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<ABSTRACT>  

 
Assessment of blood-brain barrier integrity  

by dynamic contrast enhanced MRI 

in transient middle cerebral artery occlusion model  

after localized brain cooling 

 

 

Eun Soo Kim  
 

Department of Medicine  
The Graduate School, Yonsei University  

 
(Directed by Professor Seung-Koo Lee)  

 
 
Introduction: Localized brain cooling before reperfusion reportedly helps to reduce the 

inflammatory response and recover the function of brain neurons in stroke therapy. 

Little is known about the effects of localized brain cooling on permeability changes 

associated with alterations to the blood-brain barrier (BBB).  

Purpose: The purpose of this study was to evaluate the effects of localized brain 

cooling on BBB permeability following transient middle cerebral artery occlusion 

(tMCAO) in rats, by using dynamic contrast enhanced- (DCE-) MRI.  

Materials and method: Thirty rats were divided into three groups (10 rats each): 

control group, localized cold-saline (20°C) infusion group, and localized warm-saline 

(37°C) infusion group. The left middle cerebral artery (MCA) was occluded for 1 h in 

anesthetized rats, followed by 3 h of reperfusion. In the localized saline infusion group, 

6 mL of cold or warm saline was infused through the hollow filament for 10 min after 

MCA occlusion. DCE-MRI investigations were performed after 3 h and 24 h of 

reperfusion. Four pharmacokinetic parameters of the Tofts model (wash-in rate [Ktrans], 

wash-out rate [Kep], leakage-space volume [Ve], and plasma-space volume [Vp]) were 
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calculated for each DCE-MRI. In addition, rotarod testing was performed before 

tMCAO, and on days 1–9 after tMCAO. Myeloperoxidase (MPO) 

immunohistochemistry was performed to identify infiltrating neutrophils associated 

with the inflammatory response in the rat brain.  

Result: There was a statistically significant decrease in Ktrans and Kep at the infarction 

site in the cold-saline group compared with the control group (P < 0.05) and a decrease 

in Kep that approached significance in the cold-saline group compared with the warm-

saline group (Kep: cortex, P = 0.0892 basal ganglia, P = 0.0925). The percentage of 

MPO-positive cells in the cold-saline group was significantly lower than those in the 

control and warm-saline groups (P < 0.05). However, behavioral testing did not reveal a 

statistically significant difference among the three groups.  

Conclusion: Localized brain cooling can inhibit the increase in BBB permeability that 

follows transient cerebral ischemia and reperfusion in an animal model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Keywords: cerebral ischemia, middle cerebral artery, blood–brain barrier, permeability, 

magnetic resonance imaging 
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I. INTRODUCTION  

Hypothermia is very effective at preventing ischemia-induced neuronal damage.1-7 

However, the use of whole–body surface cooling for hypothermia therapy has been 

associated with management problems and complications such as pneumonia in 40% of 

patients.8 Recently, localized brain cooling has been reported as a more effective 

technique than whole-body cooling, and cooling by carotid perfusion, localized low-

heat ventricular perfusion, and localized scalp cooling have been shown clinically or 

experimentally to inhibit or at least delay neuronal damage.3,9-14 It has been also 

reported that localized brain cooling before reperfusion significantly reduces the infarct 

area in multiple animal models of stroke.15 Localized brain cooling following cerebral 

ischemia in animal models also markedly reduced inflammatory reactions and 

endothelial expression of intracellular adhesion molecule-1 (ICAM-1), which has been 

strongly associated with BBB leakage or breakdown of micro-vessels in ischemic brain 

tissue.16-18 To our knowledge, there has been no study to date designed to evaluate the 

effects of localized brain cooling on BBB permeability following cerebral ischemia in a 

rat model. Quantitative permeability parameters using DCE-MRI have been assessed in 
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recent stroke studies related to BBB dysfunction.19-23 The purpose of the current study 

was to investigate the effect of localized brain cooling on BBB permeability after 

transient focal cerebral ischemia–reperfusion in the rat using DCE-MRI.  

 

II. MATERIALS AND METHODS  

1. Subjects 

A total of 30 Adult Sprague-Dawley rats (280–300 g) were used in the study. This 

animal study was approved by and performed in accordance with the institutional 

guidelines by Institutional Animal Care and Use Committee (IACUC) # 2013-0152.  

A modified filament technique has been used to produce transient middle cerebral 

artery occlusion (tMCAO) in a rat model.24 Rats were anesthetized by intraperitoneal 

injection of 2:3 mixtures of Rompun and Zoletil (0.3 mg), and the left external carotid 

artery was exposed. A length of 18.5–19.0 mm modified PE-50 catheter (with 0.2-mm 

outer diameter and 0.1-mm inner diameter) was inserted via the left external carotid 

artery (ECA) into the intracranial circulation. The filament was lodged in the narrow 

proximal anterior cerebral artery (ACA) and blocked the MCA at its origin (Fig 1). 

After 1 h of MCA occlusion, rats in the control group were re-anesthetized and 

reperfused for 3 h by withdrawal of the hollow filament from the left MCA.  

 
Figure 1: Schematic drawing of the rat model of remote MCA occlusion.  

