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Abstract 

 
 

Development of chemicals which reduce the expression of 

PCSK9 as therapeutics for treatment of hypercholesterolemia 

 

 

 

Dong-Kook Min 

 

Department of Medical Science  

The Graduate School, Yonsei University 

 

(Directed by Professor Sahng Wook Park) 

 

 Proprotein Convertase Subtilisin/kexin type 9 (PC1SK9), the ninth 

member of subtilisin serine protease, promotes the degradation of the low 

density lipoprotein receptor (LDLR), thereby increasing the plasma 

concentration of LDL-cholesterol. Several studies have strongly suggested 

that inhibition of PCSK9 action is a promising therapeutic modality to treat 

hypercholesterolemia. As a strategy for development of PCSK9 inhibitors, 
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the chemical library that consists of 3,000 randomly selected compounds 

was primarily screened by western blot analyses for the chemicals that 

reduce the amount of protein levels of PCSK9 with reciprocal increase in 

the LDLR expression in HepG2 cells. A set of chemicals (C935 and 

related chemicals) with the the common scaffold structure of 1,4-

naphthoquinone reduced the amounts of the protein and mRNA for PCSK9, 

and transcriptional activity of the PCSK9 promoter, while they increased 

the amount of the LDLR protein. Functional relevance of the increased 

amount of in the LDLR was confirmed by the increased uptake of 

fluorescence-labeled LDL as well as the increase in the LDLR protein 

level. These results suggest that these chemicals increase the uptake of 

LDL into the cells by the increased LDLR expression which may be driven 

by reduction of PCSK9 expression in HepG2 cells. To elucidate the 

mechanism by which selected chemicals to reduce the transcriptional 

activity of PCSK9, microarray analysis was performed in HepG2 cells 

after treatment of chemicals. Among the genes of which amounts of 

mRNA was changed by C935, Nuclear factor (erythroid-derived 2)-like 2 

(NRF2) was deduced to play an important role on regulation of the PCSK9 

expression, although the reduction of PCSK9 by C935 does not involve 

NRF2 directly. These findings suggest that decrease in the PCSK9 
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expression by NRF2 is a novel mechanism of cells to unburden to 

synthesize cholesterol de novo synthesis under oxidative and/or 

electrophilic stress conditions. In addition, it is suggested that modulation 

of NRF2 activation along with PCSK9 might serves as a new target of 

lowering the plasma concentration of LDL Cholesterol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________________________________________________ 

Key words: PCSK9, LDLR, chemical library screening, Nrf2, 

hypercholesterolemia 
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Dong-Kook Min 

 

 

Department of Medical Science  

The Graduate School, Yonsei University 

 

(Directed by Professor Shang wook Park) 

 

 

I. INTRODUCTION 

 

 Hypercholesterolemia increases the risk of atherosclerosis, 

coronary artery disease and cholesterol-related disease1,2. Therefore much 

effort was taken to low the level of plasma LDL cholesterol and the access 

method to overcome hypercholesterolemia is to increase the amount of 

LDLR expressed on the hepatocyte surface3. LDLR is the essential protein 
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in regulating the level of LDL-cholesterol by intracellular uptake of LDL-

cholesterol in bloodstream. The elevated expression of LDLR leads to the 

reduced amount of LDL cholesterol; on the other hand, the decreased 

LDLR expression results in growing level of plasma LDL-cholesterol4. 

 Statin is the most universal therapeutic agent applied toward 

treating hypercholesterolemia5. Statin is pharmaceutical inhibitor of 

hydroxyl methyl glutaryl coenzyme A (HMG-CoA) reductase, an enzyme 

involved in controlling the rate of cholesterol synthesis6. In addition, statin 

induces sterol regulatory element binding protein 2 (SREBP2) expression, 

which increases the expression of LDLR. Use of statins increases LDL 

cholesterol clearance by inhibiting HMG-CoA and increases the 

expression of LDLR in the liver7. SREBP2 also up-regulates PCSK9 

through stimulation of PCSK9 gene transcription8. 

Variety of proteins is produced as precursor forms that undergo 

limited proteolytic cleavage at specific sites, yielding matured bioactive 

proteins9,10,11. The nomenclature of PCSK, one of the most limited 

proteolytic enzymes is as Proprotein Convertase Subtilisin/kexin due to its 

structural similarity with bacterial ‘subtilisin’ and yeast ‘kexin’12. 

Proprotein Convertase Subtilisin/Kexin type9 (PCSK9) is the ninth 

known member of the Proprotein Convertase family13, and its function is 
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to enhance low density lipoprotein receptor (LDLR) degradation expressed 

on the cell surface14. Catalytic domain of PCSK9 binds to EGF-A region 

that is present in the extracellular domain of LDL receptor, and the 

complex is internalized to endosomes/lysosomes for degradation15. 

Thereby LDL cholesterol level is increased due to reduced expression of 

LDL receptor. 

Gain-of-function mutations of PCSK9 reduced the expression of the 

LDL receptor and resulted in elevated plasma LDL cholesterol16,17. Those 

with gain-of-function mutations of PCSK9 acquire autosomal dominant 

familial hypercholesterolemia16,17,18. Loss-of-function mutations of PCSK9 

increase the density of the LDLR on the hepatocyte cell membrane and 

lower LDL cholesterol level in plasma15. African-Americans with Y142X 

or C679X nonsense mutation of PCSK9 were observed to have28% 

reduction of LDL-cholesterol level and nearly 90% low incidence of 

coronary artery disease19. Studies in PCSK9 knockout mice model revealed 

that the increased number of LDLR leads to reduced amount of plasma 

LDL cholesterol20. Thus, it was expected that there are two strategies to 

decrease plasma cholesterol level, either through the inhibition of PCSK9 

synthesis or inhibition of the binding of PCSK9 to LDLR. 

Paradoxically, the expression of PCSK9 is increased by statins7, 



7 
 

indicating that statin therapy along with PCSK9 inhibition could create a 

synergistic effect of lowering LDL Cholesterol. Up-regulated PCSK9 by 

statin leads to lower the expression of LDLR20. Accordingly, the effect of 

statin is offset by dual regulation of the LDLR and PCSK9 expression 

through activation of SREBP2. 

Recently, the strategies of inhibiting the action of PCSK9 have been 

demonstrated to be successful to some extent. A Locked Nucleic Acid 

Antisense Oligonucleotide (LNA) efficiently silenced PCSK9 mRNA and 

elevated the expression of LDLR in high-fat diet mice, which subsequently 

reduced LDL cholesterol level21. Silencing PCSK9 with formulated in 

lipidoid nanoparticle siRNAs reduced PCSK9 mRNA level by 50-70% and 

decreased plasma LDL cholesterol level in nonhuman primates for three 

weeks22. A natural plant extract, berberine reduced the expression of 

PCSK9 in HepG2 cells23,24. It has been reported that ongoing clinical 

studies involving monoclonal antibodies to PCSK9 showed that therapies 

against PCSK9 effectively decreased LDL-cholesterol level25. These 

advanced studies strongly suggest that inhibiting PCSK9 is a therapeutic 

treatment, targeting hypercholesterolemia. 

