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Abstract. The onset and stability of a triple cross-diffusive viscoelastic fluid layer is investigated. The rheology of viscoelastic
fluid is approximated by the nonlinear Oldroyd-B constitutive equation which encompasses Maxwell and Newtonian fluid
models as special cases. By performing the linear instability analysis, analytical expression for the occurrence of stationary
and oscillatory convection is obtained. The numerical results show that the elasticity and cross-diffusion effects reinforce
together in displaying complex dynamical behavior on the system. The presence of cross-diffusion is found to either stabi-
lize or destabilize the system depending on the strength of species concentration as well as elasticity of the fluid and also
alters the nature of convective instability. The disconnected closed oscillatory neutral curve lying well below the stationary
neutral curve is observed to be convex in its shape in contrast to quasiperiodic bifurcation from the quiescent basic state
noted in the case of Newtonian fluids. This striking feature is attributed to the viscoelasticity of the fluid. By performing
a weakly nonlinear stability analysis, the stability of bifurcating solution is discussed. It is worth reporting that the vis-
coelastic parameters significantly influence the stability of stationary bifurcation though the stationary onset is unaffected
by viscoelasticity. Besides, subcritical instability is occurs and the critical Rayleigh number at which such an instability is
possible decreases in the presence of cross-diffusion terms. The results of Maxwell and Newtonian fluids are delineated as
particular cases from the present study.
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1. Introduction

In liquid mixtures, the diffusion of any species depends merely on its concentration gradient rather than
on the spatial distribution of other species. In single component systems, the diffusion seems to be a
simple process while in multicomponent systems it is not so. A range of possibilities becomes obvious
when the diffusion process involves the contribution of two or more diffusive agents. In such cases, variety
of phenomena like self-diffusion, intra-diffusion, inter-diffusion, tracer diffusion, uphill diffusion, mutual
diffusion and cross-diffusion are possible to occur. The cross-diffusion is a phenomenon in which the
concentration gradient of one species induces a flux of the other species. In the absence of chemical
reactions, the cross-diffusion induces convective motions around liquid interfaces. On the other hand,
cross-diffusion is also responsible for the processes like Chemotaxis, weakly non-bonding solute–solute
interactions, electrostatic, etc. The possibility of cross-diffusion terms in multicomponent systems was
suggested by Onsager and Fuoss [1], while Baldwin et al. [2] undertook the experimental verification of the
existence of cross-diffusion and also observed that the cross-diffusion coefficients can be quite significant.
The motion of particles in the solution mainly depends on the magnitude of diffusion coefficients, which
in turn depends on the composition of solution and solute concentration gradients. For determining the
diffusion coefficients, a suitable frame of reference is essential. The solvent-fixed reference frame, the mass-
fixed reference frame and the volume-fixed reference frame are three main reference frames, out of which
the last one is most suitable for laboratory experiments. When the concentrations are low the interactions
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between particles become negligible; then, the self-diffusion occurs and in the diffusion coefficients matrix
the diagonal elements tend to self-diffusion coefficients. These coefficients do not depend on the choice
of reference frame. The relationship between self and cross-diffusion coefficients was first determined by
Mimura and Kawasaki [3].
The study of convective instability in a system having two diffusing components with dissimilar molecular
diffusivities has been a topic of great theoretical and experimental interest. Excellent documentation of
the studies pertaining to convection in two component fluid systems was done by Turner [4], Huppert and
Turner [5], Platten and Legros [6] and Garaud [7]. The presence of more than two diffusing components
with different molecular diffusivities is witnessed in several natural and industrial fluid systems which
give rise to convective instabilities called multicomponent convection. The study of onset of convection in
the multicomponent solutions (solvent with multiple solutes) finds comprehensive applications in numer-
ous fields like geophysics, soil sciences, oceanography, limnology, geothermally heated lakes, magmas,
sea water, food processing, high-quality material production, solidification of molten alloys, chemical
engineering, oil reservoir engineering and so on [8–11].
In any fluid system with n-species, the diffusion processes can be described by generalized Fick’s law

