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Abstract 

The Richards model for the spontaneous imbibition of a wetting liquid into a porous medium is revisited. 

Two methods are presented to determine the effective parameter in the Richards equation, i.e. the 

moisture transport coefficient D, from pore network simulations. In the first method, the capillary 

pressure and the relative permeability at different liquid saturations S, as well as the absolute permeability 

of the porous medium, are extracted using a quasi-static pore network model (QPNM) and then applied to 

estimate D(S). In contrast, in the second method, the function D is determined by an inverse method. The 

Richards equation is solved numerically with D(S) obtained from both methods and the solutions are 

compared to saturation levels over time achieved from a dynamic pore network model (DPNM), which is 

taken as a reference model in the present study. It is found that the solution of the Richards equation is 

very sensitive to the moisture transport coefficient D, especially when the porous medium is close to the 

fully saturated state. The saturation levels over time obtained from solving the Richards equation with 

D(S) calculated from the inverse method match well with those from the DPNM, whereas some 

discrepancy is observed when the QPNM is used to estimate D.  
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1. Introduction28 

The imbibition of a wetting phase into porous media is of great importance in the field of two-phase flow. 29 

This phenomenon plays an important role in various technical applications and scientific topics such as 30 

oil recovery (Standnes, 2004), paper coating (Ghassemzadeh and Sahimi, 2004), hygiene products (Sun et 31 

al., 2015) and agriculture (Lev and Blahovec, 2017). Imbibition can occur spontaneously or at a constant 32 

liquid flow rate. In the former case the capillary number (   , where  ,   and V are the viscosity, 33 

surface tension and velocity of the wetting fluid, respectively) varies during the process whereas it is 34 

constant in the latter case. Furthermore, the imbibition can be quasi-static (very low liquid flow rate) or 35 

dynamic (large pressure drop along the medium) (Sahimi, 1995). Many methods have been proposed over 36 

the years specifically to study the kinetics of the imbibition processes as well as the evolution of the phase 37 

distribution as the wetting phase continues to displace the non-wetting phase. These studies include 38 

experimental works (Miranda et al., 2010; Roychaudhuri et al., 2013; Dai et al., 2017; David et al., 2017) 39 

and modeling approaches at different length scales such as molecular dynamics (Martic et al., 2002 40 

;Wang et al., 2017), lattice Boltzmann (Ahrenholz et al., 2008; Hatiboglu and Babadagli, 2008; Chapman 41 

et al., 2013; Arabjamaloei and Ruth, 2014), full morphology methods (Ashari and Vahedi Tafreshi, 2009; 42 

Zarandi and Pillai, 2018), pore network models (Thompson, 2002; Blunt et al., 2002; Tørå et al., 2012; 43 

Sun et al., 2016) and continuum models (Fries and Dreyer, 2008; Perez-Cruz et al., 2017; Deng and 44 

Wang, 2017).  45 

A commonly used approach for the modeling of two-phase flow on the mesoscale is pore network 46 

modeling, which was first introduced by Fatt (1956). This method represents the void space of a porous 47 

medium as an interconnected network of pores and throats surrounded by the solid phase. The changes in 48 

the spatial distribution of the wetting and non-wetting fluids at each stage of the process are then 49 

determined by rules and events at the pore scale. Pore network models are divided into two classes: quasi-50 

static (Thompson, 2002) and dynamic pore network models (Gruener et al., 2012). In the former, the only 51 

force determining the distribution of the phases is capillarity, whereas in the latter viscous forces also 52 
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contribute to the fluid motion. Pore network models may be used, among other applications, as a tool to 53 

characterize the porous medium and to extract single-phase and two-phase flow parameters. 54 

Another widely surveyed simulation approach in the field of two-phase flow is continuum modeling. One 55 

of the well-known models for spontaneous imbibition is the Lucas-Washburn equation (Lucas, 56 

1918;Washburn, 1921) which assumes a perfectly sharp imbibition front during the change of saturation. 57 

Neglecting inertial and gravitational forces, the Lucas-Washburn law states that the front height (distance 58 

between the wetting phase reservoir and the front) is directly proportional to the square root of time. 59 

Although the Lucas-Washburn equation has been widely used by scientists (Geromichalos et al., 2002; 60 

Gruener et al., 2012;  Rieger et al., 2015), it fails to predict the phase distribution over time in several 61 

cases. Several attempts have been made to improve the model over the years
 
(Bosanquet M.A., 1923; 62 

Fries and Dreyer, 2008; Cai and Yu, 2011). 63 

In 1931, Richards proposed a continuum model for the fluid flow in unsaturated porous media (Richards, 64 

1931). This model is derived from the conservation of mass together with Darcy’s law (Darcy, 1856) as 65 

closure, and it has been employed in various scientific fields such as soil science (Witelski, 1997; Deng 66 

and Wang, 2017), characterization of paper (Perez-Cruz et al., 2017), fibrous materials (Zarandi and 67 

Pillai, 2018) etc. The Richards model is specifically beneficial under conditions without a sharp wetting 68 

front, e.g. in highly heterogeneous porous media for which the Lucas-Washburn law is not applicable. 69 

The Richards equation is mathematically a nonlinear diffusion equation; the effective parameter in this 70 

equation is the diffusion coefficient which needs to be determined a priori. This diffusion coefficient 71 

namely moisture transport coefficient (D), depends on a single-phase parameter, namely on the absolute 72 

permeability      and on two two-phase parameters, namely the relative permeability    and the 73 

capillary pressure   .  74 

One way to determine the effective parameters of the Richards model is to opt for experimental 75 

techniques such as the porous plate method, mercury injection, centrifuge method etc. (Purcell, 1949; 76 
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Sylte et al., 2004; Dernaika et al., 2012). These experimental methods provide a possibility to estimate 77 

macroscopic parameters for real porous media rather than for simplified pore networks. Nevertheless, the 78 

reduction of the experimental error, e.g. due to measurement devices, human error and environmental 79 

conditions, is quite challenging.  80 

Another widely used method to estimate the effective parameters of the Richards model is to utilize the 81 

various empirical correlations which have been proposed over the decades (Burdine, 1953; Brooks and 82 

