대한구강악안면방사선학회지 2004; 34 : 151-7

두개골의 3차원 영상 분석을 위한 전산화단층촬영 방법의 비교-상층 두께가 3차원 영상의 계측에 미치는 영향

^a연세대학교 치과대학 구강악안면방사선과학교실, 구강과학연구소 ^b연세대학교 의과대학 진단방사선과학교실, ^c연세대학교 의과대학 의학공학교실, ^d연세대학교 의과대학 성형외과학교실, ^c연세대학교 개인식별연구소 정호검^{a,e}·김기덕^{a,e}·박 혁^a·김동욱^b·정해조^b·김희중^{b,e}·유선국^{c,e}·김용욱^d·박창서^a

Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

Ho-Gul Jeong^{a,e}, Kee-Deog Kim^{a,e}, Hyok Park^a, Dong-Ook Kim^b, Haijo Jeong^b,

Hee-Joung Kim^{b,e}, Sun Kook Yoo^{c,e}, Yong Oock Kim^d, Chang-Seo Park^a

^aDepartment of Oral & Maxillofacial Radiology, Oral Science Research Center, College of Dentistry, Yonsei University,

^bDepartment of Diagnostic Radiology, ^cDepartment of Medical Engineering,

^dDepartment of Plastic Surgery, College of Medicine, Yonsei University,

^eHuman Identification Research Institute, Yonsei University

ABSTRACT

Purpose : To evaluate the quantitative accuracy of three-dimensional (3D) images by means of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes.

Materials and Mathods : An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0TM (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test.

Results : 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm, 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm.

Conclusion : Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT. (*Korean J Oral Maxillofac Radiol 2004; 34 : 151-7*)

KEY WORDS : Imaging, Three-Dimensional; Tomography, X-Ray Computed; Image Analysis; Cephalometry

서 론

구강악안면 부위의 질환이나 외상의 진단 또는 선천적 기형으로 인해 변형된 골구조의 복원을 위해서 많은 진단 영상을 사용하여 왔다. 그러나 구강악안면 부위는 매우 복

[&]quot;이 논문은 2001년도 연세대학교 학술연구비의 지원에 의하여 이루어진 것임" 접수일: 2004년 7월 1일; 심사일: 2004년 7월 2일; 채택일: 2004년 7월 30일 Correspondence to : Prof. Kee-Deog Kim

Department of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul, KOREA Tel) 82-361-8861, Fax) 82-363-5232 E-mail) kdkim@yumc.yonsei.ac.kr

잡한 골구조물과 연조직으로 이루어져 있기 때문에 단순 방사선 검사로는 구조물들의 중첩을 피할 수 없고 이로 인해 정확한 진단을 내리는 데 많은 어려움이 있다. 이러 한 한계를 해결하고자 하는 노력으로 측방 두부규격방사 선사진과 후전방 두부규격방사선사진, 이하두정 방사선사 진을 이용하여 각각의 사진의 단점을 보정한 3차원적인 분석이 널리 이용되고 있다. 그러나 이러한 방사선사진들 은 3차원적 구조를 2차원적으로 나타내는 뎨서 발생하는 구조물들의 중첩이나 부위마다 다른 확대율 등의 기하학 적인 왜곡을 피할 수는 없다. 이런 기하학적인 왜곡을 해 결할 수 있는 방사선 검사로 전산화단층촬영 (Computed Tomography, CT)을 이용한 3차원 영상 재구성이 있다. 지 금까지 3차원 전산화단층영상에서 계측치의 정확성에 대 한 연구는 활발히 진행되어 왔으며,대부분의 연구에서 3 차원 전산화단층영상이 정확하다는 보고를 하였다.1-13 또 한 3차원 전산화단층영상의 개인용 컴퓨터 상에서 계측값 의 재현성과 변이성에 대한 검증을 위해서 관찰자내, 관찰 자간의 차이를 분석한 연구에서도 대부분 정확성이 높다 고 보고하였다.^{7,8} 그러나 전산화단층촬영시 환자의 피폭량 과 영상의 질에 영향을 주는 촬영시간을 고려하였을 때 피폭량과 촬영시간을 최소화하면서 임상적으로 적합한 영 상을 얻을 수 있는 촬영조건에 대한 연구¹⁻²는 그리 많지 않은 실정이다.

이에 저자들은 환자의 피폭량과 촬영시간을 결정하는 인자들 중에서 상층의 두께와 촬영 방법이 3차원 전산화 단층촬영영상의 정확성에 미치는 영향을 알아보고자 하였 다. 이를 위해 건조 두개골을 다양한 상층 두께에 대해 각 각 Conventional과 Helical로 전산화단층촬영을 시행하여 3 차원 영상을 얻고 이 영상에서 측정한 교정적 계측값을 두개골의 실제 계측값과 비교하여 3차원 영상의 정확성을 평가하였다.

