B).
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Figure 5. Effects of sitagliptin on CXCR4 expression levels in hind limb 

ischemia. (A) Gastrocnemius muscle tissues were collected 7 days after hind-

limb ischemia injury. Muscle tissue lysates were separated by SDS-PAGE gel 

and analyzed by immunoblot analysis with antibodies against anti-CXCR4 and 

anti-GADPH antibody. (GADPH was used as the internal control. n=4). The 

protein expression of CXCR4 was increased in group 2 (sitagliptin) and group 4 

(sitagliptin-hMSCs) than in group 1 (saline) and group 3 (hMSCs). (B) RNA 

was analyzed by Reverse transcription-polymerase chain reaction (RT-PCR)

using primers specific of CXCR4 and GAPDH gene in ischemic muscle tissues
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(GAPDH was used as the internal control. n=4). The RNA expression of 

CXCR4 was significantly higher in group 2 (sitagliptin) and group 4 

(sitagliptin-hMSCs). 
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IV. DISCUSSION

The major finding of study was that combined treatment of oral 

sitagliptin and local injection of MSCs achieved more effective angiogenic 

response in a mouse hind limb ischemia model than oral sitagliptin 

administration or local MSC transplantation alone. The combination therapy 

was associated with increased expression of VEGF, SDF-1 and CXCR4.

Mesenchymal stem cell (MSC) is a multipotent stem cell that can 

differentiate into a variety of cell types. Various studies demonstrated 

therapeutic angiogenic effects of MSCs in animal models of peripheral arterial 

disease and myocardial infarction 5,15,24,25. However, the mechanisms 

underlying the effects of MDSCs remain still unclear. Stem cell can either 

directly increase angiogenesis by transforming into endothelial cells and 

proliferation or indirectly by secreting various angiogenic growth factors and 

anti-apoptotic factors. But, there are several shortcomings in using MSCs for 

cell therapy of ischemic diseases. The repair capability of MSCs declines with 

age and diseases 24,26-29. Also, the viability of MSCs in ischemic condition is 

low. Thus, it is crucial to improve MSC survival against the hypoxia and 

hypertrophic microenvironment 30-33. There have been various studies focused 
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on treatment strategies to improve survival of transplanted MSCs in the target 

organs 34-37.

Sitagliptin, an anti-diabetic drug, is an inhibitor of DPP-4. DPP-4 

cleaves various substrates, including GLP-1 and SDF-1. Increased activity of 

DPP-4 in blood has shown to decrease the circulating concentration of SDF-1a

38. SDF-1 has been found to be involved in mobilization and recruitment of 

endothelial progenitor cells after arterial injury in mice 39,40. Up-regulation of 

SDF-1, CXCR4, and VEGF in the damaged tissue has been shown to play a 

critical role in recruiting stem cells to ischemic tissue 19,41,42. Another 

experiment study demonstrated that SDF-1 pretreatment can improve MSC 

migration, cytokine production, and cell survival after exposure to hypoxia 43-45. 

In our study, expressions of SDF-1, CXCR4, VEGF were increased in all 

animals treated with oral sitagliptin, local transplantation of MSCs, or the 

combined treatment compared with control group. However, we could not 

prove whether the expression of these angiogenic factors was statistically 

higher in the combination group than in the monotherapy of sitagliptin or MSCs 

due to small numbers of study animals.  However, there was signicantly 

improved angiogenic response measured in blood flow ratio by laser Doppler 

perfusion scan and capillary density for the combination therapy group than 

monotherapy of oral sitagliptin or local transplantation of MSCs. Therefore, we 
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assume that additive effects of sitagliptin and MSCs may be achieved by up-

regulation of SDF-1/CXCR4 axis and activation of MSCs. 

A major limitation of the present study was that insufficient data to 

prove working mechanisms of the combined therapy of sitagliptin and MSCs 

for improved angiogenic response Furthermore, we could not also demonstrate 

prolonged survival or increased activity of MSCs in ischemic limbs.
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V. CONCLUSION

The combination therapy of oral sitagliptin and local transplantation of 

MSCs was more effective in enhancing angiogenic responses to limb ischemia 

than oral sitagliptin or local transplantation of MSCs alone possibly due to up-

regulation of SDF-1. Our results suggest that this combined treatment may have 

a potential as a new therapeutic strategy to treat severe peripheral arterial

disease.
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ABSTRACT (in Korean)

하지허 에 골수 래 간엽 포 재생 과에

미치는 DPP4 해 향에 한 연

<지도 수 고 >

연 학 학원 과학 동과

Background: 간 엽 포는 하지 허 에 한 치료

가능 갖는 것 알 다. 그러나 허 직에 간 엽

포 주 낮 생 해 포 치료 신생
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약 시키는 것 한 다. 따라 우리는 sitagliptin, DPP-4 

억 가 SDF-1 에 해 하지 허 에 간 엽

포 신생 향상 시킬 수 는지 알아보고 한다. 

Methods and Results: 하지 허 도 후 하 다. 각각

Group 1 saline 경 여, group 2는 sitagliptin 경 여, group 3 saline 

경 여 간 엽 포 주 , group4 sitagliptin 경 여

간 엽 포 주 나누어 진행하 다. 도플러

상 통해 신생 측 하 , 근 도

SDF-1, CXCR4, VEGF 같 신생 mRNA 단 질

알아보았다. 하지 허 에 Sitagliptin 과 간 엽 포

동시 여 sitagliptin 단독 여 또는 hMSCs 단독 주 에

비해 신생 과가 는 것 하 다. 또한 Sitagliptin 과

간 엽 포 동시 여 치료 하지 허 에 VEGF, 

SDF-1, CXCR4 가하는 것 하 다. 

Conclusions: 하지 허 에 Sitagliptin 과 간 엽 포 동시

여는 sitagliptin 단독 여 간 엽 포 단독 주
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치료 보다 신생 촉진한다. 는 SDF-1 과 에 해

신생 촉진 는 것 하 다.

핵심되는 말: 하지 허 , sitagliptin, SDF-1/CXCR4, 관신생반응


