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Abstract

End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that
regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for
division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The
haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently
present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1
oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using
recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability
comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present
as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an
intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1
knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein
cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th
cysteine residues plays a role during mitosis in Giardia.
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Introduction

Microtubules (MTs) are dynamic polymers involved in mitosis,

organelle biogenesis, and intracellular transport [1]. Growth and

catastrophe of MTs are mediated by MT-associated proteins

including plus-end tracking proteins (+TIPs) which preferentially

bind to the growing ends of polymerized MTs in vivo [2]. Among

the +TIPs, end-binding 1 (EB1) proteins are the main regulator of

the protein complexes at the plus end, as shown in mammalian

EB1 [3] and yeast EB1 homologs, Mal3p [4] and Bim1p [5].

The proteins belonging to the EB1 family are composed of an

N-terminal calponin homology (CH) domain, a composite domain

consisting of a a-helically coiled-coli and a unique EB1 homology

region, and the C-terminal acidic tail ending with an EEY/F motif

[6]. The CH domain is reported to be involved in MT binding [4],

whereas the EB1domain play a role in dimerization as well as

binding to the EB1-interacting proteins [7]. The EEY/F motif

serves as a binding site for p150Glued in mammals [8]. The EB1

protein is one of highly conserved proteins among in all

eukaryotes, including Giardia lamblia, a protozoan belonging to

the earliest diverging eukaryotic lineage [9].

G. lamblia has two nuclei and cytoskeletal structures including an

adhesive disc, a median body, and four pairs of flagella [10].

Observations using three-dimensional deconvolution and electron

microscopies indicated that two extranuclear spindles move

chromosomes laterally through a polar opening in the nuclear

membrane during cell division of G. lamblia [11]. Using a

dominant-negative mutant, kinesin-13 was found to control MT

dynamics in G. lamblia [12]. A single open reading frame (ORF)

encoding an EB1-homologous protein was found in the database

of G. lamblia. Using GFP-tagged EB1, G. lamblia EB1 (GlEB1) was

found at the flagellar tips and median bodies [12]. In addition, the

role of GlEB1 was assessed by complementation assays using a

BIM1 mutant of Saccharomyces cerevisiae, in which proper positioning

of the nucleus is abolished [13]. Through co-immunoprecipitation

and yeast two-hybrid assays, block of proliferation 1 and

cytoskeletal proteins such as b- and c-giardins, were identified as

EB1-interacting proteins [14], [15], [16]. However, it remains to

be elucidated how GlEB1 modulates MT dynamics during the cell

cycle of G. lamblia.

In this study, expression and intracellular localization of GlEB1

were examined in various stages using a transgenic G. lamblia

expressing haemagglutinin (HA) epitope-tagged EB1. In addition,

a biochemical characterization of GlEB1 was performed by
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defining the domains and an amino acid residue responsible for

MT binding and dimerization.

Materials and Methods

Giardia cell culture
Trophozoites of the Giardia WB strain (ATCC 30957; Table 1)

were grown for 72 h in a normal TYI-S-33 medium (2% casein

digest, 1% yeast extract, 1% glucose, 0.2% NaCl, 0.2% L-cysteine,

0.02% ascorbic acid, 0.2% K2HPO4, 0.06% KH2PO4, 10% calf

serum, and 0.75 mg/mL bovine bile, pH 7.1) [17].

To induce encystation in vitro, G. lamblia trophozoites were

transferred into an encystation medium (TYI-S-33 medium,

10 mg/mL bovine bile, pH 7.8) [18]. At various time-points after

the incubation in the encystation medium, the cells were harvested

by centrifugation at 3000 rpm for 15 min at 4uC. To monitor the

encystation process, intracellular level of CWP1 [19] was

measured in the harvested cells.

Construction of G. lamblia expressing HA Epitope-tagged
GlEB1

Plasmid pLop2 and pNLop2-GItetR were a gift from Dr. Jung-

Hsiang Tai [20]. To generate an HA epitope tag to the C-terminal

of the eb1 gene, a 950 bp DNA fragment containing the promoter

and the full ORF of the eb1 gene was amplified from G. lamblia WB

genomic DNA by PCR using two primers, eb1-NcoI-F and eb1-

HA-R (Table 2). NcoI and EcoRI sites, located at the ends of the

resultant eb1 DNA, were used for cloning into the corresponding

site of plasmid pLop2, resulting in the plasmid pLop2-eb1-HA. A

950 bp NheI/SalI fragment of pLop2-eb1-HA was cloned into the

plasmid pNLop2-GItetR to yield the plasmid pNLop2-eb1-HA-

GItetR, in which GlEB1 is expressed as a fused protein in frame

with an HA-epitope. All constructs were verified by DNA

sequencing provided by a sequencing service company (Macrogen,

Seoul, Korea).

The trophozoites were grown for 72 h in normal TYI-S-33

medium. Thirty micrograms of pNLop2-eb1-HA-GItetR were

transformed into 16107 trophozoites by electroporation under the

following conditions: 350 volts, 1000 mF, and 700 V (BioRad).

Trophozoites harboring pNLop2-eb1-HA-GItetR were selected

by adding G418 (Life Technologies) to the TYI-S-33 medium at a

final concentration of 150 mg/mL, and after 4 to 5 days of

cultivation, the resistant cells were transferred to and maintained

in the medium containing 600 mg/mL of G418. As a control,

trophozoites carrying pNLop2-GItetR were constructed as

described above.

Western Blot Analysis
Cell extracts were prepared from G. lamblia containing pNLop2-

GItetR, or pNLop2-eb1-HA-GItetR in a phosphate buffered

saline (PBS: 137 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4,

and 2 mM KH2PO4, pH 7.4), separated by SDS-PAGE, and

transferred onto a polyvinylidenefluoride (PVDF) membrane

(Millipore). The membrane was incubated with monoclonal

Table 1. Strains and plasmids used in this study.

