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Abstract 
We present a model for the spread, transmission and competition 
of skills with an emphasis on the role of spatial mobility of 
individuals. From a methodological point of view, we seek 
mathematical and computational simplicity in the sense of a 
minimal model. This minimalism lets us use a infinite 
dimensional simplex space and not a Euclidean space as 
underlying structure. Such a simplex captures the essentials of 
spatial heterogeneity without the mathematical difficulties of 
neighborhood structures.  
In the presented model, individuals may have no skill or either 
skill A or B. Individuals are born unskilled and may acquire 
skills by learning from a skilled individual. Skill A results in a 
small reproductive advantage and is easy to transmit (teaching 
happens at high rate), whereas skill B is harder to teach but 
results in a high benefit. The model exhibits a rich behavior; after 
an initial transient, the system settles to a fix point (constant 
distribution of skills), whereby the distribution of skills depends 
on a mobility parameter m. We observe different regimes, and as 
the main result, we conclude that for some settings of the system 
parameters, the spread of the (harder to learn but more 
beneficial) skill B is only possible within a specific range of the 
mobility parameter. 
From a technical point of view, this paper presents the 
application of the PRESS–method (probability reduced 
evolution of spatially resolved species) that enables the study of 
spatial effects in a very efficient manner. We analyze the 
consequences of spatial organization and argue that we can study 
aspects of social dynamics in an infinite dimensional simplex 
space. In spite of this maybe daunting name, the dynamics on 
such a structure is comparably easy to implement.  
The model we present is far from reflecting all the details of 
human interaction. On the contrary, we deliberately tailored the 
model to be as simple as possible from a mathematical point of 
view (but still reflecting central properties of spatial 
organization). This approach is guided by physics, where 
seemingly simple models which obviously don’t reflect the true 
physical behavior of a system (such as the Ising model) are 
nevertheless suited to reveal fundamental aspects and limiting 
cases of the real world.  

 

Modeling Social Dynamics: Methodological 
Considerations 

Studying social dynamics has to combine two core elements: 
1. The interaction of individuals, once they meet.  
2. The conditions and mechanisms that they meet.   

Thereby, “to meet” implies the existence of an (implicit or 
explicit) binary function that determines whether two 
individuals are in contact. The notion of contact invokes 
aspects of space. At least, it requires a concept of “location” 
that enables to distinguish for a pair of individuals whether they 
are at the same location or not. 
There are two main approaches for modeling and simulating 
social and societal dynamics: Agent-based [1-3] and densitiy-
based [4-6] simulations, the latter relying on systems of 
ordinary differential equations (ODE).  
The agent-based simulation:  The modeling consists in the 
precise determination of the interaction of individuals and the 
way, how and when this interaction takes place. The simulation 
platform translates these descriptions of interactions into actual 
encounters between individuals happening at rates resulting 
from the way how the individuals move. 
Thereby, ”movements” have to be understood in a very general 
sense; the underlying space in which these movements take 
place can be an abstract one, for example a network. 
Agent-based modeling exhibits a number of advantages.   

a. Simulating spatial effects is easy; agents just need a 
position attribute that represents their location in 
some form of spatial structure. Social interaction can 
easily be a function of these attributes.  

b. It is comparably easy to implement a combinatorial 
variety of interactions; an agent can be equipped with 
a table of attributes and interaction between two 
individuals can be determined as a function of the 
entries in the respective two attribute tables.  

c. From a technical perspective, it is no problem to 
introduce novel types of individuals (novel 
combinations of attributes) during a running 
simulation.  

d. Agent-based simulations exhibit fluctuations; this can 
be of advantage if one wants to include fluctuations 
into the simulation. 

