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Modulation of N-type calcium currents by presynaptic
imidazoline receptor activation in rat superior cervical
ganglion neurons
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Presynaptic imidazoline receptors (Ri-pre) are found in the sympathetic axon terminals of
animal and human cardiovascular systems, and they regulate blood pressure by modulating
the release of peripheral noradrenaline (NA). The cellular mechanism of Ri-pre-induced
inhibition of NA release is unknown. We, therefore, investigated the effect of Ri-pre activation
on voltage-dependent Ca2+ channels in rat superior cervical ganglion (SCG) neurons, using
the conventional whole-cell patch-clamp method. Cirazoline (30 μm), an Ri-pre agonist as
well as an α-adrenoceptor (Rα) agonist, decreased Ca2+ currents (I Ca) by about 50% in a
voltage-dependent manner with prepulse facilitation. In the presence of low-dose rauwolscine
(3 μm), which blocks the α2-adrenoceptor (Rα2), cirazoline still inhibited I Ca by about 30%, but
prepulse facilitation was significantly attenuated. This inhibitory action of cirazoline was almost
completely prevented by high-dose rauwolscine (30 μm), which blocks Ri-pre as well as Rα2. In
addition, pretreatment with LY320135 (10 μm), another Ri-pre antagonist, in combination with
low-dose rauwolscine (3 μm), also blocked the Rα2-resistant effect of cirazoline. Addition of
guanosine-5′-O-(2-thiodiphosphate) (2 mm) to the internal solutions significantly attenuated
the action of cirazoline. However, pertussis toxin (500 ng ml−1) did not significantly influence
the inhibitory effect of cirazoline. Moreover, cirazoline (30 μm) suppressed M current in SCG
neurons cultured overnight. Finally, ω-conotoxin (ω-CgTx) GVIA (1 μm) obstructed cirazoline-
induced current inhibition, and cirazoline (30 μm) significantly decreased the frequency of
action potential firing in a partly reversible manner. This cirazoline-induced inhibition of action
potential firing was almost completely occluded in the presence of ω-CgTx. Taken together, our
results suggest that activation of Ri-pre in SCG neurons reduced N-type I Ca in a pertussis toxin-
and voltage-insensitive pathway, and this inhibition attenuated repetitive action potential firing
in SCG neurons.
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Calcium ion (Ca2+) influx through voltage-dependent
Ca2+ channels plays an important role in the regulation
of the intracellular Ca2+ concentrations in neurons. An
increase in the cytoplasmic Ca2+ concentration triggers
various physiological events, such as changes in gene
transcription, membrane excitability and neurotrans-
mitter release. Thus, modulation of voltage-dependent
Ca2+ channels directly regulates the extent of Ca2+ entry
and supply, which, in turn, are significant means of

controlling neuronal function. In the sympathetic nervous
system, N-type Ca2+ channels are important for the
regulation of noradrenaline (NA) release in various animal
species (el-Din & Malik, 1988; Hirning et al. 1988;
Clasbrummel et al. 1989; Lipscombe et al. 1989; Pruneau &
Angus, 1990) and also in the human heart atrium (Göthert
& Molderings, 1997; Molderings et al. 2000). In addition,
many neurotransmitter receptors, such as α2-adrenergic
(Galvan & Adams, 1982; Lipscombe et al. 1989; Song
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et al. 1989; Schofield, 1990; Beech et al. 1992), muscarinic
(Wanke et al. 1987; Song et al. 1989; Beech et al. 1991;
Bernheim et al. 1991), adenosine (Zhu & Ikeda, 1993),
prostaglandin E2 (Ikeda, 1992), somatostatin (Ikeda &
Schofield, 1989; Beech et al. 1991; Shapiro & Hille, 1993)
and neuropeptide Y, have been known to suppress N-
type Ca2+ channels (for review, see Hille, 1994) and thus
modulate NA release at nerve terminals in rat superior
cervical ganglion (SCG) neurons (Toth et al. 1993; Koh &
Hille, 1997).

Early reports showed that imidazoline derivatives are
related to adrenaline and have a potency to regulate
blood pressure (Hartmann & Isler, 1939), suggesting that
their properties are attributed to α-adrenergic agonistic
or antagonistic mechanisms. However, after clonidine and
other imidazolines were found to lower blood pressure
by acting at non-adrenoceptor sites in the brainstem
(Bousquet et al. 1984), many functional and radioligand
binding studies have supported the existence of
α-adrenoceptor (Rα)-independent imidazoline-binding
receptors in various organs (Ernsberger et al. 1987; Escriba
et al. 1999; Piletz et al. 1999). Imidazoline receptors
have been subclassified into at least two major groups
(I1 or I2 receptors) based largely upon ligand selectivity
and subcellular distribution. The I1 receptors are mainly
located in the ventrolateral medulla and are known
to play a role in the exertion of central control over
vascular tone (Ernsberger & Haxhiu, 1997; Bousquet &
Feldman, 1999; Bruban et al. 2001). The I2 receptors
are found in atrial appendages, vascular smooth muscle
cells, carotid bodies, and prostate and cerebral cortices
(Renouard et al. 1993; Regunathan et al. 1995; Youngson
et al. 1995; Molderings et al. 1997). To date, no clear
functional role has been discovered for these I2 receptors,
although they are thought to be associated with eating
behaviour in rats (Polidori et al. 2000) and various mental
disorders, such as major depression (Meana et al. 1993;
Sastre et al. 1995) and Alzheimer’s disease (Ruiz et al.
1993). More recently, a non-I1/non-I2 new presynaptic-
modulating imidazoline receptor has been found in
blood vessels and hearts of rabbits, rats, guinea-pigs and
humans (Molderings & Göthert, 1995, 1998; Likungu
et al. 1996; Molderings et al. 1997). This presynaptic
imidazoline receptor (Ri-pre) is located in the sympathetic
axon terminal and regulates blood pressure by modulating
peripheral NA release (Göthert et al. 1999). However, the
precise mechanism of Ri-pre-induced inhibition of NA
release in the sympathetic nerve terminals has not yet been
elucidated.