To discover the PCSK9 inhibitors, this study focused on screening 

the chemical library for selecting a set of chemicals which reduce the 



8 
 

expression of PCSK9 while increasing that of the LDL receptor. The 

selected chemicals share the same structure, 3-anilino-2-chloro-1,4-

naphthoquinone(CAS No. 1090-16-0). These chemicals decreased the 

expression of PCSK9, while up-regulated LDLR in HepG2 cells. Also, 

they increased the uptake of fluorescence-labeled LDL particles (Dil-LDL); 

these results suggest that these chemicals increased the amount of the LDL 

receptor on the cell surface of HepG2 cells, resulting in increased uptake 

of LDL into the cells. In addition, the use of these effective chemicals, 

known as Rosuvastatin supplements, along with Rosuvastatin led to higher 

expression of LDLR than when Rosuvastatin was applied alone, 

suggesting that the implication of these PCSK9 inhibitors for therapeutic 

application of hyper-cholesterol treatment. 

To elucidate the mechanism of chemicals to reduce the 

transcriptional activity of PCSK9, microarray experiment was performed. 

From the data, Nuclear factor (erythroid-derived 2)-like 2 (NRF2) was 

focused the relation with PCSK9. NRF2 is transcription factor that is 

known to regulate many antioxidant enzymes26. NRF2 encodes basic 

leucine zipper transcription factor27. Under normal conditions, NRF2 is 

kept in the cytoplasm by a cluster of proteins that undergoes rapid 

ubiquitination by CUL3 and KEAP128. CUL3 is an ubiquitin ligase and 
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KEAP1 is a substrate adaptor, which helps the Cul3 ubiquitination of the 

NRF2 protein28. Under stress conditions, the KEAP1-NRF2 complex is 

disrupted and NRF2 is trans-located to the nucleus29. In nucleus, NRF2 

binds with a small Maf protein and binds to Antioxidant Response Element 

(ARE) in the promoter region of many anti-oxidative genes, and initiates 

their transcription30. So, NRF2 is a critical mediator comprehensively 

regulates the expression of numerous stress responsive enzymes and 

detoxification enzymes31. 

Recently, the studies of NRF2 pathway in the body benefits manage 

the metabolic syndrome have been reported. These studies proposed that 

the role of NRF2 in the development of obesity32 and in the highly 

regulated process of adipocyte differentiation33 through its interaction with 

other transcription factors and receptors implicated in metabolic regulation. 

To evaluate the regulation of NRF2 on PCSK9 expression, NRF2 

was knocked downed using siRNA transfection. Knockdown of NRF2 

gene enhanced the expression of PCSK9 mRNA as well as PCSK9 Protein 

significantly. However, the microarray data showed that C935 decreased 

the of NRF2 mRNA level. Therefore, it needs to find out the mechanism 

that C935 regulates the PCSK9 expression and clarify the relationships 

between C935, PCSK9 and NRF2 gene.  
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II. MATERIALS AND METHODS 

 

1. Chemicals and reagents 

About 4,000 chemicals were purchased from Chemdiv Inc.(San 

Diego, CA). Dulbecco's modified Eagle's medium (DMEM) and 100 

units/ml penicillin and 100 µg/ml streptomycin sulfate were purchased 

from invitrogen (Carlsbad, CA, USA). Delipidated serum (DLPS) was 

prepared from Fetal Bovine Serum (FBS) as described previously8. 

Rosuvastatin was kindly provided by AstraZeneca (Mölndal, Sweden). 

Sodium mevalonate was prepared from mevalonic acid lactone (Sigma-

Aldrich, Co. St. Louis, MO, USA) as follows. To prepare 1.0 M sodium 

mevalonate, 5 g of mevalonic acid lactone was dissolved in distilled water, 

and then 4 ml of 10 N NaOH was added drop-wise and stirred for 40 min 

at room temperature. The pH of the solution was adjusted by 0.5 N HCL to 

pH 7.5, then the final volume was brought to 38.4 ml with distilled water. 

The stock solution was filter-sterilized, divided into aliquots, and stored at 

-20°C until use. Dil-LDL was purchased from Biomedical Technologies 

Inc. (MA, USA). 
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2. Antibodies 

The polyclonal antibodies against human PCSK9, SREBP2 were 

prepared as previously described by Jeong et al8. The polyclonal 

antibody against the human LDLR was raised in rabbits using 

synthetic peptide spanning amino acids 832-841 of the bovine LDLR 

according to the standard technique. NRF2 polyclonal antibody was 

purchased from Santa Cruz Biotechnology (CA, USA). GAPDH 

polyclonal antibody was purchased from Cell Signaling Technology, 

Inc. (Beverly, MA). Horseradish peroxidase-conjugated secondary 

antibodies were obtained from Pierce (Rockford, IL). 

 

3. Cell culture 

HepG2 (American Type Culture Collection number HB-8065)cells 

were maintained in DMEM containing 100 U/ml penicillin and 100 

mg/ml streptomycin sulfate supplemented with 10% (v/v) FBS at 

37°C in a humidified atmosphere of 5% CO2 in air. For the treatment 

of cells with chemicals, HepG2 cells were set up at 1.5 x 105cells/well 

in 12 well plate in DMEM medium containing 100 units/ml penicillin 

and 100 µg/ml streptomycin sulfate supplemented with 10% FBS on 

day 0. On day 1, cells were washed with phosphate-buffered saline 
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(PBS) twice and change to the DMEM medium containing 100 

units/ml penicillin and 100 µg/ml streptomycin sulfate supplemented 

with 10% DLPS. On day 2, the medium was replaced with fresh 

medium supplemented with each concentration of chemicals with or 

without 0.1 µM Rosuvastatin and 50 µM sodium mevalonate for 18 

hrs. On day 3, cells were washed twice with PBS, harvested for 

further analyses. 

 

4. Cell fractionation 

HepG2 cells were set up at 1.5 x 106 cells per 10cm plate with 

DMEM supplemented with 10% FBS. On day1, cells were washed 

twice with PBS, then were switched to fresh DMEM supplemented 

with 10% DLPS. After treating t-BHQ or H2O2 or Sulforaphane for 

18hr, HepG2 cells were harvested by scraping in cold PBS and 

collected by 1,000 x g for 5 min at 4°C. Discard the supernatant and 

then freeze the cells in liquid nitrogen. Cells were resuspended pellet 

in buffer A containing 10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 5 

mM EDTA, 5 mM EGTA, 250 mM Sucrose, and protein inhibitors (1 

mM DTT, 10 μg/ml leupeptin, 1 mM PMST, 2 μg/ml aprotinin, and 

50 μg/ml N-acetyl-leucine-leucine-norleucinal) and stand on ice. After 
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15 min, cells were disrupted by passing 30 times through a 23-G 

needle on a 1cc syringe. Spin nuclei down at 1,000 x g in swing 

bucket rotor for 7 min at 4°C. Supernatant was fractionated to cytosol 

and membrane, and nuclear extract was fractionated from the pellet. 

Cytosol fraction was collected by centrifugation at 55,000 rpm for 30 

min at 4°C. After spin down, membrane fraction pellet was 

resuspended with NUN buffer containing 0.33 M NaCl, 1.1 M urea, 1% 

Nonidet P-40, 25 mM HEPES (pH 7.6). Nuclear pellet was 

resuspended in Buffer C containing 20 mM HEPES, 1.5 mM MgCl2, 

0.42 M NaCl, 1 mM EDTA, 1 mM EGTA, 2.5 % Glycerol with 

protease inhibitors by pipetting. Resuspended pellet was incubated at 

4°C for 1hr with rotation, and then centrifuged at 55,000 rpm for 30 

min at 4°C. Save the supernatant to extract the nuclear fraction. 

