
INTRODUCTION

Eosinophils, terminally differentiated granulocytic leukocytes
that reside primarily in vertebrate mucosal tissues and function
in host defense, are involved in the tissue pathogenesis caused
by parasitic helminth infection [1]. During parasitic infections,
the numbers of peripheral blood eosinophils are highly increased
under the influence of Th2 cell-derived IL-5, IL-3 and GM-CSF,
and eosinophils are recruited from the circulation into inflamed
or damaged tissues by the eosinophil selective chemokine, eotax-
in [2]. The recruited eosinophils are primed by interaction with
connective tissue matrix proteins such as fibronectin and laminin
before being activated by cytokines through receptor-mediated
signals. The fully activated eosinophils then liberate histotoxic
or helminthotoxic reactive oxygen species and granular proteins
[3]. Besides these peripheral effector functions, eosinophils mo-
dulate immune responses by releasing cytokines and chemokines
[4]. Eosinophils possess a variety of cell surface receptors for
cell signaling associated with chemotaxis, adhesion, respiratory
burst, degranulation, production of cytokines and chemokines,
apoptosis or survival [5], all of which may be closely associated
with eosinphil-mediated tissue inflammatory responses in hel-
minth infection. Recent experimental studies have demonstrat-

ed that eosinophils can function as antigen-presenting cells
(APCs). Eosinphils can process and present a variety of micro-
bial, viral, and parasitic antigens [6].

Although the protective role of tissue eosinophilia against
tissue-invasive helminths remains controversial, it is clear that
eosinophils contribute to tissue inflammatory responses in hel-
minthic infections. In this review, we summarize eosinophil
responses to helminthic parasites and discuss the innate roles
of eosinophils in related tissue inflammatory responses.

CARDINAL STRUCTURES OF EOSINOPHILS

Eosinophils are characterized by bilobed nuclei and four main
granules [7]. The primary granule is the principal site of Charcot-
Leyden Crystal protein (CLC; now identified as galectin-10) pro-
duction [8]. It is possible that CLC is involved in the interactions
between eosinphils and the abundant carbohydrate residues
that parasitic worms carry on their surfaces [9]. Cytotoxic gran-
ular proteins include major basic protein (MBP), eosinphil cati-
onic protein (ECP), eosinophil peroxidase (EPO), and eosinophil
neurotoxin (EDN), all of which reside within the crystalloid
secondary granule along with a number of cytokines. Eosinophil
lipid bodies (LB) contain 5-lipooxygenase, cyclooxygenase, leu-
kotreine C4 (LTC4) synthase, and arachidonic acid (AA) for lipid
mediator biosynthesis, as well as small granules that store pro-
teins such as arylsulfase B and acid phosphatases.
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EOSINOPHILIA IN HELMINTH INFECTION

Eosinophils originate from CD34+ cells in the bone marrow
expressing the IL-5Rα-chain, regulated by the transcription fac-
tors GATA-1, GATA-2, and c/EBP [5]. With the help of IL-5, ad-
hesion molecules, and eotaxin-1, eosinophils relocate into the
peripheral circulation and travel to specific tissues, predomi-
nantly the gastrointestinal (GI) tract, thymus, and mammary
glands, where eotaxin-1 is constitutively expressed [5]. The ele-
vation of eosinophil levels in the peripheral circulation and tis-
sues is observed in a wide variety of diseases including diseases
of infectious, allergic, neoplastic, and idiopathic origins [10].
Parasitic helminth infections are the most common cause of
persistent eosinophilia. Infections by helminths with life cycles
that include tissue migratory phases, including trichinosis, ascari-
asis, filariasis, and paragonimiasis, induce sustained elevated
eosinophilia in host blood and tissues. In contrast, sustained
eosinophila is usually absent when hosts are infected by para-
sites that dwell outside the tissues, such as intralumen- (e.g.,
adult tapeworm), or intracyst- (e.g., Echinococcus spp.) dwelling
species [10]. 

