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Isolated cleft lip with or without cleft palate (CL/P) is among the most common human birth defects, with
a prevalence of 1 in 700 live births. The paired box (PAX) genes have been suggested as candidate genes
for CL/P based largely on mouse models; however, few human studies have focused on this gene family.
This study tests for association between markers in four PAX genes and CL/P using a case-parent trio design
considering parent-of-origin effects. Trios from four populations (76 from Maryland, 146 from Taiwan, 35
from Singapore, and 40 from Korea) were genotyped for 34 single nucleotide polymorphisms (SNPs) in the
PAX3, PAX6, PAX7, and PAX9 genes. We performed the transmission disequilibrium test (TDT) on individual
SNPs. Parent-of-origin effects were assessed using the transmission asymmetry test (TAT) and the parent-
of-origin likelihood ratio test (PO-LRT). TDT analysis showed one SNP (rs766325) in PAX7 yielding evidence
of linkage and association when parent-of-origin was not considered, with an OR(transmission)¼1.62
(P¼0.003), and five SNPs in PAX6 (including two pairs in near perfect linkage disequilibrium). TAT analysis
of all trios revealed two SNPs in PAX7 and four SNPs in PAX3 showing significant excess maternal
transmission. For these six SNPs, the maternal OR(transmission) ranged between 1.74 and 2.40, and
PO-LRT was also significant (P-values¼0.035–0.012). When this analysis was limited to trios with male
cases, SNPs in PAX7 showed higher maternal OR(transmission) and greater significance. PAX genes may
influence the risk of CL/P through maternal effects, possibly imprinting, which seems to be stronger
among male cases.
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Introduction
Oral clefts are one of the most common birth defects in

humans and represent a significant public health burden in

terms of both medical and economic burden for affected

individuals and their families. Non-syndromic cleft lip

with or without cleft palate (CL/P) is complex in its
Received 20 February 2008; revised 13 November 2008; accepted 20

November 2008; published online 14 January 2009

*Correspondence: Terri H Beaty, Department of Epidemiology, School of

Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore,

MD 21205, USA. Tel: þ 1 410 955 6960 ; Fax: þ1 410 955 0863;

E-mail: tbeaty@jhsph.edu

European Journal of Human Genetics (2009) 17, 831 – 839
& 2009 Macmillan Publishers Limited All rights reserved 1018-4813/09 $32.00

www.nature.com/ejhg

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Yonsei University Medical Library Open Access Repository

https://core.ac.uk/display/225363815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1038/ejhg.2008.250
mailto:tbeaty@jhsph.edu
http://www.nature.com/ejhg


etiology, and both genes and environmental risk factors

influence the risk.1 Although several candidate genes have

been studied extensively in different populations (TGFA,

IRF6, BCL, RARA, etc), relatively few genes have been

shown to contain truly causal mutations (MSX1, PVRL1,

etc), and these are individually rare and often show

incomplete penetrance.2,3 Recently, several studies have

reported that genes responsible for Mendelian malforma-

tion syndromes that include CL/P (eg IRF6, which accounts

for the majority of Van der Woude syndrome) may also be

associated with non-syndromic clefts.2,4

Paired box (PAX) genes, termed as the PAX gene family,

encode for specific DNA-binding transcription factors,

which typically contain a PAX domain (an octapeptide)