It is possible that Ri-pre-induced inhibition of NA
release in peripheral sympathetic nerve terminals may be
mediated through the inhibition of Ca2+ currents (I Ca),
resulting in decreased intracellular Ca2+ concentrations.
To investigate this possibility, we tested the effect of Ri-pre

activation on I Ca in SCG neurons. Our results provide

evidence that activation of Ri-pre significantly inhibited
N-type I Ca (I Ca-N) acting through a voltage- and PTX-
independent pathway in rat SCG neurons.

Methods

This study was conducted in accordance with the the Guide
for the Care and Use of Laboratory Animals published by
the US National Institutes of Health (NIH publication no.
85-23, revised 1996). All procedures were performed in
accordance with protocols approved by the Institutional
Animal Care and Use Committee.

Preparation of SCG neurons

Superior cervical ganglion neurons were enzymatically
dissociated according to a previously described, modified
method (Schofield & Ikeda, 1988). Briefly, adult (200–
300 g) male Sprague–Dawley rats were anaesthetized with
enflurane and decapitated. Ganglia were dissected from
the lateral side of the carotid artery bifurcation and
placed in cold Dulbecco’s phosphate buffer saline (D-
PBS). The ganglia were then desheathed, cut into small
pieces, and incubated in Earle’s balanced salt solution
(EBSS) containing 0.7 g l−1 collagenase type D (Roche
Molecular Biochemicals, Indianapolis, IN, USA) and
0.25 g l−1 trypsin type I (Roche Molecular Biochemicals)
at 35◦C for 45 min in a shaking water bath. After
incubation, ganglia were dispersed into single neurons
by vigorous shaking of the culture flask. The solution
was centrifuged at 100 g , and the neurons were
resuspended in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (FBS) and
1% penicillin–streptomycin (P/S; all from Invitrogen,
Carlsbad, CA, USA). The neurons were plated on poly-
L-lysine-coated 12 mm glass coverslips and incubated
in a humidified incubator with 95% air, 5% CO2.
Neurons were used within 12 h after plating. If necessary,
neurons were incubated with 500 μg l−1 PTX for
14–18 h.

Electrophysiology

Calcium current was recorded using conventional whole-
cell techniques. Electrode resistance varied from 3 to
5 M� when filled with internal solution. We performed
measurements using an Axopatch 200A patch-clamp
amplifier (Molecular Devices, Sunnyvale, CA, USA).
Voltage and current commands and digitization of
membrane voltages and currents were controlled using
a Digidata 1322A interfaced with Clampex 9.2 of the
pClamp software package (Molecular Devices) on an IBM-
compatible computer. We analysed data using Clampfit 9.2
(Molecular Devices) and Prism 4.0 (GraphPad, San Diego,
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CA, USA). Currents were low-pass filtered at 2 kHz using
the four-pole Bessel filter in the amplifier. Membrane
capacitance values were taken from automatically
calculated recordings by pClamp 9.2 software. Action
potentials were recorded in the current-clamp mode.
Membrane potential measurements were low-pass filtered
at 10 kHz. Only cells with resting membrane potential
less than −50 mV were included in the analysis.
Multiple independently controlled syringes served as
reservoirs for a gravity-driven fast drug perfusion
system. Switching between solutions was accomplished
by manually controlled valves. All experiments were
conducted at room temperature.

Solutions and drugs

The solution used for whole-cell experiments has been
previously described (Park et al. 2001). The internal
(pipette) solution contained the following (mM): 120 N-
methyl-D-glucamine, 20 tetraethylammonium hydroxide
(TEA-OH), 11 EGTA, 1 CaCl2, 10 Hepes, 4 Mg-ATP,
0.3 Na2-GTP and 14 creatine phosphate and was titrated

Figure 1. The effect of cirazoline on calcium current (ICa) of rat
superior cervical ganglion (SCG) neurons
A, representative traces in the presence (•) and absence (◦) of 30 μM

cirazoline. The ICa was evoked by 100 ms depolarizing step pulses up
to a test potential of 0 mV from a holding potential of −80 mV. After
the current amplitude had stabilized, 30 μM cirazoline was applied to
the cell from a micropipette that was placed close to the cell. B, I–V
relationship curve of ICa measured 10 ms after the onset of the
depolarizing pulses in the absence (◦) and presence (•) of 30 μM

cirazoline. C, time course of cirazoline-induced blockage of ICa.
D, concentration–response curve for cirazoline-induced ICa inhibition.
Inhibition (%) was determined as (1 − Idrug/Icontrol) × 100%. To reduce
the effects of desensitization, only one concentration was tested per
neuron. Each point represents the mean ± S.E.M. for the indicated
number of neurons.