EOSINOPHIL TRAFFICKING AND HELMINTHIC
PARASITES

It is evident that helminth-induced eosinophilia is accompa-
nied by a profound change in the production of key regulatory
cytokines (IL-5, IL-3, GM-CSF) and chemokine (eotaxin) [11].
Trichinella spiralis infection induces eosinophil recruitment to
infected tissues that is dependent upon eotaxin-1 and -2 [12].
The eosinophils recruited into worm-infected tissues are further
activated by various inflammatory stimuli, which may contribute
to related eosinophil-mediated tissue inflammatory responses.

It was recently reported that serum levels of eotaxin are incre-
ased in human strongyloidiasis [13]. The numbers of positive
cells expressing CCR3 receptors for eotaxin are increased during
helminth infection [14]. Furthermore, helminths themselves
secrete eosinophil-specific chemokinetic molecules showing
galectin-like activity [15]. Mammalian galectin-9 is a potent
eosinophil chemoattractant [16], and galectin-3 also plays a
supporting role in eosinophil trafficking [17]. These results sug-
gest that eosinophils respond to and are activated by worm-se-
creted factors mimicking mammalian galectin-9, which may
amplify eosinophil trafficking to worm-infected tissues. This leads
us to hypothesize that eosinophils are well-equipped innate im-

mune cells capable of countering the attempts of parasitic worms
to evade host immune responses. 

DEGRANULATION AND HELMINTHIC PARASITES

The release of secondary granule proteins such as MBP, ECP,
EPO, and EDN may directly damage tissues or infectious worms
[5,18]. Immunological stimuli, including sIgA, IgG, C5a, PAF,
IL-5, IL-3, and GM-CSF can induce eosinophil degranulation
[3]. However, the role of IgE in eosinophil degranulation remains
controversial [19,20]. A recent report has shown that eosinophils
from allergic donors express approximately 0.5% of the FcεRI
that basophils express, and that eosinophils stimulated with
human IgE or anti-human IgE do not exhibit effector functions
such as production of leukotriene C4 or superoxide anion, or
degranulation [20]. This suggests that helminth-induced IgE
production is not critical for eosinphil degranulation, although
degranulated eosinophils are frequently observed in the vicini-
ty of damaged parasites in vivo. 

There are three modes of eosinophil degranulation, includ-
ing compound exocytosis, piecemeal degranulation, and cytolyt-
ic degranulation (necrosis) [7]. The release of granular proteins
via compound exocytosis results from multiple fusions of gran-
ules in eosinophils with normal plasma membrane. PAF, which
signals via the G-protein coupled receptor (GPCR), is the best-
known stimulus for compound exocytosis. IL-5 can induce pie-
cemeal degranulation, which is characterized by emptied sec-
ondary granules resulting from the slow leakage of granular pro-
teins. Lastly, degranulation can occur by cytolytic mechanisms
as a result of cell death. Recent reports have demonstrated that
human eosinphils degranulate in response to helminth-derived
excretory-secretory products (ESP) [21]. In particular, 27-kDa
cysteine protease in the ESP secreted by newly excysted Parago-

nimus westermani metacercariae (PwNEM) induces EDN release
from human eosinophils isolated from peripheral blood [22],
whereas PwNEM-secreted 28-kDa cysteine protease did not in-
duce eosinophil degranulation. In addition to their direct toxic
effects on worms and tissues, granular proteins have been shown
to regulate tissue inflammation by activating various immune
cells. For example, MBP has been demonstrated to promote
degranulation from mast cells via IgE-independent mechanisms,
superoxide anion production, or release of IL-8 and lipid medi-
ators including LTC4 and PGF2αfrom eosinophils, neutrophils,
and epithelial cells [23]. These results suggest that release of gra-
nular proteins from eosinophils in response to specific proteas-
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es secreted by helminths play a role in eosinophil-mediated tis-
sue inflammatory responses during tissue invasion by parasitic
worms. 