and a paired-type homeodomain.5 The mammalian PAX

gene family includes nine genes encoding DNA-binding

transcriptional regulatory proteins.6 These nine individual

PAX genes are assigned to four subgroups based on

conservation of their primary structure: (1) PAX1/PAX9,

(2) PAX2/PAX5/PAX8, (3) PAX3/PAX7, and (4) PAX4/PAX6.6

PAX genes play critical roles during fetal development

and in the growth of cancer cells. Mutations in the PAX3

(MIM 606597) gene have been associated with Waarden-

burg syndrome, which can include CL/P.7 PAX3 has

also been associated with craniofacial-deafness-hand

syndrome.8 PAX7 (MIM 167410) plays a crucial function

during neural crest development.9 PAX3 and PAX7 have

also been associated with alveolar rhabdomyosarcoma.10

Mutations in PAX6 (MIM 607108) have been associated

with aniridia and development of the central nervous

system.11,12 Several studies have reported that PAX genes

are associated with CL/P in animals.9,13 However, to date

few studies have focused on PAX genes as risk factors for

CL/P in humans.14

It is important to consider parent-of-origin effects when

studying birth defects because maternal genotype controls

the in utero environment of the developing fetus, and

separating maternal genotypic effects from imprinting

effects remains an important scientific question.15,16

Maternal parent-of-origin effects have been suggested for

several genes associated with non-syndromic CL/P.17,18

Males are more often affected with CL/P than females19,20

however, the underlying cause of this aberrant sex ratio

remains unclear. In this paper, we tested for association

between single nucleotide polymorphisms (SNPs) in PAX3,

PAX6, PAX7, and PAX9 genes and risk of CL/P in 297

case–parent trios, specifically considering parent-of-origin

effects in the total sample and stratified by the proband’s

gender.

Materials and methods
Sample description

As part of an international study of oral clefts, we collected

data on case–parent trios recruited through treatment

centers in Maryland (MD): Johns Hopkins and University

of Maryland; Taiwan (TW): Chang Gung Memorial

Hospital; Singapore (SP): KK Women’s and Children’s

Hospital, and Korea (KR): Yonsei Medical Center. Research

protocols were reviewed and approved by institutional

review boards at each institution. Table 1 lists the gender of

all CL/P probands. All parents of probands in the

Singaporean, Taiwan, and Korean trios were unaffected,

but 4 parents among the 76 MD trios also had an oral cleft.

The racial background of case families from MD was 80%

European American, 16% African American, and 4%

‘other’. All probands underwent a clinical genetics evalua-

tion (including checking for other congenital anomalies or

major developmental delays), and were classified as having

an isolated, non-syndromic CL/P. Among the total collec-

tion of 297 cases (5% of whom did not specify laterality),

17% of CL cases and 23% of CLP cases were bilateral.

SNP selection, DNA, and genotyping

Single nucleotide polymorphic markers were obtained

from literature review and the NCBI dbSNP database

(http://www.ncbi.nlm.nih.gov/SNP/), using a NorthStar

Searchlet from Genetic Software Innovations (Cicero, NY,

USA), which identified SNPs within each gene based on

definitions used in LocusLink and EntrezGene. SNPs were

selected with primary consideration given to the spacing

between known SNPs and the amount of sequence data

available at that time in public databases. SNPs with

multiple submitters and higher heterozygosity levels were

given priority. SNPs with high ‘design scores’ (a predictor of

useable genotypes provided by Illumina, Inc., San Diego,

CA, USA), heterozygosity above 0.1 in both Caucasian and

Asian populations, and HapMap validation were included.

SNPs were selected in and around four PAX genes with the

goal of identifying one SNP per 5 kb: 7 SNPs were

genotyped for PAX7 on chromosome 1p36.2–p36.12,

13 for PAX3 on chromosome 2q35–q37, 7 for PAX6 on

chromosome 11p13, and 7 for PAX9 on chromosome

14q12–q13. A total of 45 SNPs were identified, and 35 were

polymorphic in all populations. The call rate we considered

acceptable was Z80%. One SNP had unacceptably high

Table 1 Gender among 297 non-syndromic CL/P cases
from four populations

CL/P cases

Population Total Male Female

Taiwan 146 95 51
Singapore 35 24 11
Korea 40 22 18
Maryland 76 44 32
Total 297 185 112
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rates of missing data (71%), leaving only 34 SNPs with

reasonable heterozygosity for analysis (Table 2).

