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Abstract

Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows
limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent
Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vacci-
nation strategy is urgently required. Boosting the BCG-induced immunity may offer a poten-
tially advantageous strategy for advancing TB vaccine development, instead of replacing
BCG completely. Despite the improved protection of the airway immunization by using live
BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here,
we analyzed the protective efficacy of y-irradiated BCG as a BCG-prime boosting agent for
airway immunization against a hypervirulent clinical strain challenge with Mycobacterium
tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878
strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and tran-
sient protection, whereas BCG vaccination followed by multiple aerosolized boosting with y-
irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduc-
tion and pathological findings. Further immunological investigation revealed that this
approach resulted in a significant increase in the cellular responses in terms of a robust
expansion of antigen (PPD and Ag85A)-specific CD4™ T cells concomitantly producing IFN-
v, TNF-q, and IL-2, as well as a high level of IFN-y-producing recall response via both the
local and systemic immune systems upon further boosting. Collectively, aerosolized boost-
ing of y-irradiated BCG is able to elicit strong Th1-biased immune responses and confer
enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection
in a boosting number-dependent manner.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global
health threat and led to 1.5 million deaths worldwide in 2013 [1]. The only vaccine currently
available for TB, Mycobacterium bovis bacillus Calmette-Guerin (BCG), is included in neonate
or childhood vaccination programs in many countries despite the variable efficacy of protec-
tion against pulmonary TB shown in many clinical studies [2, 3]. Nevertheless, recent clinical
studies using meta-analyses have shown that the absence of mycobacterial exposure prior to
BCG vaccination is associated with higher efficacy [4], and BCG is still advantageous against
Mtb infection [5]. Thus, although it is not sufficient to eradicate TB, prime vaccination with
BCG is still useful and practical, and prime-boost regimens may provide a more promising vac-
cine strategy against TB.

BCG is typically administered by the intradermal (i.d.) or subcutaneous (s.c.) route. Consid-
ering that TB infections are primarily attained via the airway and because the host immunity to
TB is mediated by immune cells in the lungs, many researchers have performed studies to
match the route of vaccination to the natural route of infection to obtain higher efficacy.
Among these, the most recent study showed that the intranasal (i.n.) administration of BCG
showed greater protection compared to s.c. administration, which lasted up to 10 months post-
immunization in mice [6]. Additionally, the intratracheal (i.t.) administration of BCG showed
better efficacy than s.c. administration, with dose dependency [7]. As BCG-induced immunity
would be expected to wane over time [8] and more than 80% of people received this vaccine
when they are neonates, boosting the BCG-induced immunity is a more practical strategy than
new TB vaccine development.

Recently, many researchers have investigated the potential of various antigens, vectors and
adjuvant to boost BCG-induced immunity. Among them, boosting with MVA85A, a modified
vaccinia Ankara virus harboring antigen 85A, showed improved protective efficacy in animal
models when it was administered intramuscularly, although it did not show protective effects
in clinical trials [9]. However, it was demonstrated that aerosol boosting with MVA85A
showed enhanced protection and increased immunogenicity compared to intramuscular boost-
ing in animal models [10, 11], although this route of administration has not yet been tested in
human clinical trials. Thus, there is substantial evidence that BCG immunization via the airway
route, whether used as a single vaccine or a priming vaccine as a heterologous boosting strat-
egy, confers superior protection.

In contrast, there have been only limited studies regarding the protective efficacy of homol-
ogous boosting using BCG via the airway route. In addition, revaccination strategies involving
the homologous boosting of BCG via the s.c. or i.d. route showed limited protective efficacy in
several clinical trials [12-15]. As BCG is a live (albeit attenuated) bacterium, it has the potential
to become disseminated and cause disease, especially in patients with primary immunodefi-
ciency [16]; the WHO does not recommend revaccination with BCG for this reason [17]. Fur-
ther mucosal immunization via the intranasal route has raised safety concerns when subunit
vaccines were administered via this route with adjuvants [18, 19]. Considering these factors, we
assumed that inactivated BCG would be safer and could be used as an aerosol booster regimen.
Nevertheless, one previous study used heat-killed BCG as an antigen in combination with adju-
vant as an i.n. booster, but a single boost resulted in no further protection compared with
parental immunization in the lungs, despite a significant reduction in the bacterial load in the
spleen [20]. Thus, when using BCG for aerosol-based TB vaccine strategies, technical issues
such as sustaining the immunogenicity of BCG, the preparation of inactivated BCG, and the
number of boosting events must be optimized.
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Microbes can be inactivated by several methods, and the preservation of antigenic epitopes
is a key factor that affects the efficacy of an inactivated vaccine. The method of inactivation
also affects the antigenicity, and thus the efficacy, of a vaccine. For example, numerous studies
with the influenza virus (for which most vaccines are derived from chemically inactivated
viruses) reported that the antigenic structures might have been altered by chemical treatment,
resulting in a failure to induce appropriate immune responses [21-24]. For example, y-irradi-
ated Listeria monocytogenes induced protective T cell responses in mice more efficiently com-
pared to heat-killed bacteria [25]. This higher efficiency is important because the host cellular
immunity is important for protection against L. monocytogenes, similarly to Mtb infection.
Thus, we applied a y-irradiation method to inactivate the live BCG employed as part of a
booster regimen. In addition, we hypothesized that an increased number of aerosol boost epi-
sodes may enhance the protective efficacy, similar to the dose-dependent protective efficacy
observed following i.t. BCG vaccination in mice [7]. To the best of our knowledge, our study is
the first to apply a y-irradiation method for BCG inactivation.

