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Abstract 

Tuberculosis (TB) is a disease that affects people around the world, especially people in 

underdeveloped countries. TB is one of the top ten causes of death globally so improvement in 

understanding diagnosis and treatment of TB affected patients could lead to major 

improvements in world health. This thesis research evaluated relapse patients specifically, 

deeming a relapse patient as one who has either been cured or completed their last treatment 

and then is diagnosed with TB again.   

 This research uses dynamic predictive modeling, based upon the random forest 

algorithm, to predict treatment outcomes for recurrent TB patients using demographic and 

follow-up clinical data. The model identifies variables and time periods that are significant in 

predicting whether the patient will be cured. The model is applied to data provided by the 

Evaluation System of National Control Program of Tuberculosis in the Republic of Moldova. Our 

results reveal insights that could be used by physicians to improve treatment strategy and 

monitor patients more effectively throughout the treatment trajectory. 

 

 

 

 

 

 

 



3 
 

Acknowledgments 

 I would like to thank Dr. Shengfan Zhang for her collaboration and mentorship with me 

over the course of this project. She sparked my interest in research about application of 

Industrial Engineering techniques used in the medical field which lead to this research topic. I 

would also like to thank Maryam Kheirandish who helped provide the data for me and 

answered my questions along the way. Her own research has been a tremendous help in 

applying similar methods she used to recurrent TB patients. Lastly, I would like to say thank you 

to my senior design team in Industrial Engineering who worked alongside me in understanding 

how to implement machine learning techniques which helped me in achieving the following 

research.  

 This research was conducted with help from an Honors College Research Grant from the 

University of Arkansas so I would like to say thank you to the Honors College for support of 

undergraduate research endeavors like this one.  

 

 

 

 

 

 

 

 



4 
 

Table of Contents 

1. Introduction...............................................................................................................................5 

1.1 Key Definitions..........................................................................................................................6 

1.2. Machine Learning in Medicine.................................................................................................7 

1.3 Research Goal and Thesis Organization....................................................................................8 

2. Methodology............................................................................................................................10 

2.1 Data Source and Data Processing...........................................................................................10 

2.2. Random Forest Algorithm......................................................................................................13 

3. Results......................................................................................................................................15 

4. Discussion and Conclusion.......................................................................................................20 

5. References................................................................................................................................22 

6. Appendix..................................................................................................................................24 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

1. Introduction 

Tuberculosis (TB) is a disease that burdens people across the globe as "worldwide TB is one of 

the top 10 causes of death and the leading cause from a single infectious agent" (World Health 

Organization (WHO), 2019). TB has affected the world for centuries and although the mortality 

rate is dropping about 3% each year, "around 10 million people still fall ill with the disease each 

year (more adults than children, and more men than women)" (WHO, 2019). The prevalence of 

the disease suggests that any new discoveries or methods for detection or treatment of TB 

could have major impact for many countries, especially developing countries. One quarter of 

the world's population is infected with TB (CDC, 2018), yet  funding towards TB prevention, 

diagnostic and treatment services still falls short of what is needed despite doubling from 3.3 

billion dollars in 2006 to 6.9 billion dollars in 2018 (WHO, 2019).  

 Many TB patients become resistant to the drugs used for treatment, thus leading to a 

more difficult and expensive treatment pathway. Effective treatment of TB is crucial as it helps 

cure current patients and prevents spread of the disease. On average 10 to 15 people can be 

infected by a person with active TB who isn't treated, which explains how crucial treatment and 

detection is for the tuberculosis disease (WHO, 2014). The graphs in Figure 1 show a decrease 

in TB mortality rate that is more steep than the decrease in TB incidents, indicating that the 

treatment is probably improving thus better preventing death from the disease.  
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 In this research, we seek to predict treatment outcomes for TB patients with a relapse 

using demographic and follow-up clinical data and identify the time points that are most crucial 

during the two-year DOTS+ treatment period.  