Genomic DNA samples were prepared from peripheral

blood by the protein precipitation method described

earlier.21 DNA concentration was determined using the

PicoGreens dsDNA Quantitation Kit (Molecular Probes,

Inc., Eugene, OR, USA) and all DNA samples were stored at

�201C. A 4-mg aliquot of each genomic DNA sample

(concentration of 100 ng/ml) was dispensed into bar-coded

96-well plates and genotyped for SNP markers using the

Illumina Golden-Gate chemistry with Sentrixs Array

Matrices22 at the SNP Center of the Genetic Resources

Core Facility, part of the McKusick–Nathans Institute of

Genetic Medicine at the Johns Hopkins School of Medi-

cine. Two duplicates and four CEPH controls were included

on each plate to evaluate genotyping consistency within

and between plates. Genotypes were generated on a

BeadLab 1000 system.23 All SNPs were inspected, and

poorly performing SNPs were dropped. No Mendelian

inconsistencies were found for these 34 SNPs when

checked with the SIB-PAIR program.24

Statistical analysis

Within each population, minor allele frequencies (MAFs)

were computed among parents. Pairwise linkage disequili-

brium (LD) was computed as r2 for all SNPs using the

Haploview program,25 and blocks were identified in Asian

and MD population separately (Figure 1). Clayton’s exten-

sion of the transmission disequilibrium test (TDT) as

incorporated into STATA 8.226,27 was used on individual

SNPs to test for evidence of linkage and LD in the total

sample of 297 CL/P trios. From this TDT analysis, we

calculated the odds ratio of transmission, OR (transmis-

sion), and defined a ‘high-risk’ allele as that allele

over-transmitted to cases (regardless of its statistical

significance).

Table 2 SNP minor allele frequencies among parents of 297 CL/P cases from four populations

Gene No. SNP name Physical locationa Minor allele High-risk alleleb Minor allele frequency

Taiwan Singapore Korea Maryland

PAX7 1 rs766325 18701764 1 1 0.172 0.172 0.138 0.574
2 rs880810 18739860 1 2 0.139 0.095 0.107 0.077
3 rs618941 18751458 2 2 0.306 0.319 0.307 0.056
4 rs553934 18758087 2 2 0.257 0.276 0.250 0.056
5 rs545793 18761828 2 2 0.372 0.362 0.336 0.204
6 rs624761 18790183 2 2 0.195 0.207 0.118 0.169
7 rs609959 18791125 2 2 0.089 0.069 0.053 0.095

PAX3 1 rs3731858 222891375 1 1 0.254 0.271 0.289 0.194
2 rs7565552 222900773 1 2 0.089 0.143 0.132 0.391
3 rs1370924 222904097 1 1 0.256 0.284 0.263 0.218
4 rs1013262 222916284 2 1 0.089 0.144 0.132 0.401
5 rs1965791 222922214 1 2 0.346 0.415 0.380 0.709
6 rs6717432 222927785 1 1 0.167 0.237 0.178 0.126
7 rs1367411 222931347 2 1 0.162 0.161 0.243 0.489
8 rs1367414 222934296 1 2 0.382 0.398 0.368 0.517
9 rs7609007 222940422 2 2 0.348 0.297 0.395 0.094

10 rs1430662 222946520 1 1 0.349 0.297 0.392 0.094
11 rs4674639 222949598 2 1 0.356 0.398 0.270 0.213
12 rs930140 222973797 1 2 0.404 0.458 0.327 0.510
13 rs7600206 222982092 2 1 0.323 0.368 0.257 0.194

PAX6 1 rs3026393 31768791 2 1 0.491 0.422 0.428 0.528
2 rs644242 31769377 1 2 0.194 0.181 0.132 0.052
3 rs667773 31771938 1 2 0.194 0.181 0.132 0.052
4 rs2239789 31772472 2 1 0.491 0.422 0.427 0.524
5 rs592859 31775911 1 1 0.259 0.333 0.382 0.164
6 rs3026354 31787233 2 2 0.252 0.333 0.380 0.164
7 rs2071164 31790118 2 2 0.253 0.333 0.367 0.165