The phenotypic and pathogenic variations among Mtb isolates are important to consider
when designing and developing a TB vaccine, and the vaccine should be valid for the most
prominent Mtb genotype(s). Because most TB experiments used for vaccine testing have been
performed using a laboratory strain (H37Rv), which does not adequately reflect the clinical sit-
uation, it is necessary to test the protective efficacy of new vaccines against highly virulent, clin-
ically relevant TB isolates [8]. The W-Beijing Mycobacterium tuberculosis family, the
predominant genotype of M. tuberculosis strains, is distributed widely around the world and is
highly prevalent in East Asia [26]. An epidemiological study showed that W-Beijing family
strains were isolated more frequently from BCG-vaccinated TB patients than from non-immu-
nized patients, suggesting that it may be a selective force for the emergence of the W-Beijing
genotype [27]. In addition, a previous study showed that BCG vaccination of mice provided
less protection against W-Beijing isolates than Mtb H37Rv [28]. One clinical isolate that caused
a TB outbreak, HN878, has been characterized as a hypervirulent strain associated with
increased mortality [29], and BCG was shown to have reduced protective efficacy against this
strain [30, 31]. Therefore, we tested our hypothesis regarding the boosting strategy by using the
clinical hypervirulent strain HN878 in a murine model in this study.

Materials and Methods
Ethics statement

All animal experiments were performed in accordance with the Korean Food and Drug
Administration (KFDA) guidelines. The experimental protocols used in this study were
reviewed and approved by the Ethics Committee and Institutional Animal Care and Use Com-
mittee (Permit Number: 2013-0016-03) of the Laboratory Animal Research Center at Yonsei
University College of Medicine (Seoul, Korea). Carbon dioxide (CO,) was used for euthanasia.

Mice

Six-week-old female specific pathogen-free C57BL/6 mice were purchased from Japan SLC,
Inc. (Shijuoka, Japan). The mice were maintained under barrier conditions in a BL-3 biohazard
animal facility at the Yonsei University Medical Research Center with constant temperature
(24 £ 1°C) and humidity (50 + 5%). The animals were fed a sterile commercial mouse diet and
provided with water ad libitum under standardized light-controlled conditions (12 h light and
dark periods). The mice were monitored daily, and none of the mice exhibited any clinical
symptoms or illness during this experiment.
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Bacterial strains and preparation of inactivated BCG by y-irradiation

M. tuberculosis HN878 was obtained from the strain collections of the International Tubercu-
losis Research Center (ITRC, Changwon, Gyeongsangnam-do, South Korea). Mycobacterium
bovis BCG (Pasteur strain 1173P2) was kindly provided by Dr. Brosch at the Pasteur Institute
(Paris, France). All mycobacteria used in this study were prepared as described previously [30].

BCG was irradiated using a Gammacell 3000 Elan irradiator (MDS Nordion, Ottawa,
Ontario, Canada) with central 35,724 Gy and a minimum of 26,864 Gy for 1.5 h. After irradia-
tion, the bacilli were plated and cultured for six weeks, and the BCG were confirmed to show
no growth during this culture.

Vaccination protocols and experimental infection

The vaccination groups and schedules are shown in Table 1. For priming vaccination, mice
were vaccinated with 3 x 10> CFU of BCG via the s.c. route. All aerosol immunizations or TB
infections by the aerosol route were performed with a Glas-Col aerosol apparatus (Terre
Haute, IN), which is a whole body exposure chamber. For the aerosol immunization of live
BCG, the nebulizer compartment was filled with 6 ml of a suspension containing 2 x 10° CFU
of BCG. This amount corresponded to each mouse receiving approximately 2 x 10* CFU of
BCG. The same amount of BCG (2 x 10° CFU / 6ml) was irradiated and loaded to the nebulizer
compartment for aerosol immunization. Six weeks after the final immunization, 5 mice per
group were euthanized to analyze the immune responses, and the remaining mice received 200
CFU of HN878 by the aerosol route at 7 weeks after the final immunization.

Bacterial counts and histopathological analysis

At 5 and 10 weeks after the HN878 challenge, five mice per group were euthanized with CO,,
and the lungs and spleens were homogenized. The number of viable bacteria was determined
by plating serial dilutions of the organ (left lung or half spleen) homogenates onto Middlebrook
7H11 agar (Difco Laboratories, Detroit, MI) supplemented with 10% OADC (Difco Laborato-
ries), amphotericin B (Sigma-Aldrich, St. Louis, MO) and 2 pg/ml 2-thiophenecarboxylic acid
hydrazide (Sigma-Aldrich). Colonies were counted after 2-3 weeks of incubation at 37°C. For
the histopathological analysis, the superior lobes of the right lung were stained with hematoxy-
lin and eosin and assessed for the severity of inflammation. The level of inflammation in the
lungs was evaluated using the Image] (National Institutes of Health, Bethesda, ML) software
program, as described previously [32]. In addition, the inflammatory responses were assessed
based on lesion size and constitution of immune cells.