(A) A hollow filament is pushed into the proximal anterior cerebral artery (ACA) and 

the origin of the MCA is occluded. (B) The catheter is folded under the skin during 1 h 
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of MCA occlusion. (C) Using a micro-infusion pump, saline is injected posterior to the 

junction of the MCA and ACA, as the hollow filament is withdrawn 1-2 mm from the 

origin of the MCA. 

ECA, external carotid artery; ICA, internal carotid artery.  

(Drawings were used with permission from Ding et al18 and Zhang et al.25) 

 

The animals were divided into control, cold-saline infusion, and warm-saline infusion 

groups, with 10 rats in each group. The rats in the control group did not receive any 

treatment. The rats in the cold-saline infusion group received an intra-arterial infusion 

of 6 mL of cold (20°C) saline to the brain after 1 h of MCA occlusion. The rats in the 

warm-saline infusion group were infused with 6 mL of warm (37°C) saline using the 

same method as the cold-saline group. The warm-saline infusion group served as 

another control group, to observe the effects of a localized saline infusion on brain 

injury resulting from transient ischemia and reperfusion.16-18 In the rats treated with 

saline infusion, the catheter was withdrawn 1 mm from the origin of the MCA after 1 h 

of MCA occlusion. During and after withdrawal of the catheter, 6 mL of cold or warm 

saline was slowly and continuously injected into the junction of the MCA and ACA, 

using an infusion pump to maintain a rate of 0.6 mL over 10 min after the catheter was 

completely withdrawn and reperfusion established (approximately 0.25 mL/g brain 

tissue per min). Rectal temperature was maintained at 37°C using a warm pad during 

the surgical procedure. Brain temperature in the rats was monitored in the ipsilateral 

area supplied by the MCA. Needle thermistor probes (Harvard Apparatus) were placed 

into the ipsilateral cortex through a hole 3 mm lateral to the bregma and into the 

striatum through a hole 3 mm posterior and 4 mm lateral to the bregma. 

2. MR Imaging Protocol 

Animal MRI was performed using a 3.0-Teslar system (Achieva, Philips, Best, The 

Netherlands) with an 8-channel SENSE wrist coil. The first DCE-MRI was performed 

immediately after 3 h of MCA reperfusion. The second DCE-MRI was performed after 

24 h of reperfusion. 
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Sequences included axial T2-weighted and T1-weighted images using the following 

parameters: FOV, 60 mm; matrix, 256 × 192; slice thickness, 2 mm. Acute ischemic 

lesions were identified on diffusion-weighted images (DWIs). DWI was performed 

with single-echo diffusion echo-planar imaging using the following parameters: FOV, 

60 mm; matrix, 192 × 192; slice thickness, 2 mm; b-values, 0 and 600 along 3 

orthogonal directions. DCE-MRI was performed as follows: FOV, 60 mm; matrix, 192 

× 192; slice thickness, 4 mm; injection of gadolinium (0.2 mL/kg) through tail vein, 60 

dynamic images during 6 min.  

3. Post processing and image analysis 

Permeability parameters (Ktrans, Kep, Ve, and Vp) were calculated using off-line PRIDE 

tools provided by Philips Medical System. This software was based on the 

pharmacokinetic model of Tofts.26,27 The two-compartment model of Tofts assumes that 

the intravascular space and extravascular extracellular space (EES) are divided by the 

BBB. The degree of contrast leakage from the intravascular space to the EES is referred 

to as the volume transfer constant (Ktrans), the reflux leakage of contrast from the EES to 

the intravascular space (plasma) is referred to as the rate constant (Kep). The volume 

fractions of EES and plasma space are referred to as Ve and Vp, respectively. These 

permeability parameters were calculated by means of iteration between time-intensity 

curves of artery and tissue using the assumptions of the Tofts model.26,27 The arterial 

input function was measured at the right internal carotid artery and its time 

concentration curve was verified. MR imaging sequences (DWI/ADC and T2WI) were 

reviewed for the presence of ischemic lesions at each time point. To measure the 

permeability changes at the region of interest (ROI) of acute infarction in DCE-MRI, 

two different ROIs for permeability parameters were firstly placed in an enhancing 

portion of the infarct area of the cortex and basal ganglia in hemispheres ipsilateral to 

the MCA occlusion on DCE-MRI using a freehand technique. Secondly, two different 

ROIs were placed in the normal cortex and basal ganglia of the contralateral 

hemisphere to determine the baseline permeability parameters. Thirdly, the 

permeability of infarcted brain tissue was measured in the follow-up DCE-MRI in areas 
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corresponding to the first MRI. Serial changes in permeability were evaluated for the 

three ROIs in normal and infarcted areas on DCE-MRI.  

4. Rota rod performance test 

All rats were subjected to rotarod behavioral testing before tMCAO, and on days 1–9 

after tMCAO, by an investigator who was blinded to the group assignments. For the 

rotarod test, the rat was placed on a rotarod cylinder, and the time the animal remained 

on the cylinder was measured (in seconds). The speed was slowly increased from 4 to 

40 rpm within 5 min.28 A trial ended if the animal fell off the rungs or gripped the 

device and spun around for two consecutive revolutions without attempting to walk on 

the rungs. The animals were trained for 3 days before tMCAO. The mean duration on 

the device was calculated from 10 trials conducted 1 day before surgery (the baseline 

value). Motor testing data were recorded for 9 days, and compared with the internal 

baseline control (before surgery). 