to pH 7.4 with methanesulfonic acid (CH3SO3H). The
external (bath) solution contained the following (mM):
140 CH3SO3H, 10 Hepes, 10 CaCl2 and 15 glucose and
was titrated to pH 7.4 with TEA-OH. The external
solution for current clamp contained the following (mM):
143 NaCl, 5.4 KCl, 2.5 CaCl2, 1.2 MgCl2, 10 glucose and
10 Hepes; the solution was adjusted to pH 7.4 with
NaOH. The pipette solution used for current-clamp
recordings contained the following (mM): 113 potassium
gluconate, 30 KCl, 1.2 MgCl2, 4 MgATP, 0.4 Na2GTP,
10 phosphocreatine, 10 Hepes and 0.05 EGTA; the
solution was adjusted to pH 7.2 with KOH.

The EBSS, DMEM, FBS and P/S were purchased from
Gibco (Carlsbad, CA, USA). Cirazoline, ω-conotoxin
(ω-CgTx) GVIA and LY320135 were purchased from
Tocris Cookson Inc. (Bristol, UK). All other drugs were
purchased from Sigma-Aldrich Chemicals. All drugs
were dissolved in distilled water as stock solutions
(1–100 mM).

Data analysis

Data are presented as the means ± S.E.M., with the
number of experiments given within parentheses. The
concentration–response curves of cirazoline and NA for
I Ca inhibition were calculated by fitting to a single-site
binding isotherm with least-squares non-linear regression
using Prism 4.0 (GraphPad). We used unpaired Student’s
t tests to compare two groups. One-way ANOVA was
used to compare multiple groups with Tukey’s post hoc
test. Differences were considered to be significant at
P < 0.05.

Results

Inhibition of ICa by cirazoline

We tested whether cirazoline, a putative Ri-pre agonist
(Göthert et al. 1999; Molderings et al. 2002), modulated
I Ca in SCG neurons. Calcium current was evoked by
100 ms depolarizing step pulses to a test potential of
0 mV from a holding potential of −80 mV. The average
membrane capacitance of SCG neurons was 27 ± 5 pF
(n = 58). Application of 30 μM cirazoline resulted in
a significant, reversible inhibition of I Ca by 49 ± 8%
(n = 5; Fig. 1A and C). Cirazoline inhibited I Ca over
a potential range from −40 to +40 mV according to
the current–voltage (I–V ) relationship (Fig. 1B). We
generated concentration–response curves for NA-induced
I Ca inhibition (Fig. 2C). The degree of inhibition was
estimated as the ratio of decreased current to control
current elicited by test pulses at 0 mV, starting from
−80 mV. The concentration at which cirazoline inhibited
I Ca in SCG neurons by 50% was about 30 μM (Fig. 1A
and D).

C© 2010 The Authors. Journal compilation C© 2010 The Physiological Society

) at Sud Mooon University on December 17, 2014ep.physoc.orgDownloaded from Exp Physiol (

http://ep.physoc.org/


Exp Physiol 95.10 pp 982–993 Cirazoline inhibits N-type Ca2+ channels 985

Inhibition of ICa by NA

Some imidazoline derivatives, such as BDF 6143,
clonidine, idazoxan and cirazoline, have been reported
to bind equally well to Rα2 and Ri-pre (Göthert et al.
1999; Molderings et al. 2002). Thus, it was necessary
to compare the effect of cirazoline with that of NA,
which inhibits I Ca-N exclusively through the α2-adrenergic
receptor (Schofield, 1990, 1991). We found that 1 μM NA
rapidly and reversibly inhibited I Ca by 49 ± 1% (n = 5;
Fig. 2A and B), consistent with previous reports (Schofield,
1990, 1991; Ehrlich & Elmslie, 1995; Ikeda, 1996). The
effect of NA was concentration dependent, and the dose
at which NA inhibited I Ca by 50% in SCG neurons was

Figure 2. The effect of noradrenaline (NA) on ICa of rat SCG
neurons
A, representative traces in the absence and presence of 1 μM NA. The
ICa was evoked as described in Fig. 1A. B, time course of NA-induced
ICa inhibition. C, concentration–response curve for NA-induced ICa

inhibition. Inhibition (%) was determined as described in Fig. 1D. Only
one concentration was tested per neuron. Each point represents the
mean ± S.E.M. for the indicated number of neurons.

about 1 μM (Fig. 2A and C). We therefore performed our
experiments using 30 μM cirazoline or 1 μM NA to achieve
the same level of I Ca inhibition (49 ± 8%, n = 5 versus
49 ± 1%, n = 5; Figs 1A and 2A).

