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Abstract 
 

In the treatment of cancer using ionizing radiation, it is important to design a treatment 
plan such that dose to normal, healthy organs is sufficiently low. Today, segmentation requires a 
trained human to carefully outline, or segment, organs on each slice of a treatment planning 
computed tomography (CT) scan but it is laborious, time-consuming, and contains intra- and 
inter-rater variability. Currently, existing clinical automation technology relies on atlas-based 
automation, which has limited segmentation accuracy. Thus the auto-segmentations require post 
process editing by an expert. In this paper, we propose a machine learning solution that shortens 
the segmentation time of organs-at-risk (OARs) in the thoracic cavity. The overall system will 
include preprocessing, model processing, and postprocessing steps to make the system easily 
integratable into the radiotherapy planning process. For our model, we chose to use a 3D deep 
convolutional neural network with a U-net based architecture because this machine learning 
strategy takes into account local spatial relationships, will restore the original image resolution 
and has been utilized in image segmentation, especially in medical image analysis. Training and 
testing were done with a 60 patient dataset of thoracic CT scans from the AAPM 2017 Grand 
Challenge. To assess and improve our system we calculated accuracy metrics (Dice similarity 
coefficient (DSC), mean surface distance (MSD)) and compared our model’s segmentation 
performance to that of an expert and the top two performing machine learning methods of the 
challenge. We explored using preprocessing steps such as cropping and image enhancement to 
improve the model segmentation accuracy. Our final model was able to segment the lungs as 
accurately as a dosimetrist and the heart and spinal cord within acceptable DSC ranges. All DSC 
values of the OARs from our method were as accurate as other machine learning methods. The 
DSC for the esophagus was below tolerable error for radiotherapy planning, but our mean 
surface distance was superior to other auto-segmentation methods. We were successful in 
significantly reducing manual segmentation time by developing a machine learning system. 
Though our approach still necessitates a single preparatory step of manually cropping anatomical 
regions to isolate segmentation volume, a general hospital technician could complete this task 
which removes the need of an expert for one time-consuming step of radiotherapy planning. 
Implementation of our methods to provide radiotherapy in lower-middle income countries brings 
us closer to accessibility of treatment for a wider population.  
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Glossary of Terms 
 

1. LMIC: Lower and middle income countries 
2. RT: Radiotherapy 
3. OARs: Organs-at-risk 
4. DCNN: Deep Convolutional Neural Net 
5. Dosimetrist: The medical dosimetrist is responsible for developing a radiotherapy 

treatment plan by means of computer and/or manual computation to determine a 
treatment field technique that will deliver that prescribed radiation dose. When 
designing that plan, also taken into consideration are the dose-limiting structures.  

6. AAPM Challenge: American Association for Physical Medicine Grand 
Challenge: Auto-Segmentation for Thoracic Radiation Treatment Planning 

7. DICOM: Digital Imaging and Communications in Medicine 
8. RTSTRUCT: Radiotherapy structure set 
9. DSC: Dice Similarity Coefficient 
10. HD95: Hausdorff distance  
11. MSD: Mean surface distance 
12. BM&CS: Bilateral mean and contrast enhancement 
13. LE: Local histogram equalization filter 
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1. Introduction 

1.1 Problem Statement & Goal  

Radiation therapy, a key component of cancer management, is required in more than half 
of new cancer patients, particularly in low- and middle-income countries (LMICs)[1]. For safe 
and effective radiotherapy (RT) treatment, it is crucial to accurately segment organs-at-risks 
(OARs) to minimize radiation exposure to these healthy tissues. Current practice necessitates 
expert manual delineation of OARs, an arduous and labor intensive task with variable accuracy. 
RT is not an accessible treatment option in many LMICs because the lack of trained 
professionals or radiotherapy units. To address these issues, we propose a deep convolutional 
neural network (DCNN) machine learning-based algorithm to automate the segmentation of 
OARs in thoracic CT images. We aim to (i) segment the organs quicker than the average manual 
segmentation time, (ii) segment as accurately as a dosimetrist, and (iii) fully automate the 
segmentation process for the thoracic cavity. Successful demonstration of this method for 
thoracic CT will lay a foundation for a generalizable machine learning strategy of OAR 
segmentation integrated into radiotherapy planning. 

1.2 Motivations 

With a growing number of cancer incidences, there is an increasing need for access to 
radiation treatment. For effective treatment and to minimize post-treatment complications, 
OARs, such as lungs, heart, esophagus and spinal cord, must be accurately delineated. Currently, 
manual segmentation by high-level expertise is the gold standard for OAR segmentation. 
However, the complexity of OARs morphology and imperfection of imaging devices make 
manual delineation prone to errors and time-consuming--an expert can spend two or more hours 
on a single case [2]. This can cause clinically significant delays to treatment commencement 
which has shown to be associated with increased risk of both local recurrence and overall 
mortality [3]. Large inter- and intra-rater variability of manual segmentation impacts the 
measurement of radiation an expert (dosimetrist) calculates to administer to the patient [3,4]. 
Therefore there is a high demand for reliably accurate OAR delineation and to considerable 
reduce the amount of manual labor in treatment planning [4].  

Relying on manual segmentation is especially an issue in developing nations that do not 
have access to expertise. In select international partnerships, RT planning is outsourced to 
regions with expertise for treatment locally [5]. While a charitable model, it cannot be effectively 
scaled to meet the growing need for RT worldwide. Populations in LMIC face an expected rise 
in annual cancer incidence of nearly 70% by 2030 over the 2010 rates [6] (Table 1). By 2020, 
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these LMICs would need an additional 9,169 teletherapy units, 12,149 radiation oncologists, 
9,915 medical physicists, and 29,140 radiation therapy technologists [1]. Automating the 
segmentation process is a viable cost effective solution to feasibly upscale access to RT 
worldwide to improve survival rates and provide the treatment millions of people deserve. 
 
