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SUMMARY

Attenuated strains of mycobacteria can be exploited
to determine genes essential for their pathogenesis
and persistence. To this goal, we sequenced the
genome of H37Ra, an attenuated variant of Mycobac-
terium tuberculosis H37Rv strain. Comparison with
H37Rv revealed three unique coding region poly-
morphisms. One polymorphism was located in the
DNA-binding domain of the transcriptional regulator
PhoP, causing the protein’s diminished DNA-binding
capacity. Temporal gene expression profiles showed
that several genes with reduced expression in H37Ra
were also repressed in an H37Rv phoP knockout
strain. At later time points, genes of the dormancy
regulon, typically expressed in a state of nonreplicat-
ing persistence, were upregulated in H37Ra. Com-
plementation of H37Ra with H37Rv phoP partially
restored its persistence in a murine macrophage
infection model. Our approach demonstrates the fea-
sibility of identifying minute but distinct differences
between isogenic strains and illustrates the conse-
quences of single point mutations on the survival
stratagem of M. tuberculosis.

INTRODUCTION

Tuberculosis remains a significant health problem with high mor-

bidity and mortality. One-third of the world’s population is in-

fected with Mycobacterium tuberculosis, and up to 10 million

new cases develop annually, 20% of which lead to death (World

Health Organization, 2007). In spite of global research efforts,

mechanisms underlying pathogenesis, virulence, and persis-

tence of M. tuberculosis infection remain poorly understood

(Kaufmann, 2006).
C

Attenuated strains of mycobacteria allow determination of

genes essential for pathogenesis and persistence. The best

studied laboratory strain of M. tuberculosis H37Rv has an aviru-

lent counterpart in H37Ra, which was recognized as early as

1934 (Steenken et al., 1934). Though infectious, it does not rep-

licate in macrophages (McDonough et al., 1993) and thus resem-

bles the dormancy of M. tuberculosis during latent infection.

H37Ra does not undergo the typical cord formation of M. tuber-

culosis (Bloch, 1950; Gao et al., 2004) and differs in colony mor-

phology. However, reasons for the decreased virulence remain

unknown (Sharma and Tyagi, 2007).

The best understood genomic difference among mycobacte-

ria related to attenuation is the absence of the RD1 region of

M. bovis BCG, which contains several genes essential for viru-

lence, including esat6 and cfp10 (Behr et al., 1999; Pym et al.,

2002). The H37Ra genome, however, comprises the intact RD1

region (Mostowy et al., 2004), and microarray analysis rules out

deletions larger than 350 bp (Kato-Maeda et al., 2001). Even

though single-nucleotide changes can have a strong impact on

phenotypic traits (Wilmes-Riesenberg et al., 1997), a restriction

enzyme polymorphism identified earlier in H37Ra has not been

associated with loss of virulence (Brosch et al., 1999; Pascopella

et al., 1994).

Irrespective of genomic differences between H37Ra and

H37Rv, other studies investigated the phenotypic consequences

and determined changes in gene expression. This led to the

identification of the dev genes by subtractive hybridization

(Kinger and Tyagi, 1993), and a differential display approach re-

vealed additional genes that were downregulated in H37Ra as

compared to H37Rv (Rindi et al., 1999). More recently, Gao

et al. (2004) performed a genome-wide approach using microar-

rays to compare the transcriptomes of H37Rv and H37Ra. Many

genes whose expression was repressed in H37Ra were discov-

ered, although the genes described in earlier studies could not

be confirmed. The aforementioned studies focused on exponen-

tially growing bacteria. Comparisons of the expression profiles

of H37Rv and H37Ra in long-term cultures have not been
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attempted but may provide insights into the behavior of these

strains under dormancy- or starvation-like conditions.