5. Immunohistochemistry and histological assay  

 After the second MRI and rotarod testing were completed, the rats were sacrificed to 

obtain brain tissue. Rats were deeply anaesthetized and perfused with 0.9% sodium 

chloride followed by 4% paraformaldehyde. Following decapitation, brains were 

removed, fixed in 10% formalin, and embedded in paraffin. Coronal sections (5-µm 

thick) were stained with hematoxylin-eosin (HE). It has been reported that neutrophils 

are the first leukocyte subpopulation to be recruited to the ischemic brain, and an 

extensive infiltration of neutrophils has been observed 24 h after transient ischemic 

changes or infarct in rats, which was associated with BBB breakdown.29,30 

Immunohistochemistry for myeloperoxidase (MPO) was performed to identify 

infiltrating neutrophils on sections of rat brains subjected to no treatment vs. treatment 

(cold- or warm-saline infusion) after tMCAO, in order to detect BBB breakdown. 

Tissue sections were deparaffinized in xylene, rehydrated, and heated at 100 °C in 

citrate buffer (pH 6.0) for 5 min for antigen retrieval. The sections were incubated with 

a rabbit polyclonal antibody against myeloperoxidase (1:500 dilution; A0398, Dako, 

Glostrup, Denmark) for 1 h at room temperature, followed by incubation with 
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secondary antibody, donkey anti-rabbit IgG (1:500 dilution; Molecular Probes, Eugene, 

OR, USA) for 1 h at room temperature. Staining was developed by reaction with 

diaminobenzidine chromogen, and sections were counterstained with hematoxylin. For 

quantitative analysis of cell numbers in the infarcted regions, the slides were digitally 

photographed using a confocal microscope at a 400× magnification (BX50, Olympus, 

Tokyo, Japan). Ten fields of view were randomly chosen and photographed to count the 

number of MPO-positive cells in each section (Version 4.6, Spot Software, Diagnostic 

Instruments). All analysis was performed by a pathologist blinded to the treatment 

conditions. 

6. Statistical analysis 

The significant differences among permeability parameters between the three groups 

were firstly assessed using a mixed model. Correlations between permeability 

parameters (Ktrans, Kep, Ve, and Vp) for each group in ROIs in the cortex and basal 

ganglia were analyzed. Difference analysis between baseline control and mean duration 

(of 10 trials) at each time point was plotted for rotarod tests. The differences in MPO-

positive neutrophil infiltration between the three groups were assessed using the Mann-

Whitney U test. All statistical analyses were performed using the statistical software 

package, SPSS (version 21, SPSS Inc, IBM Company, Chicago, IL, USA). A P-value of 

less than 0.05 was considered statistically significant.  

 

III. RESULTS  

1. Brain temperature  

 The local brain temperature in the cortex and striatum supplied by the MCA remained 

unchanged from 37 °C in control and localized warm-saline infusion groups. Brain 

temperature in the localized cold-saline infusion group was reduced to 33–34 °C after 

10 min of cold (20°C) saline infusion. After stopping the cold-saline infusion, the brain 

temperature gradually increased to 37°C after an average of 8 minutes. The rectal 

temperature was maintained at 37°C using a circulating heating pad.  

 



9 

 

2. Permeability parameters 

Nineteen rats (5 for control, 8 for cold-saline, and 6 for warm-saline groups) from the 

original 30 rats successfully underwent surgical procedures, localized brain cooling, 

and all DCE-MRI, and were included for final analysis. The other 11 rats did not 

survive until the completion of the experiments.  

 All rats showed acute infarction in the left basal ganglia or cortex on DWI. The ROIs 

were placed in contrast-enhancing lesions of the left basal ganglia or cortex.  

 The control group showed acute infarction in the left basal ganglia and cortex on DWI 

and apparent diffusion coefficient (ADC) maps, corresponding to strong contrast 

enhancement (Figure 2 A, B, C, D) on MRIs performed immediately after 3 h of 

reperfusion. In the same regions, all permeability parameters (Ktrans, Kep, Ve, Vp) 

increased (Figure 2). The second MRI showed a mild increase in the extent of the 

infarcted area and degree of enhancement (Figure 2 I, J, K, L), and the second DCE-

MRI also showed a persistent increase in permeability parameters in same areas after 

24 h of reperfusion (Figure 2 M, N, O, P).  

 
Figure 2: Control group showing DWI, ADC map, T2WI, contrast-enhanced T1-

weighted image, and the corresponding permeability imaging.  
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Increased signal intensity on DWI, decreased ADC value, strong enhancement in the 

left basal ganglia and cortex, suggesting acute infarction detected on first MRI (A, B, C, 

D) after 3 h of MCA reperfusion. The first DCE-MRI shows an increase in permeability 

parameters (Ktrans = 0.05, Kep = 0.39, Ve = 0.14, and Vp = 0.04 in red-colored ROI; Ktrans 

= 0.09, Kep = 0.32, Ve = 0.12, and Vp = 0.09 in green-colored ROI), (E, F, G, H, serially). 