Analysis of memory T cells by flow cytometry

For single-cell preparations, whole spleens and lungs were aseptically removed from 5 mice per
group at each euthanized time-point and incubated with RPMI 1640 digestion media (10%
fetal bovine serum, 0.1% collagenase type II [Worthington Biochemical Corporation, NJ], 1
mM MgCl,, 1 mM CaCl,) at 37°C for 30 min. Single-cell suspensions were filtered through a
40 pm cell nylon mesh cell strainer (BD Biosciences, San Diego, CA), treated with red blood
cell (RBC) lysing buffer (Sigma-Aldrich, St. Louis, MO) for 5 min, and washed twice with
RPMI 1640 medium (BioWest, Nuaillé, France) supplemented with 2% FBS. Single cells were
first blocked with Fc Block (anti-CD16/32) for 15 min at 4°C and then stained with
BV421-conjugated anti-CD3, PerCp-Cy5.5-conjugated anti-CD4, APC-Cy7-conjugated anti-
CD8, PE-conjugated anti-CD44, FITC-conjugated anti-CD62L and APC-conjugated anti-
CD127 antibodies for 30 min at 4°C.
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Table 1. Experimental groups in this study.

Group (Animal number) Priming agent (route) Boosting agent (route) Description (Weeks after prime vaccination)
G1 (n=25) None None Naive

G2 (n = 25) None None Infection control

G3 (n = 25) Live BCG (s.c.) None Parenteral immunization

G4 (n = 25) Live BCG (s.c.) Irradiated BCG (aerosol) Boosted once (9 w)

G5 (n = 25) Live BCG (s.c.) Irradiated BCG (aerosol) Boosted 3 times (6 w, 9 w and 12 w)

G6 (n = 25) Live BCG (s.c.) Live BCG (aerosol) Boosted once (9 w)

G7 (n = 25) None Irradiated BCG (aerosol) Administered 3 times (6 w, 9 w and 12 w)

doi:10.1371/journal.pone.0141577.t001

Intracellular cytokine staining

Purified protein derivative (PPD) was kindly provided by Dr. Brennan at Aeras (Rockville,
MD), and Ag85A-specific CD4 (Ag85A 261-27%aa [THSWEYWGAQLNAMKPDLQ]) and
CD8 (Ag85A 2-11aa [SRPGLPVEYL]) T cell peptides were synthesized by AbFrontier com-
pany (Young In Frontier, Seoul, Korea). For intracellular cytokine staining, single cell suspen-
sions from immunized animals (2 x 10° cells) were stimulated with PPD (2 ug/ml), Ag85A-
specific CD4 or CD8 T cell peptides (2 pg/ml) for 12 hours at 37°C in the presence of GolgiStop
(BD Biosciences). Only PPD was used as a stimulant for intracellular cytokine staining follow-
ing HN878 challenge. Cells were first blocked with Fc Block (anti-CD16/32) for 15 min at 4°C
and then stained with BV421-conjugated anti-CD3, PerCp-Cy5.5-conjugated anti-CD4, APC--
Cy7-conjugated anti-CD8 and FITC-conjugated anti-CD62L antibodies for 30 min at 4°C.
These cells were fixed and permeabilized with a Cytofix/Cytoperm kit (BD Biosciences)
according to the manufacturer’s instructions. Intracellular TNF-o, IL-2 and IFN-y were
detected using APC-conjugated anti-TNF-o, PE-Cy7-conjugated anti-IL-2 and PE-conjugated
anti-IFN-y antibodies in a permeation buffer. All antibodies were purchased from eBioscience
(San Diego, CA) unless otherwise stated. The cells were analyzed by a FACSverse flow cytome-
ter using the commercially available software program Flow]Jo (Treestar, Inc., San Carlos, CA).

Cytokine measurement in culture supernatant

Single cells prepared from the lungs of the immunized or infected mice were stimulated with
PPD (2 pg/ml) or Ag85A-specific CD4 or CD8 T cell peptides (2 pg/ml) for 24 h at 37°C. The
IFN-v cytokine levels in the culture supernatant were measured using a commercial ELISA kit
(eBioscience) according to the manufacturer’s protocol.

Antibody titers in serum

The PPD-specific IgG1, IgG2a, IgG2b, IgG2c and total IgG titers in serum were measured as an
indicator of the antigen-specific type 1 or type 2 immune responses. Briefly, plates were coated
with 1 ug/ml PPD, and HRP-conjugated antibodies against each IgG isotype were used as sec-
ondary antibodies. After stopping the reaction, the plates were read within 30 min at 495 nm
with a microplate ELISA reader with a cut-off OD of 0.1, obtained using serum from non-
immunized and non-infected mice.

Statistical analysis

The results are reported as the median + interquartile range (IQR) or mean + standard devia-
tion (SD). The levels of significance for comparisons between samples were determined by a
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one-way analysis of variance (ANOVA), followed by Dunnett’s post-test or a two-tailed
unpaired ¢-test using the statistical software program GraphPad Prism V5.0 (GraphPad Soft-
ware, San Diego, CA).

Results

Immune responses induced by aerosolized boosting of y-irradiated BCG
in the lungs

To determine the phenotypic properties of the memory T cells in the lung generated by each
boosting strategy, we analyzed the surface expression of CD44, CD62L and CD127 on CD3"-
gated CD4" and CD8" T cells using flow cytometry (Fig 1A and S1 Fig). For CD4" T cells, the
effector memory T cell (Tgyr) population was significantly increased in G6 compared to GI,
and all other groups showed a significantly increased Tgy; population compared to G3
(p<0.05). The CD4" central memory T cell (Tcy;) population was significantly increased in
G5, G6 and G7 compared to both G1 and G3 (p<0.05). Interestingly, BCG immunization did
not induce CD4" Tgy; and Ty populations but did induce the effector T cell population
(Tggr)- For CD8™ T cells, all groups showed a significantly increased Tgy; population compared
to GI. In particular, the Tgy population in G6 was higher than that in G3 (p<0.05), but no
other changes were observed in the other population of CD8" cells.