Organism/Plasmid Description Source/reference

G. lamblia

ATCC 30957 Clinical isolation ATCC

E. coli

DH5a supE44, DlacU169 (W80 lacZ DM15), hsdR17, recA1, endA1, gyrA96, thi-1, relA1 Invitrogen

BL21 (DE3) F9, ompT, hsdSB(rB
-mB

-) gal, dcm (DE3) Invitrogen

S. cerevisiae

W303a MATa, ade2-1, ura3-1, trp1-1, leu2-3, 112 his3-11, 15 can1-100 [13]

YSK1134 W303a, Dbim1::KanR, Dbfa1:: HIS3, [pRS304-BFA1-TAP] [13]

Plasmids

pLop2 Shuttle vector, AmpR [24]

pNLop2-GItetR neo gene [24]

pLop2-eb1-HA pLop2, 817 bp of G. lamblia eb1 promoter and eb1 (GiardiaDB; GL50803_14048) This study

pNLop2-eb1-HA-GItetR neo gene, 817 bp of G. lamblia eb1 promoter and eb1 This study

pET28b Expression vector, KanR Novagen

pET28b-c-tubulin pET28b, 1478 bp encoding G. lamblia c-tubulin (GiardiaDB; GL50803_114218) This study

pET21b Expression vector, AmpR Novagen

pET21b-EB1-Full pET21b, 717 bp encoding G. lamblia eb1 This study

pET21b-EB1-CHD pET21b, 552 bp encoding G. lamblia eb1 This study

pET21b-EB1-EBD pET21b, 474 bp encoding G. lamblia eb1 This study

pET21b-EB1-C13S pET21b, 717 bp encoding G. lamblia C13S eb1 This study

pET21b-EB1-C46S pET21b, 717 bp encoding G. lamblia C46S eb1 This study

pRS426+PGAL1-10 pRS426, GAL1-10 promoter [13]

pRS426+PGAL1-10-EB1-C13S pRS426+PGAL1-10, 717 bp encoding G. lamblia C13S eb1 This study

Amp, ampicillin; Kan, kanamycin;
R, resistant; DNA-BD, DNA binding domain; AD-activation domain; HA, haemagglutinin.
doi:10.1371/journal.pone.0097850.t001
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mouse anti-HA (1:2000; Sigma) in a blocking solution [Tris-

buffered saline with Tween 20 (TBST); 50 mM Tris-HCl, 5%

skim milk, and 0.05% Tween 20] at 4uC overnight. Following

incubation with horseradish peroxidase (HRP)-conjugated second-

ary antibodies, the immunoreactive protein was visualized using

an enhanced chemiluminescence (ECL) system (Amersham

Pharmacia). Membranes were incubated in a stripping buffer

(Thermo Scientific) at room temperature for 30 min, and then

reacted with polyclonal rat antibodies specific to the a-tubulin of

G. lamblia (1:10000) [21].

In the case of trophozoites with pNLop2-eb1-HA-GItetR, they

were prepared under various cell cycle stage: without aphidicolin

treatment, 6 h-aphidicolin treatment, or released from the

aphidicolin treatment every hour up to 6 h. Intracellular levels

of GlEB1 were monitored in these cells by Western blot analysis

using anti-HA antibodies (1:2000). As a loading control, an

amount of a-tubulin was also detected in these cell extracts using

anti-Gla-tubulin antibodies (1:10000).

Immunofluorescence Assay (IFA)
To examine the localization of GlEB1 in G. lamblia expressing

HA-tagged GlEB1, the cells were attached to glass slides coated

with L-lysine in a humidified chamber. The attached cells were

fixed with chilled 100% methanol at 220uC for 10 min, and

permeabilized with PBS/0.5% Triton X-100 for 10 min. After a

1 h-incubation in blocking buffer (PBS, 5% goat serum, and 3%

BSA), the cells were reacted overnight with rat anti-GlEB1

polyclonal antibodies (1:400) [13] and mouse anti-HA antibodies

(1:50; Sigma). Following three 5 min-washes with PBS, the cells

were incubated with AlexaFluor 555-conjugated anti-rat IgG

(1:250; Molecular Probes) and AlexaFluor 488-conugated anti-

mouse IgG (1:200; Molecular Probes) at 37uC for 1 h. Slides were

mounted with VECTASHIELD anti-fade mounting medium with

49,6-diamidino-2-phenylindole (DAPI; Vector Laboratories). They

were then observed with an Axiovert 200 fluorescent microscope

(Carl Zeiss).

To determine the intracellular location of GlEB1 in dividing

cells, trophozoites were treated with aphidicolin for 6 h, and

released for 3 h. They were treated with anti-HA antibodies

(1:100) or anti-Glc-tubulin antibodies (1:100). In addition,

encysting cells were also reacted with anti-HA antibodies to

monitor GlEB1 localization during encystation. As a control to

ensure the formation of cysts via an in vitro-encystation experiment,

the encysting cells were also treated with anti-GlCWP1 antibodies

(1:100) [22]. These cells were then reacted with tetramethylrho-

damine isothiocyanate (TRITC)-conjugated anti-rat IgG antibod-

ies (1:200; Jackson ImmunoResearch Lab).

Synchronization of Giardia Trophozoites with Aphidicolin
and Flow Cytometry Analysis

Synchronization of Giardia trophozoites was performed as

described previously, with some modifications [23]. To summa-

rize, 26104 cells were cultured in TYI-S-33 medium for 24230 h

until they reached 70% confluence. Aphidicolin (Sigma) was

added to culture medium at a final concentration of 5 mg/mL, and

then incubated for 6 h. The culture media was replaced with fresh

medium, and cultured up to 6 h. Since the aphidicolin added to

the culture was prepared in dimethyl sulfoxide (DMSO), control

Giardia cultures were treated with 0.05% DMSO, showing that

DMSO did not affect G. lamblia at that concentration. Synchro-

nized cells were analyzed for their DNA content via flow

cytometry, as described previously [24]. The DMSO-treated and

aphidicolin-treated cells were placed on ice for 20 min, and

harvested by 10 min centrifugation at 3000 rpm. The harvested

Table 2. Oligonucleotides used in this study.