However, there are a number of challenges: 
a. Agent-based simulations scale quadratically (or with 

some other exponent larger than 1) with the number 
of individuals involved, e.g., if each individual gets 
the chance to interact with any other individual [7-9]. 

b. Agent-based simulations exhibit fluctuations; this can 
be a disadvantage if one is interested in average 
values. Then, large numbers of agents are required, 
resulting in an according amount of computing time. 
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An alternative are approaches based on systems of ordinary 
differential equations: in such studies, one treats social 
dynamics in a way similar to chemical reaction kinetics; to be 
precise: chemical reaction kinetics in a well-stirred pot, means 
a homogeneous reaction environment. 
Advantages of the ODE approach are:  

a. They work (at least implicitly) with continuous 
densities. No fluctuations due to discretization effects 
occur. In other words: One always works in the limit 
of infinitely many individuals.  

b. In rare cases (usually for the limits of some parameter 
values), analytical solutions can be obtained. To be 
precise, this happens very rarely for the study of 
dynamics but more often for the study of fixed points. 

Some disadvantages balance these benefits:  
a. In a well-stirred reaction environment, there is no 

notion of space. As soon as the probability for the 
contact of two individuals requires a more involved 
conceptual framework than that of a collision 
frequency in chemical kinetics, ODE approaches 
become quite often somewhat contrived.  

b. ODE approaches exhibit unfavorable scaling 
behavior if one considers bigger numbers of different 
types of individuals.  

c. It is technically very hard to change the number of 
types during a running simulation (one has to 
construct a new set of ODE). 

In what follows, we describe an approach that is based on 
systems of ordinary differential equations and nevertheless 
captures essential aspects of spatial structuring in a natural way, 
the so-called probability reduced evolution of spatially resolved 
species approach (PRESS). The method is based on an idea of 
John S. McCaskill and has been described in a series of 
publications with emphasis on evolutionary dynamics in 
molecular biology [10-12].  

The PRESS Approach 
The PRESS approach assumes a network of locations. 
Interactions happen in the locations. The locations are 
connected and migration may take place from one location to 
another one. The number of sites in a location is finite and fixed 
and the same for all locations. Also limited is the number of 
different types of individuals. In consequence, a location can 
only attain a finite number of states. The PRESS approach 
assumes the network of locations to be a simplex (each location 
has the same number of sites and is connected to all the other 
locations). This inherent symmetry implies that the probability 
for a location to be in a specific state is well-defined and the 
same for all locations. The goal of the PRESS approach is to 
compute the dynamics of these probabilities. From a 
mathematical perspective (since all the locations are 
fundamentally equal and each location is connected to all the 
other locations), migration can be expressed in terms of a mean 
field approach (as will be detailed in what follows).   
Why using a simplex? The geometrical concept “space“ carries 
a surprisingly rich variety of mathematical structure; most 
fundamentally, a notion of space means that one can distinguish 
between here and there. In addition, spaces such as our familiar 
three-dimensional Euclidean space bears structure that allows 
to quantify the “theres” (means “non-heres”) by a notion of 

distance. The “theres” can be grouped in locations that are far 
or nearer to the “here”. Furthermore, the notion of space, 
especially if one considers nontrivial spaces, always contains 
connections, that means paths from a “here” to a “there”. These 
connections are trivial in the case of Euclidean spaces, but 
become more interesting in the spaces studied in higher 
mathematics as well as in those occurring in everyday life (e.g. 
the road system that connects different cities makes it a 
nontrivial decision of how to get from Lausanne to Zurich.)  
We mentioned above that simulations based on systems of 
ordinary differential equations most often relate to models in 
which we make the assumption of a “well – stirred reaction 
environment”. This means nothing else then the complete 
absence of spatial structure. Despite its daunting name, an 
infinite-dimensional simplex is probably the smallest possible 
step from a completely homogeneous reaction environment 
towards a model that captures at least the most fundamental 
aspects of space. For our purposes, a simplex is nothing more 
than a set of n discrete locations which are all mutually 
connected in an identical manner (s. 4,5,6=n  – simplices in 
Fig. 1.) An infinite dimensional simplex is then the limiting 
case of large numbers of locations [13]. The question “Why a 
simplex?” is answered by noting that it is the simplest structure 
representing some sort of spatial heterogeneity but without all 
the computational challenges resulting from heterogeneous 
neighborhood structures (two locations may be in different 
states, but on simplex, they all have the same neighborhood, 
namely all the other locations).   
In a social context, such a simplex can be interpreted as a 
densely packed village that consists of identical, small huts. 
These huts are the places where the interaction between 
individuals take place, see Fig. 2. Since we model only unary 
and binary interactions, locations which can host up to 
maximally two reaction partners constitute a minimal reaction 
environment. The goal of the model presented is then to 
compute the probability for each possible occupation state.  
 In our model, we make the following assumptions: 

a. A hut can host up to two individuals.  
b. Individuals only interact inside huts.  
c. There may be different types of individuals; the 

interaction between two individuals is a function of 
their respective types.  

d. The individuals commute freely between huts. If an 
individual leaves a hut, it chooses a different hut to 
enter at random.  

e. The time needed for the passage between huts is 
negligible. 

