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ABSTRACT

Apoptosis signal-regulating kinase-1 (ASK1) is the mitogen-activated protein kinase kinase
kinase (MAPKKK) and participates in the various central nervous system (CNS) signaling
pathways. In cerebral ischemia, vascular permeability in the brain is an important issue
because regulation failure of it results in edema formation and blood-brain barrier (BBB)
disruption. To determine the role of ASK1 on vascular permeability and edema formation
following cerebral ischemia, we first investigated ASK1-related gene expression using
microarray analyses of ischemic brain tissue. We then measured protein levels of ASK1
and vascular endothelial growth factor (VEGF) in brain endothelial cells after hypoxia
injury. We also examined protein expression of ASK1 and VEGF, edema formation, and
morphological alteration through cresyl violet staining in ischemic brain tissue using
ASK1-small interference RNA (ASK1-siRNA). Finally, immunohistochemistry was per-
formed to examine VEGF and aquaporin-1 (AQP-1) expression in ischemic brain injury.
Based on our findings, we propose that ASK1 is a regulating factor of vascular permeability
and edema formation in cerebral ischemia.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Wang et al.,, 1999; Wendt et al., 1994), cytokine secretion
(Matsuzawa et al., 2005) and cell differentiation (Sayama

Apoptosis signal-regulating kinase 1 (ASK1, also referred to as
MAP3KS5)(Ichijo et al., 1997) participates in many different
stress responses, including apoptosis (Chang et al., 1998;
Chen et al., 1999; Ichijo et al., 1997; Kanamoto et al., 2000;
Noguchi et al., 2008; Saitoh et al., 1998; Tobiume et al., 2001;

et al., 2001; Takeda et al., 2000). ASK1 is activated in response
to various stresses, including oxidative stress, endoplasmic
reticulum (ER) stress (Hattori et al., 2009; Matsukawa et al.,
2004; Takeda et al., 2003). Several studies have demonstrated
that ASK1 overexpression induces apoptosis in various cell
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types (Chang et al., 1998; Saitoh et al., 1998). Ischemic stroke
leads to disruption of the blood-brain barrier (BBB), which
subsequently causes vasogenic edema (Unterberg et al., 2004)
and cytotoxic edema (Loreto and Reggio, 2010; Nag et al.,
2009; Simard et al., 2007), with the latter characterized as
swelling of the astrocytes and neuronal dendrites (Risher
et al., 2009). Cytotoxic edema occurs shortly after ischemic
onset and is the results of translocation of interstitial water
into the intracellular compartment (Betz et al., 1989; Young
et al, 1987). Vasogenic edema disrupts cerebrovascular
endothelial tight junctions, leading to increased permeability
to albumin and other plasma proteins (Unterberg et al., 2004),
and elevated intracranial pressure (Nag et al., 2009). Finally,
vasogenic edema results in water accumulation in damaged
brain areas (Nag et al., 2009; Yang and Rosenberg, 2011).
Reperfusion after occlusion induces overpressure accompa-
nied by shear stress (Hirt et al., 2009; Ribeiro et al., 2006) and
leads to further entry of water through endothelial cells,
resulting in brain swelling (Hirt et al, 2009; Ribeiro Mde
et al, 2006) and further increases BBB permeability (Hirt
et al.,, 2009; Strbian et al., 2008). According to previous studies,
edema and cerebral infarction are especially exacerbated
during ischemia/reperfusion (I/R) (Bleilevens et al., 2013).
Hypoxic (low level of oxygen) and ischemic (low levels of
oxygen and glucose) states caused by stroke also activate
ASK1 (Bitto et al., 2010; Harding et al., 2010; Kwon et al., 2005).
One study demonstrated that the increased ASK1 expression
triggers apoptotic cell death after IR, whereas ASK1-small
interference RNA (siRNA) attenuates ASK1 upregulation and
reduces infarction in ischemic brain (Kim et al, 2011).