Name Nucleotide sequences(59-39)

For the construction of HA epitope tagged GlEB1

eb1-NcoI-F GCATCCATGGTGCCATCTGTACCACAATC

eb1-HA-R GCGAATTCTTACGATTCATCAGCGTAATCTGGTACGTCGTATGG
GTACTCCTGATGATACTCCGCA

For the construction of recombinant G. lamlbia c-tubulin

c-tubulin-F CATGCCATGGGCATGTGCGTTTATATTGAA

c-tubulin-R CCGCTCGAGCATCCCGATATATACTCAAG

For the construction of recombinant GlEB1 proteins

EB1-full-ER1-F GCGAATTCGATGCCGCCGGTAAAAGCACC

EB1-CHD-R CCGCTCGAGCTCTAGCTGACCCTTTGCAAT

EB1-EBD-F GCGAATTCGTACATGGACAACTTCGAG

EB1-full-Xho1-R CCGCTCGAGCTGATGATACTCCGCATACA

For the construction of site-directed mutant GlEB1 proteins

EB-C13S-21b-F GCGAATTCGATGCCGCCGGTAAAAGCACCCGGAAATGTGTCTG
ACAGCTACTTTGTA

EB-C46S-21b-F CACCACTATTCAATGGCCCTG

EB-C46S-21b-R CAGGGCCATTGAATAGTGGTG

Morpholinos sequence

Anti-EB1 TTCCGGGTGCTTTTACCGGCGGCAT

Mispair EB1 TTCCGGCTCCTTTTAGCGCCCGCAT

Restriction enzyme sites are underlined.
Mutation sites are indicated in bold and italic letters.
doi:10.1371/journal.pone.0097850.t002
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cells were washed twice with 2 ml of HEPES-buffered saline

(150 mM NaCl, 5 mM KCl, 1 mM MgSO4, and 10 mM HEPES,

pH 7.4). The cells were resuspended in 300 mL of HEPES-

buffered saline, and 700 mL of ice-cold 100% EtOH was then

added drop by drop with a gentle vortex. Fixed cells were rinsed in

50 mM Na citrate (Sigma), and then treated in a 0.5 mL of

50 mM Na citrate containing 2.5 mg/mL RNase A for 30 min at

37uC. The cells were stained with propidium iodide (10 mg/mL;

BD Pharminogen) in 50 mM Na citrate for 30 min at 4uC, and

analyzed by a Beckman Coulter EPICS XL flow cytometer, and

the data were analyzed with ModFit LT software (Becton

Dickinson).

Knockdown of GlEB1 Expression Using Morpholinos
The expression of GlEB1 was decreased by knockdown

experiment as described [25]. Briefly, 25-mer morpholinos was

designed to target the first 25 bases open reading frame of the

GlEB1 (Table 2; Gene Tools). Another morpholinos identical to

the GlEB1 morpholinos except 5 mispairs (Table 2) was used as a

control. Lyophilized morpholinos were added to 56106 cells in

0.3 mL of medium at a final concentration of 100 mM. As a

negative control, an equal volume of sterile water was added to the

cells. After electroporation, cells were grown for 48 or 72 h, and

then analyzed for expression of GlEB1 by Western blot and IFA as

described above.

Measuring Mitotic Index of G. lamblia Trophozoites
With G. lamblia trophozoites treated with water, mispair anti-

EB1 morpholinos, or anti-EB1 morpholinos, the ratio of cells with

2 nuclei to those with 4 nuclei was determined to monitor mitotsis

as described [26]. The cells were attached on coverslips were fixed

with methanol for 5 min and air-dried. The cells were then

mounted in VECTASHIELD anti-fade mounting medium with

DAPI. The numbers of cells with 4 nuclei or 2 nuclei were counted

in a total of 200 cells per each condition.

Expression and Purification of rGlEB1 Proteins
Full-length rGlEB1 was expressed in Escherichia coli and purified

as described previously [13]. In addition, the DNA fragment

containing the GlEB1 ORF was dissected into two parts. The 59-

region of eb1 (552 bp) was amplified from the genomic DNA of

Giardia WB by PCR using the primers, EB1-full-ERI-F and EB1-

CHD-R (Table 2), and the 39-region of eb1 (474 bp) was amplified

with another set of primers, EB1-EBD-F and EB1-full-XhoI-R

(Table 2). The resultant eb1 DNA fragments were cloned into

pET21b (Novagen) to generate overexpression plasmids, pET21b-

EB1-CHD and pET21b-EB1-EBD, for the truncated rGlEB1

polypeptides. These rEB1 polypeptides were expressed in E. coli

BL21 (DE3) with 0.5 mM IPTG at 30uC for 3 h, and purified

using a TALON metal affinity chromatography as described by

the manufacturer (Clontech).

Microtubule Binding Assay
The binding of rGlEB1 to polymerized MTs was observed in

vitro using the microtubule binding protein spin down assay kit

BK029 (Cytoskeleton). Briefly, MTs were assembled from 100 mg

of pure tubulins (isolated from bovine brain; Cytoskeleton) in

20 mL of PEM [80 mM piperazine-N,N9-bis(2-ethanesulfonic

acid), pH 6.8, 1 mM EGTA, and 1 mM MgCl2] in the presence

of 1 mM GTP and 5% glycerol at 35uC for 20 min, and

immediately stabilized in 200 mL of warm PEM-20 mM taxol

(Cytoskeleton). Various amount of MTs (0.522 mM tubulin) were

incubated with 10 mg of rGlEB1 (0.38–0.7 mM) in a total volume

of 50 mL at room temperature for 40 min. The reaction mixtures

were then centrifuged through a 50% glycerol cushion-PEM-taxol

mixture at 100000xg at 25uC for 40 min using an ultracentrifuge

(Hitachi Koki), and the supernatant and pellet fractions were then

resolved on SDS-PAGE.

Protein bands, the pellet fraction and the supernatant fraction,

were quantified using Multi Gauge V3.0 software (Fujifilm) within

the linear signal intensity range, which was determined using

standard curves of rGlEB1. The fraction of rGlEB1 bound to MTs

was plotted against the concentration of MT included in each

reaction. To determine the apparent Kd of rGlEB1 for MTs, the

data from three independent experiments were fitted by the

equation Y = (Bmax+X)/(Kd+X) using SigmaPlot version 9.0

(Systat software). Y is the concentration of rGlEB1 partitioning

to the pellet with the MTs whereas Bmax is the maximal fraction of

rGlEB1 in rGlEB1-MTs complex. Kd is the dissociation constant

where X is the concentration of MT used for each reaction.

Size Exclusion Chromatography (SEC)
Full-length or truncated rGlEB1 protein (about 800 mg) was

diluted with PBS on ice before loading onto a Superdex 75 10/

300 GL (GE Healthcare). Eluted fractions were collected at a

volume of 500 mL, and then separated by SDS-PAGE. Size

control proteins of 75, 29, 14, and 6 kDa were loaded onto the

same SEC. To examine an involvement of disulfide bond in

dimerization of GlEB1, eluted proteins from SEC, were incubated

with 100 mM DTT for 10 min prior to being separated upon

SDS-PAGE.

