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Previous studies have shown that mineralocorticoid receptor (MCR)
blocker reduces proteinuria in diabetic nephropathy (DN), but the role
of aldosterone in podocyte injury has never been explored in DN. This
study was undertaken to elucidate whether a local aldosterone system
existed in podocytes and to examine its role in podocyte apoptosis
under diabetic conditions. In vitro, immortalized podocytes were
exposed to 5.6 mM glucose (NG), NG + 24.4 mM mannitol, and 30
mM glucose (HG) with or without 10~7 M spironolactone (SPR). In
vivo, 32 Sprague-Dawley rats were injected with diluent (C, n = 16)
or streptozotocin intraperitoneally [diabetes mellitus (DM), n = 16],
and 8 rats from each group were treated with SPR for 3 mo.
Aldosterone synthase (CYP11B2) and MCR mRNA and protein
expression were determined by real-time PCR and Western blot,
respectively, and aldosterone levels by radioimmunoassay. Western
blot for apoptosis-related molecules, Hoechst 33342 staining, and
terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
(TUNEL) assay were performed to determine apoptosis. CYP11B2 and
MCR expression were significantly higher in HG-stimulated podo-
cytes and DM glomeruli compared with NG cells and C glomeruli,
respectively, along with increased aldosterone levels. Western blot
analysis revealed that cleaved caspase-3 and Bax expression was
significantly increased, whereas Bcl-2 expression was significantly
decreased in HG-stimulated podocytes and in DM glomeruli. Apop-
tosis determined by Hoechst 33342 staining and TUNEL assay were
also significantly increased in podocytes under diabetic conditions.
These changes in the expression of apoptosis-related proteins and the
increase in apoptotic cells were inhibited by SPR treatment. These
findings suggest that a local aldosterone system is activated and is
involved in podocyte apoptosis under diabetic conditions.
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PODOCYTES ARE TERMINALLY DIFFERENTIATED and highly special-
ized cells (24). They line the urinary side of the glomerular
basement membrane and function as a fine filter contributing to
ultimate size-selectivity and permitting permeability to mole-
cules smaller than albumin (33). Recent studies have shown
that podocyte injury plays a role in the pathogenesis of various
glomerular diseases (26), including diabetic nephropathy, the
leading cause of end-stage renal disease in many countries (4,
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34). Among the characteristic findings of diabetic nephropathy,
podocytes are involved in the development of glomerular
hypertrophy, glomerulosclerosis, foot process effacement, and
podocytopenia (40). Even though the molecular and cellular
mechanisms responsible for these changes remain incom-
pletely resolved, previous studies have demonstrated that dia-
betic milieu per se, hemodynamic changes, and local growth
factors such as angiotensin II (ANG II) and transforming
growth factor-B1 (TGF-B1) mediate the process of podocyte
injury in diabetic nephropathy (39, 40). Recently, accumulat-
ing evidence has suggested that aldosterone also plays an
important role in the pathogenesis of diabetic nephropathy (6,
7,9, 29, 31, 45). Moreover, most previous studies have shown
mineralocorticoid receptor (MCR) blocker reduces proteinuria
in diabetic nephropathy (7, 9, 31, 45). Although a recent study
demonstrated that aldosterone stimulated oxidative stress gen-
eration in cultured podocytes (27), the role of aldosterone in
podocyte injury has never been explored in diabetic nephrop-
athy.

Aldosterone is originally produced in the glomerulosa zone
of the adrenal cortex by a series of enzymatic steps, which can
largely be divided into two phases. Acutely, aldosterone bio-
synthesis is controlled by the movement of cholesterol in the
mitochondria, whereas its production is chronically regulated
by the expression level of aldosterone synthase (CYP11B2)
(19, 38). Besides the adrenal glands, recent studies have shown
that various cells or tissues, such as endothelial cells, vascular
smooth muscle cells, and the heart (11, 28, 32), can also
produce aldosterone and that locally produced aldosterone may
play a more important role in the development of vascular and
myocardial fibrosis (30).