The lung cells were stimulated with PPD or Ag85A-specific CD4 or CD8 T-cell peptides,
and the level of IFN-y was measured to analyze the IFN-y responses of each boosting strategy
(Fig 1B). When stimulated with PPD, the IFN-y production of each group showed a similar
pattern to the population of CD4" Tgy; cells. However, when stimulated with Ag85A-specific
CDA4 T cell peptide, only G5 and G6 produced IFN-v, and the production level was higher in
G5 than G6 (p<0.05). Only G6 showed IFN-y production in response to Ag85A-specific CD8
T cell peptides, which was correlated with the increased CD8" Tgy; population in this group. A
further analysis of the PPD-specific antibody titer showed that the mice in all groups exhibited
PPD-specific IgG2c responses, an indicator of a Th1-biased response, except G7, which had no
live BCG vaccination by either route (Fig 1C).

To evaluate the pulmonary immune responses induced by each boosting strategy, we con-
ducted multiparameter flow cytometry with lung cells from immunized mice and measured
the percentage of multifunctional T cells that produced IFN-y plus TNF-o and/or IL-2 (Fig 2
and S1 Fig). In response to PPD stimulation, increased numbers of triple-positive (IFN-y™,
TNF-o", and IL-2") and double-positive (IFN-y* and TNF-0") CD4"CD62L" cells were
observed in the lungs of immunized mice (p<0.05). However, only G5 and G6 showed signifi-
cantly increased numbers of triple-positive CD4"CD62L" cells compared to G3 (p<0.05). Inter-
estingly, the percentage of triple-positive and double-positive (IFN-y" and TNF-o.")
CD4"CD62L" cells did not increase in response to Ag85A stimulation, except in G5 and G6.
For the CD8"CD62L" cells, both G5 and G6 showed significantly increased numbers of triple-
positive and double-positive (IFN-y" and TNF-a*) populations in response to PPD stimulation
compared to both naive cells and G3 cells (p<0.05). Moreover, G5 and G6 showed significantly
increased Ag85A-specific double-positive (IFN-y* and TNF-o") CD8*CD62L" cells, but only
G6 was significantly increased compared to G3 (p<0.05). The numbers of multifunctional
CD4" and CD8™ T cells that produced IFN-y and IL-2 or TNF-a and IL-2 were not increased
by BCG vaccination and/or the additional boosting methods performed in this study. Thus,
aerosolized boosting with irradiated BCG three times or with live BCG one time induced an
increase in the number of antigen-specific multifunctional CD4" and CD8" T cells in the lungs
of mice.
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Fig 1. Inmunogenicity in the lungs of immunized mice. Three weeks after the final immunization, mice from each group (n = 5) were sacrificed and lung
cells were prepared as described in the materials and methods section. The percentages of CD4*, CD8* central memory (CD44"CD62L*CD127*), effector
memory (CD44"CD62L CD127*), effector (CD44"CD62L CD127°), and naive (CD44'°CD62L*CD127%) T cells were analyzed by flow cytometry (A). A total
of 2 x 10° cells were added to each well of microtiter plates and incubated with PPD (2 ug/ml) or Ag85A-specific CD4 or CD8 T-cell peptides (2 ug/ml) for 24 h
at 37°C. The IFN-y concentrations in the suspension were detected using commercial ELISA kits (B). The induction of PPD-specific IgG2c antibodies in the
serum from each group of mice (C). The data are presented as the means + SD from five mice in each group. An unpaired t-test was used to determine the
significance of differences. A value of p<0.05 was considered to be statistically significant. * p<0.05, * p<0.01, and **# p<0.001 compared to G1. * p<0.05,
** p<0.01, and *** p<0.001 compared to G3. n.s.: not significant.

doi:10.1371/journal.pone.0141577.g001

Protective efficacy of aerosolized boosting in the lungs and spleens of
mice after challenge with the M. tuberculosis HN878 strain

To compare the protective efficacy, the bacterial burdens in the lungs and spleens of each
group of mice were analyzed at 5 and 10 weeks after the challenge (Fig 3). At 5 weeks post-chal-
lenge, the bacterial burden in the lungs of mice immunized with BCG via the parenteral route
showed less than a 1-log;, reduction following the HN878 challenge, although this was a
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Fig 2. Induction of antigen-specific multifunctional T cells in the lungs of immunized mice. Each group of mice was immunized and sacrificed as
described in the materials and methods section. Three weeks after the final immunization, mice from each group (n = 5) were euthanized and their lung cells
(2 x 108 cells) were stimulated with PPD (2 pg/ml) or Ag85A-specific CD4 or CD8 T cell peptides (2 ug/ml) for 12 h at 37°C in the presence of GolgiStop. The
percentages of antigen-specific CD4*CD62L" and CD8*CD62L T cells producing IFN-y, TNF-a, and/or IL-2 in the cells isolated from the lungs of each group
of mice were analyzed by multicolor flow cytometry by gating for CD4* and CD8* lymphocytes (A). Pie charts (B) show the mean frequencies of cells
coexpressing IFN-y, TNF-a, and/or IL-2. The data are presented as the mean * SD from five mice in each group. An unpaired t-test was used to determine
the significance of differences. A value of p<0.05 was considered to be statistically significant. * p<0.05, * p<0.01, and *** p<0.001 compared to G1. *
p<0.05, ** p<0.01, and *** p<0.001 compared to G3.