Characteristics of NA-induced ICa inhibition

As previously reported (Elmslie et al. 1990), NA (1 μM)
rapidly inhibited I Ca in SCG neurons (48 ± 7%, n = 6;
Fig. 3A), and NA-induced Ca2+ inhibition displayed the
hallmarks of voltage-dependent inhibition, namely kinetic
slowing and prepulse facilitation or relief of current
inhibition by conditioning depolarizing pulses. Prepulse
facilitation, which is defined as the ratio of the postpulse
to prepulse current amplitude, increased from 1.10 ± 0.02
to 1.68 ± 0.12 (n = 6) after NA application (Fig. 3A).
This NA-induced I Ca inhibition was almost completely
blocked (8 ± 2.7%, n = 7; Figs 3B and 4) by pretreatment
with 3 μM rauwolscine, a Rα2 antagonist with K i = 4.6 nM

(Uhlén et al. 1998). Rauwolscine pretreatment (3 μM) also
nearly completely prevented the NA-induced increase of
prepulse facilitation that increased only from 1.08 ± 0.02
to 1.15 ± 0.02 (n = 7; Fig. 3B).

Figure 3. Characteristics of NA-induced ICa inhibition in rat SCG
neurons
A, representative traces of NA (1 μM)-induced ICa inhibition (left panel)
and NA-induced increase (right panel). The ICa was evoked every 10 s
by a double-pulse voltage protocol consisting of two identical test
pulses (0 mV from a holding potential of −80 mV) separated by a
large depolarizing conditioning pulse of +80 mV. Prepulse facilitation
was calculated by the ratio of the postpulse to prepulse current
amplitudes (post/pre) measured isochronally at 10 ms after the start of
the test pulse. B, representative traces of the effect of low-dose
rauwolscine (3 μM) on NA-induced ICa inhibition (left panel) and
increase (right panel). Note that 3 μM rauwolscine almost completely
prevented NA-induced ICa inhibition.
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Characteristics of cirazoline-induced ICa inhibition

We investigated the characteristics of cirazoline-induced
I Ca inhibition in rat SCG neurons (Fig. 5). Cirazoline
(30 μM) inhibited I Ca in rat SCG neurons (45 ± 3%,
n = 7; Figs 4 and 5A). Prepulse facilitation increased
from 1.05 ± 0.02 to 1.44 ± 0.06 (n = 7) upon cirazoline
treatment (Fig. 5A, right panel). In the presence of
3 μM rauwolscine, which completely blocked Rα2,
cirazoline still inhibited I Ca by 33 ± 2% without
noticeable increase of prepulse facilitation (increase from
1.12 ± 0.03 to 1.16 ± 0.07, n = 7; Fig. 5B). This Rα2-
resistant component of cirazoline-induced I Ca inhibition
was almost completely blocked by pretreatment with
30 μM rauwolscine (7 ± 0.6%, n = 8, P < 0.01, cirazoline
with 3 μM rauwolscine versus cirazoline with 30 μM

rauwolscine, one-way ANOVA, Tukey’s post hoc test;
prepulse facilitation from 1.09 ± 0.03 to 1.05 ± 0.04,
n = 8; Figs 4 and 5C). In addition, in the presence of 3 μM

rauwolscine and 10 μM LY320135, which also antagonizes
Ri-pre (Molderings et al. 1999, 2002), cirazoline-induced
I Ca inhibition was also significantly attenuated (12 ± 1%,
n = 8, P < 0.01, cirazoline with 3 μM rauwolscine versus

Figure 4. Effects of rauwolscine and LY320135 on ICa inhibition
induced by NA and cirazoline
Inhibition (%) was calculated using the amplitudes of currents
determined isochronally 10 ms after the start of the prepulse. The
x-axis labels represent agonists used in ICa inhibition. The key
represents the antagonists used in pretreatment. Cells that had not
been pretreated served as a control. Data are presented as
means + S.E.M. From left to right, n = 6, 7, 7, 7, 8 and 8. Multiple
comparisons were made among rauwolscine-pretreated cirazoline
groups using one-way ANOVA, with Tukey’s post hoc test. Otherwise,
unpaired Student’s t test was used to compare two groups. ∗P < 0.01.

cirazoline with 10 μM LY320135, one-way ANOVA,
Tukey’s post hoc test; prepulse facilitation from 1.16 ± 0.07
to 1.13 ± 0.07, n = 8; Figs 4 and 5D). These results suggest
that cirazoline inhibited I Ca mainly through activation of
Ri-pre in a voltage-independent manner.

Figure 5. Characteristics of cirazoline-induced ICa inhibition in
rat SCG neurons
A, representative traces of cirazoline (30 μM)-induced ICa inhibition
(left panel) and cirazoline-induced increase (right panel). Evocation of
ICa and calculation of prepulse facilitation were performed as in Fig. 3.
B, representative traces showing the effects of low-dose rauwolscine
(3 μM) on cirazoline-induced ICa inhibition (left panel) and increase
(right panel). Note that cirazoline still inhibited ICa significantly in the
presence of 3 μM rauwolscine. C, representative traces of the effects
of high-dose rauwolscine (30 μM) on cirazoline-induced ICa inhibition
(left panel) and increase (right panel). D, representative traces of the
effects of LY320135 (10 μM) and rauwolscine (3 μM) on
cirazoline-induced ICa inhibition (left panel) and increase (right panel).
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Modulation of ω-CgTx GVIA-sensitive ICa by cirazoline

Consistent with previous results (Plummer et al. 1989;
Regan et al. 1991; Mintz et al. 1992), rat SCG neurons
displayed large I Ca, with about 80% attributed to ω-CgTx
GVIA-sensitive N-type Ca2+ channels (76 ± 4%, n = 5;
Fig. 6A and B). We therefore tested whether N-type Ca2+

channels were modulated by cirazoline using an ω-CgTx
GVIA occlusion experiment. We used 30 μM cirazoline
in the presence of 1 μM ω-CgTx GVIA. Cirazoline-
induced I Ca inhibition was almost completely occluded
by application of ω-CgTx GVIA (6 ± 1.4%, n = 5; Fig.
6), suggesting that cirazoline modulates mainly ω-CgTx
GVIA-sensitive N-type Ca2+ channels in rat SCG neurons.

