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Omega-3 polyunsaturated fatty acid and
ursodeoxycholic acid have an additive effect in
attenuating diet-induced nonalcoholic steatohepatitis
in mice

Ja Kyung Kim1, Kwan Sik Lee1, Dong Ki Lee1, Su Yeon Lee2, Hye Young Chang2, Junjeong Choi3

and Jung Il Lee1

Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3

polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not

evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid

(UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice

were divided into three groups and fed HFD alone, HFD with omega-3 or HFD with omega-3 in combination with UDCA for

another 24 weeks. Feeding mice an HFD and administering omega-3 improved histologically assessed liver fibrosis, and

UDCA in combination with omega-3 further attenuated this disease. The assessment of collagen α1(I) expression agreed with

the histological evaluation. Omega-3 in combination with UDCA resulted in a significant attenuation of inflammation whereas

administering omega-3 alone failed to improve histologically assessed liver inflammation. Quantitative analysis of tumor necrosis
factor α showed an additive effect of omega-3 and UDCA on liver inflammation. HFD-induced hepatic triglyceride accumulation

was attenuated by omega-3 and adding UDCA accentuated this effect. In accordance with this result, the expression of

sterol regulatory binding protein-1c decreased after omega-3 administration and adding UDCA further diminished SREBP-1c
expression. The expression of inducible nitric oxide synthase (iNOS), which may reflect oxidative stress-induced tissue

damage, was suppressed by omega-3 administration and adding UDCA further attenuated iNOS expression. These results

demonstrated an additive effect of omega-3 and UDCA for alleviating fibrosis, inflammation and steatosis in diet-induced

NASH.
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INTRODUCTION

Nonalcoholic fatty liver disease, which is one of the most
prevalent chronic liver diseases worldwide, consists of a
spectrum of conditions that includes nonalcoholic steatohepa-
titis (NASH).1–3 Although simple steatosis may undergo an
indolent natural course, when it is accompanied by advanced
liver fibrosis it often takes a similar clinical course to
that of chronic hepatitis C virus infection with advanced
fibrosis.4 However, with all of these possible liver-associated
morbidities and mortalities, a definitive treatment that would
stop or reverse the progression of the disease has yet to be
discovered.

Omega-3 polyunsaturated fatty acid (omega-3) is clinically
used for treating hypertriglyceridemia.5 There is evidence that
omega-3 suppresses hepatic triglyceride (TG) accumulation
and reduces inflammation, thereby alleviating NASH in animal
models.6–9 However, solid clinical evidence of the benefit of
omega-3 in NASH is lacking, even though the absence of
significant adverse effects of omega-3 makes it convenient to
use as a supplement.10–12

Ursodeoxycholic acid (UDCA) is reported to have a
beneficial role in experimental NASH because of its anti-
inflammatory, hepato-protective and antioxidant effects.13–16

However, clinical trials have failed to show meaningful
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improvement in liver inflammation or fibrosis in NASH
patients treated with UDCA.17,18 Although negative results
may be attributable to improperly constructed studies, includ-
ing suboptimal drug dosage and study duration, it has been
suggested that a combination of UDCA with other agents, such
as vitamin E, might result in clinically meaningful outcomes;19

however, a study showed that long-term consumption of high
doses of vitamin E (daily dose of 400 IU) increased mortality.20

Safety should be a concern when combination therapy is tested.
Agents that demonstrate beneficial effects on experimental

NASH often fail to show significant improvement in human
studies. Therefore, a combination therapy that is safe and more
effective than either agent alone might have a better outcome in
clinical settings. Thus, this study aimed to investigate the effect
of omega-3 in combination with UDCA on diet-induced
NASH in mice and to compare the results with those of
omega-3 alone to assess the possibility of this combination as a
treatment for NASH.

MATERIALS AND METHODS

Ethics
The animal experimental procedures and protocols were approved by
the Institutional Animal Care and Use Committee of Gangnam
Severance Hospital, Yonsei University College of Medicine (Permit
Number: 0011). The study was carried out in accordance with the
recommendations and restrictions of the Institutional Animal Care
and Use Committee.