A further increase in enhancement and diffusion restriction was seen on second MRI (I, 

J, K, L) after 24 h of reperfusion, and permeability parameters also showed a persistent 

increase in the same areas on the second MRI (Ktrans = 0.11, Kep = 0.4, Ve = 0.43, and Vp 

= 0.05 in red-colored ROI; Ktrans = 0.14, Kep = 0.39, Ve = 0.61, and Vp = 0.06 in green-

colored ROI) (M, N, O, P, serially). 

 

A, I: Diffusion weighted image (DWI) 

B, J: Apparent diffusion coefficient (ADC) map  

C, K: T2-weighted image 

D, L: Contrast-enhanced T1-weighted image 

E, M: Ktrans image 

F, N: Kep image 

G, O: Ve image 

H, P: Vp image 

 

 In the cold-saline infusion group, acute infarction was seen in the left basal ganglia 

and cortex on DWI and ADC maps (Figure 3 A-B). Strong enhancement appeared at 

sites of acute infarction on contrast-enhanced T1-weighted images and a marked 

increase in permeability was noted in the corresponding area on DCE-MRI (Figure 3 C-

D, E-H). Although the DWI and ADC maps showed no significant interval change 

(Figure 3 I-J), there were marked decreases in enhancement and permeability 

parameters on the second MRI after 24 h of reperfusion, compared with the initial MRI 

study (Figure 3 K-L, M-P).  
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Figure 3: Cold-saline group with diffusion restriction and strong enhancement in the 

infarct area in the left basal ganglia and cortex on first MRI (A, B, C, D) after localized 

brain cooling and 3 h of MCA reperfusion. DCE-MRI (E, F, G, H, serially) shows an 

increase in permeability parameters (Ktrans = 0.04, Kep = 0.26, Ve = 0.2, and Vp = 0.02 in 

red-colored ROI; Ktrans = 0.10, Kep = 0.4, Ve = 0.26, and Vp = 0.02 in green-colored ROI). 

The second MRI shows a marked decrease in enhancement, compared with the first 

enhanced image and no significant interval change in diffusion restriction (I, J, K, L). 

Permeability parameters indicate a marked decrease (Ktrans = 0.05, Kep = 0.04, Ve = 0.24, 

and Vp = -0.01 in red-colored ROI; Ktrans = 0.04, Kep = -0.14, Ve = 0.12, and Vp = -0.01 

in green-colored ROI) (M, N, O, P, serially). 

.  

 In the warm-saline infusion group, acute infarction was seen in the left basal ganglia 

and cortex on DWI and ADC maps (Figure 4 A-B). Contrast-enhanced T1-weighted 

images showed strong enhancement in the infarction areas and DCE-MRI showed 

increased permeability in the corresponding areas (Figure 4 C-D, E-H). The second 

MRI showed decreases in enhancement and permeability parameters for same area after 
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24 h of reperfusion (Figure 4 L-P).  

 
Figure 4: Warm-saline group with diffusion restriction and strong enhancement in the 

infarct area in the left basal ganglia and cortex on first MRI (A, B, C, D) after localized 

warm-saline infusion and 3 h of MCA reperfusion. DCE-MRI (E, F, G, H, serially) 

shows an increase in permeability parameters (Ktrans = 0.17, Kep = 0.46, Ve = 1.22, and 

Vp = 0.15 in red-colored ROI; Ktrans = 0.53, Kep = 0.38, Ve = 0.4, and Vp = 0.43 in green-

colored ROI). The second MRI shows a decrease in enhancement and a mild increase in 

the extent of diffusion restriction in same area (I, J, K, L) after 24 h of reperfusion. 

Permeability parameters indicate a decrease (Ktrans = 0.07, Kep = 0.36, Ve = 0.21, and Vp 

= 0.04 in red-colored ROI; Ktrans = 0.04, Kep = 0.09, Ve = 0.31, and Vp = 0.1 in green-

colored ROI) (M, N, O, P, serially). 

 

DCE-MRI showed an increase in permeability parameters in the hemisphere ipsilateral 

to the MCA occlusion (Table 1). 
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Table 1. Permeability parameters after analysis of DCE-MRI 

         Ktrans  Kep Ve Vp 

         Mean s.e. Mean s.e. Mean s.e. Mean s.e. 

ROI Cortex Control Time 1 0 0 0 0 0 0 0 0 

2 .15 .05 .74 .18 .15 .03 .02 .02 

3 .13 .03 .64 .13 .21 .02 -.01 .04 

Cold  

saline 

(20°C) 

Time 1 0 0 0 0 0 0 0 0 

2 .09 .02 .36 .07 .38 .14 .07 .02 

3 .05 .01 .18 .09 .31 .07 .06 .02 

Warm 

saline 

(37°C) 

Time 1 0 0 0 0 0 0 0 0 

2 .07 .01 .30 .07 .39 .15 .06 .02 

3 .09 .09 .58 .10 .35 .17 .03 .02 

Basal  

ganglia  

Control Time 1 0 0 0 0 0 0 0 0 

2 .11 .04 .71 .07 .38 .14 .07 .02 

3 .12 .03 .52 .11 .28 .07 .02 .04 

Cold  

saline 

(20°C) 

Time 1 0 0 0 0 0 0 0 0 

2 .06 .02 .37 .11 .25 .08 .04 .01 

3 .03 .01 .17 .13 .39 0.24 .04 .02 

Warm 

saline 

(37°C) 

Time 1 0 0 0 0 0 0 0 0 

2 .09 .01 .45 .11 .25 .04 .03 .01 

3 .08 .03 .45 .08 .17 .03 .00 .01 

Note: ROI refers to region of interest. 