재료 및 방법

1. 연구재료

해부학 실습용으로 사용하였던 한국인 성인 여자 18세 의 건조 두개골을 사용하였다. 전산화단층촬영시 항상 동 일한 위치를 재현하기 위해 건조 두개골을 스티로폼에 고 정시킨 후 투명한 아크릴 상자 (가로 23 cm, 세로 25 cm, 높이 23 cm, 두께 0.5 cm)안에 넣었다. 그리고 인체의 연조 직을 보상하기 위해서 물을 채워 넣었다.

2. 연구방법

1) 전산화단층촬영

횡단면 영상을 얻기 위해 아크릴 상자를 CT 테이블에 위치시킨 후 연세대학교 치과대학병원 구강악안면방사선 과에 보유중인 CT HiSpeed Advantage 전산화 단층촬영장 치 (GE Midical Systme, Milwaukee. U.S.A)를 이용하여 high-resolution bone algorithm, 15 cm field of view (FOV), 200 mA, 120 kV로 촬영하였다. 촬영모드는 Conventional과 Helical로 하였고, 각 모드에 대해서 상층두께는 3 mm, 5 mm, 7 mm로 촬영하였다. Helical로 촬영한 것은 Conventional과 동일한 조건으로 하기 위해서 pitch는 1:1로 하였 고, 영상재구성 두께를 촬영한 상층두께와 동일하게 하였 다.

2) 3차원 영상 재구성

CT 단말 장치의 횡단면 영상 자료들을 개인용 컴퓨터로 전송한 다음 V-Works 4.0[™] (Cybermed Inc., Seoul, Korea) 소프트웨어를 이용하여 3차원 전산화단층영상을 재구성하 였다.

Fig. 1. Landmarks used in this study.

Table 1. Landmarks used in this study

No.	Abbreviation	Name
1	Ν	Nasion : the most anteroinferior point on the frontal bone at the nasofrontal suture
2	Zyo	Zygoorbitale : the point where the orbital rim intersects the zygomaticomaxillary suture
3	ANS	Anterior nasal spine : the end point of skeletal anterior nasal spine
4	А	A point : the deepest point on the curvature of the surface of the maxillary bone between ANS and Prosthion
5	PNS	Posterior nasal spine : the most posterior point of palatal process
6	Ba	Basion : anterior midpoint of foramen magnum
7	Go	Gonion : a point along the rounded posteroinferior corner of the mandible between the ramus and the body
8	Cdl	Condylion lateral : the most lateral point on the mandibular condyle
9	В	B point : the deepest point on the curvature of the anterior border of the mandible between infradentale and pogonion
10	Pog	Pogonion : the most anterior midline point on the chin of the mandible
11	Me	Menton : the most inferior point on the mandible at the symphysis
12	Zm	Zygomaticomaxillare : the most inferior point on the zygomaticomaxillary suture

Table 2. Measurements used in this study

No.	Abbreviation	Name
1	N-Ba	Cranial base length
2	N-Me	Anterior facial height
3	N-ANS	Upper facial height
4	ANS-Me	Lower facial height
5	ANS-PNS	
6	Cdl-Pog (Rt)	
7	Cdl-Pog(Lt)	
8	N-Go(Rt)	Facial depth
9	N-Go(Lt)	
10	A-B	
11	B-Me	
12	Go-Me (Rt)	Mandibular body length
13	Go-Me (Lt)	
14	Cdl-Go (Rt)	Ramus height
15	Cdl-Go (Lt)	
16	Cdl-Me (Rt)	Mandibular length
17	Cdl-Me (Lt)	
18	ZmL-ZmR	Maxillary width
19	GoL-GoR	Mandibular width
20	Zyo-Zyo	
21	Cdl-Cdl	

Rt: right, Lt: left

계측점과 계측항목은 Cavalcanti와 Vannier³가 사용한 것 을 참고로 하였으며 12곳의 교정적 계측점(Fig. 1, Table 1) 을 이용한 21개의 계측 항목(Table 2)을 V-Works 4.0TM내 의 계측 프로그램으로 계측하였다. 계측은 개인용 컴퓨터 모니터상에서 3차원 전산화단층영상의 횡단면상, 관상면 상, 체축면상 다면재구성상에서 계측점의 정확한 위치를 확인한 후에 두 개의 계측점을 지정하면 거리가 자동으로 mm단위로 소수 둘째 자리까지 계산된다(Fig. 2). 길이 계 측은 한 명의 관찰자가 각 항목에 대해서 일주일 간격으 로 7번 반복 측정하였다.

3) 건조 두개골 계측1명의 관찰자가 3차원 전산화단층영상에서 측정한 것과

동일한 21개의 계측 항목에 대해서 일주일간격으로 5번 반복 측정하였다. 측정은 디지털 버니어 캘리퍼스와 치과 용 두개골 측정 장치를 사용하여 mm단위로 소수 둘째 자 리까지 측정하였다.