Another study reported that anti-ASK1 short hairpin RNA
(shRNA) suppresses ASK1 in the oxidative stress state
induced by cerebral I/R (An et al, 2013). Several studies
suggested that an ischemic state leads to dissociation of
thioredoxin (Trx) from ASK1 by reactive oxygen species
(ROS) generation and induces the activation of ASK1-
mediated apoptosis pathways (e.g., the p38 pathway) (Ke
and Costa, 2006). Activated p38 triggers the phosphorylation
of hypoxia-inducible factor-1-a (HIF1-«), which modulates the
expression of various target genes encoding proteins under
hypoxic conditions (Ke and Costa, 2006; Kwon et al., 2005).
Vascular endothelial growth factor (VEGF), an important
HIF1l-o target gene and vascular permeabilizing factor
(Fischer et al., 1999; Minchenko et al., 1994) is induced by
hypoxia and decreases the expression of BBB tight junction
proteins (Keck et al., 1989), such as ZO-1 (Fischer et al., 2002;
Yeh et al,, 2007) and occludin(Fischer et al., 2002; Luissint
et al.,, 2012). Furthermore, VEGF induces BBB disruption and
vasogenic edema (Kimura et al.,, 2005; Roberts and Palade,
1995; Sood et al., 2008; van Bruggen et al.,, 1999; Wang and
Tsirka, 2005) under ischemic stroke. Considering research
into the role of ASK1 in ischemia-induced angiogenesis
in vivo, ASK1 is involved in VEGF expression in ischemic
tissue and promotes early angiogenesis by stimulating VEGF
expression (Izumi et al., 2005). Aquaporin (AQP)-1, a family of
water channels, is known as a water-selective transporting
protein in cell membranes as CHIP28 (CHannel-like Integral
membrane Protein of 28kDa) (Agre et al., 1993; Smith and
Agre, 1991). In hypoxic conditions, AQP-1 expression is upre-
gulated in human endothelial cells (Kaneko et al., 2008). AQP-1

Gene Symbol Gene Name GeneBank Number Fold Change (vs MCAO of si-con+tMCAO)
Mmp3 matrix metallopeptidase 3 NM_ 010809 0.44
Aqpl2 aquaporin 12 NM_177587 0.48
Vegfa vascular endothelial growth factor A NM 001025257 0.75

Ttga8 integrin alpha 8 NM_001001309 0.36
Lamb3 laminin, beta 3 NM_ 008484 0.41
Gjb3 gap junction protein, beta 3 NM_001160012 0.38
Cdhl cadherin 1 NM_ 009864 0.05
Lama4 laminin, alpha 4 NM_ 010681 0.30
Icaml intercellular adhesion molecule 1 NM_010493 0.44
Nes nestin NM_ 016701 0.33
Gbl gap junction protein, beta 1 NM_ 008124 0.18
Aqp8 aquaporin 8 NM_007474 0.27
Vegfc vascular endothelial growth factor C NM_ 009506 0.80
Sele selectin, endothelial cell NM_011345 0.10
Itga2b integrin alpha 2b NM_010575 0.45

Fig. 1 - The association between ASK1 and vascular permeability-related genes. In microarray analysis of ischemic lesions at
reperfusion 8 h after MCAO, vascular permeability-related genes were down-regulated in accordance with reduction of ASK1
by ASK1-siRNA. The genes, such as matrix metallopeptidase 3 (MMP3), integrin alpha 8 (Itga8), cadherin 1 (Cdh1), gap junction
protein beta 1 (Gjb3), Selectin (Sele), intercellular adhesion molecule 1 (Icam1), aquaporin 8(Aqp8), aquaporin 12 (Aqp12) were
decreased in the ASK1-siRNA treated MCAO group (< fold change 1.0), compared with MCAO group or si-control treated
MCADO group. In selected genes, vascular endothelial growth factor A (Vegfa), and vascular endothelial growth factor C (Vegfc)
were down-regulated less than 2 fold compared with MCAO group or si-control treated MCAO group. The fold changes were
comparative values, which were the ratio of values in the ASK1-siRNA treatment MCAO group, relative to those in

MCAO group.
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activity is stimulated by hypertonicity and is regulated by ERK,
p38, and JNK activation (Umenishi and Schrier, 2003) and is
associated with stress-induced endothelial cell migration
(Saadoun et al, 2005). In present study, we investigated
whether ASK1 affects vascular permeability and edema for-
mation after ischemic brain injury. We show that ASK1
inhibition is linked to the prevention of edema formation
under hypoxic injury. Thus, our results suggest that ASK1
regulation might alleviate stroke-induced pathological altera-
tions by protecting the disruption of BBB following cerebral
ischemic injury.