In the kidney, mesangial cells are known to produce aldo-
sterone in response to ANG II, resulting in extracellular matrix
(ECM) accumulation (15). CYP11B2 mRNA and protein were
demonstrated in cultured tubular epithelial cells and renal
tissues, and its expression was upregulated by ANG II (41, 43).
In addition, CYP11B2 expression was increased in diabetic
kidney (29, 31, 43), and this increase was inhibited by ANG II
type 1 receptor (AT1R) blocker (ARB) treatment (43). These
findings suggest that ANG II, the most biologically active
peptide of the renin-angiotensin system (RAS), is an important
mediator of aldosterone production in renal cells as in adrenal
glomerulosa cells (38). Because local RAS and ATIR have
been demonstrated in podocytes (44), there is also a possibility
that a local aldosterone system exists in podocytes. However,
aldosterone biosynthesis and the expression of CYP11B2 have
not yet been investigated in podocytes.
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In this study, we examined whether a local aldosterone
system was present in podocytes and whether aldosterone
production and the expression of CYP11B2 and MCR were
changed in podocytes cultured under high glucose conditions.
In addition, the changes in CYP11B2 and MCR expression
were verified in diabetic glomeruli. Because aldosterone is
known to induce apoptosis in cardiac myocytes and skeletal
muscle cells (2, 17), and apoptosis is implicated as a potential
mechanism of podocyte loss characterized in diabetic nephrop-
athy (40), we also observed whether a local aldosterone system
was involved in podocyte apoptosis under diabetic conditions.

METHODS
Podocyte Culture

Conditionally immortalized mouse podocytes were kindly provided
by Dr. Peter Mundel (Albert Einstein College of Medicine, Bronx,
NY) and were cultured as previously described (20). Differentiated

A

CYP11B2/GAPDH mRNA

Fig. 1. A: CYP11B2-to-glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) mRNA and mineralocorticoid receptor (MCR)-to-
GAPDH mRNA ratios in cultured podocytes exposed to normal
glucose (NG), NG + 24.4 mM mannitol (NG + M), NG + 1077
M L-158,809 [NG + ANG II type 1 receptor blocker (ARB)],
NG + 107 M ANG II (NG + ANG II), high glucose (HG), and
HG + ARB (n = 6). There were 1.9- and 2.0-fold increases in
CYP11B2-to-GAPDH mRNA and MCR-to-GAPDH mRNA ra-
tios, respectively, in HG-stimulated podocytes relative to NG
cells, and these increases in HG cells were significantly inhibited
with ARB treatment. The CYP11B2-to-GAPDH mRNA and
MCR-to-GAPDH mRNA ratios were also significantly increased
by 118 and 133%, respectively, in ANG IlI-treated podocytes
compared with NG cells. B: representative Western blot of cellu-
lar CYP11B2 and MCR in cultured podocytes (representative of 4
blots). CYP11B2 and MCR protein expression were 1.7- and
1.9-fold higher, respectively, in podocytes exposed to HG com-
pared with NG cells, and ARB treatment abrogated these in-
creases in HG cells. ANG II also significantly induced CYP11B2 B
and MCR protein expression in cultured podocytes. P < 0.05 vs.
NG, NG + M, and NG + ARB groups (*) and vs. HG group (#).

MCR/GAPDH mRNA
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podocytes were serum restricted for 24 h, and after then the medium
was changed to serum-free RPMI medium containing normal glucose
(5.6 mM, NG), NG + mannitol (24.4 mM, NG + M), NG + 107°M
ANG II (NG + ANG II), NG + 10~7 M aldosterone (NG + ALDO),
or high glucose (30 mM, HG) with or without 6-h pretreatment of
MCR blocker [10~7 M spironolactone (SPR); Sigma Chemical, St.
Louis, MO] or a selective ARB (1077 M L-158,809, a generous gift
from Merck Sharp and Dohme). The concentrations of SPR and
L-158,809 used in this study were determined in preliminary exper-
iments. After the medium was changed (24 h), cells were harvested
for either RNA or protein, and the conditioned culture medium was
collected for the measurement of aldosterone levels.

Animal Study

All animal studies were approved by the committee for the care and
use of laboratory animals of Yonsei University College of Medicine.
Thirty-two male Sprague-Dawley rats weighing 250-280 g were
injected either with diluent [n = 16, control (C)] or with 65 mg/kg
streptozotocin (STZ) intraperitoneally [n = 16, diabetes mellitus
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Fig. 2. Aldosterone levels in podocytes exposed to NG, NG + M, NG + ARB,
NG + ANG II, HG, and HG + 1077 M L-158,809 (HG + ARB) (n = 6).
Aldosterone levels were significantly higher in NG + ANG II- and HG-
conditioned media compared with the NG medium, and this increase in
aldosterone concentrations in HG-conditioned medium was ameliorated by
ARB. On the other hand, mannitol had no effect on aldosterone production in
cultured podocytes. *P < 0.01 vs. NG, NG + M, and NG + ARB groups.
#P < 0.05 vs. HG group.

(DM)]. Diabetes was confirmed by tail vein blood glucose levels on
the 3rd day postinjection. After diabetes was confirmed, eight rats
from each group were treated with 20 mg-kg~'-day ! of SPR (Sigma
Chemical) by gavage (C + SPR, DM + SPR) for 3 mo. Rats were
housed in a temperature-controlled room and were given free access
to water and standard laboratory chow during the 3-mo study period.