Major changes in gene expression profiles could result from

differences in transcriptional regulation, and consequently nu-

merous studies have addressed the regulatory machinery in M.

tuberculosis with respect to virulence. An important class of reg-

ulatory proteins is found in two-component systems in which

several proteins have been implicated in mycobacterial virulence

(Parish et al., 2003). Prominent and recently identified members

of these protein families in pathogenic mycobacteria include

DosR, which mediates dormancy, and PhoP, which positively

regulates polyketide-derived lipid biosynthesis (Gonzalo et al.,

2006; Martin et al., 2006; Park et al., 2003; Perez et al., 2001).

Since these genes are of importance to virulence, microarray

studies of knockout (KO) strains have been performed to identify

potential PhoP target genes (Walters et al., 2006). Interestingly,

mycobacterial PhoP, although sharing the same name, is not for-

mally orthologous to PhoP from Salmonella, which is also essen-

tial for virulence (see Figure S1 available online). Therefore,

transfer of experimental information on PhoP proteins between

species should be interpreted with great caution.

In this work, we extend upon previous genomic and transcrip-

tomic approaches by comparing the genomic sequence of

H37Ra with several virulent strains at the single nucleotide level,

discovering mutations in phoP (Rv0757), Rv0101, and Rv0637.

The mutation in PhoP compromised the functionality of the

protein, and expression analysis revealed a significant overlap

between genes deregulated in H37Ra and a PhoP KO strain.

The introduction of the original phoP gene into H37Ra enhanced

the bacterial persistence in murine bone marrow-derived macro-

phages when compared to H37Ra. Our findings suggest that the

phoP mutation in H37Ra resulted in the partial loss of regulatory

function and that this contributed to reduced virulence of H37Ra.

RESULTS

Differences in the Genome
The genome of H37Ra was sequenced, and 1.4 M reads were pro-

duced (Margulies et al., 2005). The reads were compared to the

H37Rv reference sequence (Cole et al., 1998), and the regions

matching >95% togenomic regions were assembled into183 con-

tigs. We focused on high-quality regions covering 95.66% of the

genome. A total of 75 nucleotide polymorphisms were detected

between H37Ra and H37Rv genomes (Table S1). Sequencing of

H37Ra confirmed an additional deleted region in H37Rv following

position 1,987,700 previously reported as RvD2 (Lari et al., 2001).

Of the 75 polymorphisms identified, 53 loci were found to di-

verge from the published H37Rv genome sequence but were

identical to the corresponding loci in the published genomes of

M. tuberculosis CDC1551, a recent clinical isolate (Fleischmann

et al., 2002), and M. bovis (Garnier et al., 2003). These 53 poly-

morphisms could represent sequencing errors in the original se-

quence. A potential sequencing error reported in the literature

(Dubey et al., 2002), which would fuse the reading frames of

Rv1180 (pks3) and Rv1181 (pks4), was not found in this H37Rv

strain by resequencing. However, CDC1551, M. bovis, and

H37Ra apparently code for the fusion protein. Twenty-two poly-

morphisms could be confirmed by resequencing. There were 19

cases in which the H37Rv sequence peculiarly diverges from the

consensus built from M. bovis, CDC1551, and H37Ra; these

regions were therefore unlikely to be related to virulence. Only

three polymorphisms, located in Rv0101, Rv0637, and phoP,

were unique to H37Ra and are therefore most likely responsible

for its phenotype.

A Mutation in the Response Regulator PhoP of H37Ra
Among the three mutations the most significant effect on atten-

uation of H37Ra was likely located in the phoP gene (Figure 1A),

which encodes the response regulator of the PhoP/PhoR two-

component system and is essential for virulence (Perez et al.,

2001). The mutation in H37Ra described here leads to an amino

acid change located in the DNA-binding domain of PhoP replac-

ing a serine by a leucine (see Figure S2 for a structural model).

To investigate whether the mutation in the DNA-binding

domain interfered with its functionality, we performed gel shift

assays using overexpressed proteins (Figure 1B). The only

described interaction between mycobacterial PhoP and DNA is

the binding to its own promoter, where it interacts with a 9-mer

consensus motif containing the sequence ACT/GT/GT/GYARC

(Gupta et al., 2006). The intensity of the shifted band was higher

when the H37Rv version of the protein was incubated with DNA

containing the PhoP-binding motif. Therefore, we conclude that

the PhoP from H37Ra has a reduced DNA-binding capability.