PAX9 1 rs2073241 36198687 1 1 0.491 0.466 0.428 0.353
2 rs2073247 36200496 1 1 0.489 0.466 0.412 0.348
3 rs2295218 36204242 2 2 0.491 0.466 0.428 0.351
4 rs12892031 36207131 1 1 0.218 0.276 0.322 0.391
5 rs1955734 36208379 1 1 0.217 0.293 0.322 0.436
6 rs8004187 36210255 2 2 0.217 0.276 0.322 0.389
7 rs7144276 36214358 2 2 0.221 0.138 0.280 0.067

aBased on NCBI Human Genome build 35.1.
bHigh-risk allele was defined as that allele showing over-transmission to cases in TDT (ie OR(transmission)41.0 ignoring parent-of-origin) regardless of
statistical significance.
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Parent-of-origin analyses were conducted in the total

sample in several ways. As an initial screening, parent-of-

origin effects were examined using the transmission

asymmetry test (TAT), suggested by Weinberg et al,28 which

is similar to the TDT but excludes mating between two

heterozygotes (where transmission can be ambiguous). TAT

was stratified into separate paternal and maternal allelic

tests. Next, we used the likelihood-based approach pro-

posed by Weinberg29 to confirm these parent-of-origin

effects. This log-linear model considers the three mating

types where the mother and father carry different numbers

of variant alleles, stratified by the number of alleles in the

child. This log-linear model is used to compute a parent-of-

origin likelihood ratio test (PO-LRT), which tests maternal

genotypic effects on the phenotype of the fetus (which

could otherwise confound assessment of parent-of-origin

effects) along with a separate term for imprinting.29 Here

imprinting reflects a differential transmission of alleles to

the affected child from mothers versus fathers. PO-LRT was

executed using the LEM software.30 We also tested for

parent-of-origin effect in the sample stratified by proband’s

gender, with separate analyses for trios with male and

female cases.

The FAMHAP package was used to estimate haplotype

frequencies, while testing for excess transmission of multi-

SNP haplotypes.31 In this haplotype analysis, 2–5 SNP

haplotypes using sliding window were analyzed using

FAMHAP. For this FAMHAP analysis, MD and Asian trios

were analyzed separately. The haplotype analysis was

carried out ignoring parent-of-origin first. Then the

haplotype analysis was conducted for maternal and

paternal transmissions separately. FAMHAP calculates

maximum likelihood estimates of haplotype frequencies

from nuclear families through the expectation–maximiza-

tion algorithm and is robust in handling missing SNPs.32

This tool provides a haplotype-based test, where the test

statistic is based on simulations that randomly permute

transmitted and non-transmitted genotypes/haplotypes in

each replicate.33 In this analysis, we used max-TDT, which

analyzes each haplotype separately and relies on the

maximum TDT as the test statistic.33,34 The program yields

P-values corrected for multiple haplotypes.

Results
Among these 34 SNPs, there was considerable variation in

allele frequencies among parents from MD and the three

Asian populations (Table 2). From the allele frequencies

shown in Table 2, it is clear that some markers showed

sharp distinctions between MD and Asian samples, whereas

others did not. Taiwan, Korean, and Singaporean parents

had very similar haplotype frequencies; therefore all Asian

trios were combined for haplotype analysis. Patterns of LD

Figure 1 Linkage disequilibrium as measured by r 2 in PAX7, PAX3, PAX6, and PAX9 among parents of CL/P children from Asian and Maryland
populations. White: r 2¼0. Shades of gray: 0or 2o1. Black: r 2¼1.
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across each gene were similar in all populations, with some

adjacent SNPs in each gene in perfect LD, rendering them

redundant (see Figures 1 and Table 2).

When individual markers were screened with the TDT

in the total sample, one SNP in PAX7 and five SNPs in

PAX6 were nominally significant when parent-of-origin

was ignored (Table 3). The OR(transmission) was 1.62

(P¼0.003) for rs766325 in PAX7. The five SNPs in

PAX6 showing significant evidence of linkage and

LD included two separate pairs of SNPs in perfect LD.