Body weights were checked monthly, and kidney weights were
measured at the time of death. Systolic blood pressure was measured
by tail-cuff phlethysmography at 3 mo. Serum glucose and 24-h
urinary albumin were also measured at the time of death. Blood
glucose was measured by glucometer, and 24-h urinary albumin
excretion was determined by enzyme-linked immunosorbent assay
(Nephrat II; Exocell, Philadelphia, PA).

Glomerular Isolation

Glomeruli were isolated by sieving. Purity of the glomerular
preparation was >98% as determined by light microscopy.

Total RNA Extraction and Reverse Transcription

Total RNA was extracted from cultured podocytes and isolated
glomeruli as previously described (42), and first-strand cDNA was
made by using a Boehringer Mannheim cDNA synthesis kit (Boehr-
inger Mannheim, Mannheim, Germany). Total RNA (2 pg) extracted
from podocytes and glomeruli was reverse transcribed as previously
described (42).
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Real-Time PCR

The primers used for CYP11B2, MCR, 1183-hydroxysteroid dehydro-
genase 2 (11B-HSD2), and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were as follows: CYP11B2 sense 5'-CCATGCCCTGCAT-
TCTATGTT-3’, antisense 5'-GTGCTTGTCCAGCGAGTCAA-3';
MCR sense 5'-CTACCACAGTCTCCCTGAAG-3’', antisense 5'-
CGTTGACAATCTCCATGTAG-3'; 11B3-HSD2 sense 5'-GCTGCTC-
CAGGCCTATGTT-3', antisense 5'-AGGTCAGGCAATGCCATTCT-
3"; and GAPDH sense 5'-CGTGAGAGTGTCTAACGGG-3’, antisense
5'-CGAGTCAGGCATTTGGTCC-3'. With the use of the ABI PRISM
7700 Sequence Detection System (Applied Biosystems, Foster City, CA),
PCR was performed as previously described (44). After real-time PCR,
the temperature was increased from 60 to 95°C at a rate of 2°C/min to
construct a melting curve. A control without cDNA was run in parallel
with each assay. The cDNA content of each specimen was determined
using a comparative cycle threshold (Cr) method with 2 4T, The
results are given as relative expression normalized to the GAPDH
gene and expressed in arbitrary units. Signals from NG cells and C
glomeruli were assigned a relative value of 1.0. In pilot experiments,
PCR products revealed a single band on agarose gels.

Western Blot Analysis

Podocytes harvested from plates and sieved glomeruli were lysed
in SDS sample buffer [2% SDS, 10 mM Tris-HCI, pH 6.8, and 10%
(vol/vol) glycerol]. Aliquots of 50 g of protein were treated with
Laemmli sample buffer, heated at 100°C for 5 min, and electropho-
resed with 50 pg/lane in an 8-12% acrylamide denaturing SDS-
polyacrylamide gel. Proteins were then transferred to a Hybond-ECL
membrane (Amersham Life Science, Arlington Heights, IL) using a
Hoeffer semidry blotting apparatus (Hoeffer Instruments, San Fran-
cisco, CA), and the membrane was then incubated in blocking buffer
A (I1X PBS, 0.1% Tween 20, and 8% nonfat milk) for 1 h at room
temperature, followed by overnight incubation at 4°C with a 1:1,000
dilution of polyclonal antibodies to CYP11B2 (Chemicon Interna-
tional, Temecula, CA), MCR (Affinity BioReagents, Golden, CO),
Bax, Bcl-2 (Santa Cruz Biotechnology, Santa Cruz, CA), active
fragments of caspase-3 (Cell Signaling, Beverly, MA), or B-actin
(Santa Cruz Biotechnology). The membrane was then washed one
time for 15 min and two times for 5 min in 1X PBS with 0.1% Tween
20. Next, the membrane was incubated in buffer A containing a
1:1,000 dilution of horseradish peroxidase-linked goat anti-rabbit IgG
(Amersham Life Science). Washes were repeated, and the membrane
was developed with a chemiluminescent agent (ECL; Amersham Life
Science). Band densities were measured using TINA image software
(Raytest, Straubenhardt, Germany) and were used for analysis.

Fig. 3. A representative Western blot of Bax, Bcl-2, and active
fragments of caspase-3 protein expression in cultured podocytes
exposed to NG, NG + M, NG + 10~7 M spironolactone (NG +
SPR), NG + 107 M aldosterone (NG + ALDO), HG, and HG +
SPR (representative of 4 blots). Aldosterone significantly induced
Bax and active fragments of caspase-3 protein expression and
significantly reduced Bcl-2 protein expression in cultured podo-
cytes. Bax and active fragments of caspase-3 protein expression
were also significantly increased, whereas Bcl-2 protein expres-
sion was significantly decreased, in podocytes cultured under HG
medium compared with NG cells, and these changes were atten-
uated by SPR. *P < 0.01 vs. NG, NG + M, and NG + SPR
groups. P < 0.05 vs. HG group (#) and vs. NG, NG + M, and
NG + ARB groups (7).