Corey, 1964; van Genuchten, 1980; Landeryou et al., 2005). However, these correlations include other 83 

unknown coefficients that need to be determined, e.g. by fitting. Furthermore, each of the empirical 84 

equations is suitable only for specific systems and conditions and might not be applicable to other 85 

situations. As mentioned, one of the applications of pore network models is in the estimation of single- 86 

and multi-phase flow parameters. Jerauld and Salter (1990) developed a quasi-static pore network model 87 

and used it to perform imbibition-drainage scanning loops. Blunt et al. (2002) determined relative 88 

permeability curves in two- and three-phase systems by a quasi-static pore network model. Comparing 89 

their results to experimental results from Oak (1990), they proved that pore network modeling is a 90 

powerful tool to characterize multi-phase flow in porous media. Reeves and Celia (1996) proposed a 91 

three-dimensional quasi-static pore network model capable of modeling both imbibition and drainage. 92 

They concluded that a functional relationship between capillary pressure, liquid saturation and interfacial 93 

area exists in two-phase flow. However, in all of these studies, the calculated parameters were not 94 

employed in any continuum model to assess their usability for the prediction of the process kinetics. 95 

Other authors derived the values of effective parameters from dynamic pore network modeling for 96 

processes such as drainage (Joekar-Niasar et al., 2010), imbibition (Li et al., 2017) and drying (Attari 97 

Moghaddam et al., 2017). 98 

An alternative to the above-mentioned methods (which can be classified as “direct methods”) is an 99 

“inverse method” to estimate the values of effective parameters. In an inverse method, we pursue the 100 

backward path starting from kinetics data (i.e. liquid saturation as a function of time and space) and 101 
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proceeding towards effective parameters. By inverse modeling one can examine whether the physics of 102 

the process is well understood and whether the chosen model is consistent with the experimental 103 

conditions. Inverse methods have been previously utilized to estimate the effective parameters of two-104 

phase flow processes (Gummerson et al., 1979;Pel et al., 1995;Ghaedi et al., 2015). However, they have 105 

not yet received enough attention by scientists for the calculation of the moisture transport coefficient, 106 

despite their promising potential due to the advanced optimization techniques which exist nowadays.  107 

In this paper, the applicability of the Richards equation to predict the kinetics of spontaneous liquid 108 

imbibition into a porous medium is assessed. The (regular) structure of the pore network and the 109 

properties of the wetting and non-wetting fluids are described in Section 2.1, followed by a brief review 110 

of the dynamic pore network model (DPNM) in Section 2.2. In Section 2.3, two continuum models, 111 

namely the Lucas-Washburn law and the Richards equation are explained. In Section 2.4, the effective 112 

parameter of the Richards equation, i.e. the moisture transport coefficient D(S), is estimated using a 113 

quasi-static pore network model (QPNM) and an inverse method. In Section 3, the dependence of the 114 

moisture transport coefficient D on the liquid saturation S determined by different methods are presented 115 

and compared.. Furthermore, these D(S) curves are fed into the Richards equation and the numerical 116 

solutions are compared to the kinetic information predicted by the Lucas-Washburn law and by the 117 

DPNM, which is taken as a reference model in the present study. Finally, a summary of the methods as 118 

well as conclusions are presented in Section 4. 119 

2. Methods 120 

2.1. Model assumptions and pore network structure 121 

The void space of the porous medium under study is a network of cylindrical throats interconnected via 122 

pores without volume in a regular grid. The throat radii are sampled from a monomodal normal 123 

distribution (Matlab’s normrnd command) with given mean and standard deviation. For a real porous 124 

medium the pore size distribution can be characterized by measurement techniques such as mercury 125 

porosimetry, water retention method, photomicrographic methods, impregnation techniques, gas 126 



 
 

6 

 

adsorption method etc (Groen et al., 2003; Nimmo, 2004). Each pore in the network is connected to 6 127 

throats having pre-determined equal lengths. The non-wetting and wetting fluids used here are air and 128 

water, respectively. The pressure drop in the gas phase is assumed to be negligible which is reasonable 129 

since the liquid has a much greater viscosity than the gas. Liquid flow in the throats is assumed to be 130 

laminar. The Reynolds number (Re) calculated by DPNM simulations goes into the laminar regime after 131 

0.1 ms and the average Re number is 102.27. Moreover, inertial and gravitational forces are neglected. 132 

These assumptions can be assessed by calculating the dimensionless Weber (We) and Bond (Bo) 133 

numbers. The value of the Bo number, which shows the importance of the gravitational forces in 134 

comparison to the capillary forces is 0.0848 for our network. Since Bo<<1, gravitational forces are 135 

negligible. We number gives the ratio of inertial forces to capillary forces and (according to DPNM 136 

simulations) its average value drops below 1 already after 18 ms. Thus inertial forces are considered 137 

negligible. The process takes place under isothermal conditions and perfect wetting is assumed. The 138 

structural characteristics of the network as well as the physical properties of the fluids are listed in Table 139 