1.1 Key Definitions 

This research focuses on TB relapse. WHO (2015) defines relapse patients as those who have 

previously been treated for TB, were declared cured or treatment completed at the end of their 

most recent course of treatment, and are now diagnosed with a recurrent episode of TB (either 

a true relapse or a new episode of TB cause by reinfection).  The terms recurrent TB patient and 

relapse patient are used synonymously throughout this research. Directly Observed Treatment, 

Short Course (DOTS) is a government supported treatment strategy that lasts 6 to 8 months and 

includes use of anti-TB drugs for patients with positive sputum smears (WHO, 2014). This thesis 

research uses an expansion of that strategy known as DOTS+, a program endorsed by the WHO 

Figure 1. World Health Organization. (2019, March 3). Global trends in estimated TB incidence and 

mortality rates, 2000-2017 [Chart]. In Global Tuberculosis Report 2018. Retrieved from 

https://www.who.int/tb/publications/global_report/en/ 
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in 2000 that improves upon DOTS by addressing patients with drug resistance (Grover & Takkar, 

2008). 

 According to the CDC, it is important that all patients suspected of TB are examined for 

specimen collection and that the diagnosis involves smear, culture, and drug susceptibility 

testing. During diagnosis testing for TB, smear and culture tests have different functions; smear 

tests for the presence of acid-fast bacilli and culture tests for the growth of tubercle bacilli 

(CDC, 2016). The CDC (2016) also states that many TB patients have negative smears but with a 

subsequent positive culture. Because negative smears do not exclude TB, it is important to have 

both smear and culture results when confirming the existence of TB bacteria (CDC, 2016). 

Similar to TB diagnosis, patients (including those with TB relapse) undergoing treatment need 

to have regular smear and culture follow-up tests to track health status. Drug susceptibility is 

also initially tested to see if the patient is resistant to the first-line anti-TB drugs: isoniazid, 

rifampin, ethambutol, and pyrazinamide because these particular patients need different 

treatment strategies (CDC, 2016). Patients who have multi-drug resistance (MDR) are less likely 

to survive treatment. We evaluate patient outcomes at the end of 2 years using clinical test 

data because of the WHO guidelines that define MDR patient recovery as 2 years and non-MDR 

patient recovery as 9 months.  

1.2 Machine Learning in Medicine 

Machine learning algorithms are being used in many different avenues of the world today and 

medicine is emerging as one of the promising fields of opportunity. Before implementing 

machine learning, the capabilities the algorithms offer and other ways it has been implemented 

in medicine were researched in order to verify it was the right course of action for the data. 
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There are many articles describing the use of machine learning in medicine and one explains 

well that, "the key distinction between traditional approaches and machine learning is that in 

machine learning, a model learns from examples rather than being programmed with rules" 

(Rajkomar et al., 2019). The ability of machine learning algorithms to find patterns within data 

presents several clear opportunities for the Tuberculosis data. Finding patterns for when the 

patients are most susceptible to recover whether that be due to time periods or certain factors 

will be helpful to physicians in monitoring and treating future patients.  

 There are already many studies using machine learning in medicine, even in tuberculosis 

efforts specifically. For example, Sauer et al. (2018) seek to identify features associated with 

treatment failure and to predict which patients are at the highest risk of treatment failure. This 

study shows how physicians can use the insights found from machine learning to impact their 

future decisions for treatment strategy and timeline. After learning about the capabilities of 

machine learning, especially in medicine, a specific algorithm was chosen based on the 

appropriate fit for the data.  

1.3 Research Goal and Thesis Organization 

The goal of this research is to evaluate TB patient data during treatment to predict whether a 

recurrent TB patient will eventually become cured at the end of 24 months of treatment. The 

research seeks to identify indicators within the data that certain time epochs or predictors lead 

to a need for treatment change. A dynamic model is used at different follow-up time epochs 

after initiation of treatment in order to predict the recovery outcome of the patient at the end 

of 24 months. 



9 
 

 The remainder of the thesis begins by explaining the data used for analysis and the steps 

taken to initialize the data and understand the baseline of the relapse patient data. The choice 

and implementation of the random forest algorithm is then explained alongside evaluation of 

the model accuracy at different time epochs. Then the results of the different models created 

and discussion of the research in general are included.   
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2. Methodology 

This section presents a summary of the data (in section 2.1) and the dynamic prediction model 

(in section 2.2). Throughout this section the terms time 0, treatment initiation, and beginning of 

treatment are all synonymous to explain the time at which the patient comes in to start 

treatment for the most recent recurrent TB episode.    