HG+SPR
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Hoechst 33342 Staining and TUNEL Assay

In addition to the changes in the expression of apoptosis-related
molecules, apoptosis was also identified in cultured podocytes seeded
on cover slips by Hoechst 33342 (Molecular Probes, Eugene, OR)
staining and within glomeruli by terminal deoxynucleotidyl trans-
ferase-mediated dUTP nick end labeling (TUNEL) using a commer-
cially available kit (Chemicon International). Apoptosis was defined
as the presence of nuclear condensation on Hoechst staining and
TUNEL-positive cells within glomeruli. The percentage of podocytes
with nuclear condensation and TUNEL-positive glomerular cells in
formalin-fixed renal tissue were determined by examining at least 300
cells/condition and 30 glomeruli, respectively, at X400 magnification.

Measurement of Aldosterone Levels

The concentrations of aldosterone in the conditioned media,
plasma, and glomerular lysates were measured with a specific radio-
immunoasssay kit (SPAC RIA Kit; Dangiichi Radio-isotope, Tokyo,
Japan), as previously described (23), and aldosterone levels in the
conditioned media and glomerular lysates were normalized to the total
protein amount. The sensitivity of the radioimmunoassay was 6.9
fmol/tube, and the overall recovery in the radioimmunoassay was
90-95%.

Immunofluorescence

Slices of kidney for immunofluorescence staining were snap-frozen
in optimal cutting temperature solution, and 4-pm sections of tissues
were used. Slides were fixed in acetone for 10 min at 4°C, air-dried for
10 min at room temperature, and blocked with 10% donkey serum for
20 min at room temperature. For double-immunofluorescence stain-
ing, primary polyclonal antibodies to CYP11B2 or MCR (Santa Cruz
Biotechnology.) were diluted 1:100 with antibody diluent (DAKO,
Glostrup, Denmark) and were applied for 3 h at room temperature.
After washing, Cy3 (red)-conjugated anti-rabbit IgG antibody (Re-
search Diagnostics, Flanders, NJ) was added for 60 min. A 1:200
dilution of polyclonal anti-synaptopodin antibody (Santa Cruz Bio-
technology) was then applied, followed by Cy2 (green)-conjugated
anti-goat IgG antibody.

Determination of Podocyte Numbers

Immunohistochemical staining for WT-1 was also performed to
determine the number of podocytes as previously described (25).

Statistical Analysis

All values are expressed as the means * SE. Statistical analysis
was performed using the statistical package SPSS for Windows
version 11.0 (SPSS, Chicago, IL). Results were analyzed using the
Kruskal-Wallis nonparametric test for multiple comparisons. Signif-
icant differences determined by the Kruskal-Wallis test were further
confirmed by the Mann-Whitney U-test. P values <0.05 were con-
sidered statistically significant.

RESULTS
Cultured Podocyte Studies

CYPIIB2 and MCR mRNA and protein expression. HG
significantly increased CYP11B2 mRNA and protein expression
in cultured podocytes (P < 0.05). However, there was no differ-
ence in GAPDH mRNA and B-actin protein expression among
the groups (data not shown). The CYP11B2-to-GAPDH mRNA
ratio and CYP11B2 protein expression were 1.9- and 1.7-fold
higher, respectively, in HG relative to NG podocytes (P < 0.05),
and these increments were inhibited by 78 and 73%, respectively,
with ARB treatment (P < 0.05) (Fig. 1, A and B). The CYP11B2-
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to-GAPDH mRNA ratio and protein expression were also signif-
icantly increased by 118 and 97%, respectively, in ANG II-treated
podocytes compared with NG cells (P < 0.05) (Fig. 1, A and B).

The MCR mRNA expression was also significantly in-
creased in podocytes exposed to NG + ANG Il and HG vs. NG
cells (P < 0.05). The MCR-to-GAPDH mRNA ratio was 2.3
(P < 0.01)- and 2.0 (P < 0.05)-fold higher in ANG II- and
HG-, respectively, relative to NG-stimulated podocytes, and
ARB treatment significantly inhibited the increase in MCR
mRNA expression by 81% in HG cells (P < 0.05) (Fig. 1A).
The expression of MCR protein showed a similar pattern to its
mRNA expression (Fig. 1B).