2. Results

2.1.  ASKl1-related gene screening using microarray
analysis in MCAO injury brain

To investigate whether ASK1 inhibition alters the expression
of permeability-related genes, we performed microarray ana-
lyses (Fig. 1). We sorted genes that were increased over 2-fold
in the MCAO group compared with normal group, then
screened for genes that were down-regulated more than
2-fold in the si-ASK1 group compared with the MCAO group.
Several genes were selected, including matrix metallopepti-
dase 3 (MMP3) (Ashina et al., 2010), integrin alpha 8 (Itga8)
(Cucullo et al., 2011; Osada et al., 2011), cadherin 1 (Cdh1)
(Zechariah et al., 2013), gap junction protein beta 1 (Gjb3)
(Song et al., 2007), Selectin (Sele) (Jin et al., 2010), intercellular
adhesion molecule 1 (Icaml) (An and Xue, 2009), aquaporin 8
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(Aqp8) (Richard et al., 2003), aquaporin 12 (Aqp12) (Calvanese
et al., 2013) related with vascular permeability. Also, vascular
endothelial growth factor A (Vegfa) (Gong et al, 2014;
Poittevin et al., 2014), and vascular endothelial growth factor
C (Vegfc) (Foster et al., 2008; Xu et al., 2013) which are related
with vascular permeability were down-regulated in the si-
ASK1 group compared with the MCAO group slightly. Based
on these results, we confirmed the vascular permeability
genes related with ASK1 in ischemic injury brain.

2.2.  The alteration of VEGF and ASK1 protein levels after
OGD/R

We conducted western blot analysis to examine the protein
level of ASK1 (Fig. 2A) and VEGF (Fig. 2B), which is known to
play important roles in vascular permeability following OGD/
R. This data shows the protein level in various reperfusion
time points (reperfusion 0 min, 30 min, 1h, and 3h) after
OGD (Fig. 2). VEGF protein expression was significantly
increased at reperfusion 0 min after OGD. VEGF protein level
was augmented from reperfusion 0 min to 30 min. However,
they were gradually decreased from reperfusion 1-3 h after
OGD (Fig. 2A). Western blotting was also performed to
evaluate ASK1 expression in OGD/R injured bEND.3.cells
(Fig. 2B). The protein level of ASK1 was highly augmented
after hypoxia injury and especially peaked at reperfusion
30 min after OGD. ASK1 protein level was gradually decreased
in bEND.3.cells from reperfusion 1-3 h after OGD. This result
suggests that ASK1 may be associated with the expression of
VEGF in brain endothelial cells after cerebral ischemia. Also,
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Fig. 2 - The change of VEGF and ASK1 protein level in bEnd.3.cells in different reperfusion time after OGD injury. (A) The
protein level of VEGF was increased after OGD/R injury. After OGD/R, VEGF protein level was augmented compared with the
normal control group. The protein level of VEGF was peaked at reperfusion 0 min after OGD injury. (B) The protein level of
ASK1 was also increased after OGD/R injury. The protein level of ASK1 was peaked at reperfusion 30 min after OGD injury.
The protein level of g-actin was used as an internal control. Data were expressed as mean +S.E.M, and were analyzed
statistically using one-way ANOVA, followed by Bonferroni's post hoc. Statistical significance with the OGD and reperfusion
0 min group was determined by t-test. Each experiment included at least three replicates per condition. Differences were

considered significant at *p <0.05, **p<0.01.
OGD: OGD 4 h injury, R: reperfusion
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ASK1 and VEGF may activate at the similar time point after
cerebral ischemia.

2.3.  The protein levels of VEGF and phosphorylation-ASK1
in brain endothelial cells treated with ASK1 inhibitor

To examine whether ASK1 directly affects the expression of
VEGF in brain endothelial cells during OGD/R injury, we treated
ASK1 inhibitor (NQDI-1) in bEND.3.cells before OGD/R injury.
Fig. 3 shows that inhibition of ASK1 activity using NQDI-1
reduced the protein level of phosphorylation-ASK1 and VEGF
compared to the OGD/R group at reperfusion 30min after
hypoxia injury (Fig. 3A and B). Our data suggest that ASK1 might
play an important role in VEGF expression in brain endothelial
cells after hypoxic injury. Furthermore, ASK1 may modulate the
expression of VEGF at reperfusion early time point after OGD.