Time refers to 1=baseline; 2=after 3hours of MCA reperfusion; 3=after 24 hours of reperfusion 

 

No cases showed an increase in permeability parameters in the contralateral (normal-

appearing) hemisphere on DCE-MRI. Mixed model analysis was performed to compare 

differences in permeability parameters with treatment after 3 h of MCA reperfusion and 

24 h of reperfusion. Although the number of samples was small for each group, data for 

each of the permeability parameters were normally distributed. Areas of contrast 

enhancement showed variable patterns for each group. Some rats showed dominant 

enhancement in the basal ganglia and others showed dominant enhancement in both the 

basal ganglia and cortex. To evaluate the patterns of changes in permeability 

parameters after reperfusion of the MCA, we used the average values for the basal 

ganglia and cortex.  
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In the cold-saline infusion group, serial follow-up of Ktrans showed that it initially 

increased but later decreased in the ipsilateral cortex and basal ganglia. In the warm-

saline infusion group, Ktrans initially increased and showed a persistent increase or 

plateaued. In the control group, Ktrans showed a marked increase initially and then a 

slight decrease or a persistent increase. Kep demonstrated a similar pattern to Ktrans in the 

cortex and basal ganglia. Ve and Vp showed no consistent pattern of change 

over follow-up (Figure 5).  
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Figure 5: Sequential changes in permeability parameters after reperfusion. (Mixed 

model) 

 Among the permeability parameters, Ktrans showed significant decreases in the 

ipsilateral cortex and basal ganglia in DCE-MRIs at 3 and 24 h in the cold-saline 

infusion groups, compared with the control group (0.0095 and 0.0003 respectively, P < 

0.05) (Table 2). There was also a statistically significant decrease in Ktrans in the 

ipsilateral cortex in the warm-saline group compared with the control group at 3 and 24 

h (0.0166, P < 0.05) (Table 2). Kep showed significant decreases in the ipsilateral cortex 

and basal ganglia in DCE-MRIs at 3 and 24 h in the cold-saline group (0.0002 and 

0.0003 respectively, P < 0.05) and warm-saline group (0.0186 and 0.0489 respectively, 

P < 0.05), compared with the control group (Table 2). The Kep of the cold-saline group 

showed decreases that approached significance in the infarcted areas of the ipsilateral 

cortex and basal ganglia at 3 h and 24 h follow-up compared with the warm-saline 

group (cortex: 0.0892, basal ganglia: 0.0925) (Table 2). 

 

Table 2. Mixed model of permeability parameters  

    
group

1-2  
P value <0.05 

group 1-

3  

P value 

<0.05  
group 2-3  

P value 

<0.05  

Ktrans  Cortex  0.0095   significant 0.0166  significant 0.6609 
 

 
Basal ganglia 0.0003   significant 0.1054 

 
0.4058 

 
Kep  Cortex  0.0002   significant 0.0186   significant 0.0892  borderline  

 
Basal ganglia 0.0003   significant 0.0489   significant 0.0925  borderline  

Ve  Cortex  0.2317 
 

0.2232 
 

0.9173 
 

 
Basal ganglia 0.8967 

 
0.5409 

 
0.3943 

 

Vp  Cortex  0.0648   borderline 0.3042 0.3806 
 

  Basal ganglia 0.5574   0.6213   0.2276   

Note: Group 1 refers to control; group 2=cold saline; group 3=warm saline  
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3. Rotarod test 

 Twenty-four hours after MCA occlusion, the rotarod performance decreased markedly 

in the three groups, but the changes in the cold-saline and warm-saline groups were 

insignificant compared with baseline values. Similarly, on days 6 and 9, there was a 

mild decrease in motor performance in the all groups (Figure 6).  

 
Figure 6: Differences in rotarod testing at each time point (on days 1–9 after tMCAO). 

 

However, there were no significant differences in performance of the rotarod test 

between the three groups after reperfusion (Table 3).  

Table 3.Rotarod test  

  P value 

Control vs cold saline group  0.2583 

Control vs warm saline group  0.784 

Cold saline group vs warm saline group  0.378 
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4. Histopathological and immunohistochemical findings  

 In the control group, areas of decreased hematoxylin and eosin (H & E) staining were 

seen in the left basal ganglia and cortex on photographs at low magnification (Figure 7 

A). Multiple foamy macrophages and marked increases in the numbers of inflammatory 

cells were found in the control group (Figure 7 G). In the cold-saline infusion group, 

decreased H & E staining area was also noted in left basal ganglia and cortex (Figure 7 

B). Compared with the control group, however, numbers of foamy macrophages and 

inflammatory cells were decreased in the cold-saline group (Figure 7 H). In the warm-

saline infusion group, decreased H & E staining area was also observed in the left basal 

ganglia and cortex (Figure 7 C). Compared with the control group, numbers of foamy 

macrophages and inflammatory cells were also markedly decreased in the warm-saline 

group (Figure 7 I).  