1.  140 

Liquid and gas reservoirs are placed at the bottom and top of the network, respectively. It is assumed that 141 

gas and liquid reservoirs are infinite i.e. they can provide unlimited amounts of gas and liquid, 142 

respectively.  Initially, the network is filled with the gas phase. It is then brought into contact with the 143 

liquid reservoir, at which point spontaneous imbibition begins due to capillary forces. The displacement 144 

of the gas phase by the liquid phase continues until the network is fully saturated by liquid. The top 145 

boundary of the network is considered closed for liquid flow, i.e. no liquid invasion is possible through 146 

this boundary. However, the gas phase can escape through the top boundary and thereby leave the 147 

network. At the lateral boundaries, periodic boundary conditions are assumed. Figure 1 shows a small 148 

network with a liquid reservoir at its bottom.   149 

Figure 1: Schematic representation of a small pore network (5×5×10 pores) connected to a liquid reservoir 150 

at the bottom. 151 
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                          Table 1: Properties of the network and of the fluids used in subsequent simulations. 152 

 153 

2.2. Dynamic pore network model (DPNM) 154 

In the dynamic pore network model (DPNM), both capillary and viscous forces influence the 155 

advancement of the liquid front. The network is initially filled with gas except for the pores adjacent to 156 

the liquid reservoir. Since there is no external force pumping the liquid into the network, these reservoir-157 

connecting pores are at atmospheric pressure. Furthermore, the throats connected to these pores have a 158 

meniscus at their entrance. As the process starts, the following steps are taken in a consecutive manner:  159 

 Pressure profile determination: Since laminar fluid flow is assumed, the volumetric liquid flow rate in 160 

a non-empty throat,  , is described by the Hagen-Poiseuille’s equation:  161 

                                                         
   

    
                                                                  (1) 162 

where    and   are the length of the liquid element in the throat and the throat radius, respectively.    163 

and    are the pressure values at the two sides of the liquid element in the throat. For a saturated 164 

throat, these values are equal to the pressure values of the pores adjacent to this throat. However, if 165 

the throat is partially saturated and contains a meniscus, then the pressure of the liquid pore connected 166 

to the throat and the pressure at the liquid side of the meniscus are used as P1 and P2. The mass 167 

balance for any liquid pore that is not adjacent to the reservoir reads as  168 

                                                           
 
                                                                       (2) 169 

where n is the number of throats connected to this liquid pore. In Eq.2, the only neighboring throats 170 

that are considered are full throats and partially saturated throats with a moving meniscus (invading or 171 

receding) at the side of the liquid pore. Collecting the mass balance equations for all liquid pores 172 

leads to a system of linear equations, the solution of which yields the pressure field throughout the 173 

network. It should be noted that this step is skipped when the network is in its initial state because 174 
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there is no liquid pore in the network except for the reservoir adjacent pore at the bottom of the 175 

network.  176 

 Determination of the possible displacement events (invasion or retraction): When the pressure profile 177 

is known, stationary menisci (not moving), invading menisci (liquid filling the throat) and receding 178 

menisci (liquid leaving the throat) can be identified. In this model, it is possible to have multiple 179 

moving menisci at a specific time. 180 

 Calculation of the time step size: The liquid flow rates in the throats containing moving (invading or 181 

retracting) menisci can be calculated by Eq.1. Among all displacement events, the one which first fills 182 

(in case of invasion) or empties (retraction) a throat is the decisive event. Therefore, the time step is 183 

defined as the time required for this meniscus to fill or empty the throat completely. All other 184 

invading or receding menisci will partially fill or empty the corresponding throats according to their 185 

flow rates and the time step size. At this stage, the values of    are updated based on the throat 186 

saturations from the previous time step and the displacement events which occurred during the 187 

current time step. 188 

 Check for breakage: When a throat becomes empty, another pore-level event, called breakage, is 189 

possible. It occurs if the pressure in the connected liquid pore is not large enough to maintain the 190 

liquid continuity; as a result of breakage, a receding meniscus will form in one or more neighboring 191 

full throats.  192 

After this step the current imbibition time is incremented by the calculated time step and the previous 193 

steps are repeated from the pressure calculation. The network saturation, local saturations (saturation at 194 

different heights of the network) and the current imbibition time are recorded at each time step. The 195 

process continues until the pore network is fully saturated. This model has been previously validated 196 

against experiments and is described in more detail in (Sun et al., 2016).       197 

 198 
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2.3.  Continuum models 199 

2.3.1. Lucas-Washburn law 200 

The Lucas-Washburn law for a porous medium is derived from a momentum balance, assuming that the 201 

wetting front is perfectly flat and that the capillary pressure is constant during imbibition. Neglecting 202 

gravitational and inertial forces, the momentum balance for the system under study reads: 203 

                                                         
      

 
 

   

    

  

  
                                                               (3)  204 

where h is the front height at time t and where   is the equilibrium contact angle between liquid and gas. 205 

  and      are the porosity and absolute permeability of the network, respectively. The left-hand side of 206 

Eq. 3 denotes the capillary pressure calculated by the Young-Laplace equation and the right-hand side is 207 

the viscous pressure drop obtained by Darcy’s law. Integration over time yields the Lucas-Washburn law 208 

for a porous medium: 209 

                                                                
         

   
  .                                                   (4) 210 

Assuming that the porosity is homogeneous in the network, the network saturation can be calculated as a 211 

function of time:  212 

                                                                       
    

 
                                                             (5) 213 

where H is the total network height. Therefore:   214 

                                                               
 

 
 
         

   
  .                                                (6)  215 

Since the pore radii are distributed randomly in the network, we will take the mean value of the throat 216 

radii in Eq. 6. 217 

2.3.2. Richards equation  218 

For the one-dimensional (1D) spontaneous imbibition of a liquid into a gas-filled porous medium, the 219 

mass balance for the liquid phase reads:  220 
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,                                                                (7)  221 

where z and S are the vertical distance from the liquid reservoir and the local saturation, respectively.    222 

is the superficial liquid velocity which appears in the generalized Darcy’s law for two-phase flow:       223 