Animals
Male C57BL/6 mice (12 weeks of age) were obtained from the Central
Lab Animal (Seoul, Korea) and housed under a 12-h light–dark cycle.
Mice were fed with a diet that consisted of 15% anhydrous milk fat,
1.0% cholesterol and 50% sucrose (a high-fat diet (HFD)) that was
purchased from Picolab (Bethlehem, PA, USA). These mice were fed
with the HFD for 24 weeks, at which point they were divided into
three groups and fed with HFD alone (HFD), HFD and 70mg kg− 1

omega-3 (Pronova Biocare, Sandefjord, Norway; HFD/Omega-3) or
HFD and omega-3 in combination with 20mg kg− 1 UDCA (Dae-
woong Pharm., Seoul, Korea; HFD/Omega-3+UDCA) for another
24 weeks. Omega-3 and UDCA were diluted in 0.75% Tween-80 and
administered orally through sonde for 24 weeks. After 48 weeks of
HFD feeding with or without administering experimental agents, the
mice were sacrificed and their livers were harvested. A sample of fresh
liver tissue was fixed in 10% buffered formalin, and the remaining
tissue was snap-frozen in liquid nitrogen and stored at − 80 °C. Blood
samples were collected by cardiac puncture after the mice were
anesthetized and were stored at − 80 °C.

Histological evaluation
Sections of liver tissue specimens, fixed in 10% formalin and
embedded in paraffin wax, were stained with H&E and Sirius Red
for histological evaluation. A blinded pathologist evaluated the slides
for inflammation as described in previous studies with minor
modifications.21–23 Inflammation was histologically quantified by
counting inflammatory foci in 20 consecutive high-power fields
(×40 objective; average histological grade, grade 0: no foci, grade 1:
o2 foci per high-power field, grade 2: ⩾ 2 foci per high-power field).
Liver fibrosis was evaluated by calculating the fibrosis ratio using an

image analysis system as described in a previous study with some
modifications.24 Briefly, images of Sirius Red-stained sections were
captured under × 10 magnification. In the stained section, red
indicated fibrosis and gray indicated parenchyma. After interactive
thresholding, the image was converted into a binary image. The two-
dimensional patterns were measured by direct pixel counting on the
binary images. The total area was the sum of the areas of the
microscopic fields that included parenchyma and fibrosis. For each
slide, the area of fibrosis was evaluated in 20 consecutive high-power
fields and was then averaged.

RNA extraction and gene expression analysis by quantitative
real-time PCR
Total RNA was extracted from frozen whole liver using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. RNA samples were quantified by spectrophotometry. RNA
integrity was assessed using agarose gel electrophoresis and ethidium
bromide staining. The RNA samples were then diluted in RNase-free
water and stored at − 70 °C until use. Five micrograms of RNA was
reverse transcribed using an RNA PCR kit (version 1.2; Takara Bio
Inc., Japan) according to the manufacturer’s recommendations.
Oligonucleotide primers and TaqMan probes for collagen α1(I),
transforming growth factor (TGF) β, tumor necrosis factor (TNF) α,
sterol regulatory binding protein (SREBP)-1c, fatty acid synthase,
stearoyl-carnitine palmitoyl-coenzyme A desaturase, carnitine palmitoyl-
coenzyme A transferase and inducible nitric oxide synthase (iNOS) were
used with 18S as an internal control. The probes were obtained from
Applied Biosystems (Perkin-Elmer/PE Applied Biosystems, Foster
City, CA, USA) and purchased in a ready-for-use form in Assays-
on-Demand Gene Expression Products. The TaqMan probes were
labeled at the 5′ end with the reporter dye fluorescein and at the 3′ end
with minor groove binder nonfluorescent quencher. Quantitative PCR
was performed in triplicate for each sample on a Step One Plus Real
Time System (Applied Biosystems). Each 20-μl reaction contained
10 μl of TaqMan Fast Universal Master Mix (Applied Biosystems,
Darmstadt, Germany), 1 μl of Gene Expression Mix (Perkin-Elmer/PE
Applied Biosystem) and 2 μl of cDNA diluted in 7 μl RNase-free water.
The thermal cycler conditions were 20 s at 95 °C, 40 cycles of 5 s at
95 °C and then 20 s at 60°. Fold changes in target gene messengerRNA
(mRNA) relative to the endogenous 18S control were calculated as
described in previous studies.25