doi:10.1371/journal.pone.0141577.9g002

significant difference compared to G2 (p<0.001). The other entire group also showed signifi-
cant bacterial reduction in the lungs compared to G2 (p<0.001), and G5 and G6 showed signif-
icantly reduced bacterial loads in the lungs of mice, even compared to G3 (p<0.01). However,
at 10 weeks post-challenge, the bacterial reduction in the lungs of mice immunized with BCG
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presented as the median + IQR log,CFU/organ (n = 5), and the levels of significance for comparisons between samples were determined by a one-way
ANOVA, followed by Dunnett's test. A value of p<0.05 was considered to be statistically significant. ¥ p<0.05, * p<0.01, and #**# p<0.001 compared to G2. *

p<0.05, ** p<0.01, and *** p<0.001 compared to G3.
doi:10.1371/journal.pone.0141577.g003

via the parenteral route was diminished. Whereas G4 and G7 showed similar reductions in the
bacterial loads in the lungs that were only statistically significant compared to G2, G5 and G6
maintained the bacterial reduction in the lungs, even compared to G3 (p<0.001). The bacterial
burden in the spleen also showed a similar pattern to the CFU in the lungs, except for G7,
which showed no protective efficacy throughout the experiment. Significant bacterial reduction
was observed in the spleens of the other entire group at both time points, including the mice
immunized with BCG via the parenteral route, which showed no significant bacterial reduction
in the lungs at 10 weeks post-challenge. In the spleens, only G5 showed a significant reduction
compared to G3. Overall, groups 5 and 6 showed improved protective efficacy against the
HNB878 challenge in terms of the bacterial reduction in the lungs.
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Histopathological examination of lung tissues after challenge with the M.
tuberculosis HN878 strain

To assess the effectiveness of each boosting strategy with regard to the lung pathology, lung
slices from each mouse were stained with H&E and the area of inflammation relative to the
total lung area was analyzed (Fig 4). At 5 weeks post-infection, G4, G5, G6 and G7 showed sig-
nificantly reduced inflammation compared to G2 (p<0.05). However, no group showed signifi-
cantly reduced inflammation compared to G3. The pathology of the lungs was considerably
more deteriorated at 10 weeks post-infection than at 5 weeks post-infection. At 10 weeks post-
infection, only G5 and G6 showed significantly reduced inflammation compared to G2
(p<0.05). Whereas the group that received BCG vaccination without boosting showed no sig-
nificant reduction in lung inflammation, both G5 and G6 showed significantly reduced inflam-
mation in the lungs of mice at both time points.

In histopathological observations, G2 showed granulomatous lesions with larger sizes and
at higher frequencies than those of any other BCG-treated groups, irrespective of protocols at 5
weeks post-infection. Therefore, the higher amount of inflammation in control animals would
also be due to the larger sizes and numbers of lesions. All of the groups treated with BCG had
reduced amounts of granulomatous inflammation compared with the control group. Among
the BCG-treated animals, G5 and G6 had fully reduced pathology, with only a few smaller
lesions, compared to the other groups. More detailed findings at 5 weeks post-infection
revealed that the granulomatous lesions were mainly composed of macrophages and lympho-
cytes in G2, while numerous lymphocytes had infiltrated in the lesions of G5 and G6 (52 Fig).
Lymphocytic infiltrates present in the lungs of G5 and G6 were often associated with small
bronchioles or blood vessels, suggesting an active process of antigen-induced protection related
to the T cell-dependent immunity. At 10 weeks post-infection, animals developed progressive
pathology, with more extensive inflammatory lesions compared to 5 weeks post-infection.
These areas showed abundant vacuolated foamy macrophages in the alveolar lumen admixed
with lymphocytes and exudates. The interstitium was wide due to abundant inflammatory
infiltrates and fibrosis (S3 Fig). Similar to 5 weeks post-infection, the BCG-boosted animals,
particularly G5 and G6, demonstrated smaller and fewer granulomatous pneumonic lesions
than G2. Taken together, these pathology data support the stronger protective efficacy of repet-
itive boosting with irradiated BCG in mice.

Immunological changes in the lungs of mice after the M. tuberculosis
HN878 challenge

To determine how the observed changes in the immune responses induced by each boosting
strategy influenced the protection against challenge, we followed the immune responses in the
lungs of mice after the M. tuberculosis HN878 challenge. The frequency of PPD-specific triple-
positive multifunctional CD4" T cells in the lungs of mice in G5 and G6 was significantly
increased before the challenge, and this difference was maintained at both 5 and 10 weeks post-
challenge (Fig 5). However, the frequency of triple-positive multifunctional CD8" T cell was
diminished after the challenge.