Transcriptional Differences between H37Rv and H37Ra
To unravel differentially regulated genes, we determined the

RNA expression profile of H37Ra and H37Rv in a longitudinal

analysis. Bacteria were harvested at the time points indicated

in Figure 2A. We detected 110 genes of H37Rv that were differ-

entially expressed in at least one time point (Tables S2 and S3). A

substantial number of these genes were located adjacent to

each other: 11 of the 21 upregulated genes in H37Ra at the

1-year time point reside between Rv2660c and Rv2672, and 19

of the 47 genes coexpressed during the stationary phase were

adjacent to each other, indicating that they could be part of op-

erons. Due to the spacing of individual spots across the array, it

Figure 1. Mutation in phoP

(A) The mutation in phoP of H37Ra results in an

amino acid change from serine to leucine.

(B) Gel shift of a fluorescently labeled oligonucleo-

tide containing the PhoP-binding site that was

incubated with overexpressed and purified PhoP

proteins of H37Ra and H37Rv. Similar amounts

of the two proteins were used as determined by

western blotting.
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is unlikely that this is the result of technical error. To validate our

data and the accuracy of our amplification protocol, we per-

formed gene-specific quantitative real-time PCR (qRT-PCR) on

nonamplified cDNA prepared after 1 year of culture (Figure 2B).

Gene repression or activation was confirmed qualitatively in all

cases analyzed for the 1-year time point (Figure S3 contains ad-

ditional validation experiments with comparable results for other

sampling points of the time course).

Comparison with Earlier Studies of the H37Ra
Transcriptome and a PhoP KO Strain
Similar to previous studies, we exclusively observed downregu-

lated genes in H37Ra during the first two time points, whereas

most of the upregulated genes appeared at the later culture

growth stages (Gao et al., 2004). Gao et al. determined the

gene expression profiles of H37Ra and H37Rv at a single time

point and found 22 genes that were consistently repressed in

the avirulent mycobacterial strain during exponential growth. In

our results, 20 of these genes were repressed in H37Ra at early

time points, while the other two genes remained virtually

unchanged in expression. Due to the stringent cutoff values ap-

plied, only 7 of these 20 genes qualified as significantly downre-

gulated in our study. This nevertheless resulted in a set of genes

that overlapped remarkably (Figure 3A and Table S2). The

p value for overlap using the Fisher exact test was <0.001.

Another survey compared the expression patterns of the wild-

type strain H37Rv with a strain in which the phoP gene had been

ablated (Walters et al., 2006). Given that the mutation of phoP in

H37Ra influences the functionality of the protein, the pattern of

differentially expressed genes in H37Ra and the phoP KO strain

should show a substantial overlap. Indeed, of the 44 genes

repressed in the phoP KO mutant, 19 were also significantly

downregulated in H37Ra (p < 0.001). Walters et al. (2006) also

described 70 genes that were more actively transcribed in the

phoP mutant than in H37Rv during logarithmic growth. We did

not observe upregulation of any gene at the two early sampling

points, in concordance with the results of Gao et al. (2004). At

later time points, two genes were upregulated in H37Ra that

were induced in the phoP KO mutant (Figure 3B). Thus, the

transcriptional activation potential of PhoP appears strongly

Figure 2. Gene Expression Comparison of H37Ra and H37Rv

(A) Heat map of significantly regulated genes in H37Ra and H37Rv at the indi-

cated time points. Red corresponds to elevated gene expression in H37Ra;

green represents reduced gene expression.

