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Introduction 

Automatic detection of anatomic landmarks
Anatomic landmarks are the standard points (or regions) 

which define the morphological characteristic of human body. 
Prior to a surgery, a surgeon tends to refer these landmarks to 
examine the morphological feature of patient. In the computer 
vision engineering, many algorithms related with automatical-
ly searching of anatomical landmarks in the human body were 
proposed (1-7). Subbraj and Ravi, Agarwal (1), have shown that 

the landmarks that are taken by automatic identification meth-
od are tend to be accurate than manually taken. Therefore, au-
tomatically searching the landmark using a computerized al-
gorithm is suitable for the landmark identification. The proposed 
landmark searching algorithm in the paper is designed for a 
cephalometrics area. 

Cephalometrics
Cephalometrics analysis is the clinical process of craniomet-

ric surgery such as orthodontic and cranioplasty. For this pur-
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pose, the cranial morphology informations of the patient is es-
sential to the surgeon. These informations are called craniometric 
landmarks. Due to the development of 3D CT imaging tech-
nology, craniometric landmarks can be easily found by human 
with manual inspection (8). Furthermore, many recent local-
ization techniques for craniometric points using image pro-
cessing algorithms were proposed. Yue et al (2) proposed the lo-
calization method using 2D X-ray images. This method used 
segmentation and image transformation technique to find the 
best match to reference landmarks from other X-ray images. 
This algorithm resulted in 91% accuracy [within error distance 
±2.0 (mm)] with 80 data. Cheng et al (3) used 3D CBCT images 
with dental landmarks area. This algorithm adopted the learn-
ing process for localization of dental landmarks. Also other ef-
ficient sub-algorithms, such as constrained search for spatial 
prior and random forest (9), on learning process were applied. 
Mean error distance of this algorithm was 3.1 (mm). There was 
a interesting algorithm which utilizes template matching meth-
od. Kaur and Singh (4) constructed initial landmark model with 
zernike moment-based global feature. With this feature, tem-
plate matching process was done with expectation window. Their 
method yielded mean error distance as 1.84 (mm) for 18 ceph-
alometric landmarks. Cheng et al. Ibragimov et al (5), applied the 

game theory to legacy random forest method for craniometric 
point detection. The results of their work showed 1.81 (mm) 
mean error distance for 19 craniometric landmarks.

In this paper, we are going to propose the method which 
consists of two process. One of them is construction of a statis-
tical cubic model. The other one is cubic matching. Rotation 
corrected 3D CT data were used as input for our method. We 
assumed that if the rotation variations of 3D CT volumetric data 
are not significant, then the similarity function (squared dif-
ference) has a convexity with optimal point which is the center 
of a landmark point. Convexity of our method would be discussed 
in Discussion section. 

Materials and Methods

Our method is pretty similar to Template matching (10). 
Several data sets are used for the creation of the statistical cubic 
model. Then, cubes are created at each voxel in the volume for 
detecting the landmark. The similarity of each cube with the 
created model is evaluated. After examine all similarities of 
cubes in the volume, we choose the voxel which is the center of 
the most similar cube to the statistical cubic model. The data 
sets used for experiments is consist of normal cranial CT vol-

Fig. 1. Algorithm Block Diagram: Our algorithm is consist of two part, model creation stage and evaluation & detection stage. In the mod-
el creation stage, there were M input data and the other stage, whole data (N) were used.
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umes of 3 to 24 months old subjects. Because of their wide vari-
ation on cranial morphology, this range seems suitable for the 
verification of our method. The overall processes of the pro-
posed method are described in (Fig. 1). 

Align & Down sampling
In this stage, to prevent the inconsistency by rotation of skull, 

we align the input data sets at first. The 5 landmarks are used 
for the rotation alignment (11-12). We choose the 3 landmarks 
(anterior nasal spine, nasion, basion) for Frankfurt Horizontal 
Plane (FHP). Then, the Mid-Sagittal Plane (MSP) can be set us-
ing the two points (orbitale, porion in the left side of skull) and 
the normal of FHP (Fig. 2). After the alignment (Fig. 3), in order 
to decrease the computational cost of the method, we down 
sample all of these aligned data volume sets by factor of 2. Since 
we assumed convexity of the similarity function, down sam-
pling will not affect on the results of the method. The detected 
landmark location in down sampled data will be matched to the 
location in original data with multiplication of factor (=2).