2.1 Data Source and Data Processing 

We used data from 2009 to 2016 provided by the Informational Monitoring and Evaluation 

System of National Control Program of Tuberculosis in the Republic of Moldova. The raw 

dataset consists of 176,234 clinical records of 23,160 pulmonary tuberculosis patients. In this 

research, we focus on the subset containing only TB relapse patients. We select patients who 

had at least one occurrence of a "start of treatment" date later than an "end of treatment" 

date, indicating a relapse. In order to include only patients with true TB relapse (i.e., a patient 

who was declared cured or treatment completed but was found smear positive again), the data 

was narrowed by selecting only pre-status groups "Cured" and "Complete" in the last 

treatment. These distinctions decreased the number of records from over 500 to 281. Note that 

the number of patients who died at any point during the two-year follow-up period was very 

small (6 records), and thus we excluded these data in this study.  

 The baseline is considered only the information about the patient at time zero and 

includes the variables described in Table 1 of this section (Gender, Age, TB Group, Smear, 

Smear Grade, Culture, and Culture Grade). A demographic summary of the baseline of the 
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remaining 281 patients is provided in Table 1. All descriptions of the variables in the following 

chart are from WHO definitions for Tuberculosis (WHO, 2015).  

Patients are guided to undergo regular smear and culture testing during the treatment 

follow-up period, i.e., at months 2, 4, 6, 9, 12, and 18 following treatment initiation. The data is 

evaluated at different time epochs which indicate how many months of data up to the 

prediction epoch are included in the model creation. For example, the 24-month epoch 

indicates the time from month 18 to just before the 24 month follow-up, but not including 

exactly at 24 months. Any follow-up results during this period are still used to predict the end of 

the 2-year recovery. The concept is close to land marking in the survival analysis which is when 

information is collected over time and added to the baseline information in an effort to add to 

the accuracy of the outcome prediction (Parast & Griffin, 2017). The time epochs are defined in 

Table 2 . 
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Table 1. Demographic Summary of Relapse Tuberculosis Patients at Baseline 

Table 2. Explanation of the Time Epochs used and how many Months are Included in 
the Model 
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2.2 Random Forest Algorithm 

In medical applications, with patient data changing continuously, a model that changes 

alongside the data is necessary. After researching the most popular machine learning 

algorithms, the one that seemed most suitable for a variety of reasons was the random forest 

algorithm. We used Python version 3.7 for data analysis in this research. The coding language 

used was Python because there are many machine learning packages available to implement 

different machine learning algorithms. After manipulating the data into appropriate formats for 

Python, the code was then initialized to read the data. The random forest algorithm essentially 

pulls many decision trees together to create one model, thus yielding the name forest. The 

random forest algorithm can be used for either classification or regression and offers the ability 

to "measure the relative importance of each feature on the prediction" (Donges, 2018). The 

flexibility of random forests and the opportunity to evaluate the feature importance at different 

points throughout the model made it the algorithm chosen for implementation. The random 

forest was used as a classification model because the response variable "Final Status" is binary, 

taking on the value 1 for patients who are "Cured", and 0 for patients who are "Not Cured" at 

the end of the two-year treatment. A patient is deemed as cured if they have two consecutive 

negative smear or culture tests and are a non-MDR patient and 3 consecutive negative smear 

or culture tests if they are an MDR patient. 
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 Machine learning can be used to predict future outcomes by creating a model based on 

historical data. It is necessary in model creation to split the data into a training set and a testing 

set. The training data set is what the algorithm uses to build the model and the testing set is 

used to validate or "test" the model. One of the many packages that Python allows access to is 

an automatic test--train--split package. The package randomly splits the data loaded into 

training and testing sets based on the entered parameters. For this particular data set, 70% of 

the data was designated for training and 30% of the data for testing to allow a big enough test 

result to evaluate (Srinidhi, 2018). 