Table 1. Cancer incidence predicted in higher-income countries versus LMICs [6].  

 2010 2020 2030 

Higher-income 
Countries 5,719,728 6,583,577 7,425,611 

LMICs 7,521,150 9,917,509 12,876,263 

1.3 Background  

Automated methods for multi-organ segmentation has shown its potential for clinical use 
with high efficiency [7]. However, current automation methods still have their drawbacks. 
Atlas-based automation has become a standard paradigm in medical image segmentation for 
exploiting prior anatomical knowledge. The atlas is a reference image in which structures of 
interest have been carefully segmented, usually by hand. One of the main advantages of 
atlas-based methods compared to manual segmentation, is that it easily estimates, in the patient 
image, the position of structures with fuzzy or not visible contours. This saves considerable time 
during RT planning. That being said, this approach is not accurate enough to fully automate 
segmentation. It still requires editing and review by an expert to avoid risk of incorrect dosage 
[8,9].  

DCNNs are another method of automation. The increasing computational power of 
modern hardware platforms, including GPUs, has allows auto-segmentation to be typically done 
in a range of a few minutes. Studies have shown that DCNNs provide significantly better 
accuracy than atlas-based methods [10]. Machine learning methods are competitive with 
standard image processing algorithms in the field of organ segmentation [11].  

One of the main limitations of using DCNN auto-segmentation methods is the lack of 
sufficient soft tissue contrast that compromises accurate segmentation of critical anatomical 
structures in the path of radiation beams [4]. This is particularly an issue for soft tissue with 
irregular morphology. Denoising filters and contrast enhancement can provide better visibility of 
soft tissue boundaries. DCNN models show promising accuracy results with the addition of 
image enhancing filters to be able to contour smaller irregular soft tissues. 
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1.4 Objectives 

Here we address these challenges by following our study design which includes (i) 
building a GPU computing system that is capable of processing our large dataset, (ii) create a 2D 
CNN followed by a 3D CNN, (iii) submit our results to 2017 American Association for Physical 
Medicine (AAPM) challenge to compare accuracy metrics to other auto-segmentation models, 
and (iv) modify our model to improve our accuracy results. 

2. System Overview 

2.1 Conceptual Model 

The optimal model for the implemented system to have is an automated workflow for 
medical image segmentation (Figure 1). The input to the system would be a CT scan in DICOM 
(Digital Imaging and Communications in Medicine) a standard for handling, storing, printing, 
and transmitting information in medical imaging. The system would perform testing on the 
image which produces a label map of the five different structures in the thoracic cavity: the right 
lung, left lung, heart, spinal cord and esophagus. The label map is combined with the original CT 
scan and saved in DICOM format. The segmentation can then be used in the next step of RT 
planning. 

 

 

Figure 1. Conceptual Model for auto-segmentation with machine learning. 

2.2 Customer Needs 

Our customer, Varian Medical Systems, has requested that we achieve auto-segmentation of 
OARs using a machine learning approach. The processing per scan must be significantly faster 
than a dosimetrist. Accelerating the OAR segmentation step of RT planning will help achieve 
their goal of a comprehensive, one-day process from scan to treatment. 
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2.3 System Level Requirements 

The system needed to be able to segment OARs at an accuracy similar to that of a 
dosimetrist, which minimizes peripheral radiation damage to healthy organs. The output needs to 
be saved as a DICOM file format compatible with existing radiotherapy planning software. 
 
Table 2. Lists of requirements from most least importance and constraints of our project. 

Functional Requirements Non-Functional Requirements Constraints 

● Segment OARs ● < 30 min segmentation 
time per case 

● Number of training and test 
images 

● Compute accuracy 
metrics 

● Segmentation as 
accurate as an expert 

● Memory limitations of our 
computer 

● Save in DICOM file 
format 

● Simple user interface ● Time 

● Visualise results   

2.4 Use Case 

 

 

Figure 2. Example use case for our machine learning solution.  
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2.4.1 Perform CT scans of patients 

The patient is scanned in the Radiology department to perform the scans from the CT 
machine and receive the scans in a DICOM format. The data is then used by the dosimetrist for 
further processing.  

2.4.2 Run data through algorithm to output segmented labels 

The images are then run through the machine learning algorithm to produce an 
auto-segmented image. These images will have the identified organs labeled in a separate file 
that can be converted back to a DICOM or another medical imaging format. The organs are 
cropped and each structure is individually ran through the model, each forming a separate binary 
anatomical label. These labels are then combined and overlaid on the original CT image in a 
visualization software. 

2.4.3 Radiotherapy planning 

With correctly labeled organs from the model, the dosimetrist can use DICOM to plan an 
appropriate treatment for the patient. The OAR labels are able to determine which regions to 
minimize radiation exposure. Because the organs are now labeled, the dosimetrist is able to 
calculate the intensity of radiation beam and orientation to only the tumor area. The patient will 
be able to receive treatment sooner by reducing the time required for this critical step of RT 
planning.  

3. Main Function 

3.1 DCNN Model: 3D U-Net 

The main function of our workflow is based on the U-Net architecture model of CNN as 
proposed by Ronneberger et al., 2015 (Fig. 3). CNNs convert an image into a vector volume that 
is convolved by kernels in each layer that creates activation maps from the image. The U-Net up 
samples the activation maps to the original resolution. We can then return the vector to image 
form. 

The U-Net model consists of three steps: contraction, bottleneck, and expansion. The 
contraction process involves a long series of contraction blocks, each of which applies two 3x3 
CNN layers and doubles the number of feature maps. This is performed until the image has been 
compressed into a vector. This leads into the bottleneck stage of the process, which is where data 
is fed to the next step. The expansion step has the vector be put through a number of expansion 
blocks, one for each contraction block in the first step, which each apply two 3x3 CNN layers 
and then a 2x2 upsampling layer. The corresponding original image from the contraction block is 
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input to the expansion block to form a complete label. This overall architecture can be 
represented by a “U”, which is where its name comes from. 