 In immunohistochemical staining for MPO, infarction was revealed as areas of 

reduced staining area, which were consistent with areas showing reduced H & E 

staining in all groups (Figure 7 D-F). MPO-positive neutrophils infiltrated infracted 

areas surrounding brain microvessels (Figure 7 J-L). The overall numbers of 

inflammatory cells were 52.6 ± 27.3 (mean ± SD) in the control group, 7.2 ± 2.6 in the 

cold-saline group, and 29.4 ± 30.9 in the warm-saline group, respectively. The numbers 

of MPO-positive neutrophils were 37.8 ± 27.3 in the control group, 37.6 ± 11.5 in the 

cold-saline group, and 65.2 ± 44.5 in the warm-saline group, respectively.  
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Figure 7. A-C: Scan magnified H&E images of rat brain from control (A), warm-saline 

(B), and cold-saline (C) groups. Images show reduced H & E staining in the left basal 

ganglia and cortex of the left MCA territory. D-F: Scan magnified MPO-

immunostained images of rat brain in control (D), warm-saline (E), and cold-saline (F) 

groups. Images show reduced MPO immunostaining in the left basal ganglia and cortex 

of the left MCA territory. G-I: High-power views (400×) of the H & E-stained sections 

of the rat brain in control (G), warm-saline (H), and cold-saline (I) groups. (G) In the 

control group, multiple foamy macrophages and an infiltration of inflammatory cells 

are seen in the perimicrovascular area. (H) In the warm-saline group, foamy 

macrophages and inflammatory cells were also decreased compared with the control 

group. (I) In the cool-saline group, foamy macrophages and inflammatory cells were 

markedly decreased compared with the control group. J-L: High-power views (400×) of 

MPO-immunostained sections of the rat brain in control (J), warm-saline (K), and cold-

saline (L) groups. (J) In the control group, MPO-positive neutrophils (arrow) infiltrate 

the perimicrovascular area. There are significant decreases in the number of MPO-
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positive cells (arrows) in warm-saline (K) and cold-saline (L) groups compared with 

the control group.  

 

 The percentage of the total number of inflammatory cells that are MPO-positive cells 

was found to be significantly decreased in the cold- and warm-saline infusion groups 

compared with the control group (P = 0.008 and P = 0.032, respectively). Notably, the 

percentage of MPO-positive cells in the cold-saline group was significantly lower than 

that of the warm-saline group (P = 0.009) (Figure 8).  

 
Figure 8. Comparison of the percentage of MPO-positive cells in the total mixed 

population of inflammatory cells. Each box plot represents the mean and standard 

deviation and the line through the box plot indicates the range. The percentage of MPO-

positive cells is significantly higher in the control group than in the cold-saline and 

warm-saline groups. In addition, the percentage of MPO-positive cells in the cold-

saline group is significantly lower than that of the warm-saline group.  

 

IV. DISCUSSION  

Brain hypothermia can reduce the size of the infarct area and damage due to cerebral 

ischemic after tMCAO in an animal model.12 Although the exact mechanisms 

underlying this treatment are not completely understood, it is generally accepted that 
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brain hypothermia has protective effects against BBB disruption.31 However, some 

papers have suggested that the post-ischemic protective effects of brain hypothermia 

may be related to other mechanisms, such as the reduction of leukotrienes, 

improvements in glucose utilization and blood flow, and slowing of reactions involving 

free radicals and the propagation of lipid-peroxidation cascades. 31,32 Physiological 

parameters of metabolic rate and cerebral blood flow couple over a wide range of 

temperatures, uncoupling only at <20°C.33,34 Gadolinium-DTPA does not cross an intact 

BBB and can therefore be used to detect BBB disruption. After focal cerebral ischemia 

or infarction, the disturbance of BBB integrity has been confirmed by Gadolinium-

DTPA-enhanced T1-weighted image.  

 Various perfusion MRI techniques have been implemented. Among them, dynamic 

susceptibility contrast-enhanced MRI (DSC-MRI) using T2 or T2* effects of the 

contrast medium can produce perfusion imaging with a single contrast injection, as well 

as effective information on permeability in delayed images.35-37 However, DSC-MRI 

exhibits a degree of T1 sensitivity and shows signal changes derived from relaxivity 

effects, especially from contrast agents leaking from the EES.38,39 The effects of 

extravascular leakage of contrast material on the T2 or T2* signal of DSC-MRI are 

difficult to estimate and, even if it were possible to measure the contrast transfer 

coefficient, this is less reliable than for DCE-MRI.40 DCE-MRI can minimize the 

distortion of the structures around large blood vessels where contrast agents are 

especially concentrated, because the paramagnetic recruitment effect is small.38 DCE-

MRI can meet the requirements for reliable dynamic imaging of enhancing brain 

lesions in BBB disruption due to the contrast pre-enhancement techniques available in 

DCE-MRI and low T1 sensitivity-based sequences. DCE-MRI is primarily 

recommended for pharmacodynamic assessment of antiangiogenic and antivascular 

therapies associated with BBB breakdown, and compared with DSC-MRI, this method 

is ideal for the quantification of permeability parameters.38-45 

 Ktrans refers to the volume transfer constant of the contrast leakage from blood vessels 

into the EES. Kep refers to the rate constant for reflux of contrast leakage from the EES 
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into the intravascular space. These permeability-related parameters were proposed as 

indicators of the mobility between the two spaces. We have tried to evaluate the 

changes to BBB permeability-related parameters using DCE-MRI in an animal model 

following localized brain cooling therapy for ischemia-infarction.  