NADPH OXIDASE-DERIVED ROS AND
HELMINTHIC PARASITES

In addition to toxic granule proteins such as ECP, MBP, and
EDN, reactive oxygen species (ROS) are toxic compounds rel-
eased by eosinophils. They are generated by the NOX family
(NOX2) of NADPH oxidase [24], which can be stimulated by
PMA, IL-3, IL-5, GM-CSF, C5a, PAF, and eotaxin [3]. It is inter-
esting to note that the capacity of human eosinophils to pro-
duce and release ROS such as superoxide anions (O2

-) is approxi-
mately tenfold higher than the capacity of neutrophils [25]. Re-
cent reports have shown that human eosinophils can produce
superoxide anions in response to helminth-derived cysteine
proteases such as 27-kDa cysteine protease [22]. Besides the
cytotoxic role of ROS, they also participate in inflammatory
responses mediated by T cells and eosinophils [26,27]. These
results suggest that ROS production by eosinophils stimulated
by helminth-derived secretory products may contribute to eosi-
nophil-mediated tissue inflammation in helminthic infection.

RELEASE OF LIPID MEDIATORS AND 
HELMINTHIC PARASITES

Human eosinophils isolated from peripheral blood produce
both eicosanoids and PAF. The major eicosanoid produced by
eosinophils is leukotriene C4 (LTC4), which is rapidly converted
to LTD4 and LTE4 in the extracellular environment [28]. LTC4,
LTD4, and LTE4 are collectively referred to as cysteinyl leukotri-
enes. These molecules contribute to the constriction of bronchi
and increase airway responsiveness, vascular permeability, and
mucus secretion in the airways of bronchial asthmatic patients. 

In Nippostrongylus brasiliensis-infected mice, elevation in PAF
synthesis is correlated with significant elevation in histological-
ly detectable eosinophils in the jejunum [29]. Human eosino-
phils secrete LTC4 after adhering to IgG- or IgE-coated schisto-
somules of Schistosoma mansoni [30]. A recent report suggests
that leukotrienes play a protective role in controlling parasite
burden in murine strongyloidiasis [31]. However, there is no
available information regarding whether eosinophils can be acti-
vated to release lipid mediators such as LTC4 or prostaglandin
(PG) when directly stimulated by worm-derived secretions or

products. Recently, there has been intriguing evidence that vari-
ous parasites secrete lipid mediators to communicate with host
immune cells [32]. In particular, eosinophils possess well-equip-
ped cells bearing receptors for lipid mediators [33]. Therefore,
further studies of the role of helminth-secreted lipid mediators
on eosinophil-mediated tissue inflammation are warranted. 

PRODUCTION OF CYTOKINES AND HELMINTHIC
PARASITES

Human eosinophils produce cytokines, chemokines, and
growth factors [5]. For example, cytokines include IL-1α, IL-2,
IL-3, IL-4, IL-5, IL-6, IL-9, IL-11, IL-12, IL-13, IL-16, IL-17, leuke-
mia inhibitory factor, interferon-γ, tumor necrosis factor α(TNF-
α, and GM-CSF. A variety of chemokines including epithelial
cell-derived neutrophil activation peptide (ENA-78/CXCL5),
eotaxin, growth-related oncogene (GROα/CXCL1), IL-8, IFN-
γ-inducible protein (IP-10/CXCL10), IFN-inducible T-cell α