Measurement of TG content
Hepatic TG content was quantified using a commercial kit (ab65336,
Abcam, Cambridge, MA, USA) according to the manufacturer’s
recommendations. Briefly, lipid extracts were prepared by the homo-
genization of 50mg of frozen tissue in a solution of 5% NP-40. The
homogenized tissue was heated to 80–100 °C in a water bath for
2–5min, then cooled down to room temperature. The samples were
purified and diluted (1:10) in distilled H2O to be measured at
OD570 mm according to the manufacturer’s instructions.

Statistical analysis
All results are shown as the mean± (s.e.m.). Data were analyzed by
nonparametric analysis (Kruskal–Wallis or Mann–Whitney test)
or one-way analysis of variance with Tukey’s post-hoc analysis.
Po0.05 was considered statistically significant. All calculations
were performed with SPSS version 15.0 software for Windows
(SPSS Inc., Chicago, IL, USA).
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RESULTS

Characteristics of mice fed an HFD with or without
experimental materials
The changes in body weight during the 48 weeks of the
experiment are shown in Figure 1 and serum biochemical
findings are summarized in Table 1. Administering omega-3
did not induce significant changes in body weight independent
of UDCA combinations. However, serum TG levels decreased
significantly as a result of administering omega-3 alone
(P= 0.012) or the concomitant administration of omega-3
and UDCA (Po0.011). There was no difference in TG levels
between the omega-3 group and omega-3 with UDCA group
(P= 0.995, when compared with the omega-3 only group).
Furthermore, serum alanine aminotransferase decreased when
mice were fed omega-3 alone (Po0.001) or in combination
with UDCA (Po0.001). There was no difference in alanine
aminotransferase levels between the omega-3 group and
omega-3 with UDCA group (P= 0.999, when compared with
the omega-3 only group).

Omega-3-attenuated NASH-associated liver fibrosis and
adding UDCA further enhanced its anti-fibrotic effect
Histological assessment of liver fibrosis was performed using an
image analysis system after Sirius Red staining. Administering

omega-3 at a daily dose of 70mg kg− 1 with an HFD-improved
histologically evaluated liver fibrosis (Po0.001; Figures 2a and
b). Administration of UDCA at a daily dose of 20mg kg− 1 in
combination with omega-3 further attenuated HFD-induced
liver fibrosis (P= 0.026, compared with the omega-3 only
group; Figure 2b).

The effect of omega-3 and UDCA on NASH-associated liver
fibrosis was also investigated by quantitative analyses of collagen
α1(I) and TGFβ mRNA expression. Omega-3 alleviated HFD-
induced collagen deposition (P= 0.002) and administering
UDCA in combination with omega-3 further decreased Colα1
(I) expression (P= 0.021, compared with the omega-3 only
group; Figure 3a). In addition, administering omega-3 as a
supplement to the HFD diminished the mRNA expression of
the pro-fibrotic gene TGFβ (P= 0.012), and administering
UDCA in combination with omega-3 further accentuated this
effect (P= 0.029, compared with the omega-3 only group;
Figure 3a).