CNNs are a type of supervised machine learning method in which the features are 
automatically extracted without the need of any pre-processing. Comprised of several neural 
network layers, each layer is convolved with a set of kernels and addedW , , ..W }W = { 1 W 2 . K  
biases each generating a new feature map . These features then are put through a non-linearXk  
transform  and the same process is repeated for each convolutional layer:(·)σ  

 
 X l

k = σ W( k
l−1

* X l−1 + bk
l−1) (1) 

 
Figure 3. U-Net architecture as proposed by Ronneberger et al., 2015. Each blue box corresponds to a                 
multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided                  
at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the                  
different operations. 

3.2 Model Parameters 

3.2.1 Number of Model Features 

Using a higher number of features allows the model to extract more detailed information 
and patterns about the input image. However, as a trade-off, the more features added the more 
memory within our computer is used up, which can prove problematic when memory is limited. 

3.2.2 Number of Epochs 

One Epoch is when an entire dataset is passed forward and backward through the neural 
network only once. As the number of epochs increases, the accuracy should increase. However, 
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this will increase the time it takes to train our model. Also, there is a limit to how much the 
accuracy will increase; overfitting may occur if too many epochs are used which causes a 
decrease in accuracy. Therefore the optimal number of epochs needs to be calculated. 

3.2.3 Preprocessing Filter 

Image filters can be added to the image beforehand in order to enhance the features like 
contrast before training. Filters can also remove features that are deemed important in the model, 
so they needs to be carefully selected. 

3.2.4 Cropping 

Organs can be cropped individually and selected as a portion to be trained. This will 
reduce memory usage so that a higher quality image can be used rather than downsampling the 
image resolution to fit the entire image through the model. The downside is that cropping for 
non-labeled data will need to either be done manually. Cropping inaccurately may remove some 
necessary features or cut off larger organs.  

3.3 Dataset  

The dataset used for the training and testing was accessed from the AAPM Grand 
Challenge of 2017. The dataset consists of 36 training images and 24 testing images; meaning 
one set of training data and one set of testing data,  more information can be found in Table 2. 
The training images consisted of segmented data while the testing only contained the scans. We 
chose to use this data set because: 

i. Every image was of high quality eliminating the chance of low label prediction accuracy 
because of image quality.  

ii. It contained manual segmentations on the thoracic cavity CT scans, the exact region we 
selected to work on. 

iii. It was one of the few datasets that were relatively small in size making it better for 
experimentation within our time restrictions. 

iv. The data set was used with other companies and university’s automation algorithms 
giving us the ability to compare our system results against other teams as well as the 
manual segmentations.  
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Table 3. Characteristics of data set provided by the 2017 AAPM Grand Challenge.  

Collection Statistics Updated 2017/05/17 

Modalities CT, RT 

Number of Patients 60 

Number of Studies 60 

Number of Series 96 

Number of images 9569 

Image Size (GB) 4.8 

4. Subsystem Functions 

4.1 Hardware Configuration 

Figure 4 shows the hardware configuration that was used to run the system. A GPU is 
capable of processing large data more efficient than running on the CPU making it a necessary 
part of the system. This is because the machine learning model is performed on CUDA cores of 
the GPU. The GPU we purchased, NVIDIA GeForce RTX 2080 GPU, contains 11 GB of RAM 
and 4352 CUDA cores for processing. The memory bandwidth is 616 GB/s, so this allows very 
fast memory transfers when running tests. Our operating system needed to be reliable and secure. 
For this, we were able to download the Windows 10 operating system through the University's 
resources. The PyCharm programming environment incorporated Git, Tensorflow with Keras, 
and Python for our model’s needs.  
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Figure 4. Chassis set-up for all of our team’s computing needs. For component budget and final costs see                  
Appendix A. Parts are as follows: (a) GIGABYTE H370 AORUS Motherboard; (b) Intel Core i7-8700               
Desktop Processing Unit (CPU); (c) Ballistix Sport LT 16GB Single DDR4 RAM; (d) NVIDIA GeForce               
RTX 2080 GPU; (e) EVGA 700 B1 Power Supply; (f) WD Blue 2TB Hard Drive (HDD).  

4.2 Software Functions 

4.2.1 File Conversion 

The system needs to convert files from DICOM to a raw array format (numpy) that can 
be directly input to the model. After training and applying models, the result is also a raw array, 
so it will also need to be converted to a medical image format. There was not a direct method to 
convert the array to DICOM format. To resolve this problem, the array was first convert to MHA 
metaimage format, which could be done directly. The MHA files can be loaded into 3D Slicer 
that converts the file into the label map in DICOM format. 

4.2.2 Cropping 

To crop and separate the structures we coded a GUI (Figure 5) that allows a general 
technician to: 

a) Select an image to process, 
b) Select an organ to crop,  
c) Maneuver the cropping box by clicking on the image or using the slide bar in the x and y 

direction, and 
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d) Select the slices that contain the organ by sliding the bottom bar. This correlates selection 
of the z-axis. 

Each organ needed to be manually centers in the x, y, and z direction to attain better model 
results. 
 

 

Figure 5. Image of cropping GUI. The boxes outlined in dotted lines are the new boundaries of the image                   
being put through the model. Purple box holds the esophagus, blue box the spinal cord, red box the heart,                   
green box the right lung and pink box the left lung. 

4.2.3 Filters  

Bilateral Mean and Contrast Stretching  

A bilateral mean filter restricts the local neighborhood to have a gray-level similar to the 
central one as a strategy to denoise. Contrast stretching applies a linear scaling of a set intensity 
range to maximum gray-level range [12].  