Fi = −
n∑

j=1

DijΔSj ,

which indicates that the flux Fi of ith species depends on the concentration gradients (ΔSj ) of all the
species. For j = i, Dii the diagonal elements of the diffusion matrix, represents the self-diffusion coeffi-
cients, while the off-diagonal elements Dij corresponding to j �= i specify the cross-diffusion coefficients.
The motion of a species due to its concentration gradient leads to the flux of the other species either
along or against its direction of motion. Based on this, the cross-diffusion coefficients can either be pos-
itive (co-flux) or negative (counter-flux). The cross-diffusion terms in the diffusivity matrix control the
instability of the system considerably, they are commonly unnoticed on the basis of the often repeated
slogan that these are of smaller magnitude compared with the main diagonal elements. But in some liq-
uid mixtures, cross-diffusion (off-diagonal elements) terms are found to be much larger than self-diffusion
(main diagonal elements) terms [12,13].
There is an abundant of literature present on triple-diffusive convection in a horizontal layer of Newtonian
fluid [14–18]. The multicomponent convection in a Newtonian fluid layer with the Soret effect was studied
by Ryzhkov and Shevtsova [19]. Shivakumara and Naveen Kumar [20] investigated linear and weakly
nonlinear convection in a triple-diffusive couple stress fluid layer. The majority of studies on triple-
diffusive convection have been dealt with Newtonian fluids. However, to account for rheological behavior
of complex flow phenomena which arise in plenty of fluid mixtures such as polymer solutions, melts and
paints involving more than two diffusing agents the Newtonian fluid model turns out to be inadequate.
In such cases, the usage of alternative non-Newtonian model particularly viscoelastic model is preferred.
Viscoelastic fluids show both viscous (as that of fluids) and elastic (as that of solids) behavior. These
elastic effects are responsible for more complicated rheological behaviors of such fluids. Owing to the
elasticity of such fluids, the onset of thermal convection in a viscoelastic fluid layer is found to be via
oscillatory mode instead of stationary mode obvious in Newtonian fluids. Ample literature can be found
on convective instability in a single [21–24] and double diffusive [25–29] viscoelastic fluid layer.
Nonetheless, many fluid dynamical systems of practical importance such as pharmaceutical and petroleum
industries, cosmetics, bioengineering and polymer processing involve non-Newtonian fluids containing
multicomponent systems wherein the fluxes of one component will be affecting the other. More specifically,
viscoelastic fluids aptly describe the rheology of fluids existing in the above said applications. To the best
of our knowledge, triple-diffusive convection in a viscoelastic fluid layer has not received any attention in
the literature. The intent of the present study is to investigate the onset and stability of triple-diffusive
convection in a viscoelastic fluid layer accounting for cross-diffusion effects. The constitutive equation of
stress is taken to correspond to an Oldroyd-B type of viscoelastic fluid. The stability analyses have been
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carried out for the case of stress-free boundaries to allow analytical inroads into the problem. Of course,
no-slip conditions are potentially natural, but they are not amenable to tackle the problem analytically.
The similarities and differences between viscoelastic (Maxwell and Oldroyd-B fluids) and Newtonian fluids
as well as the presence and absence of cross-diffusion effects on the instability and stability characteristics
of the system are analyzed in detail. Most importantly, the quasiperiodic bifurcation (exact heart-shaped
disconnected oscillatory neutral curves having the same extrema at different wave numbers) from the
quiescent basic state observed in the case of Newtonian fluids is found to be not carrying over to the
case of viscoelastic fluids. The stability of bifurcating equilibrium solution is discussed by employing a
weakly nonlinear stability analysis, and subcritical instability is found to occur depending on the choice
of physical parameters.

2. Governing equations

The physical set up consists of a horizontal triple-diffusive layer of an Oldroyd-B fluid, which is of finite
height d but of infinite length and breadth. The upper and lower bounding surfaces of the fluid layer are
flat, stress-free which are maintained at constant but different species concentrations Sm (m = 1, 2, 3)
such that Sm = SmL at the lower boundary and Sm = SmL +ΔSm at the upper boundary with ΔSm > 0.
A Cartesian reference frame is so chosen that the origin lies at the lower boundary and z-axis vertically
upwards in the opposite direction of gravity field. The density ρ depends on three different stratifying
agents possessing different molecular diffusivities and the flux of one species affects due to concentration
gradient of the other, i.e., the cross-diffusion is taken into consideration. The Boussinesq approximation
according to which all thermo-physical properties except the density in the term corresponding body
force are invariant, is invoked.

The governing equations are

∇ · q = 0, (1)

ρo

[
∂q

∂t
+ (q · ∇) q

]
= −∇p + ∇ · τ

˜
+ ρg, (2)

∂Sm

∂t
+ (q · ∇) Sm =

3∑

k=1

Dmk∇2Sk (m = 1, 2, 3), (3)

ρ = ρo

[
1 +

3∑

m=1

αSm (Sm − SmL)

]
, (4)

where q = (u, v, w) denotes the velocity vector, p the pressure, τ
˜

the extra stress tensor, g = (0, 0, g) the
gravitational acceleration, ρ the fluid density, ρ0 is the reference density at Sm = SmL, Dmk’s are solute
diffusivities, αSm the volumetric expansion coefficient of mth species. The rheological characteristics of
polymer liquids can be well depicted by using a nonlinear Oldroyd-B constitutive relation [21],

τ
˜

+ λ1

[
∂τ
˜

∂t
+ (q · ∇)τ

˜
− (∇q)T τ

˜
− τ

˜
(∇q)

]
= μ

{
A
˜

+ λ2

[
∂A

˜
∂t

+ (q · ∇)A
˜

− (∇q)T A
˜

− A
˜
(∇q)

]}
, (5)

where μ is the fluid viscosity, A
˜

= ∇q + (∇q)T is the rate-of-strain tensor, λ1 is the relaxation time,
λ2 is the retardation time. Equation (5) includes Newtonian fluid (λ1 = λ2 = 0) and the Maxwell fluid
(λ2 = 0) models as particular cases.