Omega-3 and UDCA-attenuated NASH-associated liver
inflammation
Histological analysis of liver inflammation was carried out
after H&E staining. Administering UDCA in combination
with omega-3 ameliorated histologically assessed liver inflam-
mation when compared with that of mice fed an HFD only
(P= 0.036; Figures 2a and c). In addition, when liver expres-
sion of TNFα, an inflammatory cytokine, was assessed,
administering omega-3 attenuated the TNFα mRNA increase
(Po0.001) and adding UDCA further decreased TNFα
expression (P= 0.008, compared with the omega-3 only group;
Figure 3b).

Omega-3 and UDCA-attenuated hepatic TG accumulation
The effect of omega-3 and UDCA on HFD-induced hepatic TG
accumulation was evaluated by measuring the tissue TG
content. Administering omega-3 with the HFD resulted in
decreased hepatic TG content compared with that of mice fed
the HFD only (P= 0.029). In addition, the combination of
UDCA and omega-3 further attenuated hepatic TG accumula-
tion (P= 0.021; Figure 4).

Figure 1 Changes in bodyweight during 48 weeks of the
experiment. All the mice were fed a high fat diet (HFD) for
24 weeks and were then divided into three groups. One group
(n=8) was fed an HFD only (HFD), another group (n=8) was fed
an HFD and administered omega-3 (HFD/Omega-3) and the other
group (n=8) was fed an HFD and administered omega-3 in
combination with UDCA (HFD/Omega-3+UDCA) for another
24 weeks.

Table 1 Characterization of mice fed an HFD and administered omega-3 with or without UDCA

Diet HFD HFD HFD
Vehicle (n=8) Omega-3 (n=8) Omega-3+UDCA (n=8)

Serum glucose (mg dl−1) 116.00±28.00 120.25±12.45 146.66±12.13
Serum TG (mg dl−1) 124.00±7.23 79.33±5.24a 78.33±9.13a

Serum Chol (mg dl−1) 158.00±5.19 145.25±9.07 153.00±13.40
Serum ALT (IU l−1) 393.00±26.57 88.25±11.32a 87.25±6.67a

Abbreviations: ALT, alanine aminotransferase; Chol, cholesterol; HFD, high fat diet; Omega-3, omega-3 polyunsaturated fatty acid; TG, triglyceride; UDCA,
ursodeoxycholic acid.
Data are expressed as the mean± s.e.
aPo0.05, when compared with mice fed HFD alone.

Omega-3 PUFA and UDCA in NASH
JK Kim et al

3

Experimental & Molecular Medicine



Omega-3 suppressed the expression of lipogenesis-associated
genes and adding UDCA augmented this effect
The mRNA expression of SREBP-1c, which is known to regulate
lipogenic enzymes,26 was decreased after omega-3 administra-
tion in HFD-induced NASH (P= 0.014). Administering UDCA
in combination with omega-3 further diminished SREBP-1c
expression (P= 0.001, when compared with the omega-3 only
group; Figure 3c). The mRNA expression of fatty acid synthase,
a gene involved in de novo lipogenesis, decreased when omega-3
was administered (P= 0.035), but UDCA did not show an
additive effect (P= 0.343, when compared with the omega-3
only group). The mRNA expression of stearoyl-carnitine palmi-
toyl-coenzyme A desaturase, another gene involved in de novo
lipogenesis, was also reduced when omega-3 was administered
(P= 0.022), but there was no significant difference when UDCA
was administered in combination with omega-3 (P= 0.083
when compared with the omega-3 only group). The mRNA
expression of carnitine palmitoyl-coenzyme A transferase, a
mitochondrial β-oxidation enzyme, decreased with omega-3
supplement ingestion (P= 0.045), but adding UDCA did not

produce a further reduction in carnitine palmitoyl-coenzyme A
transferase mRNA expression (P= 0.686, when compared with
the omega-3 only group).

The effect of UDCA on NASH was associated with decreased
iNOS mRNA expression
The upregulation of iNOS is known to be associated with liver
inflammation and tissue damage,27,28 and UDCA has been
reported to reduce iNOS in several inflammatory diseases.29,30

We evaluated whether the beneficial effect of UDCA on NASH
in our study was associated with decreased iNOS mRNA
expression. Administration of omega-3 with the HFD resulted
in diminished iNOS mRNA (P= 0.012), and adding UDCA in
combination with omega-3 further suppressed iNOS mRNA
expression (P= 0.029, when compared with the omega-3 only
group; Figure 3d).