The most significant SNP (rs3026354) gave an

OR(transmission)¼1.47 (P¼0.008) ignoring parent-of-ori-

gin (Table 3). When analyzed separately in each of the four

populations, the association was less strong because of the

smaller sample sizes, but the patterns of OR(transmission)

were similar (data not shown).

Parent-of-origin effects were first investigated by strati-

fying informative transmissions and non-transmissions by

parental source for all SNPs in the total dataset (Table 4).

TAT (ie where heterozygous � heterozygous matings were

dropped) revealed three SNPs showing excess maternal

transmission significant at the Po0.01 level (rs618941,

rs553934 in PAX7, and rs1367414 in PAX3; see Figure 2 and

Table 4), and three others (rs4674639, rs930140, and

rs7600206) in PAX3 showing slightly less significant

transmission from mothers. For these six SNPs, estimated

maternal OR(transmission) was statistically significant

(ranging from 1.74 to 2.40) in TAT analysis. The PO-LRTs

were also significant for these six SNPs (P-values ranging

from 0.035 to 0.012) and gave estimated risk ratios for

imprinting ranging between 2.08 and 2.78 for these six

SNPs, suggesting excess maternal transmission of this

region in PAX7 and PAX3 (Table 4). Parent-of-origin effects

for markers in PAX6 and PAX9 were not significant (data

not shown).

Separate analyses were conducted for trios with male

and female cases. For two SNPs in PAX7, the estimated

OR(transmission) from mothers to male case was

statistically significant (OR¼ 4.50, P¼0.0003 for

rs553934; and OR¼4.20, P¼0.0017 for rs618941).

Both of these SNPs gave significant PO-LRTs (P¼0.028

for rs618941 and P¼0.027 for rs553934). Among trios

with a female case, however, OR(transmission) and

PO-LRT were non-significant for these two SNPs (data not

shown).

In the haplotype analysis using sliding window (ignoring

parent-of-origin), haplotypes of two SNPs (rs766325 and

rs880810) in PAX7 showed evidence of excess transmission

of the 1–2 haplotype to the case among Asian trios

(P¼0.036). MD trios showed similar transmission patterns,

but were not statistically significant (data not shown). In

PAX6, haplotypes of three SNPs (rs592859, rs3026354, and

rs2071164) showed strong evidence of excess transmission

of the 1–2–2 haplotype to the case among Asian trios

(P¼0.011). The MD trios again showed similar transmis-

sion patterns, but were not statistically significant (data

not shown). Haplotypes in PAX3 and PAX9 genes were not

significant at P-value¼0.05 (data not shown).

Next, we conducted the haplotype analyses stratified by

parent-of-origin using 2–5 sliding windows (Table 5). In

PAX7, haplotypes of rs880810 and rs618941 were most

significant. The 2–2 haplotype showed evidence of excess

maternal transmission to the CL/P child among Asian trios

(P¼0.049) and among MD trios (P¼0.041), whereas

no haplotypes showed deviation from expected when

inherited from fathers. Analysis of two SNPs in PAX3

(rs4674639 and rs930140) showed evidence of excess

maternal transmission of the 1–2 haplotype, with stronger

evidence coming from Asian trios (here again MD

trios showed similar but non-significant patterns of

over-transmission).

Table 3 Number of transmitted or non-transmitted
minor alleles in 297 CL/P cases (all populations combined)
from TDT and estimated odds ratios of transmission,
OR(transmission) ignoring parent-of-origin

Gene No. SNP name TDT

T NT w2 P-value ORa

PAX7 1 rs766325 97 60 8.72 0.003 1.62
2 rs880810 55 46 0.80 0.370 1.20
3 rs618941 101 79 2.69 0.101 1.28
4 rs553934 99 75 3.31 0.069 1.32
5 rs545793 127 107 1.71 0.191 1.19
6 rs624761 70 68 0.29 0.865 1.03
7 rs609959 44 34 1.28 0.258 1.29