2.4.  Edema formation in MCAO mouse brain following
ASK1-siRNA treatment

To investigate whether ASK1 inhibition affects vascular perme-
ability in animal brain, we measured brain edema at reperfusion
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24 h after MCAO injury using TTC staining (Fig. 4A). White areas
in brain are damaged brain areas due to ischemia (Fig. 4A). The
graph shows the percentage of the ipsilateral hemisphere
compared with the contralateral hemisphere both in the MCAO
and si-ASK+MCAO groups (Fig. 4B). The percentage of brain
edema in the MCAO group was >20% whereas the percentage of
brain edema after si-ASK1 treatment was < 10%. Brain edema (%)
was significantly reduced in the si-ASK1+MCAO group compared
with the MCAO group. Our results indicate that the inhibition of
ASK1 reduced brain edema formation after ischemic brain injury.
Considering this finding, the inhibition of ASK1 may be a useful
strategy for reducing brain edema.

2.5. Morphological alteration assessment using cresyl
violet staining

Cresyl violet staining was performed at reperfusion 24 h after
MCAQO injury to histologically assess the extent of ischemia-
induced damage in the striatum and cortex (Fig. 5). In the
NON group (without MCAO injury, without ASK1-siRNA
treatment), intact cellular structure was observed in both
the cortex and striatum. In the MCAO group, thin, small cell
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Fig. 3 - The protein level of VEGF and phosphorylation-ASK1 at reperfusion 30 min after OGD injury. (A)VEGF protein level was
detected in bEND.3.cells at reperfusion 30 min after OGD 4hr injury. VEGF protein level was evidently increased in OGD/R
group compared to the normal control group. However, VEGF was reduced in pretreatment of ASK1 inhibitor (NQDI-1) before
OGD/R group compared with the OGD/R group. The protein level of f-actin was used as an internal control. (B)
phosphorylation-ASK1 protein level was detected in bEND.3.cells at reperfusion 30 min after OGD 4hr injury.
Phosphorylation-ASK1 protein level was strongly increased in OGD/R group compared to the normal control group (no OGD/R
injury, no ASK1 inhibitor pretreatment). However, Phosphorylation-ASK1 was reduced in pretreatment of ASK1 inhibitor
(NQDI-1) before OGD/R group compared with the OGD/R group. The protein level of p-actin was used as an internal control.
Data were expressed as mean+S.E.M, and were analyzed statistically using one-way ANOVA, followed by Bonferroni's post
hoc. Statistical significance with the OGD/R group was determined by t-test. Each experiment included at least three replicates
per condition. Differences were considered significant at *p<0.05, **p<0.01.

OGD/R: reperfusion 30 min after OGD injury, NQDI-1: ASK1 inhibitor (NQDI-1) 3 h pretreatment before OGD injury, p-ASK1:

phosphorylation- ASK1
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Fig. 4 - Measurement of edema formation in MCAO mouse
brain at reperfusion 24 h after MCAO injury. (A) At
reperfusion 24 h after MCAO injury, TTC staining showed
that white areas were damaged by ischemic injury. White
areas reduced in the si-ASK1 +MCAO group compared

to the MCAO group. (B) Brain edema (%) was

measured at reperfusion 24 h after MCAO injury. The
quantitative graph shows that brain edema was
significantly reduced in si-ASK1+MCAO group compared
with the MCAO group. Data were expressed as mean+S.E.
M. Statistical significance with the MCAO group was
determined by t-test. Differences were considered
significant at *p <0.05.

24 h MCAO group: reperfusion 24hr after MCAO injury, si-
ASK1+MCAO group: ASK1-siRNA treatment and reperfusion
24 h after MCAO injury.

bodies were detected, and also damaged tissue was observed
in the ischemic cortex and striatum. In the si-ASK1+MCAO
group (ASK1-siRNA treatment and MCAO injury), damaged
cells were reduced in number compared with the MCAO
group, and we observed healthy round cells in the ischemic
cortex and striatum. This data suggest that ASK1 inhibition
may protect the brain tissue after cerebral ischemia.

2.6.  Immunohistochemistry to examine vascular
permeability

We performed immunohistochemistry using VEGF and AQP-1
antibody at reperfusion 24 h after MCAO injury to examine
whether there were change of markers that affect vascular
permeability (Figs. 6 and 7). We did not observe VEGF
immunoreactivity in the cortex of the NON group (Fig. 6A).
However, VEGF-positive cells were strongly expressed in the
cortex in reperfusion 24hr after MCAO injury group. In
addition, si-ASK1 transfected brain did not exhibit strong
the expression of VEGF compared with 24h MCAO group.
In striatum, VEGF expression showed the same pattern as the
cortex (Fig. 6B). In addition, the water channel molecule AQP-
1 was detected in mouse brain cortex and striatum at 24 h
after MCAO injury (Fig. 7). In the NON group, AQP-1 was
not noticeably expressed. However, AQP-1 was evidently
expressed in the cortex at reperfusion 24 h after MCAO injury
group (Fig. 7A). In the si-ASK1+MCAO group, AQP-1 expres-
sion was lower in the cortex compared to reperfusion 24 h
after MCAO injury group (Fig. 7A). AQP-1 immunoreactivity of
the ischemic striatum was the same pattern as observed in
the ischemic cortex (Fig. 7B). These data indicate that ASK1
affects the expression of VEGF and AQP-1 in ischemic brain
and may be involved in vascular permeability and edema
after ischemia.