4) 통계분석

건조 두개골에서 직접 측정한 값과 3차원 전산화단층영 상에서 측정한 값이 통계학적으로 유의할만한 차이가 있 는지를 알아보기 위해서 Wilcoxon's two-sample test를 사 용하였다.

결 과

건조 두개골에 직접 계측한 값과 3차원 전산화단층영상 에서 계측한 값은 Table 3과 같다. 3차원 전산화단층영상에 서 계측한 값과 건조 두개골에서 계측한 값 사이의 차이 는 Table 4와 같다.

Conventional 3 mm와 Helical 3 mm 모두에서 N-Me, N-ANS, ANS-Me, Cdl-Go (Lt), Cdl-Me (Lt)의 5개 항목 측정 값이 건조 두개골에서 직접 측정한 값과 통계학적으로 유 의성 있는 차이가 없었다. Conventional 3 mm에서는 Cdl-Pog (Lt), Cdl-Go (Rt), N-Go (Lt), Cdl-Go (Rt), ZmL-ZmR GoL-GoR의 6개 항목에서 통계학적으로 차이가 없었으며, Helical 3 mm에서는 N-Go (Rt), A-B, Go-Me (Lt)의 3개 항 목에서 통계학적으로 유의성 있는 차이가 없었다. 또한 Conventional 3 mm에서 3차원 영상에서의 계측값과 건조 두개골에서 직접 계측한 값 사이의 차이의 평균값이 ANS-PNS, Zyo-Zyo 항목을 제외한 19개 항목에서 2 mm 이 내였으며, Helical 3 mm에서는 Zyo-Zyo 항목을 제외한 20 개의 항목에서 2 mm 이내였다.

Conventional 5 mm와 Helical 5 mm 모두에서 Cdl-Pog (Rt), Cdl-Pog(Lt), N-Go(Rt), A-B, Cdl-Go(Rt), Cdl-Me(Lt), GoL-GoR의 7개 항목 측정값이 건조 두개골에서 직접 측 정한 값과 통계학적으로 유의성 있는 차이가 없었다.

Fig. 2. Measurements on 3D image. (a) B point on axial, sagittal, coronal plane, (b) measurement of A-B.

Table 3. Mean value of measurement (mm)