PAX3 1 rs3731858 99 87 0.77 0.379 1.14
2 rs7565552 63 51 1.26 0.261 1.24
3 rs1370924 86 82 0.09 0.757 1.05
4 rs1013262 67 60 0.39 0.534 1.12
5 rs1965791 115 111 0.07 0.790 1.04
6 rs6717432 84 70 1.27 0.259 1.20
7 rs1367411 91 75 1.54 0.214 1.21
8 rs1367414 135 118 1.14 0.285 1.14
9 rs7609007 101 101 0.00 1.000 1.00

10 rs1430662 101 96 1.27 0.722 1.05
11 rs4674639 121 101 1.80 0.179 1.20
12 rs930140 126 104 2.10 0.147 1.21
13 rs7600206 88 71 1.82 0.177 1.24

PAX6 1 rs3026393 118 110 0.28 0.596 1.07
2 rs644242 71 47 4.88 0.027 1.51
3 rs667773 71 47 4.88 0.027 1.51
4 rs2239789 116 110 0.16 0.690 1.05
5 rs592859 115 80 6.28 0.012 1.44
6 rs3026354 115 78 7.09 0.008 1.47
7 rs2071164 114 78 6.75 0.009 1.46

PAX9 1 rs2073241 120 115 0.11 0.744 1.04
2 rs2073247 117 114 0.04 0.843 1.03
3 rs2295218 118 116 0.02 0.895 1.02
4 rs12892031 100 80 2.22 0.136 1.25
5 rs1955734 105 85 2.11 0.146 1.24
6 rs8004187 100 84 1.39 0.238 1.19
7 rs7144276 74 70 1.11 0.738 1.06

T, transmitted; NT, not transmitted; OR, odds ratio.
Shading in the table indicates inferred LD blocks.
aO (transmission): odds ratio of transmission for the high-risk allele.
Bold values represent results significant at the Po0.05 level.
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Discussion
Our study of case–parent trios from different populations

(comprising a total of 297 CL/P trios) showed evidence of

linkage in the presence of LD for multiple SNPs in the PAX7

and PAX3 genes only when parent-of-origin effects were

considered. In this study, ignoring parent-of-origin made

the PAX7 and PAX3 genes look relatively uninteresting.

Only a single SNP in PAX7 showed any evidence of linkage

and LD. However, considering parent-of-origin revealed

two SNPs in PAX7 and three SNPs in PAX3 yielding strong

evidence of linkage and LD when transmitted from

mothers but not from fathers. This evidence was more

dramatic among male cases. Other studies also report that

ignoring parent-of-origin could lead to overlooking im-

portant genes. In a case–parent trio study for bipolar I

disorder, TDT analysis revealed no statistically significant

association with SNPs on chromosome 18p11. However,

when parent-of-origin was considered, evidence of associa-

tion was seen involving two potentially causal loci.35

In screening for parent-of-origin effects, we found

suggestive evidence of excess maternal transmission

for several SNPs in PAX3 and PAX7, which are

closely related and are important in mammalian embryo-

genesis.36 Relaix et al37 identified a new cell population

expressing transcription factors PAX3 and PAX7, but

no skeletal muscle-specific markers. These cells are

maintained as a proliferating cell line throughout

development in embryonic and fetal muscles of the trunk

and limbs.

Excess maternal transmission could reflect genomic

imprinting or direct maternal genotype effects on the

developing fetus. Maternal genotypic effects for non-

syndromic CL/P have also been reported for several other

candidate genes (MTHFR, CBS, and TGFB3), but these are

yet to be confirmed.17,18,38

In this study, log-linear models discriminating between

maternal genotype and child genotype effects revealed a

possible maternal imprinting effect for multiple SNPs in

PAX7 and PAX3. Estimates of maternal genotype effects

were generally non-significant for the 19 SNPs in PAX7 and

PAX3, except for a single SNP (rs1367414). Genomic

imprinting is defined as the differential expression of

alleles depending on parent-of-origin.39 A common feature

of imprinted genes is DNA sequence carrying a gametic

methylation imprint, known as gametic DMR (Differen-

tially DNA-Methylated Region).40 Parental allele-specific

DNA methylation has been found at most imprinted

clusters examined thus far. For example, the IGF2 cluster

has a gametic DMR located 2 kb upstream from the H19 nc

RNA promoter, which is methylated only in the paternal

Table 4 Number of transmitted or non-transmitted associated alleles to 297 CL/P cases (all populations combined)a from
TAT and estimated odds ratios, and parent-of-origin likelihood ratio test to test for inequality of maternal versus paternal
transmission