 

5. Immunoblot analysis 

After treating chemicals as described in each figure legends, cells 

were washed with PBS twice and lysed with 150 µl NUN buffer and 

protein inhibitors by adding directly onto the plate, then shaking for 

10 min at room temperature. The cells were transferred in pre-chilled 

1.5ml tube on ice and vortex for 10 min at 4°C. Lysates were cleared 
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by centrifugation at 16,000 g for 10 min at 4°C, and the supernatants 

were collected as whole cell lysate. Protein quantitative analysis was 

performed with BCA kit (Pierce, Rockford, IL). After quantitation of 

protein, 20 µg of proteins were subjected to 10% SDS-polyacrylamide 

gels and separated by electrophoresis. Proteins were transferred onto 

nitrocellulose ECL membranes (GE Healthcare Bio-Science, 

Piscataway, NJ). The membranes were blocked in PBS containing 

0.05% (v/v) tween 20 and 5% (w/v) non-fat dried milk for 1hr at 

room temperature. Primary antibodies were probed in fresh blocking 

solution for 1hr at room temperature. Horseradish peroxidase-

conjugated goat anti-rabbit secondary antibodies were used to detect 

the protein using the Super Signal West Pico Chemiluminescent 

Substrate System (Pierce). 

 

6. Quantitative real time PCR 

Total RNA was prepared from HepG2 cells using an RNeasy Mini 

kit (Qiagen, Inc., Valencia, CA), according to the manufacturer’s 

instruction. Removal of DNA from RNA was achieved with RNase-

free DNase (Qiagen). cDNA was synthesized from 2 μg of DNase-

treated total RNA using a High-Capacity cDNA Archive kit (Applied 
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Biosystems, Foster City, CA). Quantitative real-time PCR was 

performed using the PowerSYBR® Green PCR master (Applied 

Biosystems) and all reactions were analyzed using the StepOne™ 

Real-time PCR systems (Applied Biosystems). All reactions were 

done in triplicate, and the relative amounts of all mRNAs were 

quantified by the comparative cycle-time method as described 

previously8. RPLP0 or GAPDH mRNA was used as the invariant 

control. The primers used for RT-PCR are shown in Table 1. 
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Table 1. Primers used for real-time PCR 

Gene 
symbol 

Genbank 
Accession 

No. 
Sequence (5’ to 3’) 

PCSK9 NM_174936.3 

 

5´-GGCAGGTTGGCAGCTGTTT -3´ 

5´-CGTGTAGGCCCCGAGTGT -3´ 

LDLR NM_000527.4 

5´-AGGAGACGTGCTTGTCTGTC -3´ 

5´-CTGAGCCGTTGTCGCAGT -3´ 

SREBP-1 NM_001005291.2 

5´-AAACTCAAGCAGGAGAACCTAAGTCT -3´ 

5´-GTCAGTGTGTCCTCCACCTCAGT -3´ 

SREBP-2 NM_004599.3 

5´-CGGTAATGATCACGCCAACAT -3´ 

5´-TGGTATATCAAAGGCTGCTGGAT -3´ 

FASN NM_004104.4 

5´-TCGTGGGCTACAGCATGGT -3´ 

5´-GCCCTCTGAAGTCGAAGAAGAA -3´ 

HMGCR NM_000859.2 

5´-CAAGGAGCATGCAAAGATAATCC -3´ 

5´-GCCATTACGGTCCCACACA -3´ 
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NFE2L2 NM_006164.4 

 

5´-TGGCTTCTGGACTTGGAAC -3´ 

5´- GACGGTATGCAACAGGACAT-3´ 

GAPDH NM_002046.5 

5´-GCCCCAGCGTCAAAGGT -3´ 

5´-GGCATCCTGGGCTACACTGA -3´ 

RPLP0 NM_001002.3 

5´-TGCATCAGTACCCCATTCTATCA -3´ 

5´-AAGGTGTAATCCGTCTCCACAGA -3´ 
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7. Transient transfection and reporter gene assay 

The pGL3-PCSK9 promoter-reporter construct, (-D4)was prepared 

as previously described by Jeong et al.8 HepG2 cells were maintained 

in medium A (DMEM containing 100 U/ml penicillin and 100 μg/ml 

streptomycin sulfate) supplemented with 10% (v/v) FBS. Transfection 

of DNA into HepG2 cells in suspension was carried out using 

Lipofectamine™2000 (Invitrogen) according to the method described 

by Notarangelo et al.34 with minor modifications. Briefly, plasmids 

were complexed in Opti-MEM (Invitrogen) using 

Lipofectamine™2000 according to the manufacturer's instruction. 

While the DNA-Lipofectamine complex was prepared, HepG2 cells 

were trypsinized and suspended in medium A supplemented with 10% 

FBS. The complex was mixed with 2 × 105 cells per well/12well plate 

in 0.8 ml of medium A supplemented with 10% FBS and rocked 

gently for 30 min at 37°C in the tube. Aliquots of mixtures were 

plated on 12-well plates and cultured overnight at 37°C under a 

humidified atmosphere of 5% CO2. For the treatment of chemicals, on 

day 1, cells were washed twice with PBS and changed to medium A 

supplemented with 10% DLPS. On day 2, cells were washed twice 

with PBS, harvested, and analyzed for luciferase activity using the 
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dual-luciferase assay system with passive lysis buffer (Promega, 

Madison, WI) according to the manufacturer’s instructions. The 

firefly luciferase activity was normalized to the renilla luciferase 

activity and the amounts of protein in the lysate. 

 

8. Fluorescence microscopy and Dil-LDL uptake assay 

HepG2 cells were set up at 1.0 x 105 cells per well in 12-well plate 

with DMEM supplemented with 10% FBS. On day1, cells were 

washed twice with PBS, then were switched to fresh DMEM 

supplemented with 10% DLPS. After treating chemicals at 10 µM for 

18hr, HepG2 cells were washed with PBS and treated with Dil-LDL 

(Biomedical Technologies, Inc., Stoughton, MA) at the 2 µg/ml 

concentrations for 3hr at 37 °C. Cells were washed twice with PBS 

and fluorescence images were gained by using fluorescence 

microscope (Olympus, Tokyo, Japan) with rhodamine filter. For 

quantification of LDL uptake, cells were trypsinized to obtain a 

single-cell suspension. The mean fluorescence intensities of 10,000 

cells were analyzed by fluorescence-activated cell sorting on the 

FACScan (BD Bioscience, San Jose, CA, USA). 
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9. Microarray 

Each total RNA sample (200ng) was labeled and amplified using 

Low Input Quick Amp labeling kit (Agilent technologies, CA). The 

Cy3-labeled aRNAs were resuspended in 50µl of hybridization 

solution (Agilent technologies, CA). After labeled aRNAs were 

placed on Agilent SurePrint G3 Human GE 8x60K array (Agilent 

technologies, CA) and covered by a Gasket 8-plex slide (Agilent 

technologies, CA). The slides were hybridized for 17hr at 65 °C oven. 

The hybridized slides were washed in 2 X SSC, 0.1 % SDS for 2 min, 

1 X SSC for 3 min, and then 0.2 X SSC for 2 min at room 

temperature. The slides were centrifuged at 3000 rpm for 20 sec to dry. 

 

10. Microarray data analysis 

The arrays were analyzed using an Agilent scanner with associated 

software. Gene expression levels were calculated with Feature 

Extraction v10.7.3.1 (Agilent technologies, CA) Relative signal 

intensities for each gene were generated using the Robust Multi-Array 

Average algorithm. The data were processed based on median polish 

normalization method using the Gene Spring GX 7.3.1 (Agilent 

technologies, CA). This normalization method aims to make the 
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distribution of intensities for each array in a set of arrays the same. 