For simplicity and with the object of obtaining the solution in the closed form, the boundaries are
considered to be flat, stress-free and perfect conductors of species concentrations. Moreover, the previous
studies on similar types of problems have been revealed that change in boundary conditions to the case
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of rigid boundaries rarely leads to any fundamental differences in the results and in the vast majority of
cases, they lead to quantitative differences only. Hence, the relevant boundary conditions are

w =
∂u

∂z
=

∂v

∂z
= 0 at z = 0, d

Sm = SmL at z = 0 and Sm = SmL + ΔSm at z = d (m = 1, 2, 3)

}
. (6)

At the basic state, the fluid is at rest and the gradients of stratifying agents exist only along the vertical
direction, so that

qb = 0, τb
˜

= 0, Smb = SmL +
ΔSm

d
z (m = 1, 2, 3), pb = po − ρog

3∑

m=1

αSm

(
SmL z +

ΔSm

2d
z2

)
. (7)

where the subscript b denotes the basic state, p0 is the pressure at z = 0. The finite amplitude perturba-
tions (primed quantities given below) are superimposed on the basic state in the form

q = qb + q′, p = pb + p′, ρ = ρb + ρ′, τ
˜

= τb
˜

+ τ ′
˜

, Sm = Smb + S′
m (m = 1, 2, 3). (8)

Consequently, the governing Eqs. (1)–(5) are simplified and rendered dimensionless using

∇∗ = d ∇, t∗ =
D11

d2
t, q =

d

D11
q, (p∗, τ

˜
∗) =

d2

μD11
(p, τ

˜
), S∗

m =
αSmgd3

νD11
Sm (m = 1, 2, 3). (9)

So that they appear like (on omitting the asterisks)

∇ · q = 0, (10)

1
Pr

[
∂q

∂t
+ (q · ∇) q

]
= −∇p + ∇ · τ

˜
−

3∑

m=1

Smk̂, (11)

∂Sm

∂t
+ (q · ∇) Sm + RSmw =

3∑

k=1

γmk∇2Sk (m = 1, 2, 3), (12)

τ
˜

+ Λ1

[
∂τ
˜

∂t
+ (q · ∇)τ

˜
− (∇q)T τ

˜
− τ

˜
(∇q)

]
= A

˜
+ Λ2

[
∂A

˜
∂t

+ (q · ∇)A
˜

− (∇q)T A
˜

− A
˜
(∇q)

]
, (13)

where Pr = ν/D11 is generalized the Prandtl number, RSm = αSmgd3ΔSm/νD11 (m = 1, 2, 3) are the
Rayleigh numbers, γmk = αSmDmk/αSkD11 (m = 1, 2, 3) are the diffusivity-expansion coefficient ratios,
Λ1 = λ1D11/d2 is the relaxation parameter, and Λ2 = λ2D11/d2 is the retardation parameter.

The analysis is restricted to two-dimensional motions, and the stream function ψ(x, z, t) is introduced
in such a way that

u = ψ,z, w = −ψ,x. (14)

Eliminating the pressure term from the momentum equation by operating the curl and using the basic
state solutions, one can obtain

1
Pr

L1(∇2ψ) − (S1 + S2 + S3),x − N = 0, (15)

L1(Sm) − RSmψ,x −
3∑

k=1

γmk∇2Sk = 0 (m = 1, 2, 3), (16)

where L1 (·) = ∂ (·) /∂t + J (·, ψ) is a nonlinear differential operator, N = (τxx − τzz),xz + τxz,zz − τxz,xx

and ∇2 = ∂2/∂x2 + ∂2/∂z2. Further, Eq. (13) in the component form can be written as

τxz + Λ1

{
L1(τxz) +

1
2
∇2ψ U − 1

2
Δ1ψ V

}
= Δ1ψ + Λ2

{
L1(Δ1ψ) + 2ψ,xz ∇2ψ

}
, (17)
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U + Λ1

{
L1(U) − ∇2ψ τxz − 2ψ,xz V

}
= 4ψ,xz + Λ2

{
4L1(ψ,xz) − 2∇2ψ Δ1ψ

}
, (18)

V + Λ1 {L1(V ) − 2ψ,xz U − 2Δ1ψ τxz} = −2Λ2{4(ψ,xz)2 + (Δ1ψ)2
}

, (19)

where U = τxx − τzz, V = τxx + τzz and Δ1ψ = ψ,zz − ψ,xx.
The appropriate boundary conditions are

ψ = ψ,zz = Sm (m = 1, 2, 3) = τxz = U,z = 0 at z = 0, 1. (20)

3. Linear instability analysis

The nonlinear terms in Eqs. (15)–(19) are ignored, and the linear stability equations are found to be
1

Pr
∇2ψ,t − (S1 + S2 + S3),x − N = 0, (21)

(Sm), t − RSmψ,x −
3∑

k=1

γmk∇2Sk = 0 (m = 1, 2, 3), (22)

τxz + Λ1(τxz),t = Δ1ψ + Λ2Δ1ψ,t, (23)

U + Λ1U,t = 4ψ,xz + Λ2ψ,xzt. (24)

The normal mode analysis warrants that the perturbed quantities can be expressed as

ψ = Aeσt sin αx sin πz, Sm = Bmeσt cos αx sin πz (m = 1, 2, 3), (25)

where A and B1 −B3 are constants, α is the horizontal wave number, π is the vertical wave number, and
σ = σr + iω is the growth term. On using Eq. (25) into Eqs. (21)–(24), one gets

a1σ
5 + a2σ

4 + a3σ
3 + a4σ

2 + a5σ + a6 = 0, (26)

where

a1 = δ2Λ1,

a2 = δ2 + δ4 [(γ11 + γ22 + γ33) Λ1 + PrΛ2] ,

a3 =Prδ4 − Prα2 (RS1 + RS2 + RS3) Λ1 + δ4
(
1 + Prδ2Λ2

)
(γ11 + γ22 + γ33)

+ δ2Λ1b4,

a4 = − Prα2 (RS1 + RS2 + RS3) Λ1 + Prα2δ2Λ1 (b1RS1 + b2RS2 + b3RS3)