Aldosterone levels. Aldosterone levels were significantly
higher in NG + ANG II (3.77 = 0.53 pg/ng)- and HG (3.19 =
0.42 pg/pg)-conditioned media compared with the NG me-
dium (1.29 = 0.15 pg/pg) (P < 0.01), and this increase in
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Fig. 4. A: representative Western blot of time-course changes in active
fragments of caspase-3 protein expression in cultured podocytes exposed to
NG and NG + ALDO (representative of 4 blots). Active fragment of caspase-3
protein expression was not significantly increased until 12 h after aldosterone
treatment. B: representative Western blot of active fragments of caspase-3
protein expression in cultured podocytes exposed to NG, NG + SPR, NG +
ALDO, and NG + 1077 M aldosterone + 10~7 M spironolactone (NG +
ALDO + SPR) (representative of 4 blots). Aldosterone-induced podocyte
apoptosis was significantly abrogated by SPR. P < 0.05 vs. NG group (*) and
vs. NG + ALDO group (#).
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aldosterone concentrations in the HG-conditioned medium was
attenuated by ARB (P < 0.05) (Fig. 2). Mannitol had no effect
on aldosterone production in cultured podocytes.

Bax, Bcl-2, and active fragments of caspase-3 protein ex-
pression. The effects of aldosterone on apoptosis-related mol-
ecules and SPR on HG-induced changes in these molecules in
cultured podocytes are shown in Fig. 3. Aldosterone signifi-
cantly induced Bax and active fragments of caspase-3 protein
expression and significantly reduced Bcl-2 protein expression
in cultured podocytes (P < 0.05). Bax and active fragments of
caspase-3 protein expression were also significantly increased,
whereas Bcl-2 protein expression was significantly decreased
in podocytes cultured under HG medium compared with NG
cells (P < 0.05), and these changes were inhibited by SPR
treatment (P < 0.05).

Time-course effect of aldosterone on caspase-3 protein ex-
pression and the effect of SPR on aldosterone-induced apop-
tosis. To determine whether aldosterone-induced podocyte
apop-
tosis is mediated through the genomic or nongenomic pathway,
we examined not only the time-course effect of aldosterone on
caspase-3 protein expression but also the effect of SPR on aldo-
sterone-induced apoptosis in cultured podocytes. As shown in Fig.
4A, active fragment of caspase-3 protein expression was not
significantly increased until 12 h after aldosterone treatment. In
addition, aldosterone-induced podocyte apoptosis was signifi-
cantly abrogated by SPR (Fig. 4B).

Hoechst 33342 staining. Apoptotic cells assessed by
Hoechst 33342 staining were significantly increased in HG- vs.
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NG-stimulated cells (P < 0.01), and this increment in apop-
totic cells was ameliorated by SPR (P < 0.05). Aldosterone
also significantly increased the number of apoptotic cells in
cultured podocytes (P < 0.01) (Fig. 5).

11B-HSD2 mRNA expression in culture podocytes. Because
nonselective MCR activation by glucocorticoids may also play
a role in podocyte apoptosis under HG conditions, we exam-
ined the mRNA expression of 113-HSD2, an enzyme that
protects against glucocorticoid-induced MCR activation by
converting biologically active 11-hydroxysteroid (cortisol) to
the inactive 11-ketosteroid form (cortisone). 113-HSD2 en-
zyme was present in cultured podocytes, but there was no
difference in the 113-HSD2-to-GAPDH mRNA ratio among
NG, NG + M, and HG-stimulated podocytes (Fig. 6).

Animal Studies

Animal data. All animals gained weight over the 3-mo
experimental period, but weight gain was highest in C rats
(P < 0.01). The ratio of kidney weight to body weight in DM
rats (1.51 = 0.10%) was significantly higher than those in C
(0.60 = 0.06%), C + SPR (SPR) (0.64 = 0.06) (P < 0.01),
and DM + SPR rats (0.97 = 0.08%) (P < 0.05). Mean blood
glucose levels of C, C + SPR, DM, and DM + SPR rats were
111.8 £ 54, 113.7 £ 6.7, 468.5 = 11.5, and 4754 = 109
mg/dl, respectively (P < 0.01). Compared with the C group
(0.37 = 0.07 mg/day), 24-h urinary albumin excretion was
significantly higher in the DM group (1.69 * 0.30 mg/day,

NG NG+M NG+SPR
HG+SPR
%

Fig. 5. Apoptosis assessed by Hoechst 33342 staining. There
was a significant increase in apoptotic cells (arrowheads) in
HG- vs. NG-stimulated cells, and this increase in apoptotic cells
was ameliorated with SPR treatment. ALDO also significantly
increased the no. of apoptotic cells in cultured podocytes. *P <
0.01 vs. NG, NG + M, and NG + SPR groups. #P < 0.05 vs.
HG group.