The overall memory and effector T-cell subsets in the lungs of the mice changed after chal-
lenge (54 Fig). At 5 weeks post-challenge, the overall frequency of CD4" Tgy, cells was
decreased but had slightly recovered at 10 weeks post-challenge, whereas the frequency of
CD4" Tggk cells was dramatically increased following M. tuberculosis infection. All groups
showed an increased frequency of CD4" Tgy; cells compared to G2 (p<0.01), and this trend
was especially notable for G5, which was significantly increased compared to G3 at both 5 and
10 weeks post-infection. The frequency was increased only at 5 weeks for G6. Interestingly, G4
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compared to G3.

doi:10.1371/journal.pone.0141577.9004

showed an increased frequency of CD4" Tgy; cells compared to G3 both pre- and post- chal-
lenge but without enhanced protective efficacy. For the CD8" Tgy; cells, a similar pattern was
observed except for G5, G6 and G7. The frequency of CD8" Ty cells of these groups was sig-
nificantly increased at 5 weeks post-infection (p<0.05). Surprisingly, the frequency of CD8"
Tgrr cells was considerably decreased at this time point for G5 and G6. At 10 weeks post-infec-
tion, all groups showed an increased CD8" Tgy; and decreased CD8" T cell frequency com-
pared to the pre-challenge frequencies.
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Fig 5. Induction of multifunctional T cells in the lungs of mice after challenge with the M. tuberculosis HN878 strain. Five and ten weeks post-
infection, mice from each group (n = 5) were euthanized and their lung cells (2 x 10° cells) were stimulated with PPD (2 ug/ml) for 12 h at 37°C in the
presence of GolgiStop. The percentage of antigen-specific CD4*CD62L" and CD8*CD62L" T cells producing IFN-y, TNF-a, and/or IL-2 in the cells isolated
from the lungs of each group of mice were analyzed by multicolor flow cytometry by gating for CD4* and CD8* lymphocytes (A). Pie charts (B) show the mean
frequencies of cells coexpressing IFN-y, TNF-a, and/or IL-2. The data are presented as the mean + SD from five mice in each group. An unpaired t-test was
used to determine the significance of differences. A value of p<0.05 was considered to be statistically significant. # p<0.05, # p<0.01, and *** p<0.001
compared to G2. * p<0.05, ** p<0.01, and *** p<0.001 compared to G3.

doi:10.1371/journal.pone.0141577.9005

The IFN-y level was also measured in response to PPD stimulation from the lung cells of
each group after challenge (S4 Fig). The IFN-y production was significantly increased in all
groups compared to G2 (p<0.05), except for G3 at 10 weeks post-challenge. A similar pattern
was observed for the PPD-specific IgG2c responses, with only G5 and G6 maintaining higher
levels throughout the experiment (S4 Fig).
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Discussion

The vaccine platforms for TB that have recently been developed vary in their antigens and
delivery systems, but most have been designed for parental administration. However, numer-
ous lines of evidence suggest that strengthening the lung immunity (to match the primary
route of infection) showed superior protection against TB [6, 7, 10, 11, 20, 33]. Furthermore, it
was suggested that aerosol delivery of a TB vaccine directly to the respiratory mucosa might
offer physiological and immunological benefits [34]. Although these potential benefits of aero-
sol TB vaccine strategies have recently been emphasized, there is still a lack of technical and
practical means of applying aerosol delivery-based TB vaccines [35].

In this study, we applied a y-irradiation method to inactivate the live BCG employed as part
of an aerosolized booster regimen. As previously reported [31], the protective efficacy of BCG
against the hypervirulent HN878 strain is abrogated over time (0.61 log;, reduction at 5 weeks
vs. 0.27 log; o reduction at 10 weeks post-infection). It is still unclear whether this bacterial
reduction is due to a complete loss of the BCG-induced immunity or due to a natural reduction
of bacteria, which generally occurs at four weeks post-infection in Mtb-resistant mice, such as
C57BL/6 mice, due to the host immune response [30]. Nevertheless, our study clearly showed
that the protective efficacy in terms of bacterial burden against this Mtb strain was significantly
enhanced when irradiated BCG was used to aerogenically boost the response three times. In
addition, histopathology data support the enhanced protective efficacy of this boosting strat-
egy. Although we did not evaluate the histopathology of immunized animals prior to Mtb chal-
lenge in this study, no obvious gross pathology was observed after final immunization of the
repeated BCG aerosol boosting. Nevertheless, more details on histopathological analysis should
be obtained to further address the safety concerns involving this boosting strategy.

The protective efficacy of this method was equal to that of vaccination via the aerogenic
boosting with live BCG once, and no enhanced protective efficacy was observed following one
or three boosting episodes in the absence of priming BCG immunization. It has been recently
documented that long-term BCG persistence in the lung by intranasal delivery of a high dose
of live BCG (1 x 107 CFU) may provide protective advantages by recruiting Th1-type T-cells in
the airway [36]. Although aerosol immunization or boosting with y-irradiated BCG did not
provide the persistency advantage of live BCG, repeated immunization may confer an effect
equal to that of persistent live BCG in terms of generation of a protective T cell response and
long-lasting immune simulation in the airway.

Strategies strengthening the local immune response have been widely used in several disease
models [37, 38]. For example, systemic sanitization (i.e., intraperitoneal injection) with aller-
gen, followed by continuous or intermittent allergen inhalation has been developed to induce
an asthmatic-like reaction in the airways. Although many different sensitization and challenge
materials have been used, the basic concept and protocol to enhance the local immune
response is fundamentally consistent. Given the similarity of the principles developed in mod-
els of asthma and arthritis, the repeated exposure of the lungs to y-irradiated BCG after sys-
temic sensitization with live BCG apparently altered the functional consequences of immune
cells, which contributed to preventing Mtb infection.