Local Equalization 

One of the filters chosen was local histogram equalization, in which a low contrast image 
has each point spread out at the most frequent intensity values [12] to equalize the different parts 
of the image. The result has the light and dark gray parts of the image that are adjacent to each 
other increase contrast and be more identifiable. 
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4.3.2 Producing Label Map 

Individual images are created for each OAR and their coordinates and size are recorded 
in preprocessing. Based on that data, it is then combined together based on which voxel has the 
largest chance of being a specific OAR. The result is then written to an MHA file.  

4.4.3 Save in DICOM Format 

After obtaining our label map, we were required to convert segmentations back into 
DICOM format. We were able to complete this task using 3D Slicer, moving the new 
radiotherapy structure set (RTSTRUCT) into the original patient image files. This could then be 
exported into the correct file type, combined into a compressed zip, and submitted to the AAPM 
challenge. We followed the following instructions: 

1. Download mha files  
2. Right-click the files and select, “Convert labelmap to segmentation node” 
3. Re-name structures in segmentation to exact names required for submission: 

a. “Lung_R,” “Lung_L,” “Esophagus,” “SpinalCord,”  “Heart” 
4. Download all patient images 
5. Delete original RTSTRUCT from patient images 
6. Move newly named segmentations into respective patient files 
7. Right click on patient information and select “Export to DICOM…”  
8. Go into downloads and name file according to requirements: 

“LCTSC-Test-SX-XXX.dcm”  

5. Testing 
We tested two variables: 1) Tests #1-4  (Table 4) was focused on increasing accuracy to 

be as accurate as a dosimetrist segmentation. We also submitted our outputted labels from tests 3 
and 4 to the AAPM challenge to compare our method’s results to other teams. 2) Test #5 was 
focused on testing the effect of image filters on our accuracy metrics. This was an internal test 
conducted with the same batch seed. 
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Table 4. Summary of subsystem item changes from Tests 1-4. 

Subsystem Test 1 Test 2 Test 3 Test 4 

Preprocessing None Cropped organs Local Equalization 
Filter 

Bilateral Mean 
and Contrast 
Stretching filter 

Image Input  
to Model 

Resized smaller 
images (256x256) 

Original image 
resolution 
(512x512) 

Original image 
resolution 

Original image 
resolution 

Esophagus DSC 0 0.66 0.66 0.69 / 0.71 

Post Processing None Combined organs Combined organs Combined organs 

Segmentation 
Visualization 

GIF DICOM DICOM DICOM 

5.1 Test Phase 1: Downsampled Images 

The purpose of this phase was to test our model and make sure our GPU was running our 
model with the given data correctly. 

5.1.1 Data Input 

The complete organ set with each of the binary labels stacked above each other was ran 
through our model. We downsampled our images from 512x512 to 256x256 before running them 
through the model because when running the model with the full image resolution, the model 
crashed due to insufficient memory storage. 

5.1.2 Calculating Accuracy 

The metric values was calculated for the aggregate of the OARs since only one model 
was produced. Thus a single collective DSC loss value was produced. 

5.1.3 Visualization 

Since we knew we were not submitting our results to the AAPM Challenge due to using 
downsampled images, we outputed the labels and CT scan as a GIF (Figure 6). Both smaller 
OARs, the esophagus (low contrast boundaries) and the spinal cord (high contrast boundaries), 
were missing in the outputted predicted labels. This is because there are an insufficient number 
of voxels that represent the esophagus/spinal cord at the lower resolution condition. Therefore 
their features are lost through the kernel filters as the U-net gets deeper through all the layers. 

because their **left because of Dr. Scott’s notes  
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Figure 6. A screenshot of a random transverse plane within our GIF. The pink and green structures are the                   
lungs, the red is the heart, the blue is the spinal cord, and the purple is the esophagus. 

5.2 Test Phase 2: Cropping Organs 

In this test we aimed to use the original image resolution, convert to DICOM, and submit 
the results to the AAPM Challenge. 

5.2.1 Cropping 

A GUI was made to manually create specific bounding boxes that were minimally 
inclusive of the target organ such that only a part of the image is used for each model (Figure 5). 
We used the already segmented organs in the training dataset as cropping boundary references. 
Each individual organ is cropped separately so each can create their own training model allowing 
the original resolution of the image, 512x512, to be kept. This step was done to improve 
segmentations of smaller OARs that were not identified in Test Phase I. 

5.2.3. Visualization 

Since we were more confident in our label map results, we wanted to submit our results 
to the AAPM challenge. In order to do so we converted the label map and image data into a 
DICOM file, the approved file type for submission. 

5.3 Test Phase 3: Image Enhancement using Local Equalization Filter 

The goal of the third test was to achieve higher accuracy results and submit again to 
AAPM. To reach this goal we decided to add image enhancement features before running them 
through the model. We decided that preprocessing the images would be quicker than editing our 
model so we would able to test within our time constraint. 
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5.3.1 Local Equalization Filter 

A local equalization (LE) filter was added to our images before running the images 
through our model. The filter enhanced contrast of all tissues dramatizing the contrast between 
all tissues and blood vessels. An example of the filter on our CT scans is shown below in Figure 
7. 
 

 
Figure 7. Local histogram equalization filter. Images of the same thoracic cavity scan along the same 
transverse plane. (a) image of the CT scan without a filter. (b) image of the CT scan with the local 
equalization filter applied. 

5.4 Test Phase 4: Image enhancement using Bilateral Mean and Contrast 
Stretching 

The results from test phase 3 did not improve our esophagus DSC so we decided to run 
our model with images with no filter and with a bilateral mean filter layered below a contrast 
stretching filter. 

5.4.1 Bilateral Mean and Contrast Stretch Filter 

Our aim of image enhancement was to better the contrast between tissues boundaries. We 
tested two different enhancement approaches: one using a local histogram equalization filter and 
another using a bilateral mean filter followed by a contrast enhancement filter. A bilateral means 
filter (BMF) denoised the image first. Followed by a contrast stretching filter (Stretch) to expand 
the relevant parts of the intensity histogram. Sample images and histograms in the preprocessing 
step are shown in Figure 8.  
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Figure 8. Preprocessing filters. Representing changes in contrast of our (a) original image, (b) image               
after the application of a bilateral mean filter, and (c) image after the application of bilateral mean filter                  
followed by contrast stretching; (d) histogram evaluation of visual image differences and quantitative             
contrast analysis.  