HG+SPR
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Fig. 6. A: representative RT-PCR for 11B-hydroxysteroid dehydrogenase 2
(11B-HSD2) with cDNA corresponding to 20 ng RNA extracted from cultured
podocytes. RT-PCR without cDNA was performed as a negative control.
B: 11B-HSD2-to-GAPDH mRNA ratio in cultured podocytes exposed to NG,
NG + M, and HG. There was no difference in the 113-HSD2-to-GAPDH
mRNA ratio among NG-, NG + M-, and HG-stimulated podocytes.

P < 0.05), and SPR treatment significantly reduced albumin-
uria in DM rats (0.65 = 0.13 mg/day, P < 0.05).

In the preliminary experiments using diabetic rats treated
with 2 U/day of insulin (Ultralente; Eli Lilly, Indianapolis, IN),
the increases in CYP11B2, MCR, and cleaved caspase-3 ex-
pression in 3-mo diabetic kidney were significantly amelio-
rated by insulin treatment, suggesting that these changes in
STZ-induced diabetic rats were not the result of STZ per se.

Glomerular CYP11B2 and MCR mRNA and protein expres-
sion. The changes in CYP11B2 and MCR mRNA and protein
expression in DM glomeruli were similar to those in HG-
stimulated podocytes. The CYP11B2-to-GAPDH mRNA and
MCR-to-GAPDH mRNA ratios were significantly higher in
DM glomeruli by 83% (P < 0.05) and 139% (P < 0.01),

LOCAL ALDOSTERONE SYSTEM AND APOPTOSIS IN PODOCYTES

respectively, compared with C glomeruli (Fig. 7A4). Western
blot analysis also revealed significant increases in CYP11B2
and MCR protein expression in DM glomeruli (Fig. 7B). On
the other hand, SPR had no effect on the increases in glomer-
ular CYP11B2 and MCR mRNA and protein expression in DM
rats (Fig. 7, A and B). Double immunofluorescence staining for
CYP11B2 or MCR with synaptopodin revealed that the in-
creases in CYP11B2 and MCR protein expression were mainly
attributed to their increases in podocytes (Fig. 7C).

Aldosterone levels. Plasma aldosterone levels were compa-
rable between C and DM rats (333.9 + 49.3 vs. 297.5 £ 30.2
pg/ml). In contrast, compared with C glomeruli (87.8 = 11.3
pg/mg), there was a significant increase in the concentrations
of aldosterone in DM glomeruli (139.5 = 19.7 pg/mg) (P <
0.05), which was not affected by SPR (133.3 = 20.5 pg/mg).

Bax, Bcl-2, and active fragments of caspase-3 protein ex-
pression. Bax and active fragments of caspase-3 protein ex-
pression were significantly increased, whereas Bcl-2 protein
expression was significantly decreased in DM compared with
C glomeruli (P < 0.05). The administration of SPR signifi-
cantly abrogated the increases in the ratio of Bax to Bcl-2 (P <
0.05) and active fragments of caspase-3 protein expression in
DM glomeruli (P < 0.05) (Fig. 8).

TUNEL assay. In addition to Bax, Bcl-2, and active frag-
ments of caspase-3 protein expression, apoptosis in glomeruli
was assessed by TUNEL assay. The number of glomerular
apoptotic cells was significantly increased in DM compared
with C and C + SPR rats (P < 0.01), and the increase in
apoptotic cells in DM glomeruli was attenuated by SPR treat-
ment (P < 0.05) (Fig. 9).

Podocyte numbers. Compared with C (171.2 = 5.3) and C +
SPR rats (173.5 = 5.5), the number of podocyte was signifi-
cantly decreased in DM rats (145.1 = 4.7), and the reduction
in podocyte numbers was inhibited in DM rats treated with
SPR (167.3 = 6.9) (P < 0.05).

DISCUSSION

Recent clinical and experimental studies have demonstrated
that aldosterone acts as a mediator in the development and
progression of diabetic nephropathy, but the direct effect of
aldosterone on podocyte injury has not been well explored. In
this study, we demonstrate for the first time that CYP11B2 is
present in podocytes and that its expression is increased under
diabetic conditions. In addition, the results of the present study
reveal that aldosterone levels are significantly higher in dia-
betic compared with control glomeruli despite comparable
plasma aldosterone concentrations between the two groups,
suggesting intrarenal activation of the aldosterone system un-
der diabetic conditions. Moreover, we show that MCR blocker
inhibits podocyte apoptosis both in vivo and in vitro, indicating
that a local aldosterone system may be involved in the process
of podocyte injury under diabetic conditions.