Site-directed Mutagenesis of the eb1 Gene
To determine the role of the disulfide bond between the two

EB1 monomers, cysteine residues at amino acid positions #13 and

#46 were mutagenized to serine. Using the EB1 overexpression

plasmid, pET21b-EB1-full, as a template, mutant DNA containing

the mutation at amino acid position #13 was produced by PCR

using primer EB-C13S-21b-F and EB1-full-XhoI-R (Table 2),

resulting in a mutant EB1 DNA fragment containing the

conversion of cysteine into serine at amino acid position #13.

The expression plasmid pET21b-EB1-C46S carrying a mutation

at cysteine position #46 of GlEB1 was made by PCR using

primers EB1-full-ERI-F and EB-C46S-21b-R (Table 2), and the

other mutant DNA carrying mutation at the same amino acid was

also made by PCR using primers EB-C46S-21b-F and EB1-full-

XhoI-R.

Complementation Assay
S. cerevisiae strains (Table 1) were grown at 25uC in a synthetic

complete (SC) dropout medium [0.17% yeast nitrogen base, 0.5%

ammonium sulfate, 2% glucose, and 0.06% dropout mix lacking

histidine (H), tryptophan (T) and uracil (U) (Clontech)]. The

following ingredients were added to the medium at the indicated

concentrations: H, 0,02; T, 0.02; and U, 0.02 mg/mL.

Two control plasmids, pZhu19 and pZhu20 [13], were used to

complement GlEB1 and yeast Bim1p into YSK1134, the bim1D
strain, respectively. An additional plasmid pRS426+PGAL1–10

EB1-C13S expressing mutant GlEB1 with C13S change was

constructed by cloning 717 bp DNA fragment into SalI/SacII site

of pRS426+PGAL1–10 and transformed into YSK1134.

Complementation assays were performed as described [13].

Briefly, yeast cells were synchronized at G1/S by incubation with

0.2 M hydroxyurea (HU; Sigma) for 4 h and released by washing

several times with distilled water. To induce the expression of

genes under the GAL1-10 promoter, yeast cells were transferred to

the SC dropout medium with 2% raffinose instead of glucose for

Functional Domain of G. lamblia EB1
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16 h, and then incubated with 0.2 M HU and 2% galactose/1%

raffinose for 4 h. Following 1 min-fixation in 70% ethanol and

staining with 1 mg/mL DAPI, the cells were observed with a 100

X objective on an Axiopvert 200 (Zeiss), and the images were

captured with an Axiocam MRc camera using AxioVision

software (Zeiss).

Results

Construction of G. lamblia Trophozoites Expressing HA-
tagged GlEB1

End-binding 1 (EB1) protein is one of the +TIPs that connect

MT spindles to the kinetochores and modulates MT stability [27].

In this study, functional analysis was performed on the only EB1

homologue in G. lamblia. An E. coli-G. lamblia shuttle plasmid was

constructed to contain the DNA fragment encoding the promoter

and ORF of GlEB1, from which EB1 is expressed as a fused form

in frame with the HA epitope (Figure 1A). Upon electroporation

and selection by G418 resistance, G. lamblia trophozoites carrying

this plasmid were established and used for further investigation.

These trophozoites were then examined for the expression of a

chimeric EB1 tagged with an HA epitope by Western blot using

anti-HA antibodies (Figure 1B). G. lamblia trophozoites carrying

the vector plasmid without the eb1 DNA fragment were also

constructed, and included in the Western blot with anti-HA

antibodies. As expected, the immunoreactive protein band was

present in Giardia carrying the HA-tagged GlEB1-expressing

plasmid, but absent in the control trophozoites. IFAs of Giardia

trophozoites carrying the HA-tagged GlEB1-expressing plasmid

were performed using two different antibodies, anti-HA antibodies

and anti-GlEB1 antibodies (Figure 1C). Incubation of these

trophozoites with anti-HA antibodies revealed fluorescence at

the nuclear membranes and median bodies. IFA using anti-GlEB1

also demonstrated fluorescence staining at the same positions in

these transgenic Giardia trophozoites as shown in IFA using anti-

HA antibodies.

Determination of Expression Levels and Localization of
GlEB1 at Different Stages of the Giardia Life Cycle

Limited information is available on the expression pattern of

GlEB1 in G. lamblia. In a previous study, we reported that the

intracellular level of GlEB1 is not altered during encystation [13].

In order to examine the expression level of GlEB1 in different

Figure 1. Expression and localization of GlEB1 in G. lamblia-expressing HA-tagged GlEB1. (A) Schematic diagram of plasmid pNLop2-eb1-
HA-GItetR. GlEB1 is expressed as a HA-tagged form from its own promoter, Peb1. Transfected trophozoites are selected by G418 resistance conferred
by the neo gene expressed by the Pran promoter, a strong promoter of the ras-related nuclear protein gene. As a control, Giardia trophozoites were
also transfected with pNLop2-GItetR. (B) Western blot analysis to examine the expression of HA-tagged GlEB1. Extracts were prepared from G. lamblia
containing pNLop2-GItetR (lane 1), or pNLop2-eb1-HA-GItetR (lane 2), and incubated with monoclonal mouse anti-HA antibodies (1:1000) at 4uC
overnight. Membranes were incubated in stripping buffer, and then reacted with polyclonal rat antibodies specific to a-tubulin of G. lamblia
(1:10000). (C) Localization of GlEB1. G. lamblia expressing HA-tagged GlEB1 was reacted with rat anti-GlEB1 polyclonal antibodies (1:400) and mouse
anti-HA (1:50). The cells were then incubated with AlexaFluor 555-conjugated anti-rat IgG (1:250) and AlexaFluor 488-conugated anti-mouse IgG
(1:100). Slides were mounted with VECTASHIELD anti-fade mounting medium with DAPI, and then observed with an Axiovert 200 fluorescent
microscope. The scale bars are 2 mm.
doi:10.1371/journal.pone.0097850.g001

Functional Domain of G. lamblia EB1
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stages of the cell cycle, we obtained synchronized trophozoites

using Giardia carrying the GlEB1 expression plasmid (Figure 2A).

Flow cytometry analysis (FACS) of their DNA content indicated

that Giardia trophozoites without any treatment were comprised of

cells at G1 phase (31%) and at G2 phase (63%). After 6 h-

treatment with aphidicolin, the majority of Giardia trophozoites

(77%) were arrested at the G1 phase. The aphidicolin-treated cells

were transferred to drug-free medium in order to be released into

G2 phase. Released cells showed a DNA pattern that is typical of

cells at G2 phase (91%).