The normalized, and log transformed intensity values were then 

analyzed using Gene Spring GX 7.3.1 (Agilent technologies, CA). 

Fold change filters included the requirement that the genes be present 

in at least 200% of controls for up-regulated genes and lower than 50% 

of controls for down-regulated genes. Hierarchical clustering data 

were clustered groups that behave similarly across experiments using 

Gene Spring GX 7.3.1 (Agilent technologies, CA). Clustering 

algorithm was Euclidean distance, average linkage. 

 

11. Statistical analysis 

Three experiments were performed for all in vitro studies. The 

results are presented as means ± standard error of the mena (SEM). 

The data were subjected to a two-tailed Student’s t-test. Statistical 

analyses were carried out using SPSS version 18.0 for Windows 

(Statistical Package for the Social Science, SPSS, Ins., Chicago, 

USA). All p values less than 0.05 were considered statistically 

significant. 
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III. RESULTS 

 

1. Chemical Library Screening and Selection of Effective 

Chemicals 

Chemical library screening was performed to discover any 

effective chemicals that could inhibit the expression of PCSK9. 

HepG2 cells were treated with random chemicals for eighteen hours, 

and PCSK9 expression was confirmed by western blotting using 

PCSK9 antibodies. In all screening experiment, the medium was 

switched from DMEM supplemented with 10% FBS to DMEM 

supplemented with 10% DLPS (Delipidated serum) to overexpress 

PCSK9 by activating SREBP2. 

Selected five chemicals share specific structures of 

naphthoquinone are found to reduce the expression of PCSK9. 

Chemical C935 is the basic structure among the five chemicals, and 

the others are derived from C935. Table 2 and Table 3 list the 

respective chemicals structures and names. Residues of Fluorine, 

Hydrocarbon, and Nitrogen Dioxide were additional composition 

from basic structure C935.  

5 µM of each chemical more effectively reduced the expression 
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of PCSK9 and increased the expression of LDLR when compared to 

treating with DMSO, which is a negative control purified from 

HepG2 cells (Fig. 1A). PCSK9 and LDLR expressions were reduced 

and raised respectively as the concentrations of C935 and C1168, 

C1182, C1184 and C1186 were increased: C935 from 0.6 µM to 10 

µM (Fig. 1B) and C1168, C1182, C1184 and C1186 from 1.2 µM to 

20 µM (Fig. 1C). With this PCSK9 expression is reduced by 

chemicals which share the specific structure. 
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Table 2. List of effective chemicals to reduce the PCSK9 expression 

Chemical 
ID1 

Molecular  
Formula Chemical Name 

C935 C16H10ClNO2 2-chloro-3-(phenylamino)naphthalene-1,4-dione 

C1168 C16H9ClFNO2 
2-chloro-3-[(4-fluorophenyl)amino]naphthalene-1,4-
dione 

C1182 C17H12ClNO2 
2-chloro-3-(3-toluidino)-1,4-dihydronaphthalene-1,4-
dione 

C1184 C16H9ClN2O4 
2-chloro-3-[(3-nitrophenyl)amino]naphthalene-1,4-
dione 

C1186 C18H14ClNO2 
2-chloro-3-[(2,5-dimethylphenyl)amino]naphthalene-
1,4-dione 

Arbitrarily numbers for the screening of chemical library  
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Table 3. Structure of the effective chemicals 

Chemical 
ID Chemical Structure 

C935 

 

C1168 

 

C1182 

 

C1184 

 

C1186 
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Figure 1. Effects of chemicals on PCSK9 and the LDLR expression in 

HepG2 cells 

(A) On day 0, HepG2 cells were set up at 1.5x105 cells per well in 12-well 

plate with DMEM supplemented with 10% FBS. On day1, cells were 

washed twice with PBS, and then were switched to fresh DMEM 

supplemented with 10% de-lipidated serum (DLPS) at the 5 µM 

concentration of each chemical. After 18hr incubation, cells were 

harvested, and whole cell lysates were subjected to immunoblot analyses 

with antibodies against PCSK9, the LDL receptor. GAPDH was used as an 

invariant control. (B and C) HepG2 cells were treated with each chemical 
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in dose dependent manner and incubated for 18 hr. M and P for LDLR 

represent the mature and precursor forms of LDLR, respectively. P and C 

for PCSK9 represent the proprotein and cleaved forms of PCSK9, 

respectively. 
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2. The Chemicals Inhibit the Induction of PCSK9 in Response to 

Rosuvastatin 

In the presence or absence of each chemical, HepG2 cells were 

treated with 50 µM mevalonate and different concentrations of 

Rosuvastatin in order to verify the possibility of statin being used as 

an adjuvant. According to the Rosuvastatin concentrations, LDLR 

and PCSK9 expressions are increased by Rosuvastatin effect (Fig. 

2A, B, C lane1-5). However, treatment with 5 µM of each chemical 

more successfully reduces and elevates the expression of PCSK9 

and that of LDLR respectively than when in absence of chemicals 

(Fig. 2A, B, lane6-10, Fig. 2C, lane 6-20). 

In two different experimental conditions, one with Rosuvastatin 

and another without, the HepG2 cells were treated with 1.25 µM and 

5 µM of each chemical to confirm the elevation of LDLR expression. 

As expected, each chemical decreases the expression of PCSK9 and 

increases the expression of LDLR in a dose-dependent manner (Fig. 

2D lane 1-11). Through the effect of Rosuvastatin, PCSK9 and 

LDLR expressions are increased (Fig. 2D lane1, 12). When 

Rosuvastatin alone was applied to HepG2 cells, LDLR expression 

was elevated. In addition, when the cells were treated the chemicals 
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in addition to Rosuvastatin, LDLR was further increased due to the 

synergistic effect of blocking PCSK9 expression by the chemicals. 

Among the five chemicals, C935 showed the greatest effect on the 

expression of PCSK9 and LDLR. These findings suggest that five 

chemicals could remedy statin’s shortcomings and maximize the 

LDLR expression which plays an important role of plasma LDL 

cholesterol adjustment. 
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Figure 2. The greater effect of chemicals applied with Rosuvastatin on 

the expression of PCSK9 and LDLR 

(A) The effect of C935 on the expression of LDLR and PCSK9 with the 

elevated concentration of Rosuvastatin. (B) The effect of C1186 and (C) 

the effects of C1168, C1182 and C1184 on PCSK9 and LDLR expression 

were verified with western blot analysis. (D) HepG2 cells were treated 
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with 1.25 µM and 5 µM of each chemical with the absence (lane 1-11) or 

presence (lane 12-22) of 0.1 µM Rosuvastatin and 50 µM mevalonate. On 

day 0, HepG2 cells were set up at 2.0 x 105 cells per well in 12-well plate 

with DMEM supplemented with 10% FBS. On day1, cells were washed 

twice with PBS, then were switched to fresh DMEM supplemented with 

10% de-lipidated serum (DLPS) with the indicated concentration of 

Rosuvastatin, 50 µM mevalonate and 5 µM each chemical. After 18hr 

incubation, cells were harvested with nun buffer, and whole cell lysates 

were subjected to immunoblot analyses with antibodies against PCSK9 

and the LDL receptor. 
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3. The chemicals repress the PCSK9 Promoter Activity and PCSK9 

mRNA 

To elucidate the mechanism of the chemical effect on PCSK9, 

total RNA was isolated from each chemical-treated HepG2 cells for 

18hrs and was analyzed with real-time PCR (Fig. 3A). Each 

chemical not only decreased the PCSK9 mRNA effectively, but also 

Pcsk9 protein level. There was a slight increase in LDLR mRNA 

level by C935, C1168 and C1182, and minor decrease by C1184 and 

C1186. Nevertheless, the range of deviation of LDLR mRNA level 

can be considered narrow, and therefore the main effect five 

chemicals produce is contributed to PCSK9 regulation.  