5.4 System Level Issues 

One of the main limitations was the amount of memory available on the GPU. The GPU 
bought for the system only contained 11 GB of RAM, so the model could not exceed that size.  

5.5 Options and Trade-Offs 

Our project constraints aided us in selecting the parameters to adjust for each test phase. 
For most of the training, we chose to use 50 epochs for the base number to train. This was tested 
when running the first test, 50 epochs was the value at which there was little to no increase in the 
accuracy of the model. A smaller number of epochs allowed us to run the model quickly so that 
more iterations could be tested. 

Cropping the test data could be executed either manually or be automated. Because the 
test data did not have labels, an automated approach would involve prior image registration. This 
has a risk of being extremely inaccurate and given the time constraint and the small dataset size, 
manual cropping was a better option. We also considered that for actual dosimetrists, the manual 
cropping would be fast and less laborious because only a general boundary around the organ 
needs to be found rather than the exact tissue boundaries. 

Image enhancement was intended to improve the features of the image for boundary 
detection. Since there is not an established set of preprocessing filters optimized for machine 
learning image segmentation, we chose filters that had proven to improve manual and atlas-based 
segmentation. We chose to apply a bilateral means filter denoised the image followed by a 
contrast stretching filter to remove extreme intensity values and distribute the most common 
intensity over a greater range. We also tested a LE filter as a non-traditional option. The resulting 
image improved contrast, but was noisier than the original image.  
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5.6 Test Phase Parameters 

Tests were performed at 50 epochs because large organs like the heart and lung had 
already stabilized at that point and more training would not produce significant gain in accuracy. 
However, the spinal cord and esophagus models were far less stable, and more training to find 
the minimum validation value was productive. For those OARs, 200 epochs effectively reached 
that minimum value. The esophagus was prioritized to improve model training and accuracy 
because it is more vulnerable to radiation exposure due to its proximity to the lungs.  
 
Table 5. Summary of test phase attributes for all organs and for the esophagus.  

Test 
# 

OAR Test (i.e. all organs, esophagus) Epochs Filter Applied 

3 All 50 Local Equalization 

4 All 50 BM+CS 

4 All 50 No Filter 

 Esophagus 200 Local Equalization 

5 Esophagus 200 BM+CS 

 Esophagus 200 No Filter 

6. Accuracy Metrics 
A total of 12 patients were used to assess the performance of the model compared to 

external methods. Manual segmentations were defined as the reference segmentations from the 
AAPM challenge. The input was the 3D CT image and the final output was one to five organ 
segmentation labels. Performance of the proposed methods were tested and compared with the 
manual segment and of the top two performing teams of the AAPM challenge. The DSC, 
Hausdorff distance 95 (HD95), and mean surface distance (MSD) were used to quantify the 
results. 

6.1 Dice Similarity Coefficient (DSC Score) 

Given two sets X and Y, this metric measures relative overlap. In our case, X represents 
ground truth and Y represents the submitted segmentations. The DSC is defined as shown in Eq. 
2 as follows: 
 

SCD = X + Y| | | |
2 X⋂Y| |   (2) 
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6.2 Hausdorff Distance 95% (HD95) 

The directed 95% Hausdorff measure is the 95th percentile distance over all distances 
from points in X to their counterparts in Y when X and Y are subsets in a metric space (M, d). 
HD95 is defined as shown in Eq. 3. In this equation, sup is the supermum, inf is the infimum. 
 

ax  dH (X , )Y = m sup inf d up inf d{ x∈X y∈Y (x, )y , s y∈Y x∈X (x, )y } (3) 

6.3 Mean Surface Distance (MSD) 

Given two sets X and Y, MSD measures the average distance of point X to its closest 
point in Y. In the equation for MSD (Eq. 4),  is the mean of the distances between the points. d  
 

 dmean = 2
1 d[ (X , Y ) + d (Y , X) ] (4) 

7. Results 

7.1 Comparative Quantitative Performance to External Methods 

Segmentation accuracy results for each organ, metric, and method are summarized in 
Table 6. Manual segmentation accuracy metrics are also summarized in Table 7 to use as values 
of an acceptable automated segmentation result. The manually segmentations are considered 
ground truth, despite the fact that these boundaries are not the definitive truth for the organs, just 
the accepted guidelines as edited by a group of dosimetrists.  

Regarding larger structures like the lungs, there was very little difference in the 
performance of our model compared to the top two scoring teams of the 2017 AAPM Grand 
Challenge. The LE filter system scored the highest in this category out of our 3 systems. In the 
LE filter model, right and left lung segmentation DSC was 0.98 and 0.97 respectively, very 
similar numbers to University of Virginia (UV) (0.97 and 0.98) and Elekta (0.97 and 0.97). All 
three of our systems were equal to or above the intra-rater DSC  of 0.95. 

The heart, a medium sized structure, and the spinal cord, soft tissues surrounded by bone, 
segmentation predictions were also comparable to the UV and Elekta teams. The unfiltered 
system scored the highest DSC for the heart (0.90) and the LE filter for the spinal cord (0.86) out 
of our systems, which were also comparable results to the UV and Elekta methods. The LE filter 
system DSC was equal to the intra-rater DSC. All of our systems scored slightly below the 
intra-rater DSC of 0.93. 
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Lastly the esophagus, a narrow and long structure with poor tissue boundary contrast, 
segmentation showed the largest difference between automated and manual segmentation. The 
unfiltered system scored the highest with a DSC of 0.71, which was significantly different than 
the intra-rater DSC of 0.818. However, our score was better than the UV team (0.64) and 
comparable to the Elekta team (0.72). Also, when looking at the other metrics the original image 
inputs (a) scored the best HD95 and MSD out of all the methods (6.54, 1.93).  
 