                                                             
      

 

   

  
,                                                            (8)                 224 

where    and    are the pressure and the relative permeability of the liquid phase, respectively. Assuming 225 

local capillary equilibrium, the liquid pressure and capillary pressure are linked via 226 

                                                                                                                                      (9) 227 

where    denotes the prescribed gas pressure. Combining Eqs. 7-9, the Richards equation is derived:  228 

                                                    
  

  
 

 

  
  

         

 

      

  

  

  
                                            (10) 229 

Eq. 10 can be re-written in diffusion form:                                    230 

                                                               
  

  
 

 

  
     

  

  
                                                    (11) 231 

where  232 

                                                               
         

 

      

  
,                                             (12) 233 

is the moisture transport coefficient. Eq. 11 is solved together with the boundary conditions 234 

                                                                           at                                                           (13) 235 

                                                                      
  

   
   at                                                          (14) 236 

and with the initial condition 237 

                                                                            at                                                           (15) 238 

 239 

 240 
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2.4. Determination of the moisture transport coefficient 241 

The determination of the effective parameters is a necessary step prior to the use of any continuum model. 242 

In the following sections two methods are introduced to estimate the effective parameter of the Richards 243 

equation, i.e. the moisture transport coefficient (Eq. 12). In the first method, we use the structural 244 

properties of the network together with a quasi-static pore network model (QPNM) as a simulation tool to 245 

estimate D(S); this method is referred to as a direct method. In contrast, the second method is an inverse 246 

method in which we use saturation profiles during the wetting process obtained from the DPNM to 247 

estimate D(S) via curve fitting. 248 

2.4.1. Quasi-static pore network model (QPNM)  249 

The pore network model presented in this section is based on the assumption that the viscous forces are 250 

negligible compared to the capillary forces (low Ca). This means that although the viscous forces still 251 

exist, their values are much smaller than the capillary forces so that the phase configuration at each 252 

overall saturation level is determined by the capillary forces only. When the viscous pressure drop is 253 

negligible, the gas and liquid phases retain the pressure of their respective reservoirs throughout the REV. 254 

Therefore, the capillary pressure, which is defined as the difference between the phase-averaged gas and 255 

liquid pressures, will be equal to the difference between the pressure in the gas and in the liquid 256 

reservoirs: 257 

                                                                                                 (16) 258 

where      and      are phase averaged pressures of gas and liquid.      and      denote the pressures in 259 

the gas and liquid reservoirs, respectively. The quasi-static imbibition is equivalent to an infinitely slow 260 

process where the system can be assumed in equilibrium at each stage. Since the Richards model assumes 261 

equilibrium in the local scale, the QPNM can be considered a suitable model to determine the moisture 262 

transport coefficient. This model is applied on a representative elementary volume (REV).  263 
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The REV is initially filled with the gas phase and the throats connected to the liquid reservoir at the 264 

bottom of the network contain menisci. These menisci are initially considered as stationary. This means 265 

that the contact angle of the meniscus is adjusted so that the liquid pressure behind the meniscus will be 266 

equal to the liquid pressure in the connected pore. The invasion mechanism is based on the invasion-267 

percolation algorithm primarily proposed by Wilkinson and Willemsen (1983) and operates as follows: 268 

1. The capillary thresholds of all throats are calculated by the Young-Laplace equation. For any 269 

throat i, the capillary threshold         is given by: 270 

                                                                
      

   
                                                                (17) 271 

The pressure value calculated by Eq.17 is the pressure difference between gas and liquid 272 

phases when a moving meniscus exists in the throat. Having the capillary thresholds, the throat 273 

potential of each throat       can be calculated: 274 

                                                                                                                                  (18) 275 

The throat potential indicates the liquid pressure behind the moving meniscus.   276 

2.  Liquid and gas reservoirs are set to constant pressures so that their difference i.e. the initial 277 

capillary pressure will be equal to the capillary threshold of the smallest throat (which has the 278 

largest capillary pressure by Eq.17) in the REV.  279 

3. Each meniscus in the network is tested for stability. If the liquid pressure behind the meniscus 280 

(which is equal to the pressure of the liquid reservoir) is larger than the throat potential  281 

                                                                                                                                                          (19) 282 

the meniscus is marked as unstable. This is due to the fact that liquid always seeks a state 283 

with lower pressure (energy density). In other words, invasion is possible only if the liquid 284 

pressure behind the meniscus decreases by this displacement. Combining Eqs. 16 and 18 with 285 

the inequality19:  286 
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                                                                             (20) 287 

Hence, the capillary threshold of a throat can be understood as the maximum capillary 288 

pressure in which the liquid is allowed to flow into that throat. 289 

4. In this model (as opposed to the DPNM), only one meniscus invades per step. From the 290 

menisci marked as “unstable”, the smallest throat is chosen for invasion and its saturation 291 

changes from 0 to 1.  292 

5. When a throat fills it will not contain a meniscus anymore and instead new menisci will be 293 

created at the entrance of all neighboring empty throats. The newly created menisci are 294 

considered stationary at this stage. The liquid pressure behind the meniscus is equal to the 295 

connected liquid pore and consequently to the pressure in the liquid reservoir.    296 

6. The process is repeated from step 3 until there is no more unstable meniscus. This means that 297 

the system has reached equilibrium and no more liquid displacement is possible. At this stage, 298 

the values of capillary pressure and saturation are recorded. 299 

7. The value of the capillary pressure (difference between gas and liquid reservoirs) is then 300 

decremented uniformly and the steps are repeated from 3. 301 

8. The process continues until there is no more meniscus which means that the network is fully 302 

saturated. 303 

To calculate the absolute permeability of the porous medium, we consider a fully saturated network. 304 