(B) Confirmation of expression levels using qRT-PCR. Fold-change differences

between gene expression in H37Ra and H37Rv were calculated using the

DDCt method (Pfaffl, 2001). SigA (Rv2703) expression was chosen to normal-

ize cDNA amounts because it did not change significantly in expression during

the time course study. Validation is exemplified here using unamplified RNA

harvested at the 1-year time point (see Supplemental Experimental Proce-

dures). All significant changes in gene expression that were observed by

microarray analyses could be confirmed by qRT-PCR qualitatively for the

1-year sample. Error bars represent standard deviation.

Figure 3. Comparison with Previous Studies Interrogating Gene

Expression Levels in M. tuberculosis Strains
(A) Gao et al. (2004) investigated genes differentially expressed in cording and

noncording mycobacteria. Seven of these genes were also repressed in our

study at early time points.

(B) Overlap of expression data of a phoP KO strain as compared to gene

expression of H37Rv (Walters et al., 2006). Of the 44 genes, which were signif-

icantly downregulated in H37Ra versus H37Rv, 19 were also assigned to the

repressed category in a phoP KO strain. In contrast, overlap among activated

genes of the two studies was confined to only two genes.

(C) Voskuil et al. (2003, 2004) described the induced genes constituting the

dormancy regulon. Among the 47 genes upregulated in H37Ra after 2 weeks

of culture, 10 belonged to this group.
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diminished in H37Ra, whereas additional repressive features of

this protein seem to remain intact.

The Transcriptome under Hypoxic Conditions
and Starvation
Comparing H37Rv under hypoxic conditions in the stationary

phase with exponential growth, Voskuil et al. (2003, 2004)

observed the expression of a unique set of genes referred to

as the dormancy regulon in H37Rv. The two-component system

DosR/DosS (DevR/DevS, Rv3133c/Rv3132c) is pivotal for

the transcriptional gene activation in models of dormancy

(Boon et al., 2001; Sherman et al., 2001; Voskuil et al., 2003,

2004).We were interested in whether genes induced under hyp-

oxic conditions in H37Rv were similarly activated in H37Ra

because attenuation of H37Ra could be caused by expression

changes in the dormancy regulon of the mycobacterium. At the

2-week time point, when conditions became hypoxic, we no-

ticed upregulation (1.8-fold, p value 3 3 10�14) of dosR tran-

scripts in H37Ra. Other studies also documented the upregula-

tion of dosR under nonreplicating persistence (NRP) conditions

in H37Rv when expression was compared to exponentially

growing bacteria (Voskuil et al., 2004). We directly compared ex-

pression patterns of H37Rv and H37Ra and found that dosR is

induced even higher in the latter. Interestingly, this activation

also resulted in transcriptional induction of several genes of the

dormancy regulon in the avirulent strain. Of the 116 transcripts

identified as being upregulated (Voskuil et al., 2004), 10 genes

were significantly activated in H37Ra after 2 weeks of culture

as compared to gene expression in H37Rv (Figure 3C and Table

S2; p value < 0.001).

Conditions of the 1-year time point likely resemble starvation.

Seven genes that were upregulated in this time point were also in-

duced in cultures kept in phosphate-buffered saline (Betts et al.,

2002). Three of these are coded in the genomic region between

Rv2660c and Rv2664 and belong to operons that are highly

induced during starvation. However, other starvation-associated

genes (e.g., those involved in energy metabolism) were not

differentially transcribed during growth in nutrient-poor media

(Betts et al., 2002).

Complementation of H37Ra with phoP from H37Rv
Physiological features of phoP KO mutants differ from wild-type

bacteria in that they develop smaller colonies on agar-based me-

dia and show different cording properties, a feature associated

with virulence (Glickman et al., 2000; Perez et al., 2001; Walters

et al., 2006). The phoP mutant’s colony morphology differed dis-

tinctly from the wild-type strain when cultured on 7H10 Middle-

brook agar plates. We observed similar morphological differ-

ences between H37Rv and H37Ra. Colonies were smaller in

H37Ra than in H37Rv, and wrinkling on the colony surface was

reduced in H37Ra as compared to H37Rv. As depicted in

Figure 4A, these differences were reduced when H37Ra was

complemented with pSO5-expressing wild-type PhoP (H37Ra-

phoP-Rv). Previously, Perez et al. (2001) found no significant

growth differences between wild-type and phoP KO strains when

cultured in liquid medium. However, H37Ra took slightly longer

to reach the logarithmic and stationary phase. The phoP-com-

plemented H37Ra strain revealed a growth pattern similar to

H37Rv (Figure S4).