Aldosterone is classically produced by zona glomerulosa
cells in the adrenal cortex, and its production in the adrenal
gland is largely controlled by the expression levels of the
CYP11B2 gene, which is regulated by various factors, includ-
ing adrenocorticotrophic hormone, ANG II, and potassium
(38). However, accumulating evidence has suggested that al-
dosterone can be synthesized in nonadrenal cells, such as
vascular endothelial and smooth muscle cells, and cardiac
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myocytes (11, 28, 32). Glomerular mesangial and tubular
epithelial cells are also found to express the CYP11B2 gene
(15, 41). Moreover, Xue and Siragy (43) demonstrated that
CYP11B2 mRNA and protein expression was localized mainly
in the renal cortex and was upregulated by ANG II and low salt
intake and that, even though aldosterone was absent in adre-
nalectomized rats, it was present in renal interstitium and
tissue. In this study, we show for the first time that podocytes
also express the CYP11B2 gene. In addition, ANG II and HG
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Fig. 7. A: CYP11B2-to-GAPDH mRNA and MCR-to-GAPDH
mRNA ratios in control (C) and diabetes mellitus (DM) glomer-
uli. The CYP11B2-to-GAPDH mRNA and MCR-to-GAPDH
mRNA ratios were significantly higher in DM glomeruli by 83
and 139%, respectively, compared with C glomeruli. On the other
hand, SPR had no effect on the increases in glomerular CYP11B2
and MCR mRNA expression in DM rats. B: representative West-
ern blot of CYP11B2 and MCR in C and DM glomeruli. There
were 2.1- and 1.9-fold increases in CYP11B2 and MCR protein
expression, respectively, in DM relative to C glomeruli. On the
other hand, SPR had no effect on the increases in glomerular
CYP11B2 and MCR protein expression in DM rats. C: double-
immunofluorescence staining for CYP11B2 or MCR with synap-
topodin. Compared with C, immunofluorescence staining for
CYP11B2 and MCR was increased in DM glomeruli, and double-
immunofluorescence staining revealed that the increases in
CYP11B2 and MCR protein expression were mainly attributed to
their increases in podocytes. Magnification X400. *P < 0.05 vs.
C group. #P < 0.01 vs. C group.

increase CYP11B2 mRNA and protein expression in cultured
podocytes. The results of the present study suggest that a local
aldosterone system is present in nearly all types of cells in the
kidney and that ANG II is a potent inducer of the CYP11B2
gene in podocytes as in adrenal zona glomerulosa cells, vas-
cular smooth muscle cells, cardiac myocytes, and glomerular
mesangial cells (11, 12, 15, 38). Moreover, based on the
previous results that HG increases ANG II levels in cultured
podocytes (44) and the present findings that ARB treatment
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Fig. 8. A representative Western blot of glomerular Bax, Bcl-2,
and active fragments of caspase-3 in C, C + SPR, DM, and DM +
SPR groups. Bax and active fragments of caspase-3 protein ex-
pression were significantly increased, whereas Bcl-2 protein ex-
pression was significantly decreased in DM compared with C
glomeruli. Administration of SPR significantly ameliorated the
increases in the ratio of Bax/Bcl-2 and active fragments of
caspase-3 protein expression in DM glomeruli. *P < 0.01 vs. C
and C + SPR groups. P < 0.05 vs. DM group (#) and vs. C and
C + SPR groups (7).

Bax/Bcl-2
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Cc C+SPR DM DM+SPR

Bax — b e a— - - G e -

BCl-2 — e o e e ——

Cloaved casPase'S =: _

Cleaved caspase-3/B-actin

significantly abrogated the increment in CYP11B2 expression
in podocytes exposed to HG, we speculate that increased
CYPI11B2 expression in HG-stimulated podocytes is partly
attributed to the increase in ANG II levels by HG.

Several recent studies also showed that CYP11B2 expres-
sion was increased in diabetic glomeruli (31, 43), with which
the results of our study were in agreement, but it was not
elucidated which glomerular cells are responsible for this
increase. Using double-immunofluorescence staining, we dem-
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Fig. 9. Apoptosis assessed by terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling (TUNEL) assay in C, C + SPR, DM, and DM + SPR
rats. The no. of glomerular apoptotic cells (arrowheads) was significantly
increased in DM compared with C and C + SPR rats, and the increase in
apoptotic cells in DM glomeruli was attenuated by SPR treatment. *P < 0.01
vs. C and C + SPR groups. #P < 0.05 vs. DM group.