Effects of GDPβS and PTX on cirazoline-induced
ICa inhibition

We determined the involvement of G proteins in
cirazoline-induced I Ca inhibition using GDPβS, a
hydrolysis-resistant GDP analogue known to prevent
G protein activation (Holz et al. 1986; Jeong & Wurster,
1997). The presence of GDPβS (2 mM) in the internal
solution significantly prevented the I Ca inhibition
produced by NA (1 μM) (from 48 ± 1%, n = 7 to
5 ± 1.5%, n = 5; Fig. 7C). In a similar manner, cirazoline
(30 μM)-induced I Ca inhibition was nearly completely

Figure 6. Effects of ω-CgTx on ICa and cirazoline-induced ICa
inhibition
A, representative traces of the effects of ω-CgTx (1 μM) on ICa and
cirazoline (30 μM)-induced ICa inhibition in rat SCG neurons. B, time
course of the effect of ω-CgTx on cirazoline-induced ICa inhibition. A
and B were obtained using the same cell. Traces 1, 2 and 3 in A were
recorded at the corresponding times indicated in B. C, summary of ICa

inhibition by 30 μM cirazoline in the absence and presence 1 μM

ω-CgTx. Data are presented as means + S.E.M. ∗P < 0.01.

blocked by dialysis of GDPβS (2 mM) into the internal
solution (from 49 ± 8%, n = 5 to 5 ± 1.9%, n = 7; Fig. 7A
and C).

To elucidate the nature of G protein coupling between
Ri-pre and I Ca, SCG neurons were incubated for 16–18 h in
a medium containing PTX (500 ng ml−1; Schofield, 1991;
Shapiro et al. 1994b; Park et al. 2001). Pretreatment with
PTX strongly attenuated the NA-induced I Ca inhibition

Figure 7. Effects of GDPβS and PTX on cirazoline-induced ICa
inhibition
A, representative ICa trace for the control conditions (◦) versus the
presence (•) of 1 μM NA (left panel) or 30 μM cirazoline (right panel)
after 10 min dialysis with 2 mM GDPβS in the pipette solution. The ICa

was evoked by 25 ms depolarizing step pulses to a test potential of
0 mV from a holding potential of −80 mV. B, representative ICa trace
in the control conditions (◦) and in the presence (•) of 1 μM NA (left
panel) and 30 μM cirazoline (right panel), respectively, after
pretreatment with 500 ng ml−1 PTX for 15–18 h. C, left panel shows a
summary of the effects of GDPβS on ICa inhibition by 30 μM cirazoline
in neurons dialysed with control pipette solution (0.3 mM GTP) or with
pipette solution containing GDPβS (2 mM, 0 GTP). Bars indicate mean
inhibition of ICa by 30 μM cirazoline. Noradrenaline (1 μM) was also
tested, as a positive control. From left to right, n = 7, 5, 5 and 7.
∗P < 0.01. Right panel shows a summary of the effects of PTX on
cirazoline-induced ICa inhibition. Cirazoline was applied in the
presence of 3 μM rauwolscine. Bars indicate mean inhibition of ICa by
30 μM cirazoline in the presence of 3 μM rauwolscine. As positive
control, NA (1 μM) was also tested. From left to right, n = 5, 8, 8 and
7. ∗P < 0.01.
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(from 47 ± 2%, n = 5 to 6 ± 1.9%, n = 8; Fig. 7B and
C). However, cirazoline-induced I Ca inhibition was still
significant even after PTX pretreatment (Fig. 7B). On
average, cirazoline-induced I Ca inhibitions in the presence
of 3 μM rauwolscine were 34 ± 3 (n = 8) and 30 ± 2%
(n = 7) before and after PTX pretreatment, respectively
(Fig. 7C). These results suggest that cirazoline-induced
Ri-pre activation modulated I Ca-N via a PTX-insensitive
G protein.

Effects of cirazoline on M-type potassium current (IM)
in SCG neurons

In rat SCG neurons, muscarinic agonist and angiotensin II
strongly suppress I M (Marrion et al. 1989; Bernheim et al.
1992; Shapiro et al. 1994a). Modulations of I M and I Ca

Figure 8. Effects of cirazoline on M-type potassium current (IM)
in SCG neurons
A, left panel shows representative IM traces before application of
agonists (a) and during application of 30 μM cirazoline (b) or 10 μM

Oxo-M (c). Current was elicited by the pulse protocol as shown above.
Cirazoline (30 μM) inhibited IM in the presence of 3 μM rauwolscine.
A, right panel shows time course of IM amplitudes for the
time-dependent relaxations during the step to −60 mV by bath
applications of cirazoline or Oxo-M. The amplitude was measured as
the difference between the current 10–20 ms after the beginning of
the voltage step and the current at the end of the step. B, left panel
shows representative IM traces recorded as described in A (left panel),
except that cirazoline was applied in the presence of 30 μM

rauwolscine. Rauwolscine (30 μM) significantly attenuated
cirazoline-induced IM inhibition. B, right panel shows time course of
IM amplitudes measured as described in A (right panel).

by these agonists share a common mechanism in rat
SCG neurons (Hille, 1994). We therefore examined the
modulation of I M in SCG neurons cultured overnight.
We found that cirazoline suppressed I M by 35 ± 7%
in the presence of 3 μM rauwolscine (n = 5; Fig. 8A).
Oxotremorine methiodide (Oxo-M) also significantly
suppressed the current (Fig. 8A). This suppression was
in turn significantly prevented by 30 μM rauwolscine
pretreatment for 10 min (13 ± 2%, n = 4; Fig. 8B).