 The Y-variable for every model run was the binary "Final Status" value mentioned 

previously, but the X-variables changed to account for the changes in timing and features 

included in the model. The data provided included features or predictors introduced in Table 1 

from 11 different time epochs (beginning of treatment, 1, 2, 3, 4, 5, 6, 9, 12, 18, and 24 months 

after initiation of treatment). The first model created was the data from time zero only and 

then follow-up test results in the months following treatment initiation were added to create 

11 different models to show dynamic prediction.  

 

 

3. Results  

The results are all reported based on only the testing set of the data. The accuracy of the model 

at different prediction epochs with varying months of historical data available and included in 
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the model is shown below in Figure 2. The model accuracy was calculated using Equation 1, 

which is essentially the number of matches divided by the number of samples. In Figure 2, 

though the accuracy slightly oscillates, it remains high at every time epoch. This is interesting 

because we thought that as months of data were included within the model, the accuracy 

would significantly increase. The F1-scores for the model were also calculated since the data is 

very imbalanced, meaning that the patients fall more into one class than the other. The 281 

patients overall fall into the "Not Cured" and "Cured" classes of Final Status in a ratio of 9 to 1 

respectively. The F1-score is a weighted average of precision and recall and is a more 

appropriate metric to evaluate models with highly imbalanced data (Tilii, 2016). The F1-scores 

for each time epoch are in Table 3. The best value for an F1-score is 1 so the values in Table 3 

show a high range of values, similar to the accuracy. The values in Table 3 do not show an 

evident trend as the months added to the models increase which again goes against our original 

hypothesis that model validity would increase as the data available increased.  

Equation 1. Calculating Accuracy of Random Forest Model  

Accuracy =  
TP + TN

TP + TN + FP + FN
  

 Where: TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative  
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 We next explored how the feature importance for each  X-variable changes as the 

months included change. The complete table of the variable importance weights and how they 

change depending on the number of months of data included in the creation of the random 

forest models is presented in Figures A1-A12 of the appendix. One interesting aspect was the 

percent of cured patients and how that changed at each time interval. The percent of cured 

patients was calculated by evaluating the Y prediction values that the random forest generates 

for the testing set of data. The results for the percent of patients predicted to be "Cured" as the 

Final Status after the treatment is below in Figure 3.  

Figure 2. Model Accuracy based on Months of Data Included in Model Creation 

 

Table 3. F1-score of Model based on Months of Data Included in Model Creation 
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This analysis is useful because it could show what point within the two-year treatment is most 

critical for recovery.   

 

Figure 3. Percent of Cured Patients Predicted from Models based on Months Included in 
Model 

 

 The concerning thing about the results of Figure 3 is that the highest percent of cured 

patients predicted is about 7% which seems like a low recovery rate for a two-year treatment 

program. The "Average Actual Patients Cured" line was calculated by dividing the number of 

cured patients in the original data Final Status column by the total number of 281 patients in 

order to show a reference for the true recovery rate of this data. The dataset used to create the 

models includes drug-resistant patients so the recovery rate could be affected by the difficulty 

in treating those patients. The World Health Organization 2018 Global Report even stated that, 

"treatment success remains low, at 55% globally" and specifically "treatment success was less 

than 50% in The Republic of Moldova" for all TB cases (2019).  The low recovery rate could also 

reflect the difficulty in treating recurrent patients. One interesting trend from the "Predicted 
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Patients Cured" line in Figure 3 is the higher recovery rate in the first 6 months of treatment 

than in the later months of treatment. This leads to insight that patients who don't recovery 

within the first 6 months are probably not going to recover in the months after the 6th month 

follow-up. The higher recovery rate in the early months and the high accuracy and F1-score at 

every month epoch creates the question whether the baseline data on its own is enough to 

accurately predict the treatment outcome of a patient at the end of the two-year treatment.  