Next, we were interested if the complementation of H37Ra

with the original phoP gene from H37Rv increased bacterial sur-

vival in immune cells, which is strongly diminished in H37Ra

(McDonough et al., 1993). To this end, we infected murine

bone marrow-derived macrophages with equal multiplicities of

infection of H37Ra, H37Rv, and H37Ra-phoP-Rv (Figure 4B).

This resulted in similar bacterial loads on day 0 for the three

strains (Figure S5). At later time points, the bacterial burden of

macrophages infected with H37Ra was reduced to about 10%

of the colony-forming unit (CFU) count of macrophages infected

with H37Rv. Cells challenged with H37Ra-phoP-Rv reached

a CFU count, which was between 24% and 35% of that of

H37Rv depending on the time point investigated. Overall CFU

of H37Ra-phoP-Rv were about three times higher than for the

noncomplemented H37Ra, showing that the intracellular bacte-

rial persistence, and thus its virulence, was increased by the

complementation.

DISCUSSION

We identified three point mutations in coding regions that are

likely to cause the attenuation of H37Ra. The additional confir-

mation of sequencing errors in the original reference sequence

for H37Rv underscores the accuracy of the high-throughput

analysis. However, it is important to realize that not all confirmed

differences necessarily represent sequencing errors, as it is dif-

ficult to estimate the number of generations between individual

sequencing attempts. Only a large-scale study of H37Rv strains

from different sources would shed light on this question as it has

been performed recently for M. bovis BCG (Brosch et al., 2007).

Figure 4. Complementation of H37Ra with

PhoP of H37Rv

(A) H37Ra forms typical small-sized colonies. The

complementation of H37Ra with the phoP gene of

H37Rv reveals a colony morphology resembling

H37Rv.

(B) Time course of the intracellular bacterial load of

H37-derived strains in murine bone marrow-de-

rived macrophages. CFU were counted at the indi-

cated time points postinfection and are depicted

as percent of bacterial load following infection

with H37Rv. CFU values for all data points col-

lected, including initial infection (day 0), can be

found in Figure S5. Error bars represent standard

deviation.
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Only 19 of 22 loci differed in H37Rv as compared to CDC1551

and H37Ra. The far more frequent use of H37Rv over H37Ra

could have led to the accumulation of gene alterations specific

for laboratory conditions. The small number of bona fide poly-

morphisms between H37Ra and H37Rv can be explained satis-

factorily by the long generation times of mycobacteria as

compared to other bacteria and is consistent with the relatively

few differences between H37Rv, the recent clinical isolate

CDC1551 (Fleischmann et al., 2002), and M. bovis (Garnier

et al., 2003). We consider the mutation in PhoP most critical for

the phenotypic differences. Four pieces of evidence support

this. (1) Of the three mutated genes that are different between

all virulent strains and H37Ra, PhoP is the only protein known

to be involved in virulence. (2) The mutation occurs in a region

that interferes with the biological function of this transcription

factor as determined by gel shift assays. (3) We revealed a signif-

icant overlap between genes with altered expression levels be-

tween H37Ra and the phoP KO mutant of H37Rv. (4) Comple-

mentation of H37Ra with the phoP gene of H37Rv reverted the

colony shape phenotype and was more virulent than the original

H37Ra in a mouse macrophage infection model.