Giardia cells expressing HA-tagged GlEB1 were harvested at

various stages, trophozoite without drug treatment, aphidicolin-

treated cells, and cells released from growth arrest at various times,

ranging from 1 to 6 h. These extracts were analyzed by Western

blots to determine intracellular levels of GlEB1 at different stages

of Giardia growth, indicating that GlEB1 expression does not vary

significantly by cell cycle (Figure 2B). Western blot of these extracts

with anti-Gla-tubulin antibodies served as a loading control.

Giardia cells at G2 phase, released cells from aphidicolin

treatment, were examined by IFAs using anti-HA antibodies

(Figure 2C). Mitotic cells were frequently observed with mitotic

spindles labeled with fluorescence, indicating that GlEB1 was

localized to the mitotic spindles of the mitotic cells at anaphase.

IFA of these cells with anti-Glc-tubulin antibodies showed

fluorescent labeling at the two basal bodies during anaphase,

confirming that they are mitotic cells (Figure 2D).

The intracellular level of GlEB1 was found to be constitutive

during encystation [13]. In this study, we examined the possibility

that localization of EB1 was altered during encystation by IFA of

Giardia expressing HA-tagged GlEB1 with anti-HA antibodies

(Figure 3A). Up to 24 h-after induction to encystation, GlEB1 was

mainly found at the nuclear membrane in the most of the Giardia

cells, whereas some of the cells showed fluorescent labeling of the

median bodies. In cysts at 48 h induction, fluorescence was absent

in the nuclear membranes and dispersed in the cytoplasm of the

cells. As a control for encystation process, intracellular location of

CWP1 was also examined in trophozoites as well as encysting cells

(Figure 3B). CWP1 was barely detected in trophozoites, and later

found in encystation-specific vesicles in the encysting cells.

Localization of CWP1 in the cyst walls was distinct in the cysts

Figure 2. Expression and localization of GlEB1 in synchronized Giardia carrying pNLop2-eb1-HA-GItetR. (A) Flow cytometric analysis of
Giardia trophozoites treated with 0.05% DMSO (a), trophozoites arrested with 5 mg/mL aphidicolin for 6 h (b), and trophozoites arrested with
aphidicolin and released for 3 h (c). (B) Western blot analysis of synchronized cells using anti-HA (1:2000). Lane 1, Giardia cultures treated with 0.05%
DMSO; lane 2, aphidicolin-treated cells; and lane 3-8, cells released from aphidicolin treatment up to 6 h. The amount of a-tubulin was also monitored
in these cells using anti-Gla-tubulin (1:10000). (C) Localization of GlEB1 in trophozoites at the G2 phase. G2-phase cells were prepared by 6 h-
treatment with aphidicolin and following 3 h-release. The cells were reacted with anti-HA (1:100) for observation under fluorescence microscopy. As a
marker for G2-phase cells, the cells were treated with anti-Glc-tubulin (1:100). The scale bar is 2 mm.
doi:10.1371/journal.pone.0097850.g002
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at 48 h-after induction of encystation. These results showed that

the location of GlEB1 at the nuclear membrane and median

bodies was changed into a condensed pattern in the cytoplasm of

cysts.

Effect of GlEB1 Knockdown in Mitosis of G. lamblia
To define the role of EB1 in G. lamblia, we designed a

morpholinos, anti-EB1, which can block translation of GlEB1

mRNAs (Table 2). As a control, another morpholinos, mispair

anti-EB1, was made and used to transfect into G. lamblia

trophozoites by electroporation (Table 2). In addition, a set of G.

lamblia was treated with sterile water instead of morpholinos.

Cell extracts prepared from these cells at 48 h and 72 h post-

transfection were monitored for their intracellular levels of EB1 by

Western blot using anti-GlEB1 antibodies (Figure 4A). Both cells

treated with mispair anti-EB1 or anti-EB1 morpholinos showed

decreased amount of GlEB1 at 48 h post-transfection to 69% and

43%, respectively (Figure 4B). Amount of GlEB1 was restored to

88% and 70% of that of cells treated with water in cells at 72 h

post-transfection. Decreased level of GlEB1 was also confirmed by

IFA of G. lamblia cells treated with sterile water, the mispair anti-

EB1, or anti-EB1 morpholinos after 48 h (Figure 4C). GlEB1 was

found in nuclear membrane and median bodies in cells treated

with water or mispair anti-EB1 morpholinos. In G. lamblia

transfected with anti-EB1 morpholinos, GlEB1 was barely

detected in nuclear membranes. Clear staining of median bodies

were observed in G. lamblia cells treated with anti-EB1 morpho-

linos, but at lower levels than in cells treated with water or mispair

anti-EB1 morpholinos.

Effect of low expression of GlEB1 was determined by measuring

mitotic indexes, which is portions of cells with four nuclei

(Figure 5). Upon staining with DAPI, the cells were counted for

those with two nuclei or four nuclei (Figure 5A). About three

percentages of cells contained 4 nuclei when they were treated

with water or mispair anti-EB1 morpholinos. The percentage of

cells with four nuclei was increased to 10% upon transfection with

anti-EB1 morpholinos (Figure 5B). This result indicates that

GlEB1 plays some role in mitosis of G. lamblia.

Characterization of the Functional Domain for MT-
binding of GlEB1

GlEB1 contains three putative domains: a CH domain (#21-

#101), a linker (#102-#184), and an EB1 domain conserved in

other EB1 homologues (#185-#238). Interestingly, GlEB1 lacks

the C-terminal acidic tail ended with the EEY/F motif. In addition

to the full-length rGlEB1, rGlEB11–238, two truncated rGlEB1

proteins, rGlEB11–184, and rGlEB1102–238, were expressed in E. coli,

and purified using affinity chromatography. rGlEB11–184 contains

the CH domain and a linker region whereas rGlEB1102–238 has the

linker and the EB1 domain.

The MT-binding region in GlEB1 was identified by testing the

three rGlEB1 proteins in a sedimentation assay with taxol-

stabilized MTs (Figure 6). Full-length rGlEB1 showed a significant

affinity for the MTs, with a dissociation constant (Kd) of 0.34 mM

and 24% of the added rEB1 was precipitated with the MTs. On

the other hand, rGlEB11–184 containing the CH domain and the

linker showed significant attenuation in MT-binding, resulting in a

Kd of 0.83 mM and a Bmax of 0.03. Interestingly, rGlEB1102–238

containing the linker and the EB1 domain demonstrated a

comparable MT-binding ability to that of the full-length rEB1 in

this assay (Kd = 0.22 mM, Bmax = 0.2).