 
 
 
 
 
 
 
 
 

Fig. 1: Simplices for 4,5,6=n . 
 
Besides the fact that in our model the village is highly 
symmetric, we introduce a further idealization. We model the 
village in the limit of a very large number of huts. The rational 
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for his approach is given by the fact that we are interested in 
the number of huts with a specific occupation, i.e. a specific 
combination of individuals (say, the number of huts occupied 
by only one individual of the blue type or the number of huts 
hosting a blue and a red individual). Knowing the numbers of 
huts for each possible occupation, we can easily compute the 
total number of individuals of a given type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: A simplex built up from locations, which can host up 

to two individuals. 
 
For a finite number n of huts, the number Xn of huts with a 
specific occupation X is a discrete value. Moreover, if the 
interaction between individuals and the passage between huts 
is driven by random events, Xn  will be subject to fluctuations. 

Instead of Xn , we will compute the probability Xp    for a hut 
to have an occupation X ; it simply holds 
 

                                    = X
X

np
n

                               (1) 

 In the limit of large n , Xp will become a continuous variable. 

In addition, Xp will not exhibit fluctuations (without a detailed 
proof and referring to the central limit theorem, we assume the 
fluctuations ∆ Xn of Xn to scale in a sub -  linear way with Xn . 

The fraction ∆ X

X

n
n   will then vanish for large n ).  

In what follows, we will set up the dynamics of the probabilities 
for the various possible occupations of the huts.  
This approach, which will be exemplified in the next section, 
has already been introduced in the context of chemical reaction 
kinetics [10-12]. The authors called it the PRESS – approach, 
for Probability Reduced Evolution of Spatially resolved 
Species. It mimics space in so far, as there is a distinction 
between different locations and as there is a parameter, namely 
a rate constant m  for the passage from one hut to the other. 
The mobility m can be understood as the analogue to the 
diffusion constant in Euclidean space. It is also a parameter that 
can be interpreted in terms familiar to the social sciences as a 
type of migration frequency. 

Obviously, our modeling framework represents a highly 
idealized situation. Whether the metaphor of a hut is 
appropriate may be discussed. Certainly, the restriction to a 
maximal occupation number of two is “unrealistic” in the sense 
that real huts can easily be larger. Understanding the huts as 
interaction sites enables a more abstract view. A restriction to 
size two can be justified in various ways. One way is the 
already mentioned perspective on the maximal number of 
partners in the modeled social interactions. As will be discussed 
below, this is two in our case. Another way of looking at this 
restriction is coarse graining. The interaction locations can be 
in a number of different states and we compute their respective 
probabilities based on a set of interactions. Assuming locations 
with two sites spans the minimal set of states necessary for 
representing the transitions we want to model.  Further 
idealizations refer to the various symmetries invoked in our 
model. In a real village, huts will not be identical, interactions 
between individuals will not only take place inside huts, the 
huts will belong to somebody and not be chosen randomly and 
the distance between the huts will play a role for the probability 
of a transfer from hut A to hut B.  
Furthermore, a simplex needs not necessarily to be understood 
as a village consisting of huts. One may understand the 
individual interaction sites as caricatures of villages 
themselves. The whole simplex then is a collection of 
interacting small villages. The occupation of a village may 
represent its internal state. Transport between interaction sites 
can be understood as information flows between isolated, but 
weakly interacting groups of human beings. 