si-ASK1

B e il

Fig. 5 — The histological assessment using cresyl violet staining after ischemic injury.

(A) Atlas of mouse brain mainly presents the corpus callosum, cerebral cortex (a) and striatum (b). (B) Cresyl violet staining
indicated that severe cell loss was founded in the 24 h MCAO group whereas more healthy and round cell bodies in striatum
and cortex were observed in ASK1-siRNA treatment before MCAO group.

a:cortex, b: striatum, NON: normal control group, MCAO: reperfusion 24 h after MCAO injury, si-ASK1: ASK1-siRNA treatment

and reperfusion 24 h after MCAO injury
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Fig. 6 - Immunochemical image for confirmation of reduced VEGF expression by ASK1-siRNA treatment.

(A) Immunochemical images showed that VEGF-positive cells (red) were densely expressed in MCAO mouse cortex. In si-
ASK1 (24hr) group, VEGF expression was decreased in cortex, compared with the 24 h MCAO group. (B) In ischemic striatum
(24 h group), many VEGF-positive cells were founded whereas in si-ASK1 (24hr) group, VEGF-positive cells were decreased in
striatum owing to ASK1-siRNA treatment.

Scale bar=100 ym, VEGF: red, 4’, 6-diamidino-2-phenylindole (DAPI): blue

NON: normal control group, 24 h: reperfusion 24hr after MCAO injury, si-ASK1 (24 h): ASK1-siRNA treatment and reperfusion
24 h after MCAO injury, si-con: si-control treatment and reperfusion after MCAO injury.
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Fig. 7 - Immunochemical image for confirmation reduced AQP-1 expression by ASK1-siRNA treatment.

(A) Immunochemical images showed that AQP-1-positive cells (green) were densely expressed in MCAO mouse cortex. In si-
ASK1 (24 h) group, AQP-1 expression was decreased in cortex, compared with the 24 h MCAO group. (B) In ischemic striatum
(24 h group), many AQP-1-positive cells were founded whereas in si-ASK1 (24 h) group, AQP-1-positive cells were decreased
in striatum owing to ASK1-siRNA treatment.

Scale bar=100 pm, AQP-1: green, 4’, 6-diamidino-2-phenylindole (DAPI): blue

NON: normal control group, 24 h: reperfusion 24 h after MCAO injury, si-ASK1 (24 h): ASK1-siRNA treatment and reperfusion
24 h after MCAO injury, si-con: si-control treatment and reperfusion after MCAO injury
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3. Discussion