Gene No. SNP name Paternal Maternal PO-LRTc

TAT TAT

T NT P-value ORb T NT P-value ORb ORd P-value

PAX7 1 rs766325 28 16 0.070 1.75 33 20 0.074 1.65 0.90 0.814
2 rs880810 15 17 0.724 0.88 22 19 0.639 1.16 1.28 0.602
3 rs618941 27 29 0.789 0.93 33 15 0.009 2.20 2.31 0.033
4 rs553934 31 30 0.898 1.03 36 15 0.003 2.40 2.38 0.034
5 rs545793 32 26 0.431 1.23 39 29 0.225 1.34 1.10 0.791
6 rs624761 32 23 0.225 1.39 22 29 0.327 0.76 0.56 0.134
7 rs609959 19 10 0.095 1.90 19 18 0.869 1.06 0.56 0.250

PAX3 1 rs3731858 32 21 0.131 1.52 34 27 0.370 1.26 0.82 0.613
2 rs7565552 20 14 0.303 1.43 18 24 0.355 0.75 0.53 0.179
3 rs1370924 27 20 0.307 1.35 29 24 0.492 1.21 0.89 0.782
4 rs1013262 21 18 0.631 1.17 21 27 0.386 0.78 0.67 0.349
5 rs1965791 31 30 0.898 1.03 33 38 0.553 0.87 0.85 0.651
6 rs6717432 35 25 0.197 1.40 34 26 0.302 1.31 0.93 0.843
7 rs1367411 24 19 0.446 1.26 33 30 0.705 1.10 0.88 0.739
8 rs1367414 35 37 0.814 0.95 42 21 0.008 2.00 2.08 0.035
9 rs7609007 31 33 0.803 0.94 30 24 0.414 1.25 1.33 0.441

10 rs1430662 31 30 0.898 1.03 30 24 0.414 1.25 1.21 0.613
11 rs4674639 25 33 0.294 0.76 41 23 0.024 1.78 2.22 0.032
12 rs930140 24 35 0.152 0.69 40 23 0.032 1.74 2.54 0.012
13 rs7600206 17 26 0.170 0.65 33 17 0.024 1.94 2.78 0.018

T, transmitted; NT, not transmitted; OR, odds ratio.
aTAT analysis was used on trios with matings between two heterozygous parents deleted.
bOR(transmission): odds ratio of transmission of the high-risk allele.
cParent-of-origin likelihood ratio tests (PO-LRT) include separate terms for imprinting.
dOR: odds ratio for imprinting effect (ie differential transmission from mothers and from fathers).
Shading in the table indicates inferred LD blocks.
Bold values represent results significant at the Po0.05 level.
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gamete and is maintained thereafter in all somatic

tissues.41 Kurmasheva et al42 suggested PAX3 gene

methylation may be correlated with gene inactivation.

In a variety of animal species, maternal transcripts and

proteins control early embryonic development in the

developing oocyte.43 In the leech Helobdella, Woodruff

Figure 2 Empirical P-values for individual SNPs from PAX7, PAX3, PAX6, and PAX9 genes in 297 CL/P case–parent trios from four populations
(Maryland, Singapore, Taiwan, and Korea) combined. (a) Only maternal transmission was considered; (b) only paternal transmission was considered.