Characterization of a Functional Domain for the
Dimerization of GlEB1 Protein

Each of these three rGlEB1 proteins was analyzed by size

exclusion chromatography (SEC) to examine whether they are

present as a dimeric form (Figure 7A). rGlEB11–238 eluted as two

overlapping peaks earlier than the marker protein of 29 kDa,

indicating the dimeric formation of rGlEB11–238. rGlEB11–184

containing a CH domain and the linker, also eluted earlier than

the 29 kDa marker protein, suggesting that this truncated protein

is able to form dimers. In the case of rGlEB1102–238, they passed

Figure 3. Localization of GlEB1 in G. lamblia during encystation. Giardia trophozoites and encysting cells were prepared at various time-
points of post-induction of encystation. (A) Fixed cells were serially reacted with mouse anti-HA antibodies (1:100) and AlexaFluor 488-conjugated
anti-mouse IgG (1:200). (B) As a control for encystation, a separate set of trophozoites and encysting cells was reacted with anti-GlCWP1 antibodies
(1:100). The scale bar is 2 mm.
doi:10.1371/journal.pone.0097850.g003
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through the column as an elongated, dimeric peak, raising the

possibility of conformational modification or multimeric formation

of rGlEB1102–238. Elution of rGlEB11–184 in a dimeric form from

SEC is interesting in that this region is involved in MT-binding,

but not in the dimerization of Bim1p, an EB1 homolog of budding

yeast [5].

When the eluted fractions from SEC were analyzed via SDS-

PAGE, rGlEB11–238 appeared as a dimer and became monomer

with the addition of dithiothreitol (DTT) (Figure 7B). This result

suggests that intermolecular disulfide bond(s) are involved in the

formation of GlEB1 dimers. The amino acid sequence of GlEB1

revealed two cysteine residues at amino acid position #13 and

#46. Based on the location of these cysteine residues, rGlEB11–184

was also examined, in which dimerization occurs through

intermolecular disulfide bond(s). rGlEB11–184 was present as

40 kDa without DTT, and became 20 kDa upon incubation with

DTT. As expected, rGlEB1102–238 appeared as a monomer

regardless of the presence of DTT (data not shown).

Two cysteine-mutant rGlEB1 variants, C13S and C46S, were

analyzed by SEC (Figures 7C 7D, respectively). C13S-mutant

rGlEB1 eluted as a single peak in dimeric form, and appeared as a

26 kDa band on SDS-PAGE, regardless of DTT. C46S-mutant

rGlEB1 eluted as two overlapping peaks earlier than the marker

protein of 29 kDa, and appeared as a dimer on SDS-PAGE

without DTT. This experiment indicated that dimer formation of

Giardia EB1 occurs via two different mechanisms: the interaction

between the EB1 domains and intermolecular disulfide bond

formation of two EB1 monomers. Mutant rGlEB1, containing

both C13S and C46S conversions showed an elution pattern

identical to that of the C13S-mutant rGlEB1 (data not shown).

Complementation of Yeast BIM1 Mutant with C13S
mutant GlEB1

To examine whether the putative EB1 protein of G. lamblia plays

a role in controlling MT dynamics, we used a budding yeast

system that is amenable to various genetic approaches. In addition

to the positive controls for complementation for giardial eb1 and

the BIM1 gene of S. cerevisiae, mutant eb1 gene encoding mutant

GlEB1 with C13S was cloned into the same yeast expression

system and transformed into YSK1134 (bim1D mutant).

Figure 4. Morpholinos-mediated knockdown of GlEB1 expression in G. lamblia. Giardia trophozoites were collected at 48 and 72 h after
electroporation with water (W), mispair anti-EB1 morpholinos (M), or anti-EB1 morpholinos (A). (A) Extracts of these cells were analyzed by Western
blots using anti-EB1 antibodies or anti-a-tubulin antibodies. (B) Relative expression of GlEB1 in cell extracts treated with mispair anti-EB1 morpholinos
(M), or anti-EB1 morpholinos. (C) The cells were attached to glass slides coated with L-lysine in a humidified chamber. The attached cells were fixed
with chilled 100% methanol at -20uC for 10 min, and permeabilized with PBS/0.5% Triton X-100 for 10 min. After a 1 h incubation in blocking buffer
(PBS, 5% goat serum, and 3% BSA), the cells were reacted overnight with mouse anti-GlEB1 polyclonal antibodies (1:100). Following three times
5 min-washes with PBS, the cells were incubated with AlexaFluor 488-conugated anti-mouse IgG (1:200; Molecular Probes) at 37uC for 1 h. Slides
were mounted with VECTASHIELD anti-fade mounting medium with DAPI. They were then observed with an Axiovert 200 fluorescent microscope.
doi:10.1371/journal.pone.0097850.g004
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The expression of these G. lamblia EB1 proteins in the yeast

transformants was examined by Western blot analysis using anti-

GlEB1 antibodies (Figure 8A). The bim1D cells carrying only

pRS426+PGAL1–10 (negative controls) or yeast BIM1 gene did not

show any immunoreactive protein. Only the mutant yeast strains

carrying wild type eb1 gene or mutant eb1 gene showed two

immunoreactive bands.

We examined the nucleus position in YSK1134 (bim1D) cells

expressing giardial EB1 proteins or yeast Bim1p in comparison

with the control, YSK1134 carrying pRS426+PGAL1–10. These

yeast cells were grown in the presence of glucose (as a non-induced

condition) or in the presence of galactose and raffinose (as an

induced condition) and number of the yeast cells with bud-distal

nuclei was determined under both conditions (Figure 8B). About

sixty percent of bim1D cells carrying pRS426+PGAL1–10 showed

defects in nucleus positioning. Under induced conditions, the

percentage of cells with a bud-distal nucleus were decreased to

38% and 40% in the bim1D cells carrying pZhu20 (wild type BIM1

gene) and pZhu19 (wild type eb1 gene). indicating a partial, but

significant complementation of the bim1D yeast cells with Giardia

eb1 gene. On the other hand, the bim1D cells carrying pRS426+
PGAL1–10 EB1-C13S with C13S mutant EB1 maintained a similar

level of cells with a bud-distal nucleus (62%). These results

demonstrate that the EB1 homolog of G. lamblia can function

similarly to Bim1p in the budding yeast and cysteine residue #13

of GlEB1 plays a role in this process.