Modeling the Competition of Skills 
 
Our goal is to study the question under which conditions 
(means for which parameter values) different skills are spread 
and maintained in populations. Thereby, a skill is a property of 
an individual that a) gives the individual some benefit and b) 
has to be transferred from a skilled to an unskilled individual 
by some form of teaching process. We will study a population 
in which individuals can learn one of two skills. These two 
skills differ first in the benefit they provide to dose individual 
having the particular skill and second in the effort (time) it takes 
to teach the skill to an unskilled individual U. In the model, 
there is an easy-to-learn skill A that yields only limited benefit 
and a skill B that is hard to learn but results in a higher benefit. 
The question we want to address is the following: What is the 
dependency of the average number of individuals with skill A, 
B or U (skill U means unskilled) one encounters in the 
randomly chosen hut as a function of the mobility parameter 
m ? This question arose from broader investigations about 
cultural evolution performed by one of the authors, Richard 
Walker. As it turns out, the dynamics of the model delivers a 
surprisingly faceted answer.  
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The Model 

The Possible Occupations 
We study huts that can host maximally two individuals. Larger 
huts are straightforward to implement, but we want to keep the 
mathematical formalism as simple as possible. The symbol “V” 
stands for void, “U” for unskilled, “A” for individual with skill 
A and “B” represents an individual with skill B. The occupation 
or state of a hut is described by an index consisting of three non 
- negative integers UAB , such that 2+ + ≤U A B .  The total 
number T  of individuals in a state UAB is given by 
= + +T U A B  and the according number of voids by 

2= − − −V U A B . The index set
{ }1 000,100,010,001,200,110,101,020,011,002=I  

contains all allowed indices for huts of size two. 
Sometimes, an alternative indexation is useful, referring to the 
two available vacancies in a hut. We define an index set 

{ }2 , , , , , , , , ,=I VV VU VA VB UU UA UB AA AB BB . In this 
notation, a potential problem becomes immediately apparent, 
namely the occurrence of symmetric states. In this work, we do 
not distinguish between occupations AB and BA.  
For each occupation UAB , there is a time-dependent 
probability ( )UABp t .  We formulate a Master equation 
 

000

002

( )
( ( )) ,       

( )


= = 

 
 



  



p t
dP M P t P P
dt

p t
  (2) 

in order to determine the time development of the occupations. 
Thereby, ( ( ))



M P t  is a matrix that depends on ( )


P t  (and 
therefore implicitly on time) and represents the different 
interactions transforming one state into another. In what 
follows, we will discuss these interactions and the present their 
contribution to ( ( ))



M P t .  

Interactions and Processes 
In our model, four types of processes can occur: 

a. Individuals may give birth to children. Children are 
always unskilled. 

b. An individual with skill X can teach an unskilled 
individual. 

c. Individuals can die. 
d. Individuals can leave a hut and enter another one.  

In what follows, we provide the rate equations for the 
probabilities ( )UABp t  for each of these processes. We will 
formulate template formulas. In these template formulas, we 
assume that ( ) 0≡UABp t  if the index UAB does not satisfy 
the requirement that all the integers of which the index is 
composed are bigger or equal to zero or that the sum 

+ +U A B  is bigger than two. To facilitate the notation 
further, we introduce the function ε : 
 

1, , , 0, 2
( , , )

0, otherwise                                 
ε

≥ + + ≤
= 


U A B U A B
U A B   (3) 

Birth 
The birth rate of individuals with skill X is given by β X , 

{ }, ,∈X U A B (we don’t model the details of sexual 
reproduction). Different skills may lead to different birthrates, 
which in turn constitute evolutionary advantages or 
disadvantages. 
The probability ( )UABp t  will change by births according to the 
following template formula:  

 

{ }

( 1)

( 1) ( 1)

, ,

( 1)

( 1, , )

β

β β

ε β

−

− −

∈

= −

+ +

− +∑

UAB
U U AB

birth

A U AB B U AB

X UAB
X U A B

dp U p
dt

A p B p

X U A B p

 

 (4) 