Cerebral ischemia occurs following the occlusion of a cerebral
artery by a thrombus and causes cell swelling due to cytotoxic
edema and BBB disruption with vasogenic edema (Loreto and
Reggio, 2010; Nakaji et al., 2006; Shibata et al., 2004). Vasogenic
edema is directly linked to alteration of the BBB tight junctions
with increasing permeability to many molecules (Ayata and
Ropper, 2002; Heo et al, 2005). Several studies have demon-
strated that edema is an important reason underlying clinical
deterioration following ischemia and reperfusion (I/R) (Bounds
et al, 1981; Davalos et al, 1999). The activation of ASK1 is
regulated by the cellular redox state (Saitoh et al.,, 1998) and is
associated with oxidative stress-induced BBB disruption
(Toyama et al., 2014). In the present study, we suggested the
role of ASK1 on vascular permeability and edema formation both
in ischemia injured brain and in cultured brain endothelial cells
under ischemia-induced oxidative stress. VEGF has been
reported to exert protective effects on neurons (Mackenzie and
Ruhrberg, 2012) and can enhance postischemic neurogenesis in
brain (Sun et al., 2003; Wang et al., 2007; Wang et al., 2009). VEGF
binds to its receptor (VEGFR) on endothelial cells and promotes
many downstream signaling cascades, thus inducing vessel
permeability and endothelial cell proliferation and migration
(Gille et al., 2001; Keck et al., 1989; Waltenberger et al., 1994).
Several studies have demonstrated that VEGF increases BBB
permeability by stimulating the release of nitric oxide (Mayhan,
1999), and VEGF is involved in the degradation of the tight
junction protein claudin-5, which contributes to a specific
mechanism in BBB breakdown (Argaw et al., 2009). In addition,
activation of the HIF-1a-VEGF pathway mediates the phosphor-
ylation of tight junction proteins in response to hypoxic stress
(Engelhardt et al., 2014). VEGF has been reported to reduce infarct
size (Bellomo et al.,, 2003; Stowe et al., 2007; Stowe et al., 2008;
Wang et al., 2005) and brain edema (Harrigan et al., 2002; Kimura
et al, 2005; van Bruggen et al., 1999; Zhang et al., 2000) after
cerebral ischemia. In transient MCAO mice, the relationship
between VEGF and brain edema was shown in experiments with
VEGFR-1 fusion protein (van Bruggen et al, 1999). Intravenous
administration of VEGF to rats 1 h after MCAO was also demon-
strated to reduce brain infarct size (Zhang et al., 2000). VEGF also
induces the phosphorylation of ASK1 and c-Jun, which are
related to JNK/SAPK signaling (Shen et al.,, 2012). A recent study
suggested that oxidative stress-stimulated ASK1 activation leads
to endothelial apoptosis, and VEGF suppresses endothelial apop-
tosis by inhibiting ASK1 activation (Nako et al, 2012). In the
present study, we focused on the relationship between ASK1 and
VEGF in hypoxia-induced brain endothelial cells and MCAO
mouse brain to clarify the role of ASK1 in vascular permeability
and edema formation. Our results suggest that ASK1 is asso-
ciated with VEGF expression in brain endothelial cells at reperfu-
sion early time point after hypoxia injury, and aggravates
vascular permeability, and finally stimulates edema formation.
Based on our results, ASK1 fast was activated in response to
reperfusion condition after hypoxia injury and subsequently
may stimulate vascular permeability in brain endothelial cells
by modulating the expression of VEGF. AQP-1 is involved in brain
water homeostasis (Arcienega et al., 2010) and is expressed in the
apical membrane of the choroid plexus epithelium and in the

lining of the cerebral ventricles (Oshio et al., 2005), where it plays
an important role in cerebrospinal fluid (CSF) formation (Longatti
et al, 2004; Nielsen et al.,, 1993). Recent studies have demon-
strated that AQP-1 deletion in mice decreases the osmotic water
permeability of the choroid plexus and lowers CSF production
(Oshio et al, 2003; Oshio et al, 2005). Several studies have
suggested that downregulation of AQP1 expression in the
choroid plexus reduces brain edema formation (Kim et al,
2007), whereas its upregulation in endothelial cells leads to
increased water permeability of the capillary walls and greater
water entry to the brain (McCoy and Sontheimer, 2007). Others
reported that AQP-1 expression changes in the ischemic stroke
brain and is associated with edema formation (Badaut et al.,
2007; Ribeiro Mde et al., 2006). In the present study, we found
that ASK1 accelerated the activation of AQP-1 in the MCAO
mouse brain. Considering our results, we suggest that the
inhibition of ASK1 may attenuate increased osmotic water
permeability following cerebral ischemia by inhibiting the acti-
vation of AQP-1 in ischemic brain. Taken together, our findings
suggest that ASK1 may be activated at reperfusion early time
point in cerebral ischemia and subsequently may be involved in
the increase of VEGF and AQP-1 expression, ultimately resulting
in edema formation. Thus, we conclude that the inhibition of
ASK1 activation might be a target to treat clinical pathologies
that occur after ischemic stroke.

4, Experimental procedure
4.1. Cell culture

Murine brain endothelial cells (bEnd.3 cells; ATCC, Manassas,
VA, USA) were cultured in Dulbecco's modified Eagle's med-
ium (DMEM, Hyclone Laboratories, Logan, UT, USA), supple-
mented with 10% (v/v) fetal bovine serum (FBS, Hyclone
Laboratories, Logan, UT, USA) and 100 units/mL penicillin/
streptomycin (Hyclone Laboratories, Logan, UT, USA), at 37 °C
in a humidified atmosphere in the presence of 5% CO,(Jung
et al., 2013). bEND.3 cells were used in 13 passages.