Table 6. Metric results for models in each testing phase with benchmark.  
 DSC HD95 (mm) MSD (mm) 

OAR RL LL H E SC RL LL H E SC RL LL H E SC 

(a) No filters 0.95 0.94 0.90 0.71 0.84 5.47 3.99 11.0 6.54 4.21 1.48 1.43 3.44 1.93 1.16 

(b) LE Filter 0.98 0.97 0.86 0.66 0.86 3.87 3.68 15.3 18.7 2.74 0.92 0.97 4.37 3.41 0.81 

(c) BM & CS Filters 0.95 0.94 0.88 0.69 0.8 5.53 4.06 13.9 7.39 5.48 1.49 2.08 1.39 4.44 1.62 

(d) Elekta 0.97 0.97 0.93 0.72 0.88 4.7 2.9 5.8 7.3 0.2 1.08 0.74 2.05 2.23 0.73 

(e) University of Virginia 0.97 0.98 0.92 0.64 0.89 3.6 2.2 7.1 19.7 1.9 0.93 0.61 2.24 6.3 0.69 

Note. Table represents Dice similarity coefficient (DSC), average Hausdorff distance (HD95) (mm), and mean 
surface distance (MSD) (mm) of different thoracic organs such as the right lung (RL), left lung (LL), heart (H), 
esophagus (E), spinal cord (SC). Results are compared internally with enhanced or unenhanced images: (a) no 
filters, (b) local equalization filter, (c) bilateral mean and contrast stretching. Results are also compared to external 
teams: (d) Elekta and (e) University of Virginia. 
 
Table 7. Interrater differences in segmentation of OARs for the analyzed metrics.  

OAR DSC HD95 (mm) MSD (mm) 

Left Lung 0.956 ± 0.019 5.17 ± 2.73 1.51 ± 0.67 

Right Lung 0.955 ± 0.019 6.71 ± 3.91 1.87 ± 0.87 

Heart 0.931 ± 0.015 6.42 ± 1.82 2.21 ± 0.59 

Esophagus 0.818 ± 0.039 3.33 ± 0.90 1.07 ± 0.25 

Spinal cord 0.862 ± 0.038 2.38 ± 0.39 0.88 ± 0.23 

7.2 Subsystem to Subsystem Comparison  

Tests were done internally to compare the accuracy of subsystem tests. The results from 
running our proposed U-net CNN auto-segmentation model with the original images, bilateral 
mean and contrast stretching (BM&CS) filters, and local equalization (LE) filter is shown in 
Figure 9. The model was run with the same random seed to eliminate the variability of the 
machine learning model. The BM&CS filters showed a higher median DSC value for the lungs 
and slightly higher median DSC for the spinal cord and esophagus. The LE filter showed a 
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slightly higher median DSC for the heart. Neither filter outperformed no filtering for all OARs. 
Extreme outlier points are consistently from the same two cases, suggesting the individual 
anatomy varies considerably from the average anatomy.  

 

A) Lungs B) Heart 
 
 
 
 
 
 
 
 
 
 
  
       C) Spinal Cord D) Esophagus 
 
 
 
 
 
 

Figure 9. Boxplots representing the DSC achieved from 24 test cases and various image filtering with the                 
same seed. The lungs, heart, and spinal cord was ran with 50 epochs, and the esophagus with 200. The                   
maximum whisker length specified as 1.0 times the interquartile range. Data points beyond the whiskers               
are displayed using +. (a) right and left lungs; (b) heart; (c) spinal cord; and (d) esophagus. 
 

The accuracy metric results after running the cropped esophagus images through each 
model with 200 epochs are summarized in Figure 10. These results show the esophagus DSC 
loss for three different models, each running at 200 epochs. At this point, the DSC value for the 
validation set, or the testing data began to plateau. However, local histogram equalization filter 
test showed far less random factors that affected the validation. The overall variation was much 
less than having no filter or having BM&CS filter.  
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No filter BM&CS LE 

 

Figure 10. Training DSC loss as a function of epochs versus relative DSC score. The spikes in the                  
validation DSC are only the result of randomness in training. Final DSC scores comparable between three                
image filters.  

7.3 Qualitative Performance 

Visual examination of the segmentation labels informed us of where the agreement and 
disagreement lay between the manual and automated methods (Fig. 11). For example, at z = +20 
and z = +40, patches of esophagus label appear adjacent to the actual esophagus. The heart label 
overestimated the anterior boundary compared to the manual contour, as shown in z = -20 and z 
= -40. The lung show nearly complete overlap, with the exception of gaps in labels over 
branching bronchi which are hyperintense compared to the air filled the majority of the lung.  
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CT Image Manual Contour Organ Cropping BM&CS Filters 

z = -40 

   

z = -20 

   

z = 20 

   

z = 40 

   

Figure 11. Results displayed at 4 axial slices from a randomly selected case from test set. Manual                 
segmentation, Test 2 (Crop), Test 3 (Filters) results are shown. Left Lung--light pink, Right Lung--dark               
pink, Heart--blue, Esophagus--orange, Spinal Cord--green.  

8. Discussion 

8.1 Meeting our Requirements 

8.1.1 Segmentation Time 

We were successful in significantly reducing manual segmentation time by developing a 
machine learning system. It took 2 minutes to segment once patient. With an additional 30 secs 
to crop the organs, the total amount of time it would take to segment a patient would be 2 
minutes and 30 seconds which is 48 times quicker than manual segmentation. 

31 



8.1.2 Accuracy 

Within our particular model, an additional pre-processing step was introduced to a 3D 
U-Net to improve the accuracy of the esophagus structure. We found that the BM&CS filter 
produced more favorable results for the lungs, an organ with higher contrast boundaries. The 
BM&CS filter also produced slightly higher median DSC values for the spinal cord and 
esophagus.  LE filter showed a slightly higher median DSC for the heart. Outlier points are 
consistent, suggesting the individual anatomy variability. 