Under this condition the relative permeability is equal to unity (single-phase flow). A constant pressure 305 

difference    is imposed across the network. Then, a similar method as in the DPNM (Eqs. 1-2) is 306 

applied to calculate the pressure profile. After this step, the total liquid flux across the network, Q, can be 307 

calculated by summing the liquid flow rates in a single layer of vertical throats. Using Darcy’s law,      308 

is thus obtained as: 309 

                                                               
      

      
,                                                       (21) 310 
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where      and      are the cross sectional area and the edge length of the REV, respectively. 311 

The calculation of the relative permeability is fairly similar, except that the network must be partially 312 

saturated in this case. At each equilibrium stage of the QPNM, the liquid configuration is extracted and 313 

the corresponding pressure profile is calculated using Eqs. 1-2. Since equilibrium is assumed in the REV, 314 

the liquid flow rates through the individual layers of vertical throats are all identical and equal to the total 315 

flow rate. Thus, the total liquid flow rate Q passing the REV is determined by summing the flow rates in 316 

liquid-containing throats in any single layer of vertical throats. The generalized form of Darcy’s law is 317 

utilized to calculate    for the respective saturation value: 318 

                                                               
      

          
.                                                            (22) 319 

It should be noted that the calculation of    starts from the breakthrough saturation because before this 320 

stage no liquid is transferred through the network. Furthermore, only the spanning clusters, i.e. the liquid 321 

clusters which are connected to both the top and the bottom of the network, contribute to the liquid 322 

transport. 323 

The combination of all three calculated parameters            and       leads to the moisture transport 324 

coefficient D(S) according to Eq. 12. These simulations are repeated 15 times for different network 325 

realizations and the obtained D(S) curves are averaged. For each realization, a new set of throat radii is 326 

generated randomly with the same values for the mean and standard deviation.  327 

The calculated effective parameters should represent the full behavior of the intended structure and should 328 

thus be computed for a network size that includes all the structural properties. Therefore, the 329 

determination of the REV size is crucial. To do this, we run the QPNM on a cubic network with different 330 

sizes but with the same structural characteristics. We then compare the resulting capillary pressure curves 331 

and we search for the maximum size beyond which the curve does not change notably if the size is 332 

increased further. This is then taken as the size of the REV. 333 
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Empirical models: As mentioned, empirical equations are conventionally used in literature. Here, we 334 

choose empirical models for the capillary pressure and for the relative permeability and we fit them to the 335 

effective parameters calculated by the QPNM to assess the applicability of these models in predicting the 336 

wetting kinetics. For      , the well-known van Genuchten correlation is adopted: 337 

                                                      
    

    
 

 

           
 ,                                                (23) 338 

and consequently: 339 

                                                   
      

   
 

  

   
  

 

  
 

 

 
   

 

 
  

 
 

  
 

 

 
  

                                     (24) 340 

where    and    are the effective and residual liquid saturations, respectively.   and   are the fitting 341 

parameters, whereas     
 

 
. Regarding      , a power law is considered, as proposed by Brooks and 342 

Corey: 343 

                                                                   
 
,                                                             (25) 344 

where   is the fitting parameter. The fitting procedure is carried out in the software OriginPro 2017G.  345 

Furthermore, considering the network as a bundle of parallel capillary tubes, the absolute permeability 346 

can be estimated as (Huinink, 2016): 347 

                                                                         
   

 
.                                                                (26) 348 

However, in our pore network, only 1/3 of the throats are parallel to the z axis, i.e. the direction in which 349 

liquid is transported. Therefore the proper correlation for the absolute permeability in this case will be: 350 

                                                                         
   

  
.                                                                (27) 351 
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Therefore, we can build D based on empirical correlations,      by substituting Eqs. 24, 25 and 27 into 352 

Eq.12: 353 

                                                       
   

      
  

   
 

  
 

 

 
   

 

 
  

 
 

  
 

 

 
  

                          (28) 354 

2.4.2. Inverse method 355 

In this method, the kinetic data obtained from the DPNM is used to determine the moisture transport 356 

coefficient D(S). This is an inverse method since we use the behavior of the system during imbibition to 357 

establish the effective parameter D, rather than calculating this parameter from the geometrical structure 358 

of the network, as in Sec. 2.4.1. 359 

The liquid saturations at each position in the network and at each time step are taken from the DPNM 360 

(           at discrete points        ). To estimate D(S), we first choose a specific number of points 361 

distributed equidistantly throughout the saturation range (     ). Then, we attempt to find the best 362 

value of D corresponding to each of these points so that when the whole D(S) curve is fed into the 363 

Richards equation, the solution will have the least possible deviation to the results obtained from the 364 

DPNM. This deviation can be quantified by an objective function, E:        365 

                                                                   
 

  ,                                 (29) 366 

where           is the solution of the Richards equation with the D(S) curve to be estimated. Eq. 29 367 

implies that       and           match best (in the least-squares sense) when the value of E is minimal. 368 

This minimization problem can be handled by optimization techniques. In this work, the “patternsearch” 369 

function from Matlab’s “Global optimization toolbox” is applied for this purpose. In order to achieve a 370 

smooth D(S) curve, a constraint is set for the problem to keep the total variation of D smaller than a 371 

prescribed absolute tolerance of 0.2.  372 

 373 
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3. Results and discussion 374 

3.1. Liquid configuration and front width 375 

The evolution of the wetting front during imbibition obtained from the DPNM is illustrated in Figure 2. 376 

The wetting front is rather sharp at the early stages of the process but it broadens as the network 377 

saturation increases. The reason is that, as the front height increases, the viscous force acts over a larger 378 

distance and thus the gradient of the pressure drop decreases. Therefore, the viscous forces become less 379 

pronounced compared to the capillary forces which leads to a more fractal-like front. Such a front 380 

broadening during spontaneous imbibition into a heterogeneous porous medium was reported previously 381 