Following test was performed to determine the transcriptional 

changes of lipogenic genes (Fig. 3B). The amount of PCSK9 mRNA 

was decreased while that of LDLR mRNA was increased slightly by 

the gradual increment in C935 concentration. The transcriptions of 

SREBP-2 and HMG-CoA reductase, which are involved in 

cholesterol biosynthesis, were not influenced by C935. The SREBP-

1 mRNA showed a moderate decrease in a dose-dependent manner, 

but FASN, which is the target gene of SREBP-1, was changed 

slightly in mRNA level (Fig. 3B). These findings reaffirm that 
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PCSK9 is the main target of C935 and show the powerful effect, 

decreasing the transcriptional regulation of PCSK9.  

To determine whether the PCSK9 promoter is activated by each 

chemical or not, the PCSK9 wild-type construct D4 was transfected 

into HepG2 cells and the luciferase activity was measured8. The 

PCSK9 promoter activity was decreased by each chemical in two 

different conditions: 1) transient transfection of D4-construct into 

HepG2 (Fig. 4A); 2) stable transfection of D4-construct into HepG2 

cells (Fig. 4B). When HepG2 cells stably expressing D4 construct 

were treated dose-dependently by C935, which is the basic structure 

among other chemicals, PCSK9 promoter activity was attenuated 

effectively (Fig. 4C). Together, the mechanism of the chemicals can 

be summarized as the repression of promoter activity, followed by 

the reduction of both the mRNA level and protein expression of 

PCSK9. 
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Figure 3. The effective chemicals suppressed the PCSK9 mRNA in 

HepG2 cells 

(A) The effect of reducing the PCSK9 and LDLR mRNA level were 
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analyzed with quantitative real-time PCR. Total RNAs were prepared from 

HepG2 cells treated with indicated chemicals at 5 µM for 18 hr. (B) C935 

effect on the PCSK9, LDLR and other lipogenic enzymes mRNA level 

were analyzed with quantitative real-time PCR. Total RNAs were prepared 

from HepG2 cells treated with C935 at the indicated concentration for 18 

hr. cDNA was synthesized by reverse-transcription, and subjected to the 

analyses by quantitative real-time PCR. Each value represents the amount 

of mRNA relative to that in the cells grown with vehicle (DMSO), which 

is arbitrarily defined as 1. The values represent means from duplicate 

reactions. GAPDH was used as an invariant control (data not shown). 

Similar results were obtained in three independent experiments. 
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Figure 4. Reduce the human PCSK9 promoter activity by the effective 

chemicals in HepG2 cells 

(A) HepG2 cells were transiently transfected with pGL3-PCSK9 promoter-

reporter construct (D4) on day 0. On day 1, cells were changed to DMEM 

supplemented with 10% DLPS, and treated with the indicated chemicals at 

5 µM for 18hr. On day 2, cells were washed twice with ice-cold PBS, and 
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cell lysates were prepared with passive lysis buffer. The luciferase 

activities were measured with the relative to that of vehicle (DMSO) 

treated cells, which is arbitrarily defined as 1. The luciferase activities 

were normalized with the amounts of proteins used for the assays. (B and 

C) pGL3-PCSK9 promoter-reporter construct (-D4) was stably transfected 

in HepG2 cells were set up on day 0. On day 1, each chemical were treated 

in DMEM supplemented with 10% DLPS. After 18hr, cell lysates were 

prepared and luciferase activities were measured using the dual-luciferase 

assay system. The values represent means +SD from triplicate reactions. 

Similar resultswere obtained in three independent experiments. 

  



38 
 

4. The Chemicals Enhanced the Dil-LDL Uptake in HepG2 Cells 

As a functional test to LDLR, human LDL which is tagged with 

fluorescence probe (Dil-LDL) was applied to HepG2 cells after 

incubation with DMSO and each chemical for 18hrs. With 

theelevated expression of LDLR, the more binding between Dil-

LDL and LDLR is induced; thus, fluorescence intensity is 

subsequentlystrengthened. Due to the effect of the chemicals, 

PCSK9 minimizes the degradation of LDLR and consequently 

increases LDLR expression. As expected, treating cells with each 

chemical yielded more intensefluorescence than treated with DMSO 

alone (Fig. 5). Dil-LDL uptake was measured by flow cytometry and 

quantified with the relative mean fluorescence intensity (MFI) by 

flow-jo program. These results suggest that these chemicals 

increased the amount of the LDL receptor on the cell surface of 

HepG2 cells, resulting in increased uptake of LDL into the cells. 
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Figure 5. Enhanced the uptake of Dil-LDL in HepG2 cells by the 

chemicals 

(A) HepG2 cells were grown in DMEM supplemented with 10% DLPS in 

the presence of each chemical for 18h at the concentration of 10µM. After 

washing with PBS, cells were treated with Dil-LDLat the concentration of 

2 µg/ml for 3hr at 37 °C. Fluorescence images were gained by using 



40 
 

fluorescence microscopy. (B) After gain the fluorescence image, cells were 

trypsinized and fixed with 3% formaldehyde for 20min. Cells were washed 

twice with PBS and relative mean fluorescence intensity (MFI) was 

analyzed with flow cytometry. The MFI was calculated as the ratio of 

fluorescence intensity of vehicel (DMSO) treated cells. Each value 

represents the mean + SD of three independent experiments. 
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5. Gene Expression Changes in HepG2 cells applied with C935 

To elucidate the mechanism of C935 to reduce the expression of 

PCSK9, microarray experiment was requested to GenoCheck Ltd,. 

Based on the microarray data, following experiments were focused 

on discover the target transcription factors due to the result of 

decreasing the transcriptional activity of PCSK9 by C935. 

Compared to HepG2 cells applied to DMSO, negative control, there 

was a considerable decrease of PCSK9 expression by C935 (Table 

4). Microarray data showed that more than 2,000 genes expression 

was changed two fold or more as a result of high reactivity of C935 

(data not shown). These microarray results suggested that PCSK9 

might be a critical target of C935. 
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Table 4. Genes regulated by C935 in HepG2 cells 

Gene 
Symbol 

Description Fold-
change 

 

Lipid metabolism related genes  

ELOVL7 ELOVL family member 7, elongation of long chain fatty acids 7.30 

DEGS2 Degenerative spermatocyte homolog 2, lipid desaturase 7.20 

CYP3A5 Cytochrome P450, family 3, subfamily A, polypeptide 5 5.60 

AGPAT9 1-acylglycerol-3-phosphate O-acyltransferase 9 4.70 

TPI1 Triosephosphateisomerase 1 4.18 

HSD17B2 Hydroxysteroid (17-beta) dehydrogenase 2 4.14 

PLAUR Plasminogen activator, urokinase receptor 4.14 

AKR1C4 Aldo-ketoreductase family 1, member C4 3.91 

CPT1C Carnitinepalmitoyltransferase 1C 3.90 

ADM Adrenomedullin 3.82 

PLA2G3 phospholipase A2, group III 0.18 

NR1H4 nuclear receptor subfamily 1, group H, member 4 0.21 

PHCA phytoceramidase, alkaline 0.22 

DGKK diacylglycerol kinase, kappa 0.23 

PCSK9 proproteinconvertasesubtilisin/kexin type 9 0.27 

ABCA2 ATP-binding cassette, sub-family A (ABC1), member 2 0.29 

ALDH3B1 aldehyde dehydrogenase 3 family, member B1 0.31 

DHRS2 dehydrogenase/reductase (SDR family) member 2 0.32 

DGAT1 diacylglycerol O-acyltransferase homolog 1 (mouse) 0.36 

ACSM2B acyl-CoA synthetase medium-chain family member 2B 0.36 
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Transcription Factor related genes  