 In our study, the contrast enhanced T1-weighted image 24 h after tMCAO showed 

persistent enhancement in the infarcted areas of rat brains in the control group. On the 

other hand, contrast enhancement was decreased in both localized saline groups. In 

addition, we observed a significant decrease in Ktrans and Kep values, and in the number 

of inflammatory cells in serial follow-up investigations in the cold- and warm-saline 

infusion groups compared with the control group. These results suggest that localized 

saline infusion therapy has exerted protective effects on BBB integrity in the rat brain 

during ischemia-reperfusion.  

Cytotoxic edema is the predominant type of edema at acute infarction.46 Subsequently, 

brain ischemia and hypoxia would deteriorate due to brain swelling and intracranial 

hypertension, which would cause neuron dysfunction and further aggravated the 

cytotoxic brain edema. At this time, cytotoxic brain edema would predominate, and 

extracellular extravascular space was to be decreased. However, cytotoxic edema alone 

is not enough to aggravate the lesion because water content is not increased, When 

BBB opening occurs, water is driven from the vessels into the extracellular 

extravascular space and then enters the cells.47 Finally, cytotoxic edema would diminish 

due to neuron necrosis and cell collapse. In our study, Ve of control group in ipsilateral 

cortex showed decreased value compared with cold and warm saline group and serial 

change of Ve in cold-saline group showed persistent increase at ipsilateral basal ganglia. 

So BBB stability was estimated to affect the expansion and contraction of the capacity 

of Ve. Thus, the BBB may be a target for treatments to relieve brain edema and swelling.   

 In the comparisons between cold-saline and warm-saline groups, a significant 

decrease in numbers of inflammatory cells was observed in the area affected by 

ischemia on 3 h and 24 h follow-up in the cold-saline group compared with the warm-

saline group. However, there was no statistically significant difference in parameters 
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related to BBB permeability between the cold- and warm-saline groups. There are 

several possible explanations for these effects. Firstly, these findings suggest that the 

contrast leakage was reduced by a more stable BBB in vessels after localized infusion 

of either cold or warm saline to the ischemic area. We suspect that the warm-saline 

infusion also had a cooling effect on local brain tissue. Some papers have reported that 

the infusion of saline into the ischemic territory plays a very important role in the 

prevention of reperfusion injuries in addition to the effects of hypothermia.48 Infusion 

with saline at 37°C can reduce the expression of intercellular adhesion molecule 1 

(ICAM-1) and leukocyte infiltration into the ischemic area. ICAM-1 is one of the 

mediators of the acute inflammatory reaction that causes circulating leukocytes to 

infiltrate the ischemic brain parenchyma. Secondly, the duration of localized brain 

cooling (10 min) and the follow-up period (9 days) might have been too short for the 

specific effects of cooling to be observed.  

 Most animal experiments have been based on the assumption that the timing of the 

therapeutic window for mild hypothermia after tMCAO is critical. Several studies in 

animals and humans investigating systemic hypothermia and localized brain cooling 

have indicated a cooling duration of only 10 min, because oxygen extraction remains 

unchanged and investigators need to consider the feasibility and safety of the 

experiment.6,33,34,49 Our study was based on a similar hypothesis when planning the 

animal experiment, and it was difficult to determine the exact time window for 

localized intra-arterial hypothermia. One report has indicated that localized cold-saline 

infusion (20 °C) for 2.5 h after brain ischemia significantly reduces infarction volume 

whereas reperfusion without localized cold-saline infusion does not.50 The therapeutic 

time for localized saline infusion could be extended at least to 30 minutes. 

 In the current study, the results of the rotarod test showed no significant differences 

among the three groups. A previous study comparing head cooling, systemic whole-

body cooling, and vascular cooling reported that vascular cooling led to the most 

improvements in animal exercise testing.51 When interpreting the differences between 

those results and ours, it should be kept in mind that exercise testing in the previous 
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study was performed 14 and 28 days after the surgical procedure. By contrast, we have 

tried to compare the difference between our three groups during the first 9 days of the 

acute period of infarction, and therefore a direct comparison may not be possible. The 

reduction in exercise capacity after infarction may be related to a variety of reactions 

such as rapid brain swelling, destruction of axons, and cerebral hemorrhage, as well as 

BBB breakdown, and therefore there may be no significant correlation between the 

results of early exercise testing and the stability of the BBB. In our study, rats in the 

cold-saline infusion group showed a rapid decline in rotarod testing after tMCAO. A 

possible explanation is that a few rats with good exercise capacity among the randomly 

selected rats may have suffered greater damage after infarction, but in the recovery time 

over 9 nine days, they did not show significant differences compared with the other rats.  