(e.g. Dubé et al., 2000; Gruener et al., 2012; Chen et al., 2015). When the liquid reaches the top of the 382 

network through one of the surface throats, it can not invade further as the top boundary is impermeable 383 

for the liquid. Therefore, the imbibition front cannot advance further and its width eventually starts to 384 

decrease until the network is fully saturated. The front width, W, is quantified as: 385 

                                                                         ,                                            (30) 386 

where       is the height of meniscus i at time t. The operator    calculates the average of the intended 387 

expression over all menisci. Figure 3 shows the normalized front width against the network saturation. It 388 

can be seen that the front broadens until the breakthrough point. After this point, the width still increases a 389 

little further as the average front height         is still increasing and the effect of the viscous pressure 390 

drop is more pronounced than the effect of the impermeable top boundary. Finally, at the last stages of the 391 

process, the front width decreases to zero.  392 

From Figures 2 and 3, it can be concluded that a fairly large two-phase zone is observed during 393 

imbibition. Thus, the conventional Lucas-Washburn law could not predict the evolution of the front shape 394 

during imbibition properly as it is derived based on the assumption of the front being perfectly sharp. 395 

 396 
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Figure 2: Phase distributions during imbibition at different network saturations, Snet. (a) 0.1, (b) 0.5, (c) 397 

0.9, (d) 1. 398 

Figure 3: Normalized front width as a function of the network saturation. 399 

3.2. Moisture transport coefficient 400 

Figure 4 depicts    versus S obtained from the QPNM for pore networks with different sizes but with 401 

identical statistical characteristics. From this figure, it can be concluded that a cubic network with an edge 402 

length of 15 pores is large enough as the capillary pressure curve does not significantly change for larger 403 

sizes. Therefore, this size is chosen as the REV size. 404 

Figures 5 and 6 show   (S) and   (S), respectively, calculated from running the QPNM simulation on the 405 

REV as well as from the corresponding fitted empirical correlations (Eqs. 23 and 25). It should be 406 

considered that the residual saturation    in Eq.23 is zero since the capillary pressure curve starts from 407 

zero saturation. Moreover,    obtained from QPNM in Figure 6 starts from the breakthrough saturation 408 

(                    ) as no liquid is transported through the REV below this saturation. The 409 

calculated fitting parameters and the goodness of fit are stated in Tables 2 and 3. The values of 410 

     obtained from the QPNM and from Eq. 27 are presented in Table 4. From all of these parameters, 411 

D(S) can be calculated using Eq. 12. 412 

Figure 7 demonstrates D(S) obtained from the QPNM, from empirical models, and from the inverse 413 

method. As can be seen, the curves from the QPNM and from the inverse method are quite close with 414 

only a slight difference near S = 1. The curve from the empirical models follows the same trend as the 415 

other two curves but it shows larger deviations especially at very high and very low saturations.  416 

As observed from Figure 7, D determined from the QPNM has no value near S=0. This is due to the fact 417 

that one of the constituting parameters (  ) can be calculated only after the breakthrough point. Similarly, 418 

the curve obtained from the inverse method starts from a nonzero saturation. The primary curve resulting 419 

from the optimization procedure (section 2.4.2) included out-of-range data points for small saturations 420 
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which were later omitted. It should also be noted that there are mathematical restrictions associated with 421 

the utilized empirical correlations.  In the van Genuchten equation (Eq. 23),    and consequently      422 

are undefined at S=0. Furthermore, 
      

  
  and      are not defined at S=1 according to Eqs. 20, 24 and 423 

considering the values of fitting parameters (Table 3). It is however possible to calculate the limit of 424 

     near S=1, where                 This can also be understood from the steep slope of the 425 

capillary pressure curve (Figure 5) and the asymptotic behavior of the moisture transport coefficient curve 426 

(Figure 7) as saturation approaches unity.  427 

After the determination of the effective parameter D, the Richards equation is solved with D(S) obtained 428 

from the QPNM and from the inverse method (Figure 7). For this, a finite volume method together with 429 

the method of lines is used. The resulting solutions are then compared to the same results from the DPNM 430 

which is taken as reference model.  431 

Table 2: Fitting parameters of the van Genuchten equation for the capillary pressure and two measures for 432 
the goodness of fit. 433 

Table 3: Fitting parameters of the Brooks-Corey equation for the relative permeability and two measures 434 

for the goodness of fit. 435 

Table 4: Absolute permeability calculated from the QPNM and from a bundle of capillary model (Eq. 27) 436 

 437 

Figure 4: Capillary pressure as a function of the liquid saturation for cubic networks with different edge 438 

lengths obtained from the QPNM. The subplot depicts the capillary pressure curves at high saturation 439 

values. 440 

Figure 5: Capillary pressure as a function of the liquid saturation obtained from the QPNM and fitted 441 

curve. 442 

Figure 6: Relative permeability as a function of liquid saturation from the QPNM, and fitted curve. 443 

 444 
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Figure 7: Saturation-dependent moisture transport coefficient obtained from the QPNM, from the inverse 445 

method and from empirical models. The subplot depicts the curves in the range of high saturation values. 446 

3.3. Evolution of the network saturation over time 447 

The Richards equation is solved numerically with D(S) estimated from the QPNM and from the inverse 448 

method; we refer to these combinations as “QPNM-Richards” and “inverse method-Richards”, 449 

respectively. The solution of the Richards equation yields the liquid saturation at different heights of the 450 

network during imbibition (      ) until the network is fully saturated. The total network saturation, Snet 451 

at each time can be calculated from the local saturation values:  452 

                                                 
        