C+SPR DM DM+SPR Cc

C+SPR DM

DM+SPR

onstrate for the first time that the increase in glomerular
CYP11B2 protein expression was mainly attributed to its
increased expression in podocytes. Although the exact role of
these extra-adrenal aldosterone systems has not been com-
pletely elucidated, it is possible that locally produced aldoste-
rone may exert autocrine or paracrine effects. On the other
hand, the results of this study show that SPR treatment has no
effect on the increases in CYPI11B2 and MCR expression
under diabetic conditions, which is inconsistent with a recent
study by Taira et al. (31). They found that SPR prevented the
increase in renal CYP11B2 and MCR expression in unine-
phrectomized STZ-induced diabetic rats. Although the reasons
for these discrepant effects of SPR on CYP11B2 and MCR
expression remain unclear, differences between animal models,
duration of the animal experiments, administered dose of SPR,
accompanying hypertension, or tissue used for the experiments
may contribute to these disparities.

In addition to the effect of circulating aldosterone on regu-
lating fluid and electrolyte balance, previous studies have
revealed that aldosterone directly induces cellular hypertrophy
and apoptosis and regulates ECM metabolism in cardiac myo-
cytes (2, 5, 13, 17). Because cellular hypertrophy, ECM accu-
mulation, and apoptosis are characteristic findings of diabetic
nephropathy (1, 40), aldosterone is considered a potential
mediator in the pathogenesis of diabetic nephropathy. In sup-
port of this theory, recent experimental studies showed that
MCR blocker prevented the development and progression of
diabetic nephropathy by ameliorating glomerular and tubulo-
interstitial ECM accumulation and by inhibiting macrophage
infiltration (6, 7, 9, 31, 45). In cultured mesangial and proximal
tubular cells, aldosterone induced a significant increase in
connective tissue growth factor expression associated with
increased collagen synthesis, which was abolished by pretreat-
ment with SPR (8). Lai et al. (14) also demonstrated that
aldosterone promoted fibronectin production in cultured mes-
angial cells, and blocking the TGF-1 signaling pathway by
knocking down Smad?2 significantly inhibited this increase in
fibronectin synthesis, suggesting that aldosterone-induced fi-
bronectin production was dependent on the TGF-1/Smad2
pathway.
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Aldosterone is also known to induce apoptosis in cardiac
myocytes and skeletal muscle cells (2, 17), but the effect of
aldosterone on podocyte apoptosis has never been explored.
One recent study by Nagase et al. (21) revealed that podocyte
injury in Dahl salt-hypertensive rats was prevented by a MCR
blocker, suggesting the involvement of aldosterone in the
process of podocyte damage. Even though the changes in
TGF-B1 expression were analyzed in that study, the number of
apoptotic cells and the changes in apoptosis-related molecules
were not determined. Another recent study demonstrated that
MCR is consistently expressed in podocytes and that aldoste-
rone could directly modulate podocyte function via MCR,
possibly through the induction of oxidative stress and aldoste-
rone effector kinase Sgkl (27). In this study, we demonstrate
for the first time that aldosterone induces apoptosis in cultured
podocytes. Moreover, HG-induced CYP11B2 expression leads
to increases in aldosterone levels, and MCR blocker inhibits
apoptosis in podocytes exposed to HG medium and in diabetic
glomeruli, suggesting that the activation of a local aldosterone
system (i.e., increases in both CYP11B2 and MCR expression)
contributes to podocyte apoptosis under diabetic conditions.

Besides the traditional (genomic) effects of aldosterone by
binding to the cytoplasmic MCR and interacting with target
genes, a number of rapid (nongenomic) effects have been
described for aldosterone, which result from an interaction
with a membrane receptor distinct from the classical steroid
receptor and are insensitive to translation or transcription
inhibitors (22). Rapid action of aldosterone, especially on
electrolyte transport, and subsequent changes in intracellular
electrolytes have been demonstrated in human mononuclear
leukocytes (35) and vascular muscle cells (3, 36, 37), and
previous studies have suggested that protein kinase C, Ca?™,
and inositol 1,4,5-triphosphate are involved in its nongenomic
action (16, 18, 36, 37). However, direct evidence of the
nongenomic action of aldosterone has been drawn from a study
by Haseroth et al. (10). They showed that a rapid increase in
intracellular Ca®>* induced by aldosterone was still present in
cultured skin cells derived from MCR knockout mice. In the
present study, we found that podocyte apoptosis was not
apparent until 12 h after aldosterone treatment. Moreover,
aldosterone-induced podocyte apoptosis was significantly ab-
rogated by MCR blocker. Based on these findings, it seems that
podocyte apoptosis induced by aldosterone is mainly mediated
through the classical aldosterone-MCR pathway.

In summary, CYP11B2 and MCR expression are increased
in HG-stimulated podocytes and in diabetic glomeruli along
with increased podocyte apoptosis, and MCR blocker inhibited
the increase in apoptosis in podocytes under diabetic condi-
tions. These findings suggest that a local aldosterone system is
activated and is involved in podocyte apoptosis under diabetic
conditions.
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