Effects of cirazoline on repetitive firing of action
potentials (APs) in SCG neurons

The role of I Ca-N in regulating neuronal excitability
was determined by measuring firing frequency of action
potentials in rat SCG neurons. In current-clamp mode,

Figure 9. Effects of cirazoline on repetitive firing of action
potentials (APs) in SCG neurons
All current-clamp experiments were performed in the presence of
rauwolscine (3 μM). A, representative traces of repetitive AP firing
before (top panel) and during application of cirazoline (30 μM; middle
panel) in current-clamp mode. Action potentials were elicited by
positive current (100–200 pA) injection for 300 ms via the patch
pipette. Cirazoline significantly inhibited repetitive AP firing in a
reversible manner (bottom panel). B, representative traces of AP firing
before (middle panel) and during application of cirazoline (30 μM;
bottom panel) in presence of ω-CgTx (1 μM) in current-clamp mode.
The ω-CgTx (1 μM) significantly blocked the repetitive AP firing (middle
panel). Cirazoline (30 μM) had no effects on repetitive AP firing in the
presence of ω-CgTx (bottom panel).
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APs were evoked by constant-current injection through
the patch pipette. All current-clamp experiments were
performed in the presence of rauwolscine (3 μM). As
shown in Fig. 9A and B, injection of positive current (100–
200 pA) for 300 ms evoked APs in rat SCG neurons with a
frequency of 7.0 ± 0.7 s−1 (n = 12). Cirazoline (30 μM)
significantly decreased the frequency of AP firing in a
partly reversible manner (control, 7.3 ± 1.7 s−1; cirazoline,
5.3 ± 1.7 s−1, n = 6, P < 0.05; (Fig. 9A). In a similar
manner, ω-CgTx GVIA (1 μM) significantly blocked
the AP firing (control, 9.7 ± 1.6 s−1; ω-CgTx GVIA,
2.1 ± 0.5 s−1, n = 6, P < 0.01), but cirazoline (30 μM) had
no effects on AP firing in the presence of ω-CgTx (ω-
CgTx GVIA, 2.1 ± 0.5 s−1; ω-CgTx GVIA + cirazoline,
2.3 ± 0.6 s−1, n = 6; Fig. 9B).

Discussion

Our results showed that the activation of Ri-pre inhibited
I Ca-N in a voltage- and PTX-independent manner
in rat SCG neurons. A non-I1/non-I2 imidazoline
receptor has been identified as Ri-pre in animal and
human hearts and blood vessels (Molderings & Göthert,
1999; Molderings et al. 2002). This Ri-pre inhibits NA
release from sympathetic nerve endings in cardiovascular
tissue and does not belong with classical presynaptic
inhibitory receptors, such as Rα2, for several reasons,
as follows: (1) Ri-pre is activated by both imidazoline
and guanidine derivatives; (2) Ri-pre is blocked with low
potency by rauwolscine, an Rα2 antagonist; and (3) Ri-pre

is also blocked with moderate potency by SR141716A
and LY320135, CB1 cannabinoid receptor antagonists
(Molderings & Gothert, 1998, 1999; Molderings et al. 1999,
2002). Unfortunately, a specific agonist or antagonist for
Ri-pre has not yet been developed.

Calcium channels play various roles in neurons,
but their most crucial function is excitation–secretion
coupling. Neurotransmitter release is highly dependent
on intracellular Ca2+ in a co-operative manner, and a rise
in intracellular Ca2+ concentration is mediated mostly
by Ca2+ influx through voltage-operated Ca2+ channels.
Any substance that modulates Ca2+ channel activity
can therefore affect synaptic release and significantly
alter information transmission. In peripheral sympathetic
neurons, N-type Ca2+ channels primarily regulate the
release of the sympathetic neuroeffector, NA. In addition,
various substances, such as NA, somatostatin, substance P
and magnesium, which readily modulate N-type Ca2+

channels, can regulate NA release from sympathetic
nerve termini (Molderings et al. 2000; Shimosawa et al.
2004). The Ri-pre-mediated inhibition of NA release
may thus be associated with N-type Ca2+ channels in
sympathetic nerve terminals. To test this possibility, we
determined the effect of cirazoline, a potent putative

Ri-pre agonist (Molderings & Göthert, 1999; Molderings
et al. 2002), on I Ca-N in rat SCG neurons. We found
that cirazoline (30 μM) inhibited I Ca in a reversible and
voltage-dependent manner by about 50% (Fig. 1), and that
this cirazoline-induced inhibition was nearly completely
occluded by ω-CgTx GVIA (Fig. 6), suggesting that
cirazoline inhibited mainly I Ca-N in rat SCG neurons.