Although our methods did not produce esophagus DSC values as accurate as manual 
segmentation, we were able to achieve a score higher than the UV team’s DSC value. The low 
contrast boundaries of the esophagus makes this organ difficult for both software and humans to 
distinguish tissue boundaries for segmentations [13]. Adding an image cropping step, which 
isolated the esophagus, resulted in this organ being detected and segmented. The cropping aids 
the deep learning methods to contour the esophagus and may be a necessary preprocessing step 
for deep learning automation methods. 

 
Table 8. Table comparison of our methods (SCU), University of Virginia (UV), and Elekta. 

Method Model Layers Preprocessing Input Framework 

SCU 3D U-Net  18 Cropping and 
image 
enhancement 

512x512 for all organs Keras 

UV Deep learning 
VGGNet model 
based on 3D 
U-Net 

7 Intensity 
normalization 
and image 
resizing 

All OAR model: down-sampled 
images  
Single OAR models: cropped 
full resolution images 

Tensorflow 

Elekta DCNN model that 
was modified 
from the U-Net 
architecture. Two 
models were 
trained and 
applied in 
sequence. 

 27  None 2.5D model: 5×360×360 voxels 
was trained to segment lungs  
3D model: 32 × 128 × 128 
voxels was trained to segment 
heart, esophagus, and spinal 
cord 

Caffe 
Package 

 
Using a machine learning approach potentially minimizes the impact of intra- and 

inter-rater variability of manual delineations on the final segmentation. It needs to be kept in 
mind that these results are not a true representation of the segmentation accuracy of the tissues 
themselves, but only a comparison to the ground truth of the manual segmentations. This is 
because there are rules and regulations that dosimetrist have to follow that do not segment the 
organs exactly. For example, Figure 11 is an example 3D visualization of a manually segmented 
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scan and the heart segmentation (in blue) bluntly stops at the superior boundary. Dosimetrists are 
required to segment the heart only up to that point because the superior region has connecting 
veins and arteries that are difficult to accurately segment by hand. Our model does not have these 
requirements to follow, therefore there will always be error between manual segmentations and 
automated segmentations [4]. 
 

 

Figure 11. 3D visualization of segmentation produced by manual segmentation in 3D Slicer. 

8.1.3 Functional Requirements  

We successfully created an automated method that when given a patient’s CT scan will 
segment the OARs and output a file which is in the correct format (DICOM) to use for radiation 
dosage planning. Visualization of the DICOM format is displayed in Figure 11. Our approach 
still necessitates a single preparatory step of manually cropping anatomical regions to isolate 
segmentation volume shown in Figure 5. However, a general hospital technician could complete 
this task, which only takes approximately 30 seconds per case. Therefore, we were able to 
remove the need of an expert for the time-consuming step of segmenting OARs in RT planning. 

8.2 Project Challenges and Constraints 

Engineering a machine learning solution brings a number of risks, challenges, and ethical 
considerations. Our approach used a dataset from the 2017 AAPM Grand Challenge, which 
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allowed us to compare our results to other machine learning approaches, yet also challenged us 
to innovate outside of established machine learning models.  

The first challenge we approached at the start of our project was determining what skills 
we needed as members of an interdisciplinary team. Bioengineering students were tasked with 
learning the fundamentals of Python coding and collaborative programming, and all members 
took a course in Machine Learning through Coursera. This knowledge step, in congruence with 
research into previous literature,  took up the first ten weeks of the project. Our next step, 
building the computing system, caused delays. The central processing unit (CPU) recommended 
to us was incompatible with the motherboard, requiring us to order a new CPU and wait a week 
for delivery. After training our model, our focus on data conversion took another significant 
portion of available time. Medical images are typically processed through a file type called 
DICOM (Digital Imaging and Communications in Medicine). However, Tensorflow requires a 
conversion into hdf5 files and then back through to MHA files for use in 3D Slicer to obtain the 
DICOM files for final testing on the AAPM website. This detailed process took time to research, 
discuss, and implement successfully. When reviewing our segmentations, we also recognized 
variability in our patient dataset. Certain patients had collapsed lungs or tumors, and 
interobserver consistency was low for the editing of segmentations, causing skewed tracings 
[14]. We experienced our last problem while submitting results for the model featuring cropping 
and pre-processing. The AAPM website had accepted our initial request to join the competition, 
but after a few days, closed the website to any new submissions. We relied on their system to 
calculate our metrics and compare to previous teams, and asked that they reopen the competition 
for us to continue submissions. We were fortunately able to have the website reopened, and 
collected the necessary data.  

8.3 Risks and Mitigations 

The first risk with this was our limited dataset. Because we did not have a dosimetrist to 
segment sample thoracic CT images, we were constrained to the 60 patients provided by the 
challenge. In the future, models created with larger, more diverse datasets may provide more 
accurate results. Another risk was limited time, which became more of a challenge as we neared 
the end of the last quarter. Our first quarter was focused primarily on learning the technical skills 
necessary to build and test a machine learning model, our second on building our computing 
system and training the model, and our third was modifying this model and obtaining results. An 
additional risk was in protecting our data and preventing overloading the physical GPU RAM. 
We were able to purchase and build our own computing system so that we had a dedicated local 
machine for processing and data storage. Code developed for our system was backed up through 
Github. If we faced insurmountable roadblocks with our computing system, we planned to use 
the University Engineering Computer Center resources as a back-up. Our dedicated workstation 

34 



was reliable and met the specifications of our system, such that we did not need to rely on other 
resources. 