Items of measurements	Dry skull Mean±SD	Conventional 3 mm Mean±SD	Helical 3 mm Mean±SD	Conventional 5 mm Mean±SD	Helical 5 mm Mean±SD	Conventional 7 mm Mean±SD	Helical 7 mm Mean±SD
N-Ba	99.30 ± 0.27	$100.69 \pm 0.52*$	$100.77 \pm 0.35*$	$102.43 \pm 0.59^*$	$101.79 \pm 0.41*$	$101.13 \pm 0.29*$	$100.63 \pm 0.43*$
N-Me	115.55 ± 0.21	115.89 ± 0.77	115.06 ± 0.69	116.31 ± 0.56	$117.10 \pm 0.52*$	$117.04 \pm 0.76*$	115.04 ± 0.82
N-ANS	50.40 ± 0.21	50.76 ± 0.90	49.69 ± 0.70	$51.01 \pm 0.55*$	50.91 ± 0.56	$46.87 \pm 0.89^{*}$	$48.37 \pm 0.73^*$
ANS-Me	66.48 ± 0.23	66.25 ± 0.54	66.45 ± 0.17	66.27 ± 0.49	$67.11 \pm 0.30*$	$71.44 \pm 0.31*$	$65.46 \pm 0.74*$
ANS-PNS	49.70 ± 0.10	$47.54 \pm 0.49*$	$47.78 \pm 0.19^*$	$46.07 \pm 0.57*$	$49.15 \pm 0.64*$	$47.74 \pm 0.31^*$	$47.63 \pm 0.08*$
Cdl-Pog(Rt)	112.96 ± 0.27	$113.76 \pm 0.75*$	$111.90 \pm 0.41*$	113.03 ± 1.38	112.92 ± 0.32	$109.40 \pm 1.64*$	112.70 ± 0.77
Cdl-Pog(Lt)	115.12 ± 0.17	116.65 ± 0.93	$114.56 \pm 0.49*$	113.85 ± 1.32	115.30 ± 0.51	$111.12 \pm 1.00*$	114.87 ± 1.18
N-Go(Rt)	122.03 ± 0.22	$120.93 \pm 0.76*$	121.40 ± 0.74	121.87 ± 0.73	122.23 ± 0.54	121.52 ± 0.41	122.80 ± 0.92
N-Go(Lt)	120.46 ± 0.13	120.96 ± 0.65	$121.54 \pm 0.37*$	$122.12 \pm 0.79*$	$122.26 \pm 0.60*$	$121.34 \pm 0.49*$	$122.06 \pm 0.80 *$
A-B	36.14 ± 0.21	$37.00 \pm 0.41*$	36.31 ± 0.74	36.51 ± 0.95	36.86 ± 0.66	$34.19 \pm 0.97*$	35.27 ± 0.79
B-Me	22.65 ± 0.12	$23.72 \pm 0.95*$	$23.63 \pm 0.44*$	24.08 ± 1.13	$24.93 \pm 0.48*$	$27.97 \pm 0.67*$	$23.60 \pm 1.24*$
Go-Me (Rt)	83.48 ± 0.21	$84.63 \pm 0.71*$	$84.91 \pm 0.79*$	$86.23 \pm 0.66*$	$84.98 \pm 1.14*$	$88.03 \pm 0.61*$	82.90 ± 0.97
Go-Me (Lt)	85.89 ± 0.12	$87.34 \pm 0.64*$	85.82 ± 1.04	$86.98 \pm 0.56*$	86.66 ± 0.72	$88.02 \pm 0.50*$	86.20 ± 1.08
Cdl-Go (Rt)	50.71 ± 0.08	50.56 ± 0.64	$49.41 \pm 0.37*$	49.81 ± 0.72	50.07 ± 0.85	$45.34 \pm 1.24*$	$48.15 \pm 1.06*$
Cdl-Go (Lt)	50.76 ± 0.18	50.53 ± 1.45	50.38 ± 0.56	$48.57 \pm 0.84*$	$50.24 \pm 0.51*$	$45.99 \pm 1.29^*$	$48.08 \pm 0.92*$
Cdl-Me (Rt)	114.15 ± 0.38	$115.28 \pm 0.75*$	$114.87 \pm 0.43*$	$115.30 \pm 0.24*$	114.33 ± 0.77	114.46 ± 1.34	$111.63 \pm 1.15 *$
Cdl-Me (Lt)	116.53 ± 0.20	118.45 ± 1.43	116.56 ± 0.43	116.03 ± 0.49	117.01 ± 0.49	117.21 ± 0.58	$115.15 \pm 0.26 *$
ZmL-ZmR	92.02 ± 0.13	92.20 ± 0.43	$93.86 \pm 0.32*$	$88.98 \pm 0.84*$	$93.39 \pm 0.64*$	$91.54 \pm 0.32^*$	92.70 ± 1.05
GoL-GoR	94.81 ± 0.22	94.21 ± 1.00	$93.65 \pm 0.40*$	95.26 ± 0.70	93.93 ± 0.68	94.51 ± 1.39	$96.76 \pm 0.30^{*}$
Zyo-Zyo	60.33 ± 0.13	$66.78 \pm 0.46*$	$62.82 \pm 0.78*$	$66.29 \pm 0.56^*$	$62.42 \pm 0.54*$	$64.91 \pm 0.47*$	59.38 ± 0.75
Cdl-Cdl	118.00 ± 0.07	$118.76 \pm 0.17*$	$119.01 \pm 0.08*$	118.12 ± 0.21	119.41±0.69*	117.80 ± 0.42	$118.20 \pm 0.05*$

Mean: mean value of measurement

SD: standard deviation of measurement

*: statistically significant difference at $p\!<\!0.05$

Conventional 5 mm에서는 N-Me, ANS-Me, B-Me, Cdl-Cdl 의 4개 항목에서 통계학적으로 유의성 있는 차이가 없었 으며, Helical 5 mm에서는 N-ANS, Go-Me (Lt), Cdl-Me (Rt) 의 3개 항목에서 통계학적으로 유의성 있는 차이가 없었 다. 그리고 Conventional 5 mm에서 3차원 영상에서의 계측 값과 건조 두개골에서 직접 계측한 값 사이의 차이의 평 균값이 N-Ba, ANS-PNS, Go-Me (Rt), Cdl-Go (Lt), ZmL-ZmR, Zyo-Zyo를 제외한 15개 항목에서 2 mm 이내였으며, Helical 5 mm에서는 N-Ba, B-Me, Zyo-Zyo를 제외한 18개 항목에서 2 mm 이내였다. Conventional 5 mm에서 N-Ba,