Imidazoline derivatives have been reported to bind to
Rα as well as to imidazoline receptor (Molderings et al.
1999). In fact, cirazoline is known also to be an α1-
adrenoceptor (Rα1) agonist and α2- adrenoceptor (Rα2)
antagonist, as well as a putative Ri-pre agonist (Cavero et al.
1982; Ruffolo & Waddell, 1982; Göthert & Molderings,
1991). To isolate the effects of imidazoline derivatives
on only Ri-pre activation, it is necessary to rule out the
adrenoceptor-mediated effects. We therefore compared
the inhibitory effect of cirazoline on I Ca with that of
NA, a non-selective Rα agonist. Noradrenaline (1 μM)
inhibited I Ca by 50% in a reversible manner (Fig. 2)
and increased the prepulse facilitation that represents
voltage-dependent inhibition (Fig. 3). Pretreatment with
low-dose rauwolscine (3 μM), which blocks Rα2 almost
completely, prevented NA-induced I Ca inhibition and
prepulse facilitation, suggesting that NA-induced Ca2+

inhibition is mainly mediated by Rα2 activation, consistent
with previous reports (Schofield, 1990; Fig. 3B). Cirazoline
(30 μM) also inhibited I Ca by about 50% in a reversible
and voltage-dependent manner (Fig. 1). This cirazoline-
induced I Ca inhibition was partly attenuated to about
30% by 3 μM rauwolscine without noticeable prepulse
facilitation (Fig. 5B). This result suggested that cirazoline
may also behave as a partial Rα2 agonist. In fact,
Gaiser et al. (1999) suggested that cirazoline acts as an
α2A-adrenoceptor agonist. Moreover, α2A-adrenoceptor
subtypes, as well as other Rα2 (α2B, α2C) subtypes, exist
in rat SCG neurons (Gold et al. 1997), and all three
Rα2 subtypes serve as autoreceptors in postganglionic
sympathetic neurons (Trendelenburg et al. 2003). It is
therefore possible that cirazoline may inhibit I Ca in part
through a α2A-adrenoceptors, but this will have to be
determined in future studies.

To investigate the mechanism of Rα2-resistant (e.g.
in the presence of 3 μM rauwolscine) inhibition of
I Ca by cirazoline, we pretreated neurons with 30 μM

rauwolscine, which potently blocked the Ri-pre for
10 min. This pretreatment nearly completely prevented
cirazoline from inhibiting I Ca (Fig. 5C). In addition,
pretreatment with 10 μM LY320135, an Ri-pre and a CB1
cannabinoid receptor antagonist, in combination with
3 μM rauwolscine (Molderings & Göthert, 1998, 1999;
Molderings et al. 1999, 2002) also significantly attenuated
Rα2-resistant I Ca inhibition by cirazoline (Fig. 5D). These
results strongly suggest that Rα2-resistant I Ca inhibition
by cirazoline may mediated by activation of Ri-pre.
However, several other possibilities must be ruled out to
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determine the mechanism of this Rα2-resistant inhibition
of cirazoline. First, cirazoline may inhibit I Ca via CB1
cannabinoid receptor activation. In fact, rauwolscine at
the imidazoline-receptor-blocking concentration (30 μM)
blocks the effect of CB1agonists, such as cP55, 940
and anandamide (Molderings et al. 1999). Moreover,
LY320135 is a CB1 cannabinoid receptor antagonist.
However, this mechanism can be excluded because rat SCG
neurons lack endogenous cannabinoid receptors (Mackie
& Hille, 1992; Pan et al. 1996). The second possible
mechanism is that cirazoline-induced I Ca inhibition may
be mediated by Rα1 activation. However, this is unlikely
because: (1) phenylephrine, a selective Rα1, produces no
significant effect on I Ca in rat SCG neurons (Schofield,
1990); and (2) 3 μM rauwolscine, which antagonizes Rα2,
nearly completely prevented inhibition of I Ca by NA, a
non-selective adrenergic agonist, as previously reported
(Schofield, 1990). This suggested that I Ca inhibition by
NA may have been mediated not by Rα1 activation, but
by Rα2 activation in rat SCG neurons (Fig. 3). Taken
together, these results suggest that activation of Ri-pre may
modulate I Ca-N in a voltage-independent manner in rat
SCG neurons.

In most neurons, PTX-sensitive G protein is activated
by various neurotransmitters, such as NA, somatostatin
and adenosine, and is involved in inhibition of I Ca-N

(Shapiro & Hille, 1993; Hille, 1994). The characteristics
of voltage-dependent I Ca-N inhibition are slowing of
the activation kinetics, relief of I Ca-N inhibition by the
conditioning depolarizing pulses (prepulse facilitation),
and the absence of diffusible messenger (membrane-
delimited manner; Hille, 1994; Elmslie, 2003). However,
other neurotransmitters inhibit I Ca-N in different ways.
For example, substance P and pancreatic polypeptide
inhibit I Ca-N in a voltage-independent, PTX-insensitive
and membrane-delimited manner (Shapiro & Hille, 1993;
Wollmuth et al. 1995). In contrast, Oxo-M, a muscarinic
agonist, and angiotensin II inhibit I Ca-N in a voltage-
independent, PTX-insensitive and second messenger-
utilizing manner (Beech et al. 1991, 1992; Bernheim et al.
1992; Shapiro et al. 1994a). The inhibition of I Ca-N by
Oxo-M is initiated by M1 muscarinic receptors (Bernheim
et al. 1992; Shapiro et al. 1999) and requires Gαq/11 class
G protein (Haley et al. 2000; Kammermeier et al. 2000)
and phospholipase C activation (Suh & Hille, 2002; Ruiz-
Durantez et al. 2003). Moreover, this inhibition of I Ca-N

by Oxo-M results from depletion of phosphatidylinositol-
4,5-bisphosphate (Gamper et al. 2004).