 We acknowledge several limitations to our study. A major weakness is the limited 

number of animal subjects used in the experiments. Therefore, further investigations 

with a large number of animals will be necessary in the future. Secondly, we employed 

a clinical whole-body 3.0-Tesla MRI scanner and 8-channel wrist coil for DCE-MRI 

analysis of contrast leakage from blood vessels using the pharmacokinetic model in this 

study, instead of a higher field-strength MRI unit dedicated to animal experiments. 

Thirdly, the ROI was drawn manually on DCE-MRI images in contrast enhancing areas 

of the basal ganglia and cortex. It was relatively easy to select ROIs in the contrast 

enhancing area of the basal ganglia. On the other hand, the cortex was located 

peripherally and tended to show fine and irregular enhancement, and consequently 

there was some difficulty in drawing ROIs. Therefore, ROIs were drawn several times 

in the cortex of each subject, and the average value was calculated. Lastly, we were 

limited by a general lack of knowledge regarding delayed or secondary results when we 

selected the temperature of 20 °C for the cold saline to make a clear distinction from 

the warm-saline group. Further investigations will be required in future clinical practice 

to decide the optimal temperature for localized brain cooling in order to ensure the most 

viable and efficient results.  
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V. CONCLUSION  

 In summary, we demonstrated that localized brain cooling has a protective effect on 

BBB integrity following transient focal cerebral ischemia and reperfusion in rats. These 

data raise the intriguing possibility that localized brain cooling may play an important 

role in reducing ischemic neuronal damage and provide a potential therapeutic 

approach in patients with cerebral infarction.  
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<ABSTRACT (IN KOREAN)>  

 

일과성 중간 대뇌 동맥 폐색 쥐 모델에서 

국소 뇌 냉각 후 역동성 조영 증강 자기공명영상을 이용한 

혈액 뇌 장벽의 투과성 평가 

 

 

<지도교수 이승구>  

 

연세대학교 대학원 의학과  

 

김은수 
 

 

서론: 국소 뇌 냉각 치료는 재 관류 전에 시행하면 뇌졸증 치료에서 뇌 

염증반응을 감소시키고 뇌신경세포의 기능을 복구하는 것을 돕는다. 그러나 

아직까지 국소 뇌 냉각치료가 혈액-뇌 장벽(BBB) 변화와 관련된 투과성 변

화에 어떤 영향을 미치는 지에 대해서는 알려진 바가 거의 없다. 

목적: 그래서 이 연구의 목적은 역동적 조영 증강 자기공명영상을 이용하

여 일시적 중대뇌동맥폐색을 일으킨 쥐들을 대상으로 국소 뇌 냉각치료가 

혈액-뇌 장벽 (BBB) 투과율에 어떤 영향을 주는지에 대해서 알아보고자 한

다. 

재료 및 방법: 서른 마리의 쥐들을 10마리씩 대조군, 국소 냉 식염수 (20 °

C) 주입 그룹 그리고 국소 온 식염수(37 °C) 주입 그룹 세 군으로 나누었다. 

대조군의 마취된 쥐에서 왼쪽 중대뇌동맥을 1시간 동안 폐색시킨 다음 3시

간 동안 재관류을 시행하였다. 국소 식염수주입그룹에서는 중대뇌동맥 폐색 

후에 10분 동안 유공 필라멘트를 통해 6ml의 냉 혹은 온 식염수를 주입하
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였다. 역동적 조영 증강 자기공명영상을 재관류 3시간과 24시간 후에 시행

하였다. Toft 모델의 네 가지 약물 동태학적 매개변수들 (wash-in rate 

[Ktrans], wash-out rate [Kep], leakage-space volume [Ve], and plasma-

space volume [Vp])을 각각의 역동적 조영 증강 자기공명영상를 찍은 다음 

산출하였다. 또한, 로타로드 행동검사를 일시적 중대뇌동맥폐색 전에 시행하

고, 일과성 중대뇌동맥폐색 후에 1일에서 9일 동안 계속 시행하였다. 마이

엘로퍼옥시다제(MPO)면역 조직 화학 염색은 쥐의 뇌염증반응과 관련된 호

중구 침투을 식별하기 위해 수행되었다. 

결과: 대조군과 비교하여 국소 냉 식염수 주입그룹에서 뇌 경색부위에서 

Ktrans 와 Kep의 통계적으로 유의한 감소가 있었으며 (P < 0.05), 온 식염수 

주입그룹과 비교하여 냉 식염수 주입그룹에서 Kep의 유의한 통계학적 접근

을 보이는 감소가 있었다 (Kep: cortex, P = 0.0892 basal ganglia, P = 

0.0925). 

냉 식염수 주입그룹의 MPO-양성세포의 비율은 대조군과 온 식염수 주입그

룹보다 통계학적으로 유의하게 낮았다(P < 0.05). 그러나 행동실험은 세 집

단간에 통계적으로 유의한 차이를 보이지 않았다. 

결론: 국소 뇌 냉각 치료는 일과성 대뇌 허혈 및 재관류를 시행한 동물 

모델에서 BBB투과성의 증가를 억제할 수 있다. 

 

 

 

 

 

 

 

핵심되는 말 : 뇌허혈, 중대대뇌동맥, 혈액 뇌 장벽, 투과성, 자기공명영상. 