Items of measurements	Conventional 3 mm Mean±SD	Helical 3 mm Mean±SD	Conventional 5 mm Mean±SD	Helical 5 mm Mean \pm SD	Conventional 7 mm Mean±SD	Helical 7 mm Mean±SD
N-Ba	1.39 ± 0.55	1.47 ± 0.41	3.13 ± 0.61	2.49 ± 0.46	1.83 ± 0.37	1.33 ± 0.48
N-Me	0.35 ± 0.75	-0.48 ± 0.68	0.76 ± 0.56	1.55 ± 0.52	1.49 ± 0.74	-0.51 ± 0.80
N-ANS	0.36 ± 0.87	-0.71 ± 0.68	0.61 ± 0.55	0.51 ± 0.56	-3.53 ± 0.86	-2.03 ± 071
ANS-Me	-0.23 ± 0.55	-0.05 ± 0.27	-0.21 ± 0.51	0.63 ± 0.35	4.96 ± 0.36	-1.02 ± 0.72
ANS-PNS	-2.16 ± 0.47	-1.92 ± 0.20	-3.63 ± 0.53	-0.55 ± 0.60	-1.96 ± 0.31	-2.07 ± 0.12
Cdl-Pog(Rt)	0.80 ± 0.75	-1.06 ± 0.46	0.07 ± 1.32	-0.04 ± 0.39	-3.56 ± 1.56	-0.26 ± 0.76
Cdl-Pog(Lt)	1.53 ± 0.89	-0.56 ± 0.49	-1.27 ± 1.25	0.18 ± 0.50	-4.00 ± 0.95	-0.25 ± 1.12
N-Go (Rt)	-1.10 ± 0.74	-0.62 ± 0.73	-0.15 ± 0.71	0.21 ± 0.54	-0.51 ± 0.43	0.78 ± 0.89
N-Go(Lt)	0.50 ± 0.62	1.08 ± 0.37	1.66 ± 0.75	1.80 ± 0.57	0.88 ± 0.47	1.60 ± 0.76
A-B	0.85 ± 0.43	0.16 ± 0.72	0.37 ± 0.92	0.71 ± 0.65	-1.95 ± 0.93	-0.87 ± 0.76
B-Me	1.07 ± 0.90	0.98 ± 0.43	1.43 ± 1.06	2.28 ± 0.47	5.33 ± 0.64	0.95 ± 1.17
Go-Me (Rt)	1.14 ± 0.70	1.42 ± 0.77	2.75 ± 0.65	1.49 ± 1.08	4.54 ± 0.60	-0.59 ± 0.93
Go-Me (Lt)	1.46 ± 0.61	-0.07 ± 0.98	1.09 ± 0.54	0.77 ± 0.69	2.13 ± 0.48	0.32 ± 1.02
Cdl-Go (Rt)	-0.14 ± 0.60	-1.36 ± 0.36	-0.90 ± 0.68	-0.64 ± 0.80	-5.37 ± 1.17	-2.56 ± 1.00
Cdl-Go(Lt)	-0.23 ± 1.38	-0.38 ± 0.55	-2.19 ± 0.81	-0.52 ± 0.50	-4.76 ± 1.22	-2.67 ± 0.88
Cdl-Me (Rt)	1.13 ± 0.78	0.72 ± 0.53	1.15 ± 0.41	0.18 ± 0.80	0.31 ± 1.31	-2.52 ± 1.13
Cdl-Me (Lt)	1.92 ± 1.36	0.03 ± 0.44	-0.50 ± 0.50	0.48 ± 0.50	0.68 ± 0.58	-1.38 ± 0.30
ZmL-ZmR	0.18 ± 0.42	1.84 ± 0.33	-3.04 ± 0.80	1.80 ± 0.43	-0.48 ± 0.33	0.68 ± 0.99
GoL-GoR	-0.60 ± 0.96	-1.16 ± 0.42	0.45 ± 0.69	-0.88 ± 0.67	-0.31 ± 1.32	1.94 ± 0.35
Zyo-Zyo	6.45 ± 0.45	2.49 ± 0.75	5.96 ± 0.54	2.09 ± 0.52	4.58 ± 0.45	-0.95 ± 0.72
Cdl-Cdl	0.76 ± 0.17	1.01 ± 0.10	0.12 ± 0.20	1.41 ± 0.65	-0.20 ± 0.40	0.20 ± 0.08

Table 4. Mean value of difference between direct measurement on dry skull and measurement on 3D computed tomographic image (mm)

Mean: Mean value of difference between direct measurement on dry skull and measurement on 3D computed tomographic image (measurement) computed tomographic image - direct measurement)

SD: standard deviation of difference of measurement

ANS-PNS, ZmL-ZmR, Zyo-Zyo 항목만 3 mm 이상의 차이 를 보였으며, Helical 5 mm에서는 모든 항목에서 3 mm 이 내의 차이를 보였다.