Discussion

Understanding the role of EB1 is important in revealing the

mechanism of how Giardia divides with a coordinated distribution

of its organelles and cytoskeletal structures. In this study, the

function of GlEB1 was assessed by monitoring the expression and

localization of GlEB1 at various phases of the cell cycle (Figures 2B

and 2C, respectively) and during encystation (Figure 3A). A study

using green fluorescent protein-tagged GlEB1, demonstrated its

localization at flagellar tips and median bodies, and suggested that

it is also located at mitotic spindles [12]. IFA demonstrated that

GlEB1 is localized to the nuclear membranes, median bodies, and

axonemes of the trophozoites [13]. Giardia cells arrested at the G1

and G2 phases did not show a dramatic change in intracellular

GlEB1 levels (Figure 2B). Western blot analysis showed that the

intracellular amount of GlEB1 is constant in encysting cells as well

as trophozoites [13]. These observations are consistent with

information on the expression levels of EB1 in other organisms in

which a constant amount of EB1 is maintained at any stage of cell

division and cell differentiation [28].

It is likely that EB1 localization at the correct sites is critical for

its proper function. As expected, in mitotic cells, localization of

GlEB1 in mitotic spindles was clearly observed (Figure 2C). IFA

using anti-Glc-tubulin antibodies (Figure 2D) demonstrated its

localization to the basal bodies of mitotic cells of Giardia at

anaphase, which had been previously reported in G. lamblia [29].

Intracellular localization of GlEB1 in the encysting cells was in the

Figure 5. Mitotic index of Giardia trophozoites transfected with water, mispair anti-EB1 morpholinos, or anti-EB1 morpholinos. (A)
Upon staining with DAPI, the cells were counted for those with two nuclei or four nuclei. (B) Giardia trophozoites transfected with water, mispair anti-
EB1 morpholinos, or anti-EB1 morpholinos, were counted for the numbers of their nuclei, and then indicated in the graph as percentages. The
percentage of cell population with a two or four nuclei was significantly different each conditions by the Student’s t-test. Data with p-value of ,0.05
are indicated with an asterisk. Standard deviations were derived from three independent experiments. The percentage of cell population was
counted in a total of 200 cells per each condition and measured in triplicates for each sample.
doi:10.1371/journal.pone.0097850.g005
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nuclear membrane and median bodies (Figure 3A). GlEB1 is

localized to the cytoplasm in a more dispersed pattern in the cyst

form. This observation needs to be explained through an extensive

investigation of cyst structures using more cell markers.

EB1 proteins are the most conserved and ubiquitous +TIPs in

eukaryotes [30]. Putative amino acid sequences of GlEB1

demonstrated the presence of a CH domain, a linker, and an

EB1 domain (Figure 6 and 7). Interestingly, GlEB1 lacks the EEY/

F motif which is conserved in other eukaryotes [6]. A previous

study demonstrated that rGlEB1 is precipitated with polymerized

MTs in vitro [13]. In this study, the role of the two domains in

GlEB1 was assessed using two truncated forms of rGlEB1, rGlEB11–

184 with the CH domain and linker, and rGlEB1102–238, containing

a linker and EB1 domain. Unexpectedly, rGlEB11–184 with the CH

Figure 6. EB1 binding to polymerized MTs in vitro. An equal amount of rGlEB1 was incubated with an increasing amount of taxol-stabilized
bovine microtubules (022 mM). rGlEB1 bound to MTs was separated from the unbound fraction by ultracentrifugation, and the amount of rGlEB1
in the supernatant and pellet was quantified. The graph shows the averaged data of three independent experiments. (A) Binding of full-length
rGlEB1–238, (B) binding of truncated rGlEB11–184, and (C) binding of truncated rGlEB1102–238.
doi:10.1371/journal.pone.0097850.g006
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Figure 7. Size exclusion chromatography (SEC) of rGlEB1 proteins. (A) SEC of three rGlEB1 proteins, full-length rGlEB11–238, truncated
rGlEB11–184, and truncated rGlEB1102–238. CH represents the putative calponin homology domain whereas EB indicates the EB1-specific domain. Each
of the three rGlEB1s was passed through a Superdex 70 10/300 GL column. Four size markers of 75, 29, 14, and 6 kDa were also passed through SEC
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domain showed dramatic attenuation in its MT-binding ability. The

CH domain is known to be involved in MT binding in other

organisms [31]. However, budding yeast Bim1p containing only the

N-terminal CH domain was also found to be defective in MT

binding due to its inability to form dimers [5]. Loss of the MT-

binding ability of rGlEB11–184 containing the CH domain and a

linker did not occur because this truncated rGlEB11–184 is able to

form dimers in an EB1 domain-independent manner (Figure 7A).

We cannot rule out the possibility that the conformation of this

truncated rGlEB11–184 was modified as it is impertinent to MT

binding. Interestingly, rGlEB1102–238 with the EB1 domain and

linker demonstrated equivalent binding to MTs to that of full-length

rGlEB1. It is contrary that the N-terminal-truncated rBim1p

containing the EB1 domain showed dramatic defect in MT-binding

assays [5].

Using these three rGlEB1 proteins, we examined whether

GlEB1 was also present as a dimer (Figure 7A). SEC analysis

indicated that both full-length rGlEB11–238 and rGlEB11–184 with

the CH domain were found as dimers. rGlEB1102–238 carrying the

EB1 domain eluted earlier than 29 kDa, the expected size of the

dimer. This can be explained by rGlEB1 having a conformational

change or modification resulting in earlier elution in SEC analysis.

Otherwise, this rGlEB1 may have a tendency to form multimer.