HAXA10 homeobox A10 11.3 

RAB13 RAB13, member RAS oncogene family 9.44 

CSDC2 cold shock domain containing C2, RNA binding 7.80 

EGR3 early growth response 3 6.59 

PTMA prothymosin, alpha 6.20 

FOSL1 FOS-like antigen 1 5.15 

ZNF763 zinc finger protein 763 5.02 

HMX1 H6 family homeobox 1 4.98 

LHX1 LIM homeobox 1 4.95 

POLR1C polymerase (RNA) I polypeptide C, 30kDa 4.91 

OSM oncostatin M 4.88 

ZNF38 zinc finger protein 738 0.15 

TCEA3 transcription elongation factor A (SII), 3 0.18 

ZIK1 zinc finger protein interacting with K protein 1 homolog 0.20 

CBX7 chromobox homolog 7 0.21 

NR1H4 nuclear receptor subfamily 1, group H, member 4 0.21 

E2F2 E2F transcription factor 2 0.24 

PHF10 PHD finger protein 10 0.28 

MIXL1 Mix1 homeobox-like 1 (Xenopuslaevis) 0.28 

NFE2L2 nuclear factor (erythroid-derived 2)-like 2 0.28 
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6. NRF2 Knockdown induced the Expression of PCSK9 in HepG2 

cells 

To assess the regulation of NRF2 on PCSK9 expression, NRF2 

was knocked down using a RNAi technique. The efficacy of small 

interfering RNA (siRNA) against human NRF2 was evaluated; the 

amount of NRF2 mRNA was detected by real-time qPCR 48hr after 

transfection of si-NRF2 or NC1 (Negative control) in HepG2 cells. 

The NRF2 mRNA level was decreased by 18% compared with the 

mRNA level in NC1 transfected control cells (Fig. 6B). These 

results suggest that the si-NRF2 used in this study successfully 

knocked down the NRF2 mRNA in HepG2 cells. NRF2 knockdown 

significantly enhanced the expression of PCSK9 protein as well as 

mRNA (Fig. 6). However, microarray data showed that C935 

decreased the expression of NRF2 mRNA (Table 4). These results 

were contrary to expected. Though the microarray data and the 

result of NRF2 knock down test, it was necessary to precede 

additional experiments for finding the regulation of PCSK9 

expression by C935 and NRF2. 

  



45 
 

 
Figure 6. Effect of NRF2 knock down on the expression of PCSK9 

(A) HepG2 cells were transiently transfected with NC1 and si-NRF2 on 

day 0. On day 1, cells were changed to DMEM supplemented with 10% 

DLPS. On day 2, cells were fractionated as described in materials and 

methods. N and C for NRF2 represent the nuclear and cytosol fraction, 

respectively. (B) The PCSK9 and LDLR mRNA level were analyzed with 

quantitative real-time PCR. Total RNAs were prepared from HepG2 cells 

48 hr after transfected with NC1 and siNRF2 and cDNA was synthesized 

by reverse-transcription. Each value represents the amount of mRNA 

relative to that in the cells transfected with NC1, which is arbitrarily 

defined as 1. The values represent means from duplicate reactions. 

GAPDH was used as an invariant control (data not shown). Similar 

resultswere obtained in three independent experiments. 
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7. Activated NRF2 decreased the expression of PCSK9 in HepG2 

cells 

tert-butylhydroquinone (t-BHQ), Resveratrol and sulforaphane 

(SFN) were used as activators of NRF2. These materials are known 

to lead to translocate and accumulatethe NRF2 proteins in nucleus35. 

t-BHQ and Resveratrol effectively increased the expression of 

NRF2 level in nucleus and slightly decreased the amount of NRF2 

levels in cytosol (Fig. 7A, E). While Sulforaphane increased the 

NRF2 expression in both fractions (Fig. 7I).  

t-BHQ, Resveratrol and SFN were effectively reduced the 

expression of PCSK9 when compared to treating with DMSO, 

which is a negative control purified from HepG2 cells (Fig. 7A, E 

and I): t-BHQ from 125µM to 250µM (Fig. 7A), Resveratrol from 

50µM to 100µM (Fig. 7E) and SFN from 25µM to 100µM (Fig. 7I). 

Total RNA was isolated from t-BHQ or Resveratrol or SFN-

treated HepG2 cells for 18hrs and was analyzed with real-time PCR 

(Fig.7B, F and J). t-BHQ, Resveratrol and SFN decreased the 

PCSK9 mRNA effectively, and the mRNA level of HMOX1 which is 

the target gene of NRF2 was enormously increased. There was a 

slight increase by t-BHQ (Fig. 7B) and great increase by SFN (Fig. 
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7J) in LDLR mRNA level. From this, Sulforaphane could raise the 

expression of LDLR by the effect of decrease the PCSK9 expression 

as well as by increase the LDLR mRNA levels. Figure 7B, F and J 

showed that t-BHQ, Resveratrol and SFN induced the NRF2 activity 

and identically reduced the mRNA level of PCSK9 effectively. 

Activation of NRF2 by effect of the t-BHQ, Resveratrol and SFN 

led to decrease the expression of PCSK9. This effect minimizes the 

degradation of LDLR and consequently increases the amount of 

LDLR on the cell sulface. Treating cells with t-BHQ, Resveratrol 

and SFN respectively yielded more intense fluorescence than treated 

with DMSO alone (Fig. 7C, G and K). These results suggest that t-

BHQ, Resveratrol and SFN increased the expression of the LDL 

receptor on the cell surface of HepG2 cells, resulting in increased 

uptake of LDL particels into the cells. 

These findings suggest that NRF2 is a new target for regulating the 

LDL cholesterol level in plasma and the specific NRF2 activators 

are expected to be therapeutic agents of hypercholesterolemia. 
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Figure 7. Activated NRF2 by t-BHQ, Resveratrol and Sulforaphane 

decreased the expression of PCSK9 in HepG2 cells 
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HepG2 cells were set up at 10 cm plate with DMEM supplemented with 10% 

FBS. On day1, cells were washed with PBS, then pre-incubated with fresh 

DMEM supplemented with 10% DLPS. On day 2, cells were treated with 

(A) t-BHQ, (E) Resveratrol and (I) Sulforaphane at the indicated 

concentration. After 18hr incubation, cells were fractionated as described 

in materials and methods. N and C for NRF2 represent the nuclear and 

cytosol fraction, respectively. The effect of the PCSK9 and LDLR mRNA 

level by (B) t-BHQ, (F) Resveratrol and (J) Sulforaphane were analyzed 

with quantitative real-time PCR. Total RNAs were prepared from HepG2 

cells treated with t-BHQ, Resveratrol and Sulforaphane respectively at the 

indicated concentration for 18 hr. cDNA was synthesized by reverse-

transcription, and subjected to the analyses by quantitative real-time PCR. 