Let us analyze this formula. The term UABp  gives the 
probability for the state with U  unskilled inhabitants, A  
inhabitants with skill A and B  inhabitants with skill B. The 
first term on the right hand side, ( 1)( 1)β −− U U ABU p  models 
the birth of an unskilled individual from an unskilled parent 
with a birth rate βU . Because birth increments the number of 

unskilled individuals by one, the original state is ( 1)−U ABp . The 

factor ( 1)−U  takes into account the possibility of many 
potential parents (which is not important if one restricts the 
maximal occupation number to two, but the template can be 
applied for larger huts, too.) The second term ( 1)β −A U ABA p  
represents the birth of an unskilled inhabitant by a parent with 
skill A, and accordingly for the third term and skill B. The last 
term models the decrease of the probability UABp  caused by 
birth processes (Note that in our model, we could replace 

( 1, , )ε +U A B  by (2 )− − −U A B , but the variant we use 
is also valid, if we run the model with larger huts.)  A remark: 
the fact that the number of vacancies in a hut is restricted 
imposes an implicit resource that limits growth. 

Death 
The template formula for the death of individuals is structurally 
identical to the one of birth. It reads: 

 

{ }

( 1) ( 1)

( 1)
, ,

( 1) ( 1)

( 1)

δ δ

δ δ

+ +

+
∈

= + + +

+ + − ∑

UAB
U U AB A U A B

death

B UA B X UAB
X U A B

dp U p A p
dt

B p X p
 

 (5) 
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 The death rates, which may be different for differently skilled 
individuals, are given by δ X .  

Teaching 
We assume that if an unskilled individual resides together with 
an individual with skill X in a hut, a teaching process may 
occur. The according template formula reads: 

 

( 1)( 1)

( 1)A( 1)

( 1)( 1)

( 1)( 1)

τ

τ

τ τ

+ −

+ −

= + −

+ + −

− −

UAB
A U A B

teach

B U B

A UAB B UAB

dp U A p
dt

U B p
UA p UB p

 

 (6) 

The first line represents the transformation of an unskilled 
individual into one with skill A (the unskilled individual is 
taught by an individual with skill A). This transformation, the 
“teaching rate”, is given by τ A . Accordingly, the second line 

models the teaching of skill B with teaching rate τ B . Finally, 
the last line represents transformations out of state UAB .   
Remark: this template is a bit more complicated than it needs 
to be, at least as long as we restrict the number of vacancies in 
a hut to two. However, the formula as it stands can is applicable 
for larger huts. 

Diffusion 
Modeling diffusion is conceptually a little bit more difficult. 
First, we have to note that we assume an individual leaving a 
hut and entering immediately into another one. One can think 
of an individual choosing a target hut at random and make a 
passage to this hut as long as this hut is not already full (because 
we work on an infinite dimensional simplex, the case of leaving 
a hut and entering it again does not require specific care). The 
an individual with skill X fills a vacancy in a given hut is then 
proportional to the average number of individuals with that skill 
in all the other huts. As a consequence, the chance of an 
individual with skill X in a given hut to leave this hut is 
proportional to the average number of vacancies in all the other 
huts. 
These averages are easy to compute; the advantage of an 
infinite dimensional simplex as underlying space is that the 
occupation probabilities in all the hearts are identical. 
Therefore, we have: 
 

                             

1

1

1

1

( )

( )

( )

( )

∈

∈

∈

∈

=

=

=

=

∑

∑

∑

∑

i
i I

i
i I

i
i I

i
i I

U u i p

A a i p

B b i p

V v i p

 (7) 

Thereby, i is an index of the form UAB and the functions 
, ,u a b  are defined as ( )= =u i UAB U , ( )= =a i UAB A  , 
( )= =b i UAB B and ( ) 2= = − − −v i UAB U A B .  