Table 5 Testing for excess transmission of haplotypes of SNPs rs880810 and rs618941 in PAX7 and SNPs rs4674639 and
rs930140 in PAX3 in 297 CL/P case–parent trios using the program FAMHAP with maternal and paternal transmission
considered separately

Gene Population Haplotype Frequency Maternal Paternal

T NT
Maximum TDT

(P-value) T NT
Maximum TDT

(P-value)

PAX7 Asian_combined 2 1 0.591 44.9 53.0 4.803 (0.049) 42.9 44.5 0.029 (0.996)
2 2 0.280 48.2 29.0 40.0 38.6
1 1 0.093 14.6 22.6 14.7 15.0
1 2 0.036 5.4 8.5 5.5 5.0

Maryland 2 1 0.863 2.0 10.0 5.333 (0.041) 8.0 6.0 0.667 (0.782)
2 2 0.069 4.0 0.0 4.0 4.0
1 1 0.069 6.0 2.0 2.0 4.0

PAX3 Asian_combined 1 2 0.584 58.4 36.0 5.331 (0.046) 41.5 49.9 1.393 (0.557)
2 1 0.305 36.0 53.4 41.9 41.5
2 2 0.030 4.6 5.0 9.6 5.1
1 1 0.081 14.1 18.5 16.1 12.6

Maryland 1 2 0.468 15.3 9.0 2.954 (0.138) 9.4 10.0 0.760 (0.780)
2 1 0.182 3.9 10.4 9.8 7.6
2 2 0.027 0.7 2.0 0.6 2.0
1 1 0.323 10.1 8.6 11.2 11.4

Bold values represent results significant at the Po0.05 level.
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et al44 found that Hau-Pax3/7A is present as a maternal

transcript in both ectodermal and mesodermal progenitor

cells. They suggested Hau-Pax3/7A plays an important role

in mesoderm development. Helobdella embryos receive a

large contribution of maternal Hau-Pax3/7A RNA, but its

function remains unknown.44

Many congenital anomalies occur more often in one

gender. Males are more often affected with CL/P than

females.19,20 Rittler et al20 reported that infants with CL/P

were more frequently female when the father was older,

and among CL cases, this shift in sex ratio was highly

significant. In our results from markers in PAX7 and PAX3

genes, boys showed stronger evidence of possible imprinting

than female cases.

Even though this candidate gene study involved a modest

number of SNPs in each gene, addressing the issue of

multiple comparisons is necessary before an overall state-

ment about the significance of our findings can be made.

Here we relied on a hypothesis-driven approach for single

SNP analysis and haplotype-based test statistics. SNPs in

strong LD typically have highly correlated P-values, adjusting

significance levels through Bonferroni correction is overly

conservative. Therefore, following the strategy in Sull et al,45

we adjusted empirical P-values for the number of LD blocks

rather than the number of SNPs. In this study, we have 10 LD

blocks in these four genes (three forPAX7, three for PAX3,

two for PAX6, and two for PAX9). In the second block with

two SNPs in PAX7 gene (as shown in Table 4), we found

evidence against the null hypothesis only for maternal

transmission (the empirical P-value of 0.006 would still be

marginally significant after correcting for the number of LD

blocks). We also used haplotype-based test statistics based on

permutation analysis of case–parent trio data. Salyakina

et al46 argue that permutation tests are generally preferred

over adjustments of asymptotic P-values based on the

estimated correlation structure among multiple markers or

on conventional Bonferroni adjustment (which can be too

conservative).47 The case–parent trio design offers the

advantage of testing directly for maternal versus paternal

effects, and allows separating these from effects of the fetal

genotype versus parental origin in a robust manner.26,48

Another advantage of this design is that it minimizes

confounding that plagues traditional case–control designs.

This permits pooling trios from four diverse populations into

a combined test of allelic effects on OR(transmission), while

testing for parent-of-origin effects. The present study showed

excess maternal transmission of markers in PAX7 and PAX3,

suggesting that these genes may influence the risk of CL/P,

possibly through imprinting. Independent confirmation is

still needed to determine the ultimate impact of these PAX

genes on risk to CL/P.
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