Conventional 7 mm와 Helical 7 mm 모두에서 N-Go (Rt)의 한 항목에서만 측정값이 건조 두개골에서 직접 측정한 값 과 통계학적으로 유의성 있는 차이가 없었다. Conventional 7 mm에서는 Cdl-Me (Rt), Cdl-Me (Lt), GoL-GoR, Cdl-Cdl의 4개 항목에서 통계학적으로 유의성 있는 차이가 없었으며, Helical 7 mm에서는 N-Me, Cdl-Pog (Rt), Cdl-Pog (Lt), A-B, Go-Me (Rt), Go-Me (Lt), ZmL-ZmR, Zyo-Zyo의 8개 항목에 서 통계학적으로 유의성 있는 차이가 없었다. Conventional 7 mm에서는 3차원 영상에서의 계측값과 건조 두개골에서 직접 계측한 값 사이의 차이의 평균값이 N-ANS, ANS-Me, Cdl-Pog (Rt), Cdl-Pog (Lt), B-Me, Go-Me (Rt), Go-Me (Lt), Cdl-Go (Rt), Cdl-Go (Lt), Zyo-Zyo의 10개 항목에서 2 mm 이상이었으며, 이중 Go-Me (Lt)을 제외한 9개 항목은 3 mm 이상이었다. Helical 7 mm에서는 N-ANS, ANS-PNS, Cdl-Go (Rt), Cdl-Go (Lt), Cdl-Me (Rt)을 제외한 16개 항목 에서 2 mm 이내의 차이를 보였으며, 2 mm 이상의 항목중 에서 3mm 이상의 차이를 보인 항목은 하나도 없었다.

고 찰

치과 교정학 분야의 진단 및 치료 계획은 물론 선천성

기형이나 여러 가지 질환으로 인해 손상된 두개안면 골격 의 재건을 위해서 많은 방사선 검사들이 사용되고 있다. 측방과 후전방 두부규격방사선사진을 조합하여 3차원적으 로 분석하는 방법¹⁴⁻¹⁶이 지금까지 보편적으로 사용되고 있 으며, 필요한 경우 이하두정 방사선사진을 추가하여 사용 하기도 한다. 이러한 분석 방법의 유용성에 대한 연구는 활발하게 이루어져 왔는데, Grayson 등은 측방과 후전방 두부규격방사선사진을 이용하여 컴퓨터로 입체적인 상을 구성하여 분석하는 방법을 보고하였고,¹⁷ Baumrind 등은 측 방 및 후전방 두부규격방사선사진이 동일 평면상에 위치 하는 coplanar radiography를 사용하여 3차원 형태를 재현 하였다.^{18,19} Brown과 Abbott는 하나의 방사선원을 사용하 여 환자의 두부를 직각으로 회전시켜 측방 및 후전방 두 부규격방사선사진을 채득한 것을 이용한 3차원 분석방법 을 제시하였다.²⁰ 이러한 측방과 후전방 두부규격방사선사 진을 이용한 3차원 분석방법이 측방 두부규격방사선사진 보다 거리 및 각도 계측에서 우수한 것으로 보고되고 있 다.^{21,22} 그러나 이런 분석은 실제 모양의 입체적인 상을 얻 을 수는 없고 단순한 철망형태의 골격만 얻을 수 밖에 없 다는 한계가 있었다.17,23

그러나 전산화단층촬영술이 소개되고 이 분야의 기술력 이 발달하면서 전산화단층촬영을 이용한 3차원 영상을 재 구성할 수 있게 되면서 입체적인 상을 얻을 수 있게 되었 다. 이런 3차원 영상의 정확성에 대한 연구는 많이 이루어 져 왔다.¹⁻¹³ 특히 전산화단층촬영을 이용한 3차원 영상에 서의 계측의 재현성에 대한 연구에서 교정적 계측값중 봉 합선과 관련있는 계측값을 제외하고는 대부분 2 mm 이내 의 변이를 가진다고 보고하였다.⁷ 그러나 실제 두개골에서 직접 측정한 계측값과 3차원 영상에서 측정한 계측값의 차이를 비교한 연구^{1.2}는 그리 많지 않으며 임상적으로 유 용한 3차원 영상을 얻을 수 있는 전산화단층촬영 조건을 제시한 연구도 거의 없는 실정이다. 따라서 본 연구에서는 Conventional과 Helical 촬영 모드에 대해 다양한 상층 두 께로 전산화단층촬영을 시행하여 얻은 3차원 영상의 교정 적 계측값과 실제 계측값을 비교하여 3차원 영상의 정확 성을 평가하고 임상적으로 유용한 촬영조건을 제시해 보 고자 하였다.