chemoattractant (I-TAC/CXCL11), macrophage inflammation
protein 1α(MIP-1α), monocyte chemoattractant protein 1 (MCP-
1/CCL3), MCP-3 (CCL7), MCP-4 (CCL13), and RANTES (CCL5)
are generated by eosinphils. Eosinophils produce growth fac-
tors such as heparin-binding epidermal growth factor-like bin-
ding protein (HB-EGF-LBP), nerve growth factor (NGF), platelet-
derived growth factor (PDGF), stem cell factor, transforming
growth factor α(TGF-α) and TGF-β1. Among secreted proteins,
IL-2, IL-4, IL-5, IL-6, TNF-α, GM-CSF, eotaxin, RANTES and TFG-
αare stored as preformed mediators within eosinophil crystal-
loid granules [34]. It is interesting to note that eosinophils ex-
press two pro-inflammatory cytokines, IL-12 and IFN-γ, which
serve to down-regulate allergic inflammation [5]. Indeed, IL-12
has been shown to inhibit allergen-induced Th2 cytokine res-
ponses [35] and eosinophil degranulation [36]. These results
suggest that eosinophils may have the ability to release cytokines
or chemokines for regulation of eosinophil-mediated tissue in-
flammation in helminth infection. 

Recent studies have demonstrated that helminthic parasites
can regulate immune responses via the production of cytokines.
For example, infection with Fasciola hepatica has been demon-
strated to attenuate autoimmunity via TGF-β-mediated immune
suppression of Th17 and Th1 responses [37]. In addition, Th2
cell-derived IL-4 production facilitates eosinophil and lympho-
cyte recruitment and Th2 cytokine production associated with
N. brasiliensis infections [38]. Infection with Strongyloides sterco-

ralis induces enhanced serum levels of eotaxin and IL-5 [13].
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However, information regarding cytokine production by eosino-
phils in response to helminthic parasites is limited. Recently,
we have shown that P. westermani-secreted products directly
stimulate human eosinophils to produce GM-CSF [39] and IL-
8 [40]. GM-CSF plays an important role in maintaining the via-
bility and inducing the effector function of eosinophils [3,41].
In addition, IL-8 is a highly potent chemotactic cytokine for
eosinophils as well as neutrophils [42]. It is of particular that
that lower, but not higher concentrations of ESP secreted by
PwNEM exhibit strong stimulatory effects on the production of
GM-CSF and IL-8 by human eosinophils [39,40]. The stimula-
tory effect of the ESP on autocrine production of GM-CSF is
nicely matched with enhanced longevity of eosinophils [39].
These results suggest that eosinophils may be actively responded
to the light infection of the worms to release cytokines or chemo-
kines associated with induction of eosinophil-mediated tissue
inflammation, which might pain the worms to lose their origi-
nal way to final destination. In contrast, eosinophils seem to
be passively responded in response to the heavy infection to
silence eosinophil’s responses which might be favorable for
host to block the severe tissue damage. In our previous study
[39], we also found an interesting result that pretreatment of
high concentrations of the ESP secreted by PwNEM with heat
at 100℃ for 5 min showed a pro-survival effect on eosinophils
[39]. This suggests that eosinophils may be directly activated by
heat-resistant molecules secreted by helminthic parasites to rel-
ease cytokines and chemokines, which in turn may play a role
in promoting eosinophil-mediated tissue inflammatory respons-
es during helminth infection. Further studies on this issue are
required.

APOPTOSIS AND HELMINTHIC PARASITES

The life span of eosinophils may be prolonged in the pres-
ence of IL-5 GM-CSF, IL-3 [41], IL-9 [43], IL-13 [44], IL-33 [45],
lipid mediators such as PGE2 [46], and microbial-derived lipo-
polysaccharides (LPS) [47]. In contrast, eosinophils undergo
spontaneous death through apoptosis within four days with-
out the presence of eosinophil active cytokines in vitro. In order
to assess the innate role of eosinophils in helminth infection,
recent studies have focused on the direct effects of helminth-
secreted products on the viability of human eosinophils. It has
been demonstrated that P. westermani- or F. hepatica-secreted
ESP induces apoptosis of eosinophils in a caspase-dependent
manner [48,49]. Moreover, F. hepatica-derived ESP has been