The template formula for in – diffusion (state transitions that 
increase the number of inhabitants) reads: 

 

{ }

( 1)

( 1)

( 1)

, ,

(2 ( 1) )

(2 ( 1) )

(2 ( 1))

(2 )

−
−

−

−

∈

= − − − −

+ − − − −

+ − − − −

− − − −∑

UAB
U AB

in diff

U A B

UA B

UAB
X U A B

dp U A B Ump
dt

U A B Amp

U A B Bmp

U A B Xmp

 

 (8) 

Thereby, the parameter m  models the mobility and the last line 
takes into account that the influx of an inhabitant into a state 
UAB  reduces UABp . 
Accordingly, for out-diffusion (state transitions that decrease 
the number of inhabitants), we have: 

 

{ }

( 1) ( 1)

( 1)
, ,

( 1) ( 1)

( 1)

+ +
−

+
∈

= + + +

+ + − ∑

UAB
U AB U A B

out diff

UA B UAB
X U A B

dp U Vmp A Vmp
dt

B Vmp XVmp
 

 (9) 

The complete Master equation is given by: 

 

− −

= + +

+ +

UAB UAB UAB UAB

birth death teach

UAB UAB

in diff out diff

dp dp dp dp
dt dt dt dt

dp dp
dt dt

 (10) 

Results  
We solved the Master equation Eq. (10) by standard numerical 
procedures. As it turned out, the solutions settled down to a 
fixed point after a sufficiently long time development. Of 
course, many parameter values lead to rather uninteresting 
behavior. However, some showed a rather rich behavior. In 
what follows, we analyze the system for the following set of 
parameters: 

328



                 

1
10

1
5

1
2.5

1
80

1
5

1
10

β

β

β

δ δ δ

τ

τ

=

=

=

= = =

=

=

U

A

B

U A B

A

B

                              (11) 

If one takes the unit of time as one year, one sees that the 
average life span of an individual is 80 yrs. Learning a skill 
takes 5 years (skill A) or ten years (skill B). The birth rates look 
much larger as they really are; take into account that the number 
of births is limited (space is a limited resource).  
For this choice of parameters, we observe a rich variety of 
possible fix points. In Fig. 3, we distinguish seven different 
patterns of behavior with respect to the mobility parameter m . 
Shown are the values the averages of skills , ,U A B  attained 

after 610  time units. The initial conditions are set to
(0) 1, (0) 0.05, (0) (0) 0.225= = = =V U A B . The system 

turned out to be insusceptible towards the initial conditions, 
provided that there is at least some density of the skills A and 
B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Average number of skilled individuals per location of 
interaction as a function of the migration parameter m .  
 
In Fig. 3, the y-axis reflects the expected average density of a 
given skill as a function of the mobility parameter m. U 
represents the density of unskilled individuals, A and B those 
of individuals with the respective skill. T stands for the total of 
individuals. At very low m (region I), the population can’t 
survive. For low m (region II), no skill can be maintained. For 
higher values of m, we observe either that one skill dominates 
the other or co – existence of skills. As a main result, we 
observe that a population can maintain a complex skill B only 
in a window of the mobility parameter. In order to uphold a 
complex skill, a certain mobility is necessary, but too much 
mobility favors simpler skills that are easier to transmit. 

Discussion 
The outcome of our simulations shows that maintaining skills 
in a population may depend on migration rates in a rather subtle 
manner. However, we are very reluctant giving these 
simulations (or the parameter values at which changes in 
behavior of the system occur) a lot of direct relevance. And of 
course, we are far from modeling the real processes in 
prehistoric societies. But physics teaches us that seemingly 
simple models which obviously don’t reflect the true physical 
behavior of a system (such as the Ising model) are nevertheless 
suited to reveal fundamental aspects and limiting cases of the 
real world. In that sense, we are convinced that a PRESS model 
based approach to social dynamics can help us understand and 
guide our search for interactions, which lead to interesting 
system behavior.  
An example for such a support is a question that results from 
the observations in Fig. 3. Basically, Fig. 3 states a complex 
dependence of the system behavior on the migration rate. But 
in the presented model, a migration process only takes place if 
a randomly chosen hut has at least one empty site. With other 
words: migration is limited by the number of free sites and there 
is no spread of information different from the migration of 
individuals. However, one can easily imagine a situation in 
which the flow of information is much faster than migration of 
individuals. This could e.g. lead to a migration pattern where 
potential students (unskilled individuals) know in advance 
which hut harbors empty sites. Technically, this means that 
migration stays maximal until the system is full.  
Investigations based on the PRESS model should (and will) be 
complemented by agent based simulations. In an agent-based 
simulation, it is very easy to study the effect of a fast flow of 
information.  
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