Conventional 3 mm와 5 mm, Helical 3 mm와 5 mm의 경 우 N-Ba, ANS-PNS, Go-Me (Rt), Zyo-Zyo 항목에서 건조 두개골의 계측치와 3차원 영상의 계측치 사이에 통계학적 으로 유의성있는 차이를 보였다. N-Ba 계측 항목은 건조 두개골에서 실제 계측할 경우 Nasion과 Basion 사이의 거 리를 입체적으로 계측하는 것이 쉽지 않은 문제가 있었다. 그래도 3차원 영상과 실제 계측치 사이 차이의 평균값이 3 mm이내였으며 Conventional 5 mm로 촬영한 3차원 영상 에서만 3 mm가 넘는 차이를 보였다. ANS-PNS에서 차이 가 난 것은 ANS와 PNS 계측점이 날카롭고 작은 골 구조 물이기 때문에 CT의 불균등용적평균 효과²⁴에 의해 차이 가 날 수 있고 인지하기도 어렵기 때문에 이런 결과가 나 온 것으로 생각한다. 더구나 건조두개골을 사용했기 때문 에 물로 연조직을 보상하였다 하더라도 실제 환자에서보 다 불균등용적평균 효과가 더 심했을 것으로 생각된다. 이 런 추측은 실제 계측값보다 3차원 영상 계측값이 모두 작 게 나왔다는 점에서 신빙성이 높다고 볼 수 있다. 이런 결 과의 보다 정확한 평가를 위해서는 향후 연조직이 있는 두개골을 이용한 연구가 이루어져야 할 것이다. Go-ME (Rt) 항목에서는 통계학적으로 유의성 있는 차이는 있었지 만 차이의 평균값이 2 mm 이내였으며 Conventional 5 mm 에서만 2.75 mm의 차이를 보였다. Zyo-Zyo 계측 항목에서 는 다른 항목에 비해서 3차원 영상의 계측치와 건조 두개 골의 계측치 사이의 차이가 많이 났다. 이는 이 연구에서 사용한 개인용 컴퓨터 프로그램이 표면재구성 방법으로 3 차원 영상을 만들기 때문에 영상에서 봉합선이 보이지 않 고 영상의 굴곡선들을 봉합선으로 오인하는 뎨서 일어날 수 있는 오차라고 생각한다. ZmL-ZmR 항목에서 Conventional 5 mm의 3차원 영상에서 실제 계측치와 3 mm 이상의 차이를 보인 것도 같은 맥락에서 이해될 수 있을 것이다. 이런 결과들은 3차원 영상의 재현성에 관한 이전의 연구 결과와 어느 정도 일치한다고 볼 수 있다.7 이 외에 다른 계측 항목에서는 Conventional 5 mm의 Cdl-Go (Lt) 계측 항 목과 Helical 5 mm의 B-Me 계측 항목을 제외하고는 모두 2 mm 이내의 차이를 보였다. 그러나 Conven-tional 5 mm의 Cdl-Go (Lt) 계측 항목과 Helical 5 mm의 B-Me 계측 항목도 3 mm 이내의 차이를 보였으며, 이전의 전산화단층촬영을 이용한 3차원 영상에서의 계측의 재현성에 대한 연구에서 관찰자간, 관찰자내의 계측치 값의 차이가 대부분 2 mm 이 내의 변이를 가진다는 결과를 고려한다면 큰 차이는 아니 라고 볼 수 있을 것이다.

Conventional 7 mm의 경우에는 3차원 영상의 계측치가 실제 계측치와 5항목을 제외하고는 모두 통계학적으로 유 의성있는 차이가 있었으며, 3 mm 이상 차이를 보인 계측 항목도 9개나 되었다. 반면 Helical 7 mm를 이용한 3차원 영상에서는 모든 계측 항목에서 실제 계측값과 3mm 이내 의 차이를 보였다. 이러한 결과는 아마도 비연속적인 데이 터를 재구성하는 Conventional 촬영보다는 연속적인 데이 터를 이용하는 Helical 촬영이 보다 정확한 3차원 영상을 재구성하는 데 유리하다고 볼 수 있다. 또한 상층의 두께 가 5mm 이하에서는 촬영방법의 차이에 따른 효과가 미미 하지만 5mm 이상에서는 촬영방법에 따라 영상에 큰 영향 을 준다고 볼 수 있다. 그러나 Helical 7 mm에서 2 mm 이 상의 차이를 보이는 계측 항목이 N-ANS, ANS-PNS, Cdl-Go (Rt), Cdl-Go (Lt), Cdl-Me (Lt)이었는데 이 가운데 N-ANS, Cdl-Go (Rt), Cdl-Go (Lt), Cdl-Me (Lt) 계측 항목은 상 층 두께가 3mm와 5mm인 경우보다 다소 차이가 크게 나 왔다. 따라서 Helical 7 mm를 촬영하는 것은 신중을 기할 필요가 있다고 생각된다.

결론적으로 환자의 피폭량을 고려했을 때 상층두께 3 mm보다는 5 mm가 유리하고, 환자 움직임으로 인한 영상 결함에 영향을 주는 촬영시간을 고려하였을 때, Conventional보다는 촬영시간이 짧은 Helical 촬영 방법이 유용하 기 때문에 임상적으로 Helical 5 mm로 촬영하는 것이 바람 직할 것으로 사료된다.

그런데 Helical로 전산화단층촬영을 할 경우, 3차원 영상 재구성 두께를 다양하게 조절할 수 있기 때문에 향후 이 런 영상 재구성 두께가 3차원 영상에 미치는 영향을 평가 하는 추가적인 연구가 필요할 것으로 사료된다.