However, we do not formally rule out the possibility that addi-

tional mutations observed here or mutations in gaps or regions of

low sequencing quality, which were not pursued, contributed to

phenotypic differences between H37Rv and H37Ra. Several gap

regions spanPEand PPE genes,whichhavebeen implicated invir-

ulence althoughmechanistic insight is lacking (Gordonetal.,1999).

The crucial role of PhoP in M. tuberculosis virulence has been

well characterized in models of mycobacterial infections (Martin

et al., 2006; Perez et al., 2001; Walters et al., 2006). Our data re-

vealed a highly significant overlap of genes repressed in H37Ra

and the phoP KO mutant of H37Rv. Interestingly, this correlation

was not observed for genes that are more actively transcribed in

the phoP KO strain and H37Ra. The most likely reason for these

differences is that PhoP is completely absent in the experiments

by Walters et al. (2006), whereas the H37Ra strain still comprises

mutated PhoP. Since the mutation is located in the DNA-binding

domain, one would expect thatactivatingand repressing functions

of a transcription factor are compromised to the same degree,

which is apparently not the case. One hypothesis suggests that

PhoP interacts with hitherto unknown additional proteins that act

together as transcriptional repressors. A detailed characterization

of the PhoP protein and its interaction partners will be necessary to

elucidate this issue. We have not determined whether PhoP is a di-

rect regulator of the differentially expressed genes, and therefore,

secondary effects should be considered as well: wild-type PhoP

could induce the expression of transcriptional repressors; accord-

ingly, in the phoP KO mutant the relief of this repression would

cause indirect gene activation. Chromatin immunoprecipitation

experiments could help to identify direct target genes of PhoP.

We also observed a significant similarity between gene ex-

pression patterns of H37Ra and genes upregulated under dor-

mancy-like conditions at the 2-week time point. According to

the work by Wayne and Hayes (1996) and Voskuil et al. (2003,

2004), mycobacteria have reached a state of nonreplicating per-

sistence in this stationary culture phase, which is characterized

by the upregulation of the dormancy regulon. Since this was ac-

companied by a transcriptional induction of dosR, the essential

transcription factor mediating dormancy in H37Ra, it is tempting
Ce
to speculate that the attenuation of this strain is caused by

hyperdormancy.

Previously, a particular correlation of H37Ra with dormancy has

not been observed, since gene expression patterns have only

been investigated in exponentially growing bacteria. Recently,

the constitutive upregulation of genes belonging to the dormancy

regulon has been found in the Beijing lineage of M. tuberculosis

during the exponential growth phase (Reed et al., 2007). It was

speculated that this induction confers a growth advantage to Bei-

jing strains since they could be preadapted to the conditions inside

macrophages during infection and that this might underlie the in-

creased virulence of this mycobacterial subfamily. The interplay

between dormancy and virulence of mycobacteria is not yet re-

solved. Other avirulent strains such as M. smegmatis exhibit dor-

mancy-like phenotypes, and many virulence factors do not belong

to the dormancy regulon (Mayuri et al., 2002; Smith, 2003). In ad-

dition, the targeted deletion of key dormancy genes, including

dosR and Rv2031c, results in hypervirulent phenotypes (Hu

et al., 2006). If the higher expression of dormancy genes is the

key to virulence as postulated, the deletion of these genes should

have generated hypovirulent mycobacteria. Therefore, it remains

unresolved why the constitutive overexpression of dosR in the Bei-

jing lineage should be associated with its hypervirulence. As a ca-

veat it should be mentioned that deleting the dosR gene in a guinea

pig model (Malhotra et al., 2004) led to attenuation. Further studies

will be necessary to clarify the meaning of dormancy for virulence

and persistence of mycobacteria.

The 1-year sample of our time course study exhibited a differ-

ent pattern of gene expression: almost all genes of the cluster

between Rv2660c and Rv2672, probably comprising four differ-

ent operons, were strongly induced in H37Ra. The Rv2660c

operon was also highly induced under starvation conditions in

H37Rv (Betts et al., 2002). Thus—as under dormancy-like condi-

tions—it needs to be determined whether the stronger expres-

sion of some genes involved in starvation are related to the

loss of virulence in H37Ra.