Additionally, a lack of protection following vaccination with irradiated-BCG three times
without priming with live BCG and the multifunctional T cell responses in the spleen shown
here (S5 Fig) suggest that both local and systemic T-cell responses are responsible for the pro-
tection against disseminated and pulmonary TB. In addition, the elevated PPD-specific IgG2¢
responses in the serum of the BCG s.c.-primed group also support that BCG priming is a pre-
requisite to harnessing the local systemic immunity against TB to maintain and enhance the
Th1-biased immunity systemically, whereas no significant induction of IgG2¢ was observed in
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the group without BCG s.c. priming (Fig 1¢). Furthermore, the diminished Th1-biased
immune response after the challenge of the hypervirulent Mtb HN878 (Fig 5 and S4 Fig) could
result from regulatory T cells, which are known to expand in response to HN878 infection
[31].

Although IFN-v is necessary to control Mtb infection, recent observations have revealed
that the IFN-y response alone is not a reliable marker of vaccine-induced protection, indicating
that the IFN-y response cannot consistently predict the vaccine efficacy [39, 40]. In addition, a
single s.c. BCG immunization was able to induce CD4*CD44MCD62L CD127" Tgy cells, along
with a low level of multifunctional T cells, prior to the Mtb challenge. However, the level of
protection is strongly correlated with a significant increase in both the percentage of memory
CD4" T cells (both CD4*CD44MCD62L"CD127" T and CD4"CD44MCD62L CD127" T
in the lungs that are capable of producing IFN-y and the magnitude of antigen-specific multi-
functional CD4" T cells producing IFN-y"TNF-o.'IL-2* and IFN-y*"TNF-a" in the lungs.
Memory T cell subsets are divided in to Tgy; and Ty based on their anatomical locations, sur-
face makers, and functional capacities, which are related to the first and second lines of defense,
respectively [41]. Moreover, it has been suggested that these cells would be rapidly transited to
each subset depending on the presence of antigen [42]. Interestingly, one recent study reported
that effector-to-central-memory T-cell transition is minimal, which may also explain the fail-
ure of the BCG vaccine in persistent mycobacterial infections [43]. In this study, by aerosol-
boosting the mice with y-irradiated BCG three times, we could successively induce substantial
amounts of both types of these T cells in the lungs, whereas parental BCG vaccination failed to
induce any significant amounts of these cells in the lungs prior to the Mtb challenge. In addi-
tion, the aerosol boosting using y-irradiated BCG three times successively induced antigen-spe-
cific CD4" T cells that were IFN-y*"TNF-0;"IL-2", which were maintained until at least 10
weeks post-infection. In contrast, all groups (including the parental BCG vaccination group)
exhibited high levels of IFN-y-single producer CD4" T cells (Fig 5).

Recently, the protective role of multifunctional T cells against TB in experimental models
and human TB cases has been controversial, where multifunctional T cells are considered to be
more prone to be associated with active TB in humans [44, 45]. The full pattern and diversity
of multifunctional T cells remains to be elucidated. In addition, most human studies of the
association of multifunctional T cells with active disease were performed after the progression
of TB. In our study, the BCG s.c.-immunized group also showed more generation of multifunc-
tional CD4" T cells producing IFN-y"TNF-o" IL-2" at 5 weeks post-Mtb challenge than the
infection-only control group (Fig 5A), indicating the presence of ready-to-be expanded multi-
functional memory CD4" T cells and that their rapid expansion following the recognition of
Mtb infection is critical for vaccine development. Together, these findings indicate that the
CDA4" T cell populations that mediate protective immunity against TB are likely not IFN-y-sin-
gle producing Th1 cells but the generation of high-quality multifunctional cells before Mtb
exposure. Moreover, the maintenance of a large number of multifunctional CD4" T cells pro-
ducing IFN-y, TNF-a, and IL-2 after Mtb infection appears to be critical to confer protective
immunity against hypervirulent Mtb strains.

Although CD8" T cells are known to play important roles in preventing the reactivation of
latent TB and in compensating for the CD4" T cell response against primary infection [46], the
role of CD8" Tgy cells in the vaccine-induced protection against TB remains unclear. In this
study, three boost episodes with y-irradiated bacteria resulted in a similar pattern of CD4* T
cell responses to that of live BCG boosting, as well as in a similar level of protection. However,
live BCG-boosted mice showed a higher frequency of CD8" Tgy, cells, together with a higher
Ag85A-specific CD8 IFN-y response, than did the y-irradiated-BCG boosted group (Fig 1A
and 1B). However, the frequency of antigen-specific [IFN-y"TNF-a" CD8" T cells was
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increased more significantly in both of these groups than in any of the other groups (Fig 2).
Interestingly, the protective role of IFN-y-secreting CD8 T cells in humans has been confirmed
[47], and IFN-y"TNF-o" CD8" T cells are important for the response to latency antigens,
including HspX, as determined in long-term latently infected individuals that did not progress
to active TB [48]. In addition, the granulysin produced by CD8 T cells directly killed Mtb in
vitro [49]. Thus, the precise roles of CD8 T cell subsets in our boosting strategy should be fur-
ther determined in animal models rather than in murine models because of the absence of
granulysin in murine CD8 T cells.