Each value represents the amount of mRNA relative to that in the cells 

grown with vehicle (DMSO), which is arbitrarily defined as 1. The values 

represent means from duplicate reactions. GAPDH was used as an 

invariant control (data not shown). Similar results were obtained in three 

independent experiments. (C, G and K) HepG2 cells were grown in 

DMEM supplemented with 10% DLPS in the presence of t-BHQ, 

Resveratrol and Sulforaphane respectively for 18h at the indicated 

concentrations. After washing with PBS, cells were treated with Dil-LDL 
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at the concentration of 2 µg/ml for 3hr at 37 °C. Fluorescence images were 

gained by using fluorescence microscopy. (D, H and L) After gain the 

fluorescence image, cells were trypsinized and fixed with 3% 

formaldehyde for 20min. Cells were washed twice with PBS and relative 

mean fluorescence intensity (MFI) was analyzed with flow cytometry. The 

MFI was calculated as the ratio of fluorescence intensity of vehicel 

(DMSO) treated cells. Each value represents the mean + SD of three 

independent experiments. 
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8. Knockdown of PCSK9 leads to decrease the expression of NRF2 

in nucleus 

To elucidate the effect of C935 on the expressions of PCSK9 and 

NRF2, HepG2 cells were transfected with siPCSK9 or siNrf2. As 

showed above, knock downed NRF2 led to increase the PCSK9 

expression and decrease the LDLR expression (Fig. 8A lane 3). 

Meanwhile, the expression of NRF2 in nucleus was reduced when 

the amount of PCSK9 was decreased (Fig. 8A lane 2). This result 

means that C935 decreases the expression of PCSK9, resulting in 

reducing the NRF2 expression in nucleus to recover the expression 

of PCSK9 again and maintain the cholesterol homeostasis. Figure 

7B shows the quantifications of LDLR, PCSK9 (65KD), nucleus-

NRF2 and cytosol-NRF2 expression respectively. 
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Figure 8. Effect of PCSK9 knock down on the expression of NRF2 

(A) HepG2 cells were transiently transfected with NC1, siPCSK9 and 

siNRF2 on day 0. On day 1, cells were changed to DMEM supplemented 

with 10% DLPS and the following day cells were fractionated and cell 

lysates were subjected to western blot analyses with antibodies against 

PCSK9, the LDLR, NRF2 and SREBP-2. GAPDH and HDAC1 were used 

as an invariant control. N and C for NRF2 represent the nuclear and 
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cytosol fraction, respectively. M and N for SREBP-2 represent the 

membrane and nuclear fraction, respectively. (B) The band intensities of 

LDLR, PCSK9, nucleus-NRF2 and cytosol-NRF2 in figure 9A were 

quantified using Image J software. 
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Figure 9. Diagram about the regulation of PCSK9 by the chemicals 

with statin and NRF2 action 

 (A) The chemicals inhibit the induction of PCSK9 in response to statin 

resulting in further increased of LDLR expression. (B) In stress condition, 

NRF2 is activated, and then decrease the amount of PCSK9.  
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IV. DISCUSSION 

 

The level of plasma LDL cholesterol is regulated by coordinated 

functions of proteins participating in uptake of cholesterol from diets and 

in synthesis of cellular cholesterol de novo. In particular, overall regulation 

of these proteins are well known to be regulated by the transcription factor 

SREBP-2 which binds to the SRE motif in promoter regions of genes8. In a 

condition deprived from sterol, cells increase the amount of the LDLR on a 

cell surface to increase the cellular concentration of cholesterol by 

activation of SREBP-2, which is an important consequence of statin 

action5, 7, 8. Unfortunately, the expression of PCSK9 which antagonizes the 

role of the LDLR is up-regulated simultaneously by activation of SREBP-

2 under the same condition36. Accordingly, the development of PCSK9 

inhibitors is considered invaluable as a new modality to treat 

hypercholesterolemia as well as in a way that it helps supplement statins. 

In this study, a chemical library was screened to search for chemicals as 

PCSK9 inhibitors which have the ability to reduce the expression of 

PCSK9. 

By screening the commercially available chemical library, a set of 

chemicals which decreased the expression of PCSK9 effectively with 
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concurrent increase in that of the LDLR was selected. These chemicals 

shared 3-anilino-2-chloro-1,4-naphthoquinone, as a scaffold structure The 

range of decrease in PCSK9 by chemicals seemed to be related to chemical 

nature and positions of their side chains. It is necessary to discover the 

correlation between the effect on the expression of PCSK9 and kinds of 

side chains attached of chemicals in the future studies. The five chemicals 

finally selected showed the significant decrease in the amount of both 

protein and mRNA for PCSK9 while that of LDLR and other lipogenic 

enzymes remained relatively unaffected. These results suggest that the 

effects of selected chemicals are relatively confined to the expression of 

PCSK9. In addition, C935 and related chemicals effectively blocked the 

Rosuvastatin-induced PCSK9 expression while they increased the amount 

of the LDLR in a larger amount than that in cells grown without 

Rosuvastatin. These results correspond to the hypothesis that blocking 

PCSK9 induction has beneficial augmentative effect to increase the LDLR 

by statins. The increase in the amount of the LDLR was confirmed to be 

relavant to functional increase in LDL-cholesterol uptake assay by 

fluorescence-labeled Dil-LDL uptake in HepG2 cells.  However, 

unfortunately, this study could not provide the evidence that C935 can 

lower the plasma concentration of cholesterol in mice. The in vivo 
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application of C935 or the related chemicals should be carried out in 

further studies. The decrease in PCSK9 expression by chemicals was 

caused by transcriptional suppression of the PCSK9 promoter assessed by 

promoter-reporter assay. According to Jeong H.J. et al.8, five sp1 sites and  

one SRE region are found in the PCSK9 promoter-reporter construct D4, 

which contains the 5’ flanking region of the PCSK9 promoter (-94 ~ -440). 

Selected five chemicals showed the decrease in PCSK9 promoter activity 

at 5 µM concentration regardless of the presence of sterol. To determine 

transcription factors that mediate the regulation of the PCSK9 promoter 

activity by chemicals, we used the microarray analysis of mRNAs of 

which amounts were altered by C935 in HepG2 cells, and the 

computational analysis of the PCSK9 promoter region for prediction of 

transcription factor binding sites. Several transcription factors were 

revealed as potentially functional for regulation of the PCSK9 promoter by 

C935. However, no significant transcription factor except NRF2 was 

revealed to be functional in regulation of PCSK9 expression by C935 as 

far as experiments applied in this study: site-directed mutagenesis of the 

transcription binding sites, over-expression of transcription factors and 

knock-down of the transcription factors by target specific siRNA. NRF2 is 

a transcription factor that is known to up-regulate many antioxidant 
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enzymes by binding to antioxidant response element sites in their promoter 

region30. NRF2 is a critical mediator that regulates comprehensively the 

expression of several stress responsive enzymes and detoxification 

enzymes. Recently, there are a few studies that show the NRF2 activation 

may prevent or treat obesity and associated metabolic syndrome37-39. These 

studies suggested that a novel mechanistic linkage between metabolic 

syndrome and oxidative stresses32, 33, 40. Interestingly, knock-down of 

NRF2 using siRNA enhanced the expression of PCSK9 mRNA as well as 

PCSK9 Protein significantly. This induction of PCSK9 by NRF2 knock-

down was contrary to the result in microarray analysis that deduced 

causative relationship of NRF2 mRNA reduction by C935 with decrease in 

PCSK9 expression. However, it was evident that the PCSK9 expression 

could be regulated by transcription factor NRF2, this relationship between 

NRF2 and PCSK9 was further elucidated in this study. 