Create Statistical Cubic Model
The generation of statistical cubic model consists of two pro-

cesses. An initial average model is created firstly by averaging 
values of the cubes at each voxel. Then the weighted mean model 
is created, where the weight of each cube is determined in in-
verse proportion to its similarity to the initial average model. 
This weight strategy makes enhance the effect of the cubes 
similar to others, and weaken the effect of the cubes different 
to others. Totally N data sets are used for the experiment, denot-
ed as Vn,. n={1, …, N}. And M sets of Vn are used for the satistical 
model generation. 

Initial Average Model
The initial average model CI is made by using the cubes from 

M data sets, each of which is centered at the reference landmark 
location, denoted as xn= (xn, yn, zn), n=1, …, N. he reference 
landmark locations of Vn are denoted as xn. Then, the landmark 

locations of down sampled data sets would be  .

The cubic model is constructed by sampling cube centered at the 
coordinate value xm= (xm, ym, zm), n={1, …, M} which is the refer-
ence landmark point manually pointed by the surgeon and these 
cubes used in constructing model are denoted as Cm (Fig. 4). In 
our method, the size of cube is K3. Averaging these cubes from 
M data sets yield the initial average model CI, where

 .

Weighted Mean Model
The weighted mean model CW needs the initial average 

model CI and the similarity (Squared Difference, SD) Em of 
each Cm, m={1, …, M} with CI. where

 
.

Each weight Wm is calculated using Em value. Our weighting 
strategy makes the most similar Cm with CI, which has mini-
mum Em, dominantly affects on the weighted model, whereas 
the outlier, which has highest Em, weakly affect on. This strate-
gy enhances the robustness of our final model CW. The weight 
Wm is calculated as

Each Wm is applied to generating the weighted mean model 
CW, where

Fig. 2. Landmark points for align data: Mid Sagittal plane (MSP) 
was made by anterior nasal spine, nasion, and basion. Frankfurt 
Horizontal plane (FHP) ws made using left orbitale porion (left) 
and normal vector of MSP. 

Fig. 3. Before align (left) and After align (right): FHP and MSP was 
used for alignment. 
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.

 

Evaluation
Experiments for testing are performed with the whole Vn in-

cluding M data sets for the of model construction. In each vol-
umetric data Vn, cubes at each voxel, denoted as CX, are created. 
The similarity of each cube with CW is calculated as,

.

Detection
Final decision is done with EX. The location of the landmark 

have the minimum EX calculated in the previous stage. The de-
tected landmark point xfn is the center of the most similar cube 
to the statistical cubic model (weighted mean model), where 

  .

Results

In this paper, we examine the 20 CT data sets of 3 to 24 months 

subjects. Each CT data (DICOM format) has same width and 
height (512 pixels) with differing number of slices (depth, 400-
600). As mentioned in the previous section, the down sampling 
factor is 2 and cube size (K) is fixed as 25. Our target landmark 
is anterior nasal spine (Fig. 2). The number of data sets for model 
construction is 5 and they are numbered as 1 to 5 (M=5). We 
visualized the five input cubes for the model construction and 
created the initial average model, and weighted average model 
as shown in (Fig. 5). Since we aligned the whole data sets before 
the experiment, it seems that there is no big outlier in the data 
sets. Therefore the statistical cubic model created also looks 
similar to each input data set of the model.

The result of test is shown in (Table 1). The all of detected land-
mark points using our method were very close to the reference 
landmark points which were manually pointed by surgeon. 
The detected cubes are 3D visualized in (Fig. 6). Their looks are 
much similar to the statistical cubic model. The most farthest 

Table 1. Resulting error distance of whole data

Model input data

Data Index 1 2 3 4 5
Error (mm) 0.24 0.18 0.28 0.62 0.76

Test Input data

Data Index 6 7 8 9 10
Error (mm) 1.44 0.47 0.42 0.54 0.9
Data Index 11 12 13 14 15
Error (mm) 0.43 0.88 1.93 0.55 1.05
Data Index 16 17 18 19 20
Error (mm) 0.62 1.24 1.41 0.42 0.38

Mean Std
0.7 0.47

Fig. 4. Creation of Cube: is centered at the landmark center of each 
input data for model creation. Fig. 5. Visualized Model and Model Input Data.
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location of the found landmark points is far from the reference 
landmark point by 1.44 (mm) in the data set 6. 