  
   

     
  
   

 
          
  
   

     
  
   

,                                           (31) 453 

where    and    are the liquid and void volumes, respectively, of the discretized elements in the z-454 

direction; and    is the number of these elements. Figure 8 illustrates the network saturation versus time 455 

obtained from QPNM-Richards, inverse method-Richards and from the Lucas-Washburn law. In this 456 

figure, the same quantities obtained by the reference method (DPNM), are also shown for comparison. As 457 

can be seen, the inverse method-Richards predicts a quite similar imbibition rate and total time as the 458 

DPNM. The figure also indicates that QPNM-Richards roughly estimates the imbibition rate and of the 459 

total imbibition time, however some deviation from the DPNM result is observed. This deviation is 460 

almost negligible at the beginning of the process but becomes more pronounced at later times. Moreover, 461 

it can be seen that the Lucas-Washburn law predicts a slightly faster imbibition compared to the DPNM. 462 

This can be justified through the connection between the front shape and the capillary number Ca. For a 463 

specific gas-liquid-solid system in a porous structure where the liquid invades with a sharp front, Ca is 464 

larger compared to the case where a wide and fractal-like front is observed. Considering the definition of 465 

Ca (Sec. 1) and the fact that the Lucas-Washburn law assumes a sharp front, it can be concluded that the 466 

Lucas-Washburn law is expected to predict a larger average liquid velocity than the DPNM.  467 
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Figure 8: Network saturation versus time obtained from the methods DPNM, QPNM-Richards, inverse 468 

method-Richards and from the Lucas-Washburn law. 469 

 470 

3.4. Saturation profiles 471 

The saturation profiles obtained from the three methods described in Sec. 2 are shown in Figure 9.   472 

denotes the normalized position in the z direction. It can be seen that the curves obtained from the inverse 473 

method-Richards and from the DPNM are in good agreement. QPNM-Richards predicts similar results as 474 

the DPNM at early stages of the wetting process. However, as time proceeds, a discrepancy appears and 475 

QPNM-Richards predicts a slightly broader wetting front than the DPNM.  476 

Figure 9: Saturation profiles at specific Snet values obtained from different methods. From left to right, Snet 477 

= 0.14, 0.24, 0.34, 0.44, 0.54, 0.64, 0.74, 0.84, 0.94. 478 

3.5. Propagation of uncertainty 479 

From the results presented herein, we observe that although the functions D(S) obtained from the 480 

estimation using the QPNM and the inverse method are similar (Figure 7) they lead to quite different 481 

predictions for the imbibition kinetics when used in the Richards equation (Figs. 8 and 9). This issue can 482 

be explained by the concept of uncertainty propagation. Any parameter estimation involves uncertainties 483 

of different types such as structural, algorithmic, interpolation and experimental uncertainties. In the case 484 

of determining D(S) by the QPNM, uncertainties can be introduced due to structural uncertainty, 485 

numerical errors (e.g. by calculating 
   

  
 from   ), assumptions underlying the employed model etc. One 486 

of the sources of (structural) uncertainty is the randomness of the pore sizes, which is quantifiable. For all 487 

realizations, the throat radii are sampled from a normal distribution with a prescribed mean and standard 488 

deviation. However, the throat radii are still random and the spatial distribution of small and large throats 489 

will be different for each realization, for example.     490 

The uncertainty introduced in this way can be quantified by drawing a confidence band for the average 491 
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moisture transport coefficient (      ) considering D(S) from all realizations, (               ). 492 

Figure 10a depicts        and the corresponding 90% confidence band. As the figure indicates, the 493 

confidence band is very narrow which means that the level of uncertainty due to structural randomness of 494 

the REV is pretty low.  495 

Figure 10: Propagation of uncertainty by the Richards equation. (a) Average moisture transport coefficient 496 

versus saturation obtained from the QPNM together with 90% confidence band and (b) the resulting 497 

network saturation versus time together with 90% confidence band. 498 

If we insert all       curves and also        into the Richards equation and calculate the numerical 499 

solutions, then we can draw a confidence band for the network saturation      in a similar way. Figure 500 

10b shows      obtained from using        into the Richards equation,         against time and the 501 

corresponding 90% confidence band. Unlike in the estimation of D(S), the amount of uncertainty in the 502 

estimation of         appears to be high since the confidence band is quite wide. In other words, even 503 

though the uncertainty in the moisture transport coefficient is low, when it is fed into the Richards 504 

equation, the resulting network saturation will include a large level of uncertainty. This proves that the 505 

Richards equation is extremely sensitive to the coefficient function D(S) and that the uncertainty in the 506 

moisture transport coefficient is amplified over time when this equation is applied. Observing the 507 

propagation of uncertainty due to structural randomness (see Figure 10), one may expect that errors can 508 

also be introduced to D and thus to the imbibition kinetics from other sources, e.g. the numerical 509 

calculations. 510 

This shows the importance of determining D with high precision as even small errors might lead to an 511 

inaccurate prediction of the imbibition rate and of the front width. This should be in fact considered while 512 

performing any direct method for the calculation of D(S). Considering this fact, it is expected that 513 

involving empirical correlations in the determination of D would lead to prediction of erroneous 514 

imbibition kinetics. The reason is that by applying empirical models for       (Eq. 23) and       (Eq. 515 

25), a new source of uncertainty is introduced by the fitting procedure and the resulting D(S) will have a 516 
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lower level of accuracy. Furthermore, D determined by the adopted empirical correlations approaches 517 

infinity near S=1 which is unrealistic. 518 

On the other hand, in the inverse method we adjust D(S) according to the discrepancy between the 519 

solutions S(t,z) of the Richards equation and of the DPNM. Therefore, if the value of the function E (Eq. 520 