4.2.  Oxygen-glucose deprivation and reperfusion (OGD/R)

Confluent cells were transferred to an anaerobic chamber
(Forma Scientific, Marietta, OH, USA) (O, tension, 0.1%) and
washed three times with phosphate-buffered saline (PBS).
Then, the culture medium was replaced with de-oxygenated,
glucose-free balanced salt solution, and cells were incubated
for 4 h in the anaerobic chamber. Following oxygen-glucose
deprivation (OGD) injury, cells were incubated for 30 min, 1 h,
3 h under normal growth conditions, respectively (Yang et al.,
2007). bEND.3 cells were pretreated with 600 nM ASK1 inhi-
bitor (NQDI-1, Tocris Bioscience, Bristol, UK) to inhibit ASK1
activation 3 h before hypoxia stress.

4.3. Animal model

Male C57BL/6 mice (Orient, GyeongGi-Do, Korea; 8- to 12-
week old) were subjected to transient focal cerebral ischemia
by intraluminal middle cerebral artery blockade with a
nylon suture, as previously described (Unterberg et al,
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2004). After 60 min of middle cerebral artery occlusion
(MCAO), blood flow was restored by withdrawing the suture,
and regional cerebral blood flow was monitored using a laser
Doppler flow meter (Transonic Systems, Inc., Ithaca, NY,
USA). All animal procedures and experiments were per-
formed in accordance with the Guide to the Care and Use of
Laboratory Animals and were approved by the Association for
Assessment and Accreditation of Laboratory Animal Care.

4.4.  Preparation of ASK1 targeting siRNA

An si-RNA targeting ASK1 (Ambion, Austin, TX, USA; sense:
GCUGGUAAUUUAUACACuUGtt, antisense: CAGUGUAUAAA-
UUACGAGCtt, concentration: 5pM) was used in this study.
A mixture of siPORTNeoFX (Ambion, Austin, TX, USA) and
ASK1-siRNA was injected into the lateral ventricles of the
mouse brain (mediolateral 1.0 mm; anteroposterior 0.2 mm,;
dorsoventral 3.1 mm) with an osmotic pump (Alzet, Cuper-
tino, CA, USA) 3 days before inducing MCAO injury. ASK1-
siRNA was infused at a rate of 1 ul/h. Scrambled si-RNA as a
control was infused in the same way.

4.5.  Microarray analysis

The mouse brains were homogenized with TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer's
recommendations 8 h after occlusion. In addition, Agilent's Low
RNA Input Linear Amplification kit (Agilent Technology, Santa
Clara, CA, USA) was used, and double-stranded DNA was
transcribed by adding the transcription master mix (4 x tran-
scription buffer, 0.1M DTT, NTP mix, 50% PEG, RNase-out,
inorganic pyrophosphate, T7-RNA polymerase and cyanine 3/5-
CTP) to the double-stranded DNA reaction samples and incubat-
ing at 40 °C for 2 h. After testing the efficiency of labeling, the
fragmented cRNA was pipetted onto a Whole Human Genome
Microarray Kit (4 x 44K, Agilent Technology, Santa Clara, CA,
USA), and the hybridized microarrays were washed following the
manufacturer's protocol. Using Agilent's DNA microarray scan-
ner, the hybridized images were scanned and quantified using
Feature Extraction (Agilent Technology, Santa Clara, CA, USA)
and GeneSpringGX7.3 (Agilent Technology, Santa Clara, CA, USA)
software, all data were normalized, and genes of interest were
selected based on the fold change.

4.6.  Western blot analysis

After pre-treatment, OGD injury, and restoration, cells were
washed rapidly with ice-cold PBS, scraped, and collected. Cell
pellets were lysed with ice-cold RIPA buffer (Sigma-Aldrich,
St. Louis, MO, USA). The lysates were centrifuged at
13,200 rpm for 1h at 4°C to produce whole-cell extracts.
Protein content was quantified using the BCA method (Pierce,
Rockford, IL, USA). Protein (20 pg) was separated on a 10%
SDS-polyacrylamide (PAGE) gel and transferred onto a poly-
vinylidene difluoride (PVDF) membrane. After blocking with
5% bovine serum albumin, prepared in Tris-buffered saline/
Tween (TBS-T; 20 nM Tris [pH 7.2], 150 mM NacCl, and 0.1%
Tween 20), for 1h at room temperature (RT), immunoblots
were incubated overnight at 4 °C with primary antibodies that
specifically detect ASK1 (1:500, Santa Cruz Biotechnology,