8.4 Societal Issues 

As we created our solution for manual segmentation, it was necessary to reflect on its 
implications on society’s health and safety, the national and global economy, and usability in 
target regions. There is high variability of manual segmentation between dosimetrists in different 
regions, and by the dosimetrist themselves [15], so we were required to ensure that a machine 
learning solution segmented as well as a dosimetrist with this variability. We were able to 
compare a normalized score of the model’s three metric outputs to the mean for interrater 
differences. If we were to reach a mean of 50 from a scale of 0 to 100, our model would be 
performing as well as a dosimetrist would in any given region. Our model with filters had a score 
of 43.49, and our model without filters reached a normalized score of 48.853. Excluding 
low-performing organ structures from the model could improve these final scores to be at an 
acceptable clinical level.  

Another consideration outside of the scope of our project, but coinciding with machine 
learning in healthcare, is adherence to clinical guidelines across international borders and in 
patient data protection or privacy. Enabling access to RT would be greatly beneficial to LMICs, 
however, for RT to truly be beneficial in these areas, dosimetry auditing is essential. Worldwide 
auditing for RT planning is currently insufficient, with only two-thirds of RT centers receiving 
some level of auditing [16]. Advancements in cloud computing and international data transfers 
may allow for more centralized auditing to be instituted.  

One drawback to our solution is that this is only semi-automated. A dosimetrist still 
needs to oversee the RT planning steps, but the manual labor is reduced. With a reduction in the 
length of time needed for segmentation, a dosimetrist would be able to complete more RT plans 
per day. The target total RT planning time is 30 minutes or less--a fourth of the current average 
time. While reducing reliance on human expertise, this strategy increases reliance on computing 
infrastructure. Treatment centers installing new machines with machine learning solutions like 
ours would still require a trained individual to occasionally audit the system. However, the need 
for dosimetrists would decrease overall in areas where they are difficult to find.  

For patients in LMICs, RT would become more affordable as patients’ travel costs are 
reduced for those few weeks radiotherapy planning requires. We worked on this project with an 
abundance of compassion, because the development of a single day consult-to-treatment plan 
would enable more patients in more regions to have access they need to a treatment with fewer 
side effects, so they can ultimately get back to enjoying life with their families.  
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9. Conclusion 

Over the course of this project, our team learned new technical and interpersonal skills to 
create a solution for the tedious nature of organ-at-risk segmentation in the radiotherapy planning 
process. Both the computer engineering and bioengineering sides of our team started with 
extensive research into artificial intelligence and machine learning, followed by a self-directed 
lesson of computer building. We were ultimately able to develop a system that segmented organs 
to improve the quality of care for radiotherapy, the consistency of segmentations, overall 
reducing the time to treatment and hopefully expanding access to the developing world. The next 
challenge to address is how this would integrate into a radiotherapy planning software, and what 
training would be required to make this operational in any region for a one-day 
consult-to-treatment system. In the time we were given for this project, our outcome was a 
sufficient start to this goal, but future teams have the potential to target the esophagus for metric 
improvement, find a larger data set to train and test with, segment an entirely different organ 
system like the abdomen or head and neck, or fully automate the algorithm. Not only did we 
improve upon our project management abilities, learn how to build a computer and code, 
understand the drawbacks to our approach, and problem solve when challenges arise, but we 
have also concluded that a machine learning approach is a viable solution for radiotherapy 
planning.  
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Appendix 
Team Project Management Summary 

Team Approach 

To account for gaps in knowledge between majors, throughout the project, computer 
engineering students gained anatomical knowledge to understand and strive to meet project 
requirements. Bioengineering students in our team took on a project management-oriented role 
when faced with computer engineering tasks outside of their skill range. As liaisons with each 
department for funding and project questions, our bioengineering students were able to organize 
our computer components, timeline, and ensure we were always moving forward towards the 
next steps.  

Key Lessons 

● We learned to save all files and result data, no matter how advantageous the results are. 
● We learned that machine learning models have a variety of applications. 
● We learned that building a computer requires research and meticulous technical skill. 
● We learned that data conversion and protection is just as important as the model.  

Budget 

This design team was provided a budget of $2,000, or $500 per team member, from 
Engineering Undergraduate Programs. Our team estimated that the maximum total cost to 
develop an efficient and accurate machine learning approach to OAR segmentation would total 
to $2155. This covered materials for a new desktop, CPU, and GPU. The timeline for the 
Engineering Computer Center transition and the timeline to develop our methods overlapped so 
we could not solely depend on the usage of their equipment because it would significantly 
postpone the development phase of our methods, potentially detrimentally affecting our senior 
design experience. 
 

We planned to adopt a deep neural network (DNN) for the segmentation task. DNNs 
must consider many training parameters, which has high computational complexity and requires 
powerful computing resources. Data storage and visualization cannot be done on a typical 
student laptop. Cloud computing storage services are insufficient to support the size of our data 
set. Amazon AWS subscription holds up to 100GB and our raw image data set alone is 124GB. 
This is what the GPU could do to meet our needs: 
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● GPU's many-core architecture has produced significant speedups in DNN training, 
because of the suitability of its processing architecture for matrix and vector 
computations.  

● This workstation will be handed down to future work on this project. In order to prepare 
for larger data sets in the future, it is better to invest in a powerful computer for 
continuous use than upgrade it constantly. 

 
To create estimations for our budget and prepare our final buylist, we consulted with our 

Computer Engineering advisor Dr. Liu to create the estimations for our budget. We performed 
cost analysis estimations by looking at material prices from Amazon, Best Buy, and NVIDIA.  
 
Table A1. Final spending estimates for senior design project.  

Project Costs 

Hardware Materials 

 Desktop: Item Price 

  CPU $330 

  Motherboard $120 

  RAM $155 

  GPU $1200 

  Hard drive $60 

  Chassis $40 

  Power Supply  $80 

  Monitor $90 

  Keyboard & Mouse $20 

Est. Project Total   $2,095 
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Timeline 

 
Figure A1. Estimated timeline for OAR Segmentation project team. Project starting date in 
September of 2018, extending to the start of June 2019.  
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