+ δ6 (b4 + Pr (γ11 + γ22 + γ33)) + δ8 (b4PrΛ2 + b8Λ1) ,

a5 =Prα2δ6
[(

b1 − δ2b5
)
RS1 +

(
b2 − δ2b6

)
RS2 +

(
b3 − δ2b7

)
RS3

]

+ δ8 (Prb4 + b8) + δ10PrΛ2b8,

a6 = − Prα2δ4 (b5RS1 + b6RS2 + b7RS3) + Prδ10b8,

with
b1 = γ21 − γ22 + γ31 − γ33,

b2 = γ32 − γ33 + γ12 − γ11,

b3 = γ13 − γ11 + γ23 − γ22,

b4 = γ11γ22 + γ22γ33 + γ33γ11 − γ12γ21 − γ23γ32 − γ31γ13,
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b5 = γ21 (γ32 − γ33) + γ22 (γ33 − γ31) + γ23 (γ31 − γ32) ,

b6 = γ32 (γ13 − γ11) + γ33 (γ11 − γ12) + γ31 (γ12 − γ13) ,

b7 = γ13 (γ21 − γ22) + γ11 (γ22 − γ23) + γ12 (γ23 − γ21) ,

b8 = γ11 (γ22γ33 − γ23γ32) + γ12 (γ23γ31 − γ21γ33) + γ13 (γ21γ32 − γ22γ31)

= | (γij) |,
δ2 =α2 + π2.

To perform the linear instability analysis, we set the real part of σ to zero and then on using the condition
for the existence of nonzero solution of the system (Eqs. (21)–(24)) we obtain

RS1 = f1
(
ω2, α2;Λ1, Λ2, RS2, RS3, γij , P r

)
+ iωδ2f2

(
ω2, α2;Λ1, Λ2, RS2, RS3, γij , P r

)
, (27)

where f1 and f2 are real valued functions of known quantities and they are not given here as the mathe-
matical expressions are very lengthy. Since RS1 is a physical quantity, it must be real so that either ω = 0
or f2 = 0.

3.1. Stationary convection

When ω = 0 in Eq. (27), the instability is referred to as stationary convection and it is characterized by
the Rayleigh number

Rs
S1 =

1
b5

(
δ6

α2
b8 − b6RS2 − b7RS3

)
. (28)

This expression is free from viscoelastic parameters and coincides with the Newtonian fluid case (Terrones
[18]). The stationary Rayleigh number Rs

S1 attains its critical value at α = π/
√

2 and the critical Rayleigh
number for the stationary onset is

Rs
S1c =

1
b5

(
27π4

4
b8 − b6RS2 − b7RS3

)
. (29)

3.2. Oscillatory convection

When ω �= 0 in Eq. (27), then f2 = 0 and this condition gives a dispersion relation of the form

m1

(
ω2

)3
+ m2

(
ω2

)2
+ m3

(
ω2

)
+ m4 = 0, (30)

where m1 − m4 are functions of α, Pr, Λ1, Λ2, RS2, RS3, γij and they are not presented here as these
expressions are lengthy. For a proper combination of physical parameters, it is feasible to have either
one or two or three values of ω2 at the same wave number α. In such cases, for each ω2, there is a
corresponding real value of the Rayleigh number on the oscillatory neutral curve given by

Ro
S1 = f1

(
ω2, α2;Λ1, Λ2, RS2, RS3, γij , P r

)
. (31)

and ω2 is given by (30). There is no simple way to analyze Eq. (30) to extract positive roots, but one
has to solve it numerically for the chosen parametric values of Pr, Λ1, Λ2, RS2, RS3 and γij . The critical
value of Ro

S1 with respect to the wave number, denoted by Ro
S1c, is determined as follows. First, the

positive values of ω2 are determined from Eq. (30) and if there are none, then no oscillatory convection
is possible. If there is only one positive value of ω2 then Ro

S1 is computed numerically from Eq. (31). If
there are two or more positive values of ω2, then the least of Ro

S1 among positive ω2 is retained and the
critical value of Ro

S1 with respect to the wave number is obtained.
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4. Weakly nonlinear stability analysis

The aim of weakly nonlinear stability analysis is to provide quantitative results regarding the amplitude
of convection and also the stability of stationary bifurcation. The regular perturbation method is used
by introducing a small bifurcation parameter

χ = [(RS1 − Rs
S1c) /RS12]

1
2 ,

that indicates the deviation from the critical state. The bifurcation is said to be subcritical if RS12 < 0
and supercritical if RS12 > 0. Then, all the dependent variables are expanded in powers of χ in the form

(ψ, Sm, U, V, τxz) =
∞∑

n=1

(
ψn, Smn, Un, Vn, τ (n)

xz

)
χn, (m = 1, 2, 3). (32)

A small time scale s = χ2t is also introduced, and the operator ∂/∂t is replaced by ∂/∂t = χ2∂/∂s.
Substituting Eq. (32) in to Eqs. (15)–(19), we get

(S1i + S2i + S3i),x + Ni = G1i, (33)

RSmψi,x +
3∑

k=1

γmk∇2Ski = Hmi, (m = 1, 2, 3), (34)

τ (i)
xz − Δ1ψi = Xi, (35)

Ui − 4ψi,xz = Yi, (36)

Vi = Zi, (37)

where the quantities G1, Hm (m = 1, 2, 3) and Xi − Zi are to be determined successively and

Ni = Ui,xz + Δ1τ
(i)
xz . (38)