Santa Cruz, CA, USA), phosphorylation-ASK1 (1:500, Santa
Cruz Biotechnology, Santa Cruz, CA, USA),VEGF (1:1000, Milli-
pore, Billerica, MA, USA), or p-actin (1:2000, Cell Signaling
Technology, Danvers, MA, USA). Next, blots were incubated
with HRP-linked anti-mouse and -rabbit IgG antibodies pur-
chased from Abcam (Cambridge, UK) for 1 h at RT. Enhanced
chemiluminescence was performed by ECL (Pierce) (Jung
et al., 2013).

4.7.  Evaluation of brain edema

For the evaluation of brain edema, mice were sacrificed at
reperfusion 24h after MCAO injury. Isolated brains were
incubated with 2% 2, 3, 5-triphenyltetraxolium chloride
(TTC) (Sigma-Aldrich, St. Louis, MO, USA) at 37 °C for 10 min
in the dark in a drying oven. The ipsilateral and contralateral
hemispheres were used to calculate the percentage of brain
edema (Mohammadi et al., 2012).

Brain edema (%)

_ (volume of ipsilateral hemisphere—volume of contralateral hemisphere)
- volume of contralateral hemisphere

X100

4.8.  Cresyl violet staining

At reperfusion 24 h after MCAO injury, mice were sacrificed
and brains were fixed in 3.7% formaldehyde and quickly
frozen. Tissues were sectioned coronally at 20 um thickness
and sequentially dipped into xylene 5min, 100% alcohol
5 min, 95% alcohol 5 min, and 70% alcohol 5 min. Samples
were stained with cresyl violet (Sigma-Aldrich, St. Louis, MO,
USA) for 3 min. After the staining, slides were reacted with
70% alcohol 5min, 95% alcohol 5min, 100% alcohol 5 min,
and xylene 5min. After these processes, sections were
observed under a microscope equipped with a digital camera
(Olympus, Tokyo, Japan).

4.9, Immunohistochemistry

Five-micrometer-thick frozen brain sections were cut onto
clean glass slides (Thermo Scientific, Waltham, MA, USA),
air-dried, and fixed in cold acetone for 10 min at —20 °C. The
slides were first washed in Tris-buffered saline (TBS) and then
incubated with 0.3% H,0, in methanol to quench endogenous
peroxidase activity. Followed by a series of washes (three
times with distilled water), the sections were blocked with
10% normal rabbit serum. Frozen brain sections (20 pm) were
fixed in ice-cold acetone for 20 min. To block nonspecific
labeling, sections were incubated in 5% bovine serum albumin
(BSA) (Sigma-Aldrich, St. Louis, MO, USA) diluted in PBS for
30 min before addition of primary and secondary antibodies.
Primary antibodies for VEGF (1:50, Millipore, Billerica, MA,
USA), AQP-1 (1:50, Abcam, Cambridge, MA, USA) were applied
to the samples for 24 h at 4 °C, followed by a 90 min incubation
with appropriate florescence secondary antibody (1:100, Invi-
trogen, Carlsbad, CA, USA) and three washes in PBS for 10 min
each. After three washes in 0.1% PBS with Tween-20 (PBST),
the sections were incubated with rhodamine-conjugated
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sheep anti-rabbit or FITC-conjugated sheep anti-mouse sec-
ondary antibody that was diluted to 1:200 with 5% BSA fraction
Vin 0.1% PBST for 2 h in the dark at RT. After three washes in
PBS, all sections were incubated with 1 pg/mL of 4',6-diami-
dino-2-phenylindole (Sigma-Aldrich, St. Louis, MO, USA) and
2 pg/mL of propidium iodide (Sigma-Aldrich, St. Louis, MO,
USA) for a counter staining. Tissues were then visualized
under a confocal microscope (Zeiss LSM 700, Carl Zeiss,
Oberkochen, Germany).

4.10.  Statistical analysis

Statistical analyses were carried out using SPSS 18.0 software
(IBM Corp., Armonk, NY, USA). All data are expressed as
mean+S.E.M. Significant intergroup differences were deter-
mined by one-way analysis of variance followed by Bonfer-
roni post hoc multiple comparison test. Statistical significance
with the OGD/R or MCAO group was determined by t-test.
Each experiment included at least three replicates per con-
dition. Differences were considered significant at *p<0.05,
*p<0.01.
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