Knocking-down NRF2 increased the PCSK9 expression and 

decreased the LDLR expression, which suggests that NRF2 is a suppressor 

of the PCSK9 expression. Interestingly, when the expression of PCSK9 

was knocked-down, the expression of NRF2 in nucleus was reduced. This 

may support the result that C935 simultaneously reduced the expression of 

PCSK9 and NRF2, and suggests that this simultaneous reduction may be 
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resulted from a mechanism secondary to changes in PCSK9 the LDLR 

expression. Treatment of HepG2 cells with specific NRF2 activators like t-

BHQ, resveratrol, and sulforaphane 41, effectively reduced the expression 

of PCSK9 and increased amounts of expression of LDLR and the nuclear 

form of NRF2 in a dose-dependent manner. These results suggest that 

NRF2 is activated under the stress condition, and then activated NRF2 

causes to decrease the amount of PCSK9 while to increase the amount of 

the LDLR to saving cellular metabolism to reduce de novo cholesterol 

biosynthesis. These results also suggest that NRF2 is a novel regulator of 

the LDL-cholesterol metabolism in plasma through modulating the 

expression of PCSK9. In addition, the specific NRF2 activators could be 

proposed as a new therapeutic agent for hypercholesterolemia. 

In summary, this study provided the scientific basis for 

development of small molecular chemicals as PCSK9 inhibitors, and 

elucidated a novel mechanism of regulation of PCSK9 expression by 

NRF2. These results will be invaluable evidence for development of 

therapeutic agents for atherosclerosis and cardiovascular diseases. 
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V. CONCLUSION 

 

Through the screening of 3,000 chemicals, five effective chemicals 

to reduce the expression of PCSK9 were selected and they share the 

common scaffold structure of 1,4-naphthoquinone. These chemicals reduce 

the expression of PCSK9 by transcriptionally and enhance the LDLR 

expression and LDL uptake into HepG2 cells. And the chemicals overcome 

the statin drug shortcoming which up regulates the PCSK9 expression. 

Although the effect of these chemicals may not be involved in NRF2 

action or control by feedback mechanism, NRF2 can mediate the 

regulation of the expression of PCSK9. Together, invaluable cholesterol-

lowering chemicals applied with statin or NRF2 activators are expected to 

be therapeutic agents targeting hypercholesterolemia.    
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Abstract (in Korean) 

 
 
화합물 리이브러리 선별과정을 통해 고콜레스테롤혈증 치료 

표적으로서 PCSK9 발현 억제 물질 선정 및 규명 

 
 

<지도교수 박 상 욱> 

 

 

연세대학교 대학원 의과학과 

 

민 동 국 

 

 
 혈중 low density lipoprotein(LDL) cholesterol 농도 증가는 

동맥경화 및 고혈압, 협심증 등의 심혈관계 질환의 가장 

주된 유발 요인이다. 따라서 이러한 질환을 치료 및 

예방하기 위하여 혈중 LDL cholesterol의 농도를 감소시키기 

위한 다양한 시도가 이루어지고 있다. 

Proprotein convertase subtilisin/kexin type 9 (PCSK9)은 

혈액으로 분비된 후 세포막에 존재하는 LDL receptor와 



69 
 

결합하여 세포 내로 LDL receptor를 유입시킨 후 LDL 

receptor의 분해를 촉진시키는 역할을 하는 단백질로서 

고콜레스텔롤혈증의 유발 원인 중의 하나이다. 즉 PCSK9의 

과발현은 LDL receptor의 양적인 감소를 초래하여 

콜레스테롤이 대사되지 못하여 고콜레스테롤혈증이 발병하며, 

반대로 PCSK9의 발현을 억제시킴으로써 세포막에 존재하는 

LDL receptor를 증가시켜 혈중 콜레스테롤 농도를 감소시키는 

것으로 보고되고 있다. 본 연구에서는 PCSK9의 발현을 

감소시키고 LDL receptor의 발현을 증가시키는 물질을 

선정하기 위하여 3,000여 개의 chemicals로 이루어진 chemical 

library를 screening 하였다. 이 과정을 통해 HepG2 세포에서 

1,4-naphthoquinone의 특정 구조를 가진 chemicals이 PCSK9의 

발현을 감소시키데 효과적임을 단백질과 mRNA의 level을 

통해 확인하였고, 증가된 LDL receptor를 통해 세포 내로 LDL 

cholesterol의 유입이 증가됨을 확인하였다. 또한 chemicals는 

Statin 약물이 SREBP-2를 활성화 시킴으로써 PCSK9의 

발현을 증가시키는 단점을 극복하고 LDL receptor의 발현을 

더욱 증가시키는 효과를 보여주었다. Chemicals과 PCSK9 
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사이의 메커니즘을 밝히고자 microarray 실험이 진행되었고, 

data 분석을 통해 여러 transcription factors 중 C935에 의해서 

감소되는 Nuclear factor (erythroid-derived 2)-like 2 (NRF2)가 

PCSK9의 발현 조절과 관련성이 있음을 확인하였다. NRF2는 

스트레스 상화에서 antioxidant response pathway에 관련된 여러 

유전자의 발현을 증가시키는 전사인자로 알려져 있다. 

siRNA를 이용하여 NRF2를 저 발현 시켰을 때 PCSK9의 

발현이 증가되었고, NRF2를 활성화 시킬 수 있는 t-BHQ, 

Resveratrol 그리고 Sulforaphane을 처리하였을 때 NRF2가 

활성화 되고, PCSK9의 발현이 감소됨을 확인하였다. 하지만 

이 결과는 C935에 의해 감소된 NRF2를 통해 PCSK9의 

발현이 감소되는 가설에 반대되었고, 이런 현상을 뒷받침 

하기 위해 PCSK9의 저 발현을 통한 피드백 검정 실험을 

진행하였다.  PCSK9의 발현이 감소되었을 때 nuclear form의 

NRF2의 발현이 감소됨을 확인하였고, 이 결과를 통해 

C935에 의해 NRF2의 발현이 낮아지는 현상은 감소된 

PCSK9의 발현을 다시 증가시키기 위한 피드백 작용임이 

증명되었다.  
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이러한 결과를 통해 Chemicals과 함께 NRF2를 활성화 

시키는 물질을 동시에 처리하였을 때 PCSK9의 발현을 더욱 

억제할 수 있는 가능성을 제시하였다. 또한 chemicals과 

독립적으로 PCSK9의 발현을 감소시키는 전사인자인 NRF2 

와 PCSK9과의 상관관계에 대해 밝힐 수 있는 연구가 

필요하다. 

이러한 연구를 토대로 chemicals은 PCSK9 억제를 

통하여 statin약물의 보조약제로써 고콜레스테롤혈증 

치료제로의 이용 가능성을 보여주었고, NRF2는 PCSK9과 

피드백 메커니즘으로 조절되면서 스트레스 상황에서 NRF2가 

활성화 되었을 때 스트레스를 극복하기 위한 하나의 

방법으로 PCSK9의 발현을 감소시키고 LDL receptor의 양을 

증가시켜 세포 내 cholesterol level을 높게 유지시키는 

현상으로 판단된다.  

____________________________________________________________ 
핵심 되는 말: PCSK9, LDLR, chemical library screening, NRF2, 

고콜레스테롤혈증 
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