The complementation of H37Ra with phoP from H37Rv re-

verted the colony morphology and increased bacterial persis-

tence within macrophages. Nevertheless, the complemented

bacteria were still less virulent than H37Rv. It is conceivable

that other mutations in the genome of H37Ra might affect the

bacterial persistence in macrophages. Alternatively, the reduced

virulence of the complemented strain could be caused by extra-

chromosomal complementation of phoP, which does not mirror

all aspects of its naturally occurring gene regulation, because

PhoP is autoregulatory (Gupta et al., 2006).

Our combined approach demonstrates the feasibility of iden-

tifying minute but distinct differences between isogenic strains

with respect to their genomes and transcriptomes. Perhaps

more importantly, our experiments revealed paramount conse-

quences of single point mutations on the survival stratagem of

M. tuberculosis from which we conclude that the mutation in

the phoP gene is of particular interest and at least partially

responsible for the decreased virulence of H37Ra.

EXPERIMENTAL PROCEDURES

A detailed description of all procedures and protocols is available as Supple-

mental Data.
ll Host & Microbe 3, 97–103, February 2008 ª2008 Elsevier Inc. 101
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Bacterial Strains

M. tuberculosis H37Ra ATCC 25177 was used as test strain. The M. tubercu-

losis H37Rv reference strain was kindly provided by Stewart Cole (Institut Pas-

teur, Paris, France), which is the same strain used for original sequencing (Cole

et al., 1998). The generation of the complemented strain is described in the

Supplemental Data.

Genomic DNA Preparation and Pyrosequencing

Bacterial cultures were harvested at mid-log phase. For each 50 ml culture pel-

let, 5 ml phenol and 5 ml chloroform-methanol (3:1) were applied and mixed by

pipetting one after another. DNA was extracted with 4 ml RLT buffer (QIAGEN,

Hilden), precipitated, and washed. The sequencing system has been de-

scribed in detail for the resequencing of Mycoplasma genitalium (Margulies

et al., 2005).

RNA Preparation, Transcriptomic, and qRT-PCR Analysis

Total RNA from mycobacterial cells was prepared as previously described

(Dietrich, 2001) for all samples except the 1-year time point. For the 1-year

time point we applied an optimized amplification protocol (Rachman et al.,

2006). We validated array results using qRT-PCR (Figure S3) and could qual-

itatively confirm microarray results in approximately 90% of tested cases (40

out of 44 qRT-PCRs with single peaks in the dissociation curves).

Fluorescence labeling of cDNA was performed using a LabelStar Array kit

(QIAGEN, Hilden). Microarrays were hybridized and scanned using an Agilent

Version B scanner (Agilent Technologies, Palo Alto, CA). After combining re-

sults of two biological replicates, each analyzed in color-swapped triplicates,

genes were assigned to be differentially regulated if they exhibited at least

a two-fold change and passed the Student’s t test of the Rosetta Resolver

Software.

Infection of Mouse Bone Marrow Macrophages

Bone marrow-derived macrophages were infected with bacterial suspensions

of H37Rv, H37Ra, or H37Ra-phoP-Rv at multiplicities of infection (MOI) of 5:1.

After 4 hr incubation, infection was terminated by washing, and fresh culture

medium was added. At days 0, 3, 6, and 9 the number of intracellular CFU

was evaluated.

Gel Shift Assay

IRDye 800-labeled DNA oligonucleotides containing the PhoP-binding site

were incubated with PhoP proteins from H37Ra and H37Rv. The proteins

were overexpressed in E. coli (BL21) as His-tagged fusion proteins and purified

using Ni-NTA beads.

Supplemental Data

The Supplemental Data include Supplemental Experimental Procedures, five

supplemental figures, and three supplemental tables and can be found with

this article online at http://www.cellhostandmicrobe.com/cgi/content/full/3/

2/97/DC1/.
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