Error distance of the test is calculated by euclidean distance 
between the reference landmark and the detected landmark 
point (∥xn’-xfn∥). To convert voxel distance to actual real dis-
tance, we use the pixel spacing (DICOM Tag : 0028 0010) values 
of dicom header. Therefore, the error distance en is calculated as, 

en=∥xn’-xfn∥ × pixel spacing .

The mean error distance is 0.7 (mm) and their standard de-
viation is 0.47. Despite of our calculation is done within in 3D 
coordinates, our results has smaller mean error distance value 
than other methods , even though they are calculated in 2D co-
ordinate (Table 2).

Discussion

Convexity
Statistical cubic model based cubic matching method is much 

similar to template matching method. Likewise in template 
matching (10), the cubic matching process has to set the simi-

Table 2. Comparison to other methods

Method Grau[6] Saad[7] Kaur[4] Proposed
MES±D 0.75 2.70±1.05 1.93±1.12 0.7±0.47

ME: Mean, SD: Standard deviation

Fig. 6. Visualization of Detection result of some data.

Fig. 7. Similarity function (Square Difference) variation with respect to location change from reference landmark center [(blue), (orange), 
(gray) with 0 to disatnce]: Minimum points would be not center of graph. This means that found centers slightly differ from reference 
centers.
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larity function as convex function. There maybe exist the local 
minima, but the global minimum which is the minimum in lo-
cal minima should be found in the near of the reference land-
mark point in the rotation corrected volume. The similarity 
values around the landmark should show convexity. We have 
assumed that squared difference function should show convex-
ity near the global minimum. This is proven by graph (Fig. 7). 
In this figure, the similarity values are shown in near the refer-
ence landmark point within ±10 translation with respect to x 
(blue), y (orange) or z (gray). The similarity values on each data 
sets converge to near the reference landmark center. The detect-
ed landmark center is the convergence point on that graph. Since 
evaluation on the each volume is performed by intervals of 1 
voxel, our assumption is proved with this graph. 

Cubic matching
3D Volumetric cubic matching with statistical cubic model 

creation and landmark detection shows very desirable results 
(Table 1-2). Intuitively the cubic data has more context infor-
mation than 2D window of template matching. So it is obvious 
the cubic matching is outstanding method than the template 
matching. Since the creation of the statistical cubic model is 
weighted averaging process of the cubes from data sets, align-
ment of each volume for the model creation should be performed 
firstly. If not, they would prone to find the undesirable loca-
tion. This means that even small rotation (Almost 5 degree) of 
craniofacial data set may cause wrong detection in our method. 
This weakness is similar to that of the template matching. So if 
we want to create robust matching process, we should consider 
the rotation invariant similarity function. Some of template 
matching area, there are rotation invariant template matching 
method in 2D image processing (13). But it seems that there is 
no significant study on rotation invariant cubic matching 
method. Another solution can be exist in setting appropriate 
FHP and MSP plane for alignment. Cheng and Leow, Lim (12) 
proposed the automatic method for finding the FHP ans MSP. 

Processing time issue
In this experiment, we used 512x512xDepth volumetric data 

sets. Since they are down sampled before detecting the land-
mark, exploring whole voxels in the volume can be done in 
some minutes. However, we should consider the improving 
technique for the processing time. Since our method is aimed 
for the clinical purpose, for a number of minutes of processing 
time is undesirable. So, the proposed method should be con-
sidered with various computer technological supports. One of 
them is big-data processing which is very hot issue in cloud com-
puting area. And another well-known approach on computing 

time reduction technology is parallel processing with multiple 
GPUs. In the perspective of processing time, these are very help-
ful technologies for our method.

Conclusion

Even though the proposed method came up with a simple 
idea (cubic matching), this method with reducing rotation 
variations (alignment) shows outstanding results. The anterior 
nasal spine which is the target landmark point of our experi-
ment was detected with mean error distance as 0.7 (mm). If we 
consider that the landmark was detected at error distance with-
in 2.0 (mm) which was detection criterion of  (2), the whole land-
marks were detected appropriately in our method. Also the 
simplicity of our method implies that finding other anatomic 
landmarks, even not on cranium, can be done with our method. 
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