DISCUSSION

Although several previous studies have reported that omega-3
attenuates diet-induced NASH,31–33 to our knowledge, this

Figure 2 Histological assessment of fibrosis and inflammation in diet-induced NASH. Histological analysis of the liver to evaluate
inflammation and fibrosis was performed after H&E and Sirius Red staining. Mice were fed with a high fat diet (HFD) for 24 weeks and
were then divided into three groups. One group (n=8) was fed an HFD only (HFD), another group (n=8) was fed an HFD and
administered omega-3 (HFD/Omega-3) and the other group (n=8) was fed an HFD and administered omega-3 in combination with UDCA
(HFD/Omega-3+UDCA) for 24 weeks. (a) Representative histological evaluation using H&E (×100) and Sirius Red (×100). (b) Percent
region of fibrosis. Liver fibrosis was evaluated by calculating the fibrosis ratio using an image analysis system. The total area was the sum
of the area of microscopic fields including parenchyma and fibrosis. (c) Inflammation was histologically quantified by counting
inflammatory foci in 20 consecutive high-power fields (×40 objective). The averaged histological grades are expressed as the following;
grade 0: no foci, grade 1: o2 foci per high-power field, grade 2: ⩾2 foci per high-power field. *Po0.05 when compared with that of the
HFD group. **Po0.05 when compared with that of HFD/Omega-3 group.
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is the first study to report an additive effect of omega-3
and UDCA on NASH. In accordance with other studies, our
study also demonstrated that omega-3 alone could alleviate
liver fibrosis identified by decreased collagen α1(I) mRNA
expression. However, administering UDCA in combination
with omega-3 further reduced fibrosis at the mRNA level and
also further attenuated histologically assessed liver fibrosis
when compared with the group to which omega-3 was
administered alone. It has been repeatedly suggested that liver
fibrosis is one of the most important factors in forecasting the
progression of NASH,34–36 and an additive effect of omega-3

and UDCA in diminishing NASH-associated fibrosis makes
this combination a possible candidate for the treatment
of NASH.

TGFβ has been identified as a key regulator of liver fibrosis that
exerts its profibrogenic effect through hepatic stellate cells.37 The
role of TGFβ signaling in the progression of NASH-associated
fibrosis has also been reported in several studies, making it an
attractive target for treatment.38,39 Our study demonstrated that
omega-3 and UDCA had an additive effect in suppressing TGFβ
mRNA expression, although TGFβ is not suggested as a target for
this combination therapy, according to our results.