참 고 문 헌

- Kim DO, Kim HJ, Jung H, Jeong HK, Hong SI, Kim KD. Quantitative evaluation of acquisition parameters in three-dimensional imaging with multidetector computed tomography using human skull phantom. J Digit Imaging 2002; 15 : 254-7.
- 2. 김동욱, 정해조, 김새롬, 유영일, 김기덕, 김희중. 두개골 팬텀을 이용 한 다검출기 CT 3차원 영상에서의 거리측정을 통한 정량적 영상 특성 평가. 의학물리 2003; 14: 131-40.
- Cavalcanti M, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998; 27 : 344-50.
- Hildebolt CF, Vannier MW. Three-dimensional measurement accuracy of skull surface landmarks. Am J Phys Anthropol 1988; 76: 497-503.

- Hildelbolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol 1990; 82 : 283-94.
- Nagashima M, Inoue K, Sasaki T, Miyasaka K, Matsumura G, Kodama G. Three-dimensional imaging and osteometry of adult human skulls using helical computed tomography. Surg Radiol Anat 1998; 20: 291-7.
- 전국진, 박혁, 이희철, 김기덕, 박창서. 개인용 컴퓨터에서 재구성한 3차원 전산화단층영상의 두부계측 재현성. 대한구강악안면방사선 학회지 2003; 33: 171-8.
- 8. 강복희, 김기덕, 박창서. 전산화단층촬영 단말장치와 개인용 컴퓨터 에서 재구성한 두부 3차원 전산화단층영상의 비교. 대한구강악안 면방사선학회지 2001; 31: 1-7.
- 9. 김기덕, 김희진, 한승호, 박창서. 3차원영상 전산화단층촬영을 이용
 한 한국인 아래턱뼈의 체질인류학적 연구 3차원 영상의 정확도
 평가. 대한체질인류학회지 1999; 12(1): 13-22.
- 10. 유선국, 김용욱, 이혜연, 김희중, 김기덕, 김남현. 주축기반 강체변환
 을 이용한 다중 CT 영상의 정합. 전기학회논문지 2003; 52D : 5005.
- 11. Kim KD, Ruprecht A, Jeon KJ, Park CS. Personal computer-based three-dimensional computed tomographic images of the teeth for evaluating supernumerary or ectopically impacted teeth. Angle Orthod 2003; 73 : 614-21.
- Yoo SK, Kim YO, Kim HJ, Kim NH, Jang YB, Kim KD, et al. Alignment of CT images of skull dysmorphology using anatomybased perpendicular axes. Phys Med Biol 2003; 48 : 2681-95.
- Kim HJ, Yoon HR, Kim KD, Kang MK, Kwak HH, Park HD, et al. Personal computer-based three-dimensional reconstruction and simulation of maxillary sinus. Surg Radiol Anat 2002; 24 : 393-9.
- 14. Mitani, H. Brodie A. Three plane analysis of tooth movement, growth, and angular changes with cervical traction. Angle Orthod 1970; 40 :

80-94.

- 15. Lude J. Technique for the determination of the size of the mandibular apical base: Its application to growth studies. Angle Orthod 1967; 37 : 272-84.
- Vogel C. Correction of frontal dimensions from head X-ray. Angle Orthod 1967; 37: 1-8.
- 17. Grayson B, Cutting CB, Bookstein FL, Kim H, McCarthy JG. The three dimensional cephalogram: Theory, technique, and clinical application. Am J Orthod Dentofac Orthop 1988; 94 : 327-37.
- Baumrind S, Moffitt F, Curry S. Three-dimension X-ray stereometry from paired coplanar images: A progress report. Am J Orthod 1983; 84 : 292-312.
- Baumrind S, Moffit F, Curry S. The geometry of three-dimensional measurement from paired coplanar X-ray images. Am J Orthod 1983; 84 : 313-22.
- Brown T, Abbott A. Computer assisted location of reference points in three dimensions for radiographic cephalometry. Am J Orthod Dentofac Orthop 1989; 95 : 490-8.
- Matteson SR, Bechtold W, Phillips C, Staab EV. A method for three dimensional image reformation for quantitative cephalometric analysis. J Oral Maxillofac Surg 1989; 47: 1053-61.
- 22. 배기선, 박수병, 손우성. 3차원 두부방사선규격사진의 정확성에 관한 연구(실제 계측 및 측방 두부방사선규격사진 계측과의 비교).
 대한치과교정학회지 1997; 27: 129-40.
- Bookstein F, Grayson B, Cutting CB, Kim H, McCarthy JG. Landmarks in three dimensions: Reconstruction from cephalograms versus direct observation. Am J Orthod Dentofac Orthop 1991; 100 : 133-40.
- 24. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 1997; 34 : 111-6.