29) is small enough, it is assured that the obtained D(S) is the optimal curve which will lead to results 521 

close to those from the DPNM in the least-squares sense when it is fed into the Richards equation. 522 

However, to implement an inverse method we need to know        as primary information. This requires 523 

time- consuming experimental measurements or dynamic numerical simulations which are normally 524 

computationally expensive. In contrast, the QPNM is a high-speed tool which is able to estimate D(S) 525 

with a reasonable precision if a proper averaging procedure is employed. 526 

4. Conclusions 527 

In this study, the Richards equation is revisited and its capability to predict the process kinetics during the 528 

spontaneous imbibition of a liquid into a gas-filled porous medium with an effective moisture transport 529 

coefficient calculated from different methods is assessed. A direct method using a quasi-static pore 530 

network model (QPNM) and an inverse method using a dynamic pore network model (DPNM) are 531 

developed to estimate the moisture transport coefficient from numerical simulations. The functions D(S) 532 

obtained by these two methods are quite similar except near S = 1. Moreover, conventional empirical 533 

equations (van Genuchten and Brooks-Corey for       and      , respectively) are fitted to curves 534 

calculated from the QPNM and are then employed to determine D. Although good fits are obtained, the 535 

resulting D(S) shows a discrepancy to the other two curves (Figure 7), especially at very high and at very 536 

low saturations.  537 

The Richards equation is then solved numerically for the different calculated D(S) curves using the finite 538 

volume method and the numerical solutions of the Richards equation are compared to the results obtained 539 

from the dynamic pore network model (DPNM) (Figs. 8, 9). A good agreement was achieved between the 540 
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saturation levels        predicted by the inverse method-Richards approach and by the DPNM. This 541 

proves that the inverse method estimates D(S) well and the value of the objective function E is small 542 

enough. The QPNM-Richards approach represents satisfying results with some deviation compared to the 543 

DPNM, despite the fact that D(S) computed from the QPNM and from the inverse method are very close. 544 

The reason is the high sensitivity of the Richards equation to the moisture transport coefficient function. 545 

From the average D(S) calculated from the QPNM, the resulting network saturation curve and their 546 

corresponding confidence bands, it is quite obvious that the uncertainty in the determined effective 547 

parameter D is amplified strongly over time when it is fed into the Richards equation.  Thus, it can be 548 

predicted that if one applies empirical models for the determination of    and    and uses the resulting D 549 

as an input for the Richards equation, then the obtained imbibition kinetics will be erroneous and 550 

unrealistic. When a fitting step is involved in the determination of D(S), an extra source of uncertainty is 551 

added which will propagate into the solution of the Richards equation. Thus, although the use of these 552 

empirical correlations gives smooth curves for the effective parameters, it might lead to an inaccurate 553 

prediction of the imbibition rate and of the wetting front width. Furthermore, comparing the values of the 554 

network saturation during imbibition calculated by the DPNM and by the Lucas-Washburn law (Figure 8) 555 

confirms that, although the Lucas-Washburn law is not able to predict the front shape properly, it 556 

estimates the evolution of the total network saturation over time with a reasonably small error. Finally, 557 

our results show that none of the continuum models used here can reproduce precisely the same S(t,z) as 558 

obtained from our (discrete) DPNM.  559 

On the one hand, to estimate D(S) from an inverse method, we used the saturation profiles        during 560 

the wetting process obtained from the DPNM (which is a time-consuming and computationally expensive 561 

model) as inputs. The QPNM, on the other hand, is fast and efficient since only capillary thresholds of the 562 

throats need to be considered to determine the phase saturation at each step. Furthermore, to characterize 563 

the structure of the medium, the QPNM is applied to a network with an REV size of          pores, 564 

which is one quarter of the size of the main network under study (         pores).  565 
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In conclusion, for engineering purposes, where a rough estimation of the behavior of the system is 566 

needed, the QPNM is an efficient tool. However, in theoretical work where the determination of D(S) 567 

with high precision is crucial it is safer to use the inverse method.  568 

It should be considered that gravitational forces are neglected in the current study which is valid under 569 

specific conditions, e.g. for horizontal liquid transport. However, the continuum model and the DPNM 570 

can be extended in a future study to account for the gravitational forces to test the methods also for cases 571 

in which gravity plays an important role. Moreover, the pore network models can be improved in order to 572 

include the contact angle hysteresis effect or to become suitable for more complex network structures 573 

such as irregular pore shape, tortuous throats, non-uniform coordination number of pores etc. In addition, 574 

the proposed methods can be utilized to build a correlation between D(S) and the structural properties of 575 

the medium such as the pore size distribution, the coordination number of pores, the pore geometry, etc.  576 
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Parameter       Value 

Mean throat radius (m)         250 

Maximum throat radius (m)    464.46 

Minimum throat radius (m)        54.22 

Standard deviation of throat radii (%)          20% 

Throat length (mm)           1 

Coordination number (-)           6 

Network size (nodes)         15×15×60 

Air pressure (atm)         1 

liquid inlet pressure                 1 

Dynamic viscosity of water (mPas)  0.89 

Surface tension (N/m)                0.07197 

Mass density of water (Kg/m
3
)     996.93 

Contact angle (°)         0 

Porosity (-)       0.6946 

Table1



     Fitting parameters  Goodness of fit  

Parameter  n  (       RSS 

Value  10.243  0.00189  0.995  0.13406 

Table 2



     Fitting parameters  Goodness of fit  

Parameter  k  R
2
  RSS 

Value  1.853  0.997  0.08266 

Table 3



Method  QPNM  Bundle of capillary model 

Value (m
2
)  1.8349×10

-9
  1.7429×10

-9
 

Table 4