Figure 3 Changes in gene expression related to fibrosis, inflammation, steatosis and oxidative stress. Mice were fed a high fat diet (HFD)
for 24 weeks and were then divided into three groups. One group (n=8) was fed an HFD only (HFD), another group (n=8) was fed an
HFD and administered omega-3 (HFD/Omega-3) and the other group (n=8) was fed an HFD and administered omega-3 in combination
with UDCA (HFD/Omega-3+UDCA) for 24 weeks. (a) Expression of fibrosis related genes in the liver. Quantitative analysis of liver
Colα(I) and TGFβ mRNA, markers of fibrosis, decreased when omega-3 was added to HFD. The HFD/Omega-3+UDCA group exhibited
decreased Colα1(I) and TGFβ expression when compared with that of the HFD/Omega-3 group. (b) Expression of inflammation-related
TNFα in the liver. Quantitative analysis of liver TNFα mRNA was decreased in the HFD/Omega-3 and HFD/Omega-3+UDCA groups
when compared with the HFD group. The HFD/Omega-3+UDCA group had decreased TNFα expression when compared with that of the
HFD/Omega-3 group. (c) Expression of lipogenic genes. mRNA expression of SREBP-1c, the lipogenic gene regulator, was decreased in the
HFD/Omega-3 and HFD/Omega-3+UDCA groups when compared with the HFD group. The HFD/Omega-3+UDCA group had decreased
SREBP-1c expression when compared with that of the HFD/Omega-3 group. mRNA expression of fatty acid synthase and stearoyl-carnitine
palmitoyl-coenzyme A desaturase, genes involved in de novo lipogenesis, were significantly decreased when omega-3 was administered.
However, no additive effect was found with UDCA. CPA, a fatty acid oxidation related gene, was diminished by administering omega-3
with an HFD, but no further reduction was noticed by administering UDCA in combination with omega-3. (d) Expression of an oxidative
stress-related gene. Decreased liver iNOS mRNA expression was observed with omega-3 as a supplement to HFD and adding UDCA
further augmented this effect. *Po0.05 when compared with that of the HFD group. **Po0.05 when compared with that of
HFD/Omega-3 group.
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Even with the promising results of either omega-3 or UDCA
on experimentally induced NASH, neither omega-3 nor UDCA
has succeeded in showing a significant therapeutic effect when
tested in NASH patients. Randomized controlled clinical trials
investigating the effect of either omega-3 or UDCA on NASH
in patients have failed to show significant improvement when
compared with a placebo.17,18 However, a systemic review has
suggested that negative results on the beneficial role of these
agents might be attributed to improperly constructed study
designs including suboptimal drug dosage and study
duration.19 Meanwhile, several studies testing UDCA-based
combination regimens, such as UDCA with vitamin E, resulted
in biochemical or histological improvements in NASH
patients.40,41 However, as described earlier, there has been a
report showing the adverse effects of long-term vitamin E
consumption,20 and safety should be the utmost concern in
medical treatments of NASH. No serious side-effects have been
recorded with UDCA treatment, and a human study using
25mg kg− 1 of UDCA, which was higher than the dose used in
our study, has been carried out without reporting any serious
adverse events.42 As for omega-3, the currently recommended
maximal dose is 4000mg per day, which is equivalent to the
dose used in this study.

In addition to liver fibrosis, inflammation is also known to
have a major role in the development and progression of
NASH.23,43 Although administering omega-3 alone failed to
show significant histologic changes, administering UDCA in
combination with omega-3 resulted in histologically improved
inflammation in diet-induced NASH, suggesting an additive
effect. A previous study also demonstrated decreased expres-
sion of the proinflammatory cytokine TNFα after omega-3
supplementation,44 which is in accordance with our study
results.

TG accumulation in the liver is known to be controlled by
SREBP-1c, a transcriptional factor that regulates lipogenic

enzymes.45,46 Several studies have reported that omega-3
supplementation downregulated SREBP-1c gene expression,6–9

and a recent study demonstrated that UDCA mediated
lipogenesis by repressing SREBP-1c expression.47 Our study
suggested an additive effect of omega-3 and UDCA for
suppressing SREBP-1c, although this study could not reveal
an additive effect of UDCA for regulating genes related to de
novo lipogenesis or fatty acid oxidation.

Although our study does not delineate the mechanistic role
of omega-3 and UDCA-combined treatment for improving
NASH, suppressed iNOS expression suggests that reduced liver
damage from oxidative stress may be a possible explanation.
Increased iNOS production has been demonstrated in fructose-
induced hepatic steatosis,48 and suppressed iNOS production
has been associated with the use of anti-inflammatory drugs.49

Studies investigating more detailed mechanisms are needed in
the future.

In conclusion, our study demonstrated an additive effect of
omega-3 and UDCA for alleviating fibrosis and inflammation
in diet-induced NASH. Our study also demonstrated the
additive effect of omega-3 and UDCA for suppressing the
lipogenic gene SREBP-1c and the oxidative stress related gene
iNOS. These results suggest that the combination of omega-3
and UDCA may be a possible treatment for NASH, although
validation using different NASH models and human studies are
necessary.
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