The main strategy of a mucosal vaccine in TB is controlling the early phase of Mtb growth,
as there remains an interval of approximately 12 days from infection to the activation of host T
cell responses induced by parental immunization [35, 50]. Considering that the containment of
Mtb is mediated by lung-resident memory lymphocytes [51], we believe that our strategy may
shorten this interval. Consequently, the irradiated BCG-induced protective immunity was
more likely dependent on CD4" T cells than CD8" T cells, and an antigen-specific CD8" T-cell
response may be required for the optimal protection induced by vaccines. Finally, with regard
to the CFU data, the histopathology and immune responses in this study showed that the num-
ber of boosting episodes was dependent on the protective immunity and phenotype of T cells.
Considering that a single dose of parental BCG vaccine is unlikely to induce mucosal immunity
in the airway, it might be one of the reasons that BCG itself is less protective against pulmonary
infection causing TB transmission [8]. In this regard, our strategy would potentially contribute
to the reduction of TB transmission by increasing the effectiveness against pulmonary TB. The
present study has several limitations. First, further studies to optimize the boosting dose and
number to provide the greatest activity that does not affect the host safety would help to
improve the efficacy of this vaccination strategy. Second, aerosolized boosting strategy
employed in this study should be further investigated based on solely on pulmonary delivery
for the clinically relevant conclusions, because the Glas-Col aerosol apparatus is a whole body
exposure chamber which could influence the gastro-intestinal mucosa as well as the entire
respiratory mucosa. Third, the strategy replacing live BCG s.c. priming with y-irradiated BCG
should be further evaluated to ensure safety for immunocompromised populations.

In summary, our present results showed that aerosolized boosting of y-irradiated BCG is
able to elicit Th1-biased immune responses, including antigen-specific memory CD4" T cells
concomitantly producing IFN-y, TNF-o, and IL-2, as well as the IFN-y response, via both the
local and systemic immune systems and to eventually confer improved protection against
hypervirulent Mtb HN878 infection following BCG s.c. priming and boosting. Further studies
focusing on the long-term protective efficacy and the safety of the dosing of this vaccination
regimen are currently underway. The results of these studies and the present results may lead
to the development of safer and more effective vaccination strategies against tuberculosis when
BCG is used as a priming agent.

Supporting Information

S1 Fig. Gating strategy for flow cytometry analysis. For the memory T-cell analysis, CD4"
and CD8" cells were further gated for central memory (CD62L*CD1277CD44"), effector mem-
ory (CD62L°CD127"CD44"), effector (CD62L CD127 CD44"), and naive cells (CD62L*
CD127*CD44") within the CD4" and CD8" T cell populations (A). For the multifunctional T
cell analysis, antigen-stimulated lung or spleen cells were identified by intracellular cytokine
(IFEN-vy, TNF-a, and IL-2) staining based on the CD3 and CD4 or CD8 expression and were
turther gated on CD62LY cells (B). The data were collected on a FACSverse flow cytometer,
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with subsequent analysis using the FlowJo software.
(TIF)

S$2 Fig. Higher magnification (x 10) of histopathological lesions in the lungs at 5 weeks
post-infection. Mice were infected with 200 CFU of the M. tuberculosis HN878 strain via the
aerosol route, and the lungs were removed at 5 weeks post-infection. Hematoxylin and eosin
stain. Scale bar = 200 um.

(TIF)

S3 Fig. Higher magnification (x 10) of histopathological lesions in the lungs at 10 weeks
post-infection. Mice were infected with 200 CFU of the M. tuberculosis HN878 strain via the
aerosol route, and the lungs were removed at 10 weeks post-infection. Hematoxylin and eosin
stain. Scale bar = 200 um.

(TTF)

$4 Fig. Immune responses in the lungs of mice after challenge with the M. tuberculosis
HN878 strain. Five and ten weeks post-challenge, mice in each group (n = 5) were sacrificed
and lung cells were prepared as described in the materials and methods section. The percentage
of CD4", CD8" central memory (CD44MCD62L*CD127"), effector memory
(CD44MCD62L"CD127"), effector (CD44"CD62L"CD127°), and naive (CD44'°CD62L""
CD127") T cells were analyzed by flow cytometry (A). A total of 2 x 10° cells were added to
each well of microtiter plates and incubated with PPD (2 pg/ml) for 24 h at 37°C. The IFN-y
concentrations in the suspensions were detected with commercial ELISA kits (B). The induc-
tion of PPD-specific IgG2c¢ antibodies in the serum from each group of mice (C). The data are
presented as the mean + SD from five mice in each group. An unpaired ¢-test was used to deter-
mine the significance of differences. A value of p<0.05 was considered to be statistically signifi-
cant. * p<0.05, " p<0.01, and *** p<0.001 compared to G2. * p<0.05, ** p<0.01, and ***
p<0.001 compared to G3. n.s.: not significant.

(TIF)

S5 Fig. Induction of multifunctional T cells in the spleens of mice after challenge with the
M. tuberculosis HN878 strain. Five and ten weeks post-infection, mice in each group (n = 5)
were euthanized and their spleen cells (2 x 10° cells) were stimulated with PPD (2 pg/ml) for
12 h at 37°C in the presence of GolgiStop. The percentage of antigen-specific CD4*CD62L"
and CD8CD62L" T cells producing IFN-y, TNF-a, and/or IL-2 in the cells isolated from the
lungs of each group of mice were analyzed by multicolor flow cytometry by gating for CD4"
and CD8" lymphocytes (A). Pie charts (B) show the mean frequencies of cells coexpressing
IFN-v, TNF-a, and/or IL-2. The data are presented as the means + SD from five mice in each
group. An unpaired ¢-test was used to determine the significance of differences. A value of
p<0.05 was considered to be statistically significant. * p<0.05, ** p<0.01, and *** p<0.001 com-
pared to G2. * p<0.05, ** p<0.01, and *** p<0.001 compared to G3.

(TIF)

S1 File. NC3Rs ARRIVE Guidelines Checklist
(PDF)
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