Further, the boundary conditions are

ψi = ψi,zz = Smi = τ (i)
xz = Ui,z = 0 at z = 0, 1 (i = 1, 2, 3, · · · ). (39)

At the leading order in χ, the equations are linear and homogeneous and corresponding to RS1 = Rs
S1c

their solution is given by

Sm1 = Am1 cos αx sin πz, ψ1 = B11 sin αx sin πz

U1 = C11 cos αx cos πz, τ (1)
xz = D11 sin αx sin πz, V1 = 0

}
. (40)

The undetermined amplitudes satisfy the following relations

αRSmB11 − δ2
3∑

k=1

γmkAk1 = 0 (m = 1, 2, 3), (41)

D11 + cB11 = 0, (42)

C11 − 4παB11 = 0, (43)
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where c = π2 − α2. The nonlinear terms of the second order in χ are

G12 = 0, Hm2 = −πα2

2δ2
gm

| (γij) |B
2
11 sin 2πz, (m = 1, 2, 3), (44)

where gm is the determinant formed from | (γij) | by replacing the mth column elements, respectively, by
RS1, RS2, RS3. The second-order equations appear as follows:

(S12 + S22 + S32),x + N2 = 0, (45)

RSmψ2,x +
3∑

k=1

γmk∇2Sk2 = −πα2

2δ2
gm

| (γij) |B
2
11 sin 2πz, (m = 1, 2, 3). (46)

To solve the above equations subjected to the relevant boundary conditions, we need to calculate N2

from Eqs. (35)–(37). The straightforward calculation gives

X2 = −Λ1

{
L2

(
τ (1)
xz

)
+

1
2
∇2ψ1 U1

}
+ Λ2

{
L2 (Δ1ψ1) + 2ψ1,xz ∇2ψ1

}
, (47)

Y2 = −Λ1

{
L2 (U1) − 2∇2ψ1 τ (1)

xz

}
+ Λ2

{
4L2 (ψ1,xz) − 2∇2ψ1 Δ1ψ1

}
, (48)

Z2 = 2Λ1

{
ψ1,xz U1 + Δ1ψ1 τ (1)

xz

}
− 2Λ2

{
4 (ψ1,xz)

2 + (Δ1ψ1)
2
}

, (49)

where L2 = ψ1,z∂/∂x − ψ1,x∂/∂z. Solving Eqs. (35)–(37), we get

τ (2)
xz = Δ1ψ2 + 1

2 (Λ1 − Λ2) παδ2B2
11 sin 2αx sin 2πz, (50)

U2 = 4ψ2,xz + 1
2 (Λ1 − Λ2) B2

11

{
4π2α2 (cos 2πz − cos 2αx)

+ c δ2 (1 − cos 2πz − cos 2αx + cos 2πz cos 2αx)
}

, (51)

V2 = 1
2 (Λ1 − Λ2) B2

11

{
4π2α2 (1 + cos 2πz + cos 2αx + cos 2πz cos 2αx)

+ c2 (1 − cos 2πz − cos 2αx + cos 2πz cos 2αx)
}

. (52)

From these equations, we deduce that

N2 = ∇4ψ2. (53)

Equations (45) and (46) are solved, and the solution is

ψ2 = 0, Sm2 =
| (γij)m |
| (γij) |2

α2

8πδ2
B2

11 sin 2πz (m = 1, 2, 3), (54)

where | (γij)m | is the determinant formed from | (γij) | by replacing the mth column elements, respectively,
by g1, g2, g3.

The nonlinear terms of the third-order equations are

G13 = − δ2

Pr

dB11

ds
sin αx sin πz, (55)

Hm3 =
(

−αξmRS12B11 +
α

δ2
gm

| (γij) |
dB11

ds
+

α3

8δ2
| (γij)m |
| (γij) |2 B3

11

)
cos αx sin πz + · · · (m = 1, 2, 3),

(56)
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where ξ1 = 1, ξ2 = 0 = ξ3. Then, we determine

N3 = ∇4ψ3 − (Λ1 − Λ2) δ4
dB11

ds
sinαx sin πz − MB3

11 sinαx sin πz + · · · , (57)

where

M =
1
16

Λ1 (Λ1 − Λ2) (η1 − η2) , (58)

with

η1 = 9
(
π4 + α4

)2
+ 4π2α2

(
π4 + α4

)
+ 36π4α4

η2 = 9c4 + 8π2α2c2 + 144π4α4

}
. (59)

The third-order equations then look like

(S13 + S23 + S33),x + N3 = − δ2

Pr

dB11

ds
sin αx sin πz, (60)

RSmψ3,x +
3∑

k=1

γmk∇2Sk3 =
(

−αξmRS12B11 +
α

δ2
gm

| (γij) |
dB11

ds

+
α3

8δ2
| (γij)m |
| (γij) |2 B3

11

)
cos αx sin πz + · · · (m = 1, 2, 3), (61)

The above equations have a solution of the form

ψ3 = B33 sinαx sin πz + · · · , Sm3 = Am3 cos αx sin πz + · · · , (m = 1, 2, 3). (62)

Then the solvability condition applied on Eqs. (60)–(61), upon using Eqs. (41)–(43), yields the Landau
equation

Γ
dB11

ds
= RS12B11 − ΩB3

11, (63)

where Γ and Landau constant Ω are functions of known physical parameters. For the steady case, the
amplitude is given by

B2
11 =

RS12

Ω
. (64)

When Ω > 0, the stationary bifurcation is supercritical (i.e., stable) and subcritical (i.e., unstable) if
Ω < 0. Although the stationary onset is independent of viscoelastic parameters, the stability of stationary
bifurcation is influenced by viscoelasticity of the fluid. However, the cross-diffusion terms influence both
stationary onset and the stability of steady bifurcating equilibrium solution.