reported to cause mitochondrial-membrane depolarization of
eosinophils leading to the release of cytochrome c, and also
induced intracellular ROS generation, which preceded mito-
chondrial injury for apoptosis [50]. Since most apoptotic tissue
eosinophils progress to the pro-inflammatory cellular fate of
secondary necrosis [51], it is possible that eosinophil apoptosis
induced by helminth-derived ESP may cause severe tissue infla-
mmation that helps to combat infectious worms. P. westermani-
secreted ESP has also death effect on eosinophils stimulated
with pro-survival cytokines including GM-CSF, IL-5 and IL-3
[48]. The pro-death effect the ESP was completely abolished by
heat treatment. These results suggest that heat labile factors con-
tained in the helminth-derived ESP can induce eosinophil apo-
ptosis, which may be closely associated with orchestration of
eosinophil-mediated tissue inflammation for host defense agai-
nst tissue migratory helminthic worms. Further studies are nec-
essary to determine what factors secreted by helminthic worms
and how trigger the pro-apoptotic signals associated with eosi-
nophil death.

MECHANISMS THAT HELMINTHIC PARASITES
USE TO EVADE EOSINPHIL-MEDIATED

HELMINTHOTOXICITY

Helminth-derived products harbor specific components lea-
ding to the down-regulation of eosinophil- or mast cell-associ-
ated allergic responses. This allows parasitic worms to evade
host immune responses. For example, the immunization of
proteins from adult Toxascaris leonine inhibits allergic specific
Th2 response [52]. Anisakis simplex-derived peptide has also been
found to inhibit eosinophil-mediated inflammatory responses
in the airways in ovalbumin-induced bronchial asthmatic mice
[53]. Heligmosomoides polygyrus infection down-regulates eotax-
in concentrations and CCR3 expression in lung eosinophils in
a allergic pulmonary inflammation mouse model [54]. 

Recent reports have suggested that helminthic worms them-
selves secrete specific molecules to interfere with eosinophil-
mediated tissue inflammatory responses during helminth infec-
tion. For example, Toxocara canis larval excretory/secretory pro-
teins impair the eosinophil-dependent resistance of mice to N.

brasiliensis [55]. P. westermani-derived proteases attenuate the
effector functions of eosinphils triggered by IgG [56]. Cathepsin
L proteinase secreted by F. hepatica prevents antibody-mediated
eosinophil attachment to newly excysted juveniles in vitro [57].
Moreover, eosinophil selective chemokine eotaxin has been re-
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ported to be specifically cleaved by hookworm metalloproteas-
es, which block the chemotactic effects on eosinophils in vitro
and in vivo [58]. Furthermore, it is interesting to note that filar-
ial nematode-secreted products inhibit IgE-mediated mast cell
responses [59], considering the fact that there are immunologi-
cal interactions between human eosinophils and mast cells [60].
These results suggest that tissue-migratory helminthic parasite-
secreted products might contribute to reduction of eosinophil-
mediated tissue inflammation, which provides an immunolog-
ical milieu for the worms to complete their long journey dur-
ing the tissue-migratory phase in vivo.

CONCLUSION

Eosinophils are end-stage cells that reside in mucosal tissues
and function in host defense against helminth infection. Recent
studies regarding immunological interactions between eosino-
phils and helminthic parasites have made important advances
in understanding the innate role of eosinophils in controlling
eosinophil-associated tissue inflammation involved in infec-
tion by tissue migratory helminthic parasites. In this review, we
emphasize two points. The first is that eosinophils are well-equi-
pped immune cells that directly recognize helminth-derived
immunomodulating agents and mount tissue inflammatory
responses for host defense. The second is that tissue-migratory
helminthic worms have evolved to attenuate eosinophil-medi-
ated tissue inflammatory responses for their survival in hosts.
Future studies regarding the signaling mechanisms of cross talk
between hosts and parasitic worms are warranted. Furthermore,
deeper investigation to elucidate the role of galectin-10, which
is expressed on the surface of eosinophils, in host defense against
helminthic parasites is recommended.
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