Oxotremorine methiodide also suppresses I M using a
very similar signalling mechanism to that of I Ca-N. In fact,
this pathway is initiated by activation of M1 muscarinic
receptors (Marrion et al. 1989) and PTX-insensitive
G proteins (Brown et al. 1989; Bernheim et al. 1992), and
the specific G protein that is primarily involved is Gαq/11

(Haley et al. 1998, 2000). Moreover, this suppression

of I M by Oxo-M is mediated through depletion
of phosphatidylinositol-4,5-bisphosphate (Winks et al.
2005). Bradykinin also inhibits I M via Gαq/11, which
is activated by B2 BK receptor (Jones et al. 1995).
These results suggest that inhibition of I Ca and I M

by M1 muscarinic agonists share, at least in part,
a common pathway (Shapiro et al. 1994b). In this
study, NA-induced I Ca inhibition was almost completely
prevented by pretreatment with PTX, consistent with
previous data (Shapiro et al. 1994b; Elmslie, 2003). In
contrast, the inhibitory effects of cirazoline were similar
to those of Oxo-M and angiotensin II in SCG neurons
because: (1) PTX did not affect cirazoline-induced I Ca-N

inhibition significantly in SCG neurons (Fig. 7B); (2) in
the presence of 3 μM rauwolscine, cirazoline inhibited
I Ca-N in a voltage-independent manner; and (3) cirazoline
also inhibited I M in the presence of 3 μM rauwolscine
(Fig. 8). These results suggest that activation of Ri-pre

inhibited I Ca-N mainly in a PTX-independent and voltage-
independent pathway.

In autonomic ganglia neurons, repetitive firing of APs
needs Ca2+ influx through N-type Ca2+ channels to
maintain the repetitive activity. In fact, Ca2+-free buffer
or ω-CgTx GVIA significantly blocked the repetitive
action potentials during the prolonged depolarizing
stimulus in bronchial ganglion neurons (Myers, 1998).
Thus, inhibition of I Ca-N by neurotransmitter or
inflammatory mediators released near a ganglion may
attenuate the ability to conduct excitatory stimuli from
the preganglionic synapse and, consequently, regulate
the peripheral autonomic target organ. In the present
experiments, cirazoline (30 μM) significantly decreased
the frequency of AP firing in a partly reversible manner
(Fig. 9A). Likewise, ω-CgTx GVIA (1 μM) significantly
blocked the AP firing. This cirazoline-induced inhibition
of AP firing was almost completely occluded in the
presence of ω-CgTx (Fig. 9B). This result suggests that
I Ca-N inhibition induced by activation of Ri-pre may
inhibit repetitive AP firing and relay of excitatory stimuli
to the sympathetic nerve terminal. In addition, if N-
type Ca2+ channels are functionally coupled to Ri-pre at
synaptic nerve terminals of SCG neurons much as they
are at the soma, activation of Ri-pre may depress NA
release by reducing intracellular Ca2+ concentration via
direct blockade of N-type Ca2+ channels at peripheral
sympathetic nerve terminals, as in the general concept of
presynaptic inhibition proposed by Dunlap & Fischbach
(1981).

In conclusion, we have demonstrated that activation of
Ri-pre inhibited I Ca-N via voltage- and PTX-independent
pathways, and this inhibition attenuated repetitive AP
firing in SCG neurons. These results suggest, for the first
time, cellular mechanisms for pharmacological effects of
Ri-pre activation in the peripheral sympathetic nervous
system and provide basic and theoretical information
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about developing new agents for the treatment of
hypertension.
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Escribá PV, Ozaita A & Garcia-Sevilla JA (1999).
Pharmacologic characterization of imidazoline receptor
proteins identified by immunologic techniques and other
methods. Ann N Y Acad Sci 881, 8–25.

Gaiser EG, Trendelenburg AU & Starke K (1999). A search for
presynaptic imidazoline receptors at rabbit and rat
noradrenergic neurones in the absence of α2-autoinhibition.
Naunyn Schmiedebergs Arch Pharmacol 359, 123–132.

Galvan M & Adams PR (1982). Control of calcium current in
rat sympathetic neurons by norepinephrine. Brain Res 244,
135–144.

Gamper N, Reznikov V, Yamada Y, Yang J & Shapiro MS
(2004). Phosphatidylinositol [correction] 4,5-bisphosphate
signals underlie receptor-specific Gq/11-mediated
modulation of N-type Ca2+ channels. J Neurosci 24,
10980–10992.

Gold MS, Dastmalchi S & Levine JD (1997). α2-Adrenergic
receptor subtypes in rat dorsal root and superior cervical
ganglion neurons. Pain 69, 179–190.
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