5. Results and discussion

The intricacies of cross-diffusion and elasticity of the fluid on the onset and stability of triple-diffusive
convection in an Oldroyd-B fluid layer are investigated. It is a fact that the estimation of parameter
values, or even the applicability of a given model of rheology, for a given polymeric fluid is notoriously
difficult, and the models often have many such parameters. Due to uncertainties in parameter values,
the qualitative changes of behavior may be of interest as one would expect the predicted quantitative
changes are of only a few percent to be overwhelmed in an experiment. To throw light on these issues,
the numerical calculations are carried out for two different diffusivity matrices with (Dij) and without
(D′

ij) cross-diffusion terms for the quaternary aqueous mixtures obtained experimentally by Noulty and
Leaist [30] and Vladimir and Epstein [12] which are, respectively, given by
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Dij =

⎡

⎣
1.94 − 0.14 0.40

− 0.05 2.21 − 1.04
0.03 − 1.36 2.02

⎤

⎦ × 10−9 m2 s−1, D′
ij =

⎡

⎣
1.94 0 0
0 1.146 0
0 0 1.1

⎤

⎦ × 10−9 m2 s−1

(65)

and

Dij =

⎡

⎣
1.26 − 0.55 − 104

− 0.42 1.32 60
− 0.00013 0.00004 0.07

⎤

⎦ × 10−9 m2 s−1,

D′
ij =

⎡

⎣
1.26 0 0
0 1.04762 0
0 0 0.05556

⎤

⎦ × 10−9 m2 s−1. (66)

The viscoelastic parameters Λ1 and Λ2 are chosen such that they are either less than or greater than
unity but Λ2 < Λ1. The value of Prandtl number Pr at 25 ◦C based on D11 is fixed at 464, and the
expansion coefficient ratios are taken as αS2/αS1 = 1.06 and αS3/αS1 = 0.80.

5.1. Linear instability analysis

The critical oscillatory Rayleigh numbers for the diffusivity data of Noulty and Leaist [30] and Vladimir
and Epstein [12] for both Maxwell (Λ1 = 0.2, Λ2 = 0) and Oldroyd-B (Λ1 = 0.2, Λ2 = 0.1) fluids with and
without cross-diffusion terms are computed and tabulated in Table 1 for different species concentration
combinations. The superscript ξ denotes the results for those with full cross-diffusion terms, and the values
given within the parenthesis correspond to the diffusivity data of Vladimir and Epstein [12]. For the values
considered, single critical Rayleigh number is found to be enough to identify the linear instability criteria.
Cross-diffusion terms produce observable changes in the critical oscillatory Rayleigh numbers depending
on the values of off-diagonal elements. For example, for RS2 = 102 and RS3 = −104 the critical Rayleigh
numbers differ by 20% for the diffusivity data of Vladimir and Epstein [12] and this change can easily be
observed in an experiment. Besides, the cross-diffusion and magnitude of species concentration Rayleigh
numbers contribute to either stabilization or destabilization of a viscoelastic fluid layer as there is a sign
change in the critical oscillatory Rayleigh number for some values of RS2 and RS3.
The characteristic oscillatory neutral stability curves in the (α,Ro

S1) plane are shown in Fig. 1a, b for
different values of Λ1 and Λ2, respectively, for the diffusivity data of Noulty and Leaist [30]. It is observed
that there exists only one positive value of ω2 for the parametric values chosen in these figures. The
neutral stability curves in the (α,Ro

S1) plane show an upward concave shape, and the region below
each such curve confines to the region of stability, while the region above it corresponds to instability.
For an increase in the value of Λ1, the oscillatory Rayleigh number is significantly decreased, but an
opposite trend is seen with increasing Λ2. Thus, the effect of increasing Λ1 and Λ2 is to advance and
suppress the onset of oscillatory convection. Figure 1 shows that the cross-diffusion terms produce no
qualitative effect and only a quantitative shift of a few percent, which is significantly smaller than the non-
Newtonian effects. The oscillatory neutral curves shown in Fig. 2a, b for the diffusivity data of Vladimir
and Epstein [12] exhibit the presence of off-diagonal elements is to bring in 40% to 80%, variation in the
oscillatory Rayleigh number compared to their absence and these differences surely can be observed in
the experiments. Moreover, the presence of full cross-diffusion terms is to advance the onset of oscillatory
convection compared to their absence.
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(a) (b)

Fig. 1. Oscillatory neutral stability curves in the plane (α, Ro
S1) for different values of a Λ1, b Λ2 when the diffusivity data

given by Eq. (65), RS2 = −100, RS3 = 100, with full cross-diffusion (dashed lines), without cross-diffusion (solid lines)

(a) (b)

Fig. 2. Oscillatory neutral stability curves in the plane (α, Ro
S1) for different values of a Λ1, b Λ2 when the diffusivity data

given by Eq. (66), RS2 = 100, RS3 = −100, with full cross-diffusion (dashed lines), without cross-diffusion (solid lines)

The sensitivity of the onset of convection due to changes in the off-diagonal elements of the diffusivity
matrix is assessed by the following parameterization:

Dij =

⎡

⎣
D′

11 + β(D11 − D′
11) βD12 βD13

βD21 D′
22 + β(D22 − D′

22) βD23

βD31 βD32 D′
33 + β(D33 − D′

33)

⎤

⎦ , (67)
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Evolution of neutral stability curves by varying β in Eq. (67) with diffusivity data given by Eq. (65), Λ1 = 0.1,
Λ2 = 0.07 (Λ1, Λ2 < 1), RS2 = −13,730, RS3 = 11,820, a β = 0, b β = 0.012, c β = 0.0175, d β = 0.022, e β = 0.025, f
β = 0.026
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Fig. 4. Stability boundaries for Λ1 = 0.1, Λ2 = 0.07, RS2 = −13,730, with diffusivity data given by Eqs. (65) and (67)

The cases β = 0 and β = 1, respectively, correspond to diffusivity matrix with and without cross-
diffusion terms. Figure 3a–f shows the evolution of neutral stability curves for different values of β when
Λ1 = 0.1, Λ2 = 0.07 (Λ1, Λ2 < 1), RS2 = −13,730, RS3 = 11,820 and for the diffusivity data given
by Eqs. (65) and (67). For β = 0, Fig. 3a shows that the oscillatory neutral curve is connected to the
stationary neutral curve at two bifurcation points which move closer together as β is increased to 0.012.
In Fig. 3c, the oscillatory neutral curve loses its single-valued character, which has no physical significance
because the single critical RS1 remains at the minimum at the oscillatory neutral curve. As the value of
β goes on increasing slightly, the closed loop of oscillatory neutral curve moves well below the stationary
neutral curve as seen in Fig. 3e for β = 0.025. The significance of this neutral is that three critical
Rayleigh numbers are needed to specify the linear instability criteria. The system is stable in the region:
RS12 < RS1 < RS11 and RS1 < RS13, and unstable in the island RS13 < RS1 < RS12 and RS1 > RS11.
At β = 0.026, the oscillatory neutral curve disappears leaving only the stationary neutral curve (Fig.
3f). Thus, it is evident that small variations in the cross-diffusion terms change totally the instability
characteristics of the system. Besides, it is important to note here that the closed disconnected oscillatory
neutral is convex in shape instead of heart shaped with twin maxima at different wave numbers observed
in the case of Newtonian fluids (Terrones [18]). In other words, quasiperiodic bifurcation is found to be
not possible. This is one of the striking features that has not been carried over to the viscoelastic fluid
case.
Figure 4 shows the corresponding stability boundary in the plane (RS1c, RS3) for parametric values
considered in Fig. 3. From the graph, it is observed that the presence and absence of cross-diffusion terms
clearly change the characteristics of the instability of the system. The regions R−1 and R−2 between the
vertical lines correspond to multivalued region for with and without cross-diffusion terms, respectively, in
which three values of critical Rayleigh number are needed to specify the linear instability of the system.
However, single value of critical Rayleigh number is sufficient to specify the linear instability criteria of
the system outside the regions R−1 and R−2. Moreover, it is seen that the multivalued region increases
in the presence of cross-diffusion terms compared to their absence.
The viscoelastic parameters Λ1 and Λ2 can be greater than unity for many polymeric fluids, and it is
interesting to discern the evolutions of neutral stability curves for this case as well. The results displayed
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(a) (b)

(c) (d)

Fig. 5. Evolution of neutral stability curves by varying β in Eq. (67) with the diffusivity data given by Eq. (65), Λ1 = 1.2,
Λ2 = 1.1, RS2 = −13,730, RS3 = 11,615, a β = 0, b β = 0.002, c β = 0.005, d β = 0.0062

in Figs. 5a–d when Λ1 = 1.2, Λ2 = 1.1, RS2 = −13,730, RS3 = 11,615 and diffusivity data given by Eqs.
(65) and (67) are for different values of β = 0, 0.002, 0.005 and 0.0062. The oscillatory neutral curves are
disconnected but they are not exactly heart shaped. This is another situation showing the significance of
cross-diffusion terms on the instability characteristic of the system.
The similarities and differences between Oldroyd-B (with Λ1 = 0.1, Λ2 = 0.07), Maxwell (with Λ1 =
0.1, Λ2 = 0) and Newtonian fluid (with Λ1 = 0 = Λ2) models with and without cross-diffusion effects are
shown in Figs. 6a–c, respectively, when Pr = 464, RS2 = −13,730 and RS3 = 11,860 for the diffusivity
data given by Eqs. (65) and (67). From these figures, it is obvious that for an Oldroyd-B fluid case three
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(a)

(b) (c)

Fig. 6. Variation of retardation parameter Λ2 on evolution of neutral stability curves for a Oldroyd-B fluid: Λ1 = 0.1,
Λ2 = 0.07, b Maxwell fluid: Λ1 = 0.1, Λ2 = 0, c Newtonian fluid: Λ1 = Λ2 = 0 when the diffusivity data given by Eqs. (65)
and (66), RS2 = −13,730, RS3 = 11,860, with full cross-diffusion (dashed lines), without cross-diffusion (solid lines)

critical Rayleigh numbers are needed to specify the linear instability criteria in the absence of cross-
diffusion terms. To the contrary, oscillatory convection is not possible and only stationary convection
prevails once the effect of cross-diffusion is considered. Thus, the presence of cross-diffusion completely
alters the nature of convective instability of the system in the case of Oldroyd-B fluids. In the case of
Maxwell fluids, oscillatory convection is found to be a preferred mode of instability, but a single critical
Rayleigh number is sufficient to specify the instability of the system. The scenario observed for Newtonian
fluids is, however, is different from those of Oldroyd-B and Maxwell fluids and note that only stationary
convection is possible irrespective of the cross-diffusion effects.
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Fig. 7. Regions of supercritical and subcritical steady bifurcations for different values of RS3 when the diffusivity data
given by Eqs. (65) and (66), RS2 = −5000, with cross-diffusion (dashed lines), without cross-diffusion (solid lines)