Interestingly, full-length rGlEB1 eluted as two peaks, an earlier

smaller peak and a later major peak (Figure 7A). SDS-PAGE of

the eluted proteins yielded two protein bands larger than the

monomer, which became 26 kDa after DTT treatment, indicating

and indicated in each elution graph. (B) SDS-PAGE of the SEC fractions of rGlEB11–238, without any treatment (a) or with DTT treatment (b). (C) SEC
profile of C13S mutant rGlEB1 (a), SDS-PAGE of the SEC fraction without DTT treatment (b), and SDS-PAGE of the SEC fraction with DTT treatment (c).
(D) SEC profile of C46S mutant rGlEB1 (a), SDS-PAGE of the SEC fraction without DTT treatment (b), and SDS-PAGE of the SEC fraction with DTT
treatment (b).
doi:10.1371/journal.pone.0097850.g007

Figure 8. Complementation of wild type or C13S mutant GlEB1 in the BIM1 knock-out mutants of S. cerevisiae. (A) Expression of wild
type or C13S mutant GlEB1 in yeast. A plasmid, pRS426+PGAL1–10, serves as a vector control, which has a galactose/raffinose-inducible promoter
functioning in budding yeast. For pZhu19, the eb1 gene of G. lamblia was inserted under PGAL1–10, whereas plasmid pZhu20 containing the BIM1
gene, a yeast homologous gene for eb1, serves as a positive control for complementation. In addition, mutant eb1 gene with C13S change was
expressed in yeast. The expression of giardial EB1 protein in various yeast cells carrying a vector plasmid or one of the complementation plasmids.
Extracts of various yeast cells were analyzed by a Western blot using EB1-specific antibodies. (B) The percentage of Bim1p- or wild type GlEB1-
complemented strains with bud-distal nucleus under induced conditions was significantly different from that of control strain carrying vector
plasmid. On the other hand, the percentage of C13S mutant–complemented strain with bud-distal nucleus was not statistically different from that of
control yeast carrying vector plasmid. The percentage of complemented strains with a bud-distal nucleus under inducing conditions was significantly
different from that of the control strain carrying pRS426+PGAL1–10 under inducing conditions by the Student’s t-test. Data with p-value of ,0.01 are
indicated with an asterisk. Standard deviations were derived from three independent experiments. The percentage of abnormal cells with biased
nucleus distribution was measured in triplicates for each sample.
doi:10.1371/journal.pone.0097850.g008
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the presence of a disulfide bond in the GlEB1 dimer. In silico-

analysis of GlEB1 amino acid sequences revealed that two cysteine

residues are present at amino acid residues #13 and #46. EB1

proteins of other organisms (S. cerevisiae, Homo sapiens, and Mus

musculus) have 3–4 cysteine residues; specifically 2–3 cysteines are

present in the N-terminal portion of the protein. Formation of a

disulfide bond between the EB1 monomers has not yet been

reported in these organisms. Site-directed mutagenesis of these two

cysteine residues clearly indicate that cysteine #13 is involved in

intermolecular disulfide bonds between two monomer of EB1.

Dimer formation of GlEB1 is mediated through an EB1 domain-

mediated interaction, as suggested by the other system, which

appeared as a major band in SEC. In addition, the earlier minor

peak is derived from disulfide bond formation as it disappeared in

rGlEB1 with C13S replacement. The presence of dimeric GlEB1,

mediated by an intermolecular disulfide bond in vivo form should

be examined in further investigation.

A comparison of GlEB1 with other EB1 sequences revealed C-

terminal tail sequences ranging from 20 bases (H. sapiens and M.

musculus) to 68–70 bases (S. cerevisiae and Schizosaccharomyces pombe).

Along with the EB1 domain, these C-terminal tail sequences are

known to be involved in interactions with other +TIPs, such as

CLIP and p150 [32], [33]. Interestingly, GlEB1 has an unusually

short C-terminal tail of four bases (EYHQ). In the case of human

and murine EB1, the last three amino acids are EEY, which are

involved in the interaction with +TIPs [34], [35]. In the case of the

EB1 of budding yeast, the last three amino acids are ETF, which

have similar biochemical properties to that of EEY. However, EB1

homologues of fission yeast and plants do not have the C-terminal

tail sequence as well as GlEB1. An important question would be to

identify the functional difference caused form the lack of these

sequences in GlEB1. The cytoskeleton-associated protein-glycan-

rich (CAP-Gly) domain of +TIPs is known to function in

interaction with the C-terminal EEY sequence of EB1 and

microtubules in mammalians and yeasts [36]. In contrast with

GlEB1, two putative a-tubulins of G. lamblia (accession numbers

GL50803_112079 and GL50803_103676) have a C-terminal tail

sequence (MEEDDAY), which shows 4 conserved amino acids of

the 6 consensus C-terminal tail, P/E/D-E/D-P/E/D-E-E/T-Y/F

[36]. As interacting proteins with C-terminal EEY sequence,

proteins having the CAP-Gly domain were searched in Giardia

database, resulting in identification of two putative proteins,

tubulin specific chaperone B (GL50803_5374) and tubulin specific

chaperone E (GL50803_16535). Thus, it is likely that tubulin

interacts with tubulin specific chaperon in G. lamblia, even though

it should be experimentally proven.

Role of GlEB1 in mitosis was indirectly examined via

complementation experiment using budding yeast system [13].

In this study, we examined the role of GlEB1 in G. lamblia via the

knockdown experiments using morpholinos-based anti-sense

oligonucleotides (Figures 4 and 5). At 48 h-post transfection,

inhibition of EB1 expression was dramatic. Cells transfected with

mispair anti-EB1 morpholinos, also showed decreased level of

GlEB1. However, the cells transfected with anti-EB1 showed more

dramatic reduction in GlEB1 expression as measured in Western

blot analysis (Figures 4A and 4B) and IFA (Figure 4C). Significant

increase of cells with 4 nuclei among anti-EB1 morpholinos-

treated cells indicated that GlEB1 play an important role in mitosis

of G. lamblia (Figure 5). In addition to mitotic index, we observed

that size of median bodies was reduced in Giardia treated with anti-

EB1 morpholinos (data not shown). This observation needs to be

documented in further investigation. The complementation assay

using the BIM1 mutant S. cerevisiae indicated that GlEB1 can

replace the function of Bim1p in the budding yeast and

dimerization of GlEB1 via its 13rd cysteine residue is important

(Figure 8B). Functional complementation between EB1 homo-

logues of different organisms has been reported [37]. Human EB1

can substitute for the loss of mal3+ gene product, the fission yeast

EB1 homologue, as appeared suppression of its hypersensitivity to

thiabendazole, the microtubule destabilizing drug.

This study provides an in vitro biochemical characterization of

Giardia EB1 with respect to its MT-binding activity and

dimerization. Dimer formation of GlEB1 was mediated by an

interaction between the EB1 domains and an intermolecular

disulfide bond. In addition, role of EB1 in division of G. lamblia was

shown by the knockdown experiment.
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