 The results of the models along with the feature importance of each variable at every 

time point could help in making the treatment more impactful. The treatment may need to be 

altered, but until physicians understand how to alter it for relapse patients they cannot make 

any changes. Not only do these models provide initial insight into the treatment of relapse 

Tuberculosis patients, but the models can be built upon with future data added. The feature 

importance found and the recovery rate essentially provide initial understanding of what the 

recovery of a relapse Tuberculosis patient depends on most. Figure 4 below shows how the 

importance for the top significant variables and how they change depending on months of data 

included in the model creation. The breakdown of the top 15 most important variables and 

their rankings are provided in charts for each time epoch in the appendix.  
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 In Figure 4, the interesting trend is that the variable importance for each variable 

decreases as variables are added to the model creation, which is intuitive since the other 

variables added each add a level of significance to the model, but the relative importance 

decreases as well. Age and TB group are the top two most significant variables at every time 

epoch, but their relative importance decreases in comparison to the other variables as more 

variables are added. In particular, smear and culture results become more important and the 

demographic variables become less important during later time epochs.  

 

 

 

 

 

Figure 4. Variable Importance for Baseline Variables at Different Time Epochs throughout 
Two-year Treatment 
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4. Discussion and Conclusions  

The insights from applying random forest algorithms to predict outcomes for recurrent TB 

patients can be used to help physicians in understanding the diagnosis and treatment variables 

that affect the recovery of relapse Tuberculosis patients. That being said, there are still 

limitations to this research and areas for improvement in future endeavors involving similar 

topics.  

 One limitation of this research was the removal of death patients (N = 6) from the data 

before model creation. This removal could lead to bias within the evaluation, essentially 

indicating that a patient must be alive in order to be cured or not cured at the end of the 2-year 

treatment. This could create bias in the model since information about those patients is now 

missing. The choice to remove them came from the inherent behavior of the random forest 

algorithm, which grows in accuracy as the number of trees grows (Polamuri, 2017). With only 6 

patients to build a decision tree from in the random forest, there was not enough data to 

accurately create a multinomial prediction as to whether the death patients would have been 

cured, not cured, or died at the 24 month time point. Further research could use truncated data 

for these particular patients in which if the patient is still alive, their data is used in model 

creation, and if they have died then their data is not used.  

 Another limitation of this study is that the classes for the response variable are 

imbalanced, meaning that one classification outweighs the other. Future research can explore 

other methods to fix this bias that comes from the imbalanced data, such as under-sampling or 

over-sampling.  
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 Another interesting expansion to this research would be further evaluation of the 

variables of importance as outlined in each bar graph of the appendix for deeper understanding 

of why those variables change in significance the way that they do. There are certain trends in 

the importance that could be evaluated alongside the Tuberculosis disease trends to see how 

the treatment and the disease coincide at different time points.  

 The model accuracy and F1-scores did not significantly improve as months of data 

included in the model increased which reveals how important the baseline data is, even in the 

later months of treatment. The feature importance of the baseline variables (Figure 4) 

decreases both in importance and relative importance so future research as to why the relative 

importance specifically is decreasing could lead to insight into how the TB disease progresses in 

recurrent TB patients. The predicted cured patients created by the models already shows 

insight into how many patients are suspected to improve as treatment progresses, but with 

even more data, the accuracy of the model in predicting recovery rate will improve. Ultimately, 

machine learning techniques provided new perspective of the recurrent TB patient data which 

alongside physician knowledge could be used for future patients in deciding which type of 

treatment and the duration that is most appropriate for each patient.  
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6. Appendix 

 

Figure A1. Top Variables of Importance at Baseline 

 

 

Figure A2. Top 15 Variables of Importance at 1 Month Time Epoch 



25 
 

 

Figure A3. Top 15 Variables of Importance at 2 Month Time Epoch 

 

Figure A4. Top 15 Variables of Importance at 3 Month Time Epoch 
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Figure A5. Top 15 Variables of Importance at 4 Month Time Epoch 

 

Figure A6. Top 15 Variables of Importance at 5 Month Time Epoch 
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Figure A7. Top 15 Variables of Importance at 6 Month Time Epoch 

 

 

 

Figure A8. Top 15 Variables of Importance at 9 Month Time Epoch 
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Figure A9. Top 15 Variables of Importance at 12 Month Time Epoch 

 

Figure A10. Top 15 Variables of Importance at 18 Month Time Epoch 
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Figure A11. Top 15 Variables of Importance at 24 Month Time Epoch 
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