Fig. 8. Regions of supercritical and subcritical steady bifurcations for different values of RS3 when the diffusivity data
given by Eqs. (65) and (66), RS2 = 5000, with cross-diffusion (dashed lines), without cross-diffusion (solid lines)

5.2. Weakly nonlinear stability analysis

The stability of steady bifurcating equilibrium solution completely depends on the sign of Ω appearing in
Eq. (64). The stationary bifurcation is supercritical (stable) if Ω > 0 and subcritical (unstable) if Ω < 0.
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Fig. 9. Regions of supercritical and subcritical steady bifurcations for different values of β in Eq. (67) when the diffusivity
data given by Eq. (65), RS2 = 5000, RS3 = −5000

Fig. 10. Regions of supercritical and subcritical steady bifurcations for different values of β in Eq. (67) when the diffusivity
data given by Eq. (65), Λ1 = Λ2 = 0 (Newtonian case)

Although the stationary onset is free from viscoelastic parameters, it is seen that these parameters control
the stability of stationary bifurcation. The bifurcating solutions are depicted in viscoelastic parameters
plane for different values of species concentration Rayleigh numbers and cross-diffusion terms in Figs. 7,
8 and 9. In these figures, the dotted and solid lines correspond to the results obtained with and without
full cross-diffusion terms. The region above each curve indicates the supercritical bifurcation and below of
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which corresponds to subcritical bifurcation. These figures show the possibility of subcritical stationary
bifurcation for a range of parametric values indicating that the occurrence of instability before the linear
threshold is reached. This is expected, because the linear instability analysis provides only sufficient
condition for instability. From the figures, it is also observed that the subcritical region increases with
decreasing RS3 (Figs. 7 and 8), while it decreases with decreasing β (Fig. 9). In these figures, the results
for Λ1 �= Λ2 correspond to the case of Oldroyd-B fluid and the results for Λ2 = 0 corresponds to Maxwell
fluid. It is noted that the subcritical region increases with increasing Λ1, while the trend gets reversed with
increasing Λ2 (Figs. 7, 8 and 9). It is further observed that the viscoelastic parameters exhibit opposing
contributions on the stability of stationary bifurcation. A closer inspection of the figures further reveals
that the presence of off-diagonal elements is to increase the region of subcritical instability when compared
to their absence (i.e., the presence of cross-diffusion terms is to decrease the subcritical Rayleigh number
the most). This result is found to be true for both Oldroyd-B and Maxwell fluids. Thus, the cross-diffusion
effects have a much larger impact on the nonlinear stability theory.
Figure 10 represents the computed values Ω for the Newtonian fluids (Λ1 = Λ2 = 0) as a function of RS3

for different values of β, RS2 and the fixed diffusivity data given by Eqs. (65) and (67). The possibility
of subcritical stationary bifurcation for a range of parametric values is seen indicating the occurrence
of instability before the linear threshold is reached. The subcritical region increases when the diffusing
component is more stabilizing and also with increasing cross-diffusion sensitivity parameter.

6. Conclusions

The coupling of cross-diffusion and viscoelasticity of the fluid on linear and a weakly nonlinear triple-
diffusive convection in the presence of gravity has been investigated. The viscoelastic behavior is modeled
by means of nonlinear Oldroyd-B constitutive equation which includes Maxwell and Newtonian fluids as
particular cases. Some remarkable departures have been identified by performing the linear instability
analysis. The presence of cross-diffusion terms is to either stabilize or destabilize the system depending on
the magnitude of species concentration Rayleigh numbers and also viscoelasticity of the fluid. The presence
of cross-diffusion terms significantly alters the critical Rayleigh numbers depending on the values off-
diagonal elements. The stress relaxation and strain retardation parameters exhibit opposing contribution
and their effect is to hasten and delay the onset of oscillatory convection. The instability characteristics
of the system analyzed for the same parametric values for an Oldroyd-B, Maxwell and Newtonian fluids
are found to be qualitatively different. Even small variation in the elements of diffusivity data results in
change of instability from oscillatory to stationary. The closed convex disconnected oscillatory neutral
curve exists representing the requirement of three critical Rayleigh numbers to specify the linear instability
criteria instead of the usual single value. However, one prominent feature that does not carryover from
Newtonian to viscoelastic fluids is that the onset of instability does not occur simultaneously at the same
critical Rayleigh number at different wave numbers, i.e., heart-shaped oscillatory neutral curve with twin
maxima is not found to occur. Based on the weakly nonlinear stability analysis, a cubic Landau equation is
derived and the stability of steady bifurcating equilibrium solution is analyzed. An important observation
is that the viscoelastic parameters do influence the stability of stationary bifurcation despite their effect
is not felt on the stationary onset. It is noted that subcritical bifurcation is possible and the subcritical
Rayleigh number decreases with increasing cross-diffusion sensitivity parameter.
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