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Objective: This study examined the long-
term effects of fluoxetine administered to
juvenile rhesus monkeys who, as young
adults, were imagedwith positron emission
tomography for two serotonergic markers:
serotonin transporter (SERT) and serotonin
1A (5-HT1A) receptor. An equal number of
monkeys separated from their mothers at
birth—an animal model of human child-
hood stress—were also studied.

Method: At birth, 32 male rhesus mon-
keys were randomly assigned to either
maternal separation or normal rearing
conditions. At age 2, half (N=8) of each
groupwas randomly assigned to fluoxetine
(3mg/kg) or placebo for 1 year. To eliminate

the confounding effects of residual drug in
the brain, monkeys were scanned at least
1.5 years after drug discontinuation. Social
interactions were assessed both during and
after drug administration.

Results: Fluoxetine persistently upregu-
lated SERT, but not 5-HT1A receptors, in
both the neocortex and the hippocampus.
Whole-brain voxel-wise analysis revealed
that fluoxetine had a significant effect in
the lateral temporal and cingulate cortices.
In contrast, neithermaternal separationby
itself nor the rearing-by-drug interaction
was significant for either marker. Fluoxe-
tine had no significant effect on the behav-
ioral measures.

Conclusions: Fluoxetine administered to
juvenile monkeys upregulates SERT into
young adulthood. Implications regarding
the efficacy or potential adverse effects of
SSRIs in patients cannot be directly drawn
from this study. Its purpose was to in-
vestigate effects of SSRIs on brain develop-
ment in nonhuman primates using an
experimental approach that randomly as-
signed long-term SSRI treatment or placebo.

(Am J Psychiatry 2014; 171:323–331)

In 2004, the Food and Drug Administration issued
a black box warning regarding the use of antidepressants
in the pediatric population (1). However, overwhelming
evidence supports the efficacy of selective serotonin
reuptake inhibitors (SSRIs) in treating mood and anxiety
disorders in this population (2). Nevertheless, studies on
the use of SSRIs suggest transient, age-delimited effects on
suicidal ideation (3, 4) as well as long-lasting effects on the
developing brain in rodents (5, 6). These issues are
particularly salient in humans as a result of the protracted
development of the human brain (7, 8). Furthermore, in
rodents, specific alterations in the serotonin transporter
(SERT) or serotonin 1A (5-HT1A) receptor have been shown
to affect neuronal development (9), and short-term SSRI
exposure during a time-sensitive developmental window
appears to induce long-lasting effects on serotonergic
functioning and anxious behavior into adulthood (5, 10,
11). It should be noted that both emotional experiences

and environmental conditions may also affect brain
development and that such changes could occur in-
dependently or synergistically with any effect of SSRIs on
development (12). Therefore, it is notable that no pro-
spective study has examined the long-term effects of SSRIs
on the developing primate brain.
Monkeys arguably provide the best model of human

brain function related to psychiatric disorders because
of similarities in brain structure, social organization, and
protracted development (13). Maternal separation of in-
fant monkeys is a well-established animal model of early-
life stress, which in humans predisposes to the development
of mood and anxiety disorders later in life (14, 15). Simi-
larly, monkeys with a history of maternal separation dis-
play bothbehavioral and serotonergic abnormalities similar
to those seen in anxious and depressed humans (16–18).
Although SSRIs rapidly increase 5-HT concentrations in

the synapse by inhibiting SERT, their therapeutic effects
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are typically delayed by about 8 weeks. Animal studies
suggest that one potential explanation for this delay is the
time required for 5-HT1A autoreceptors in the raphe to
desensitize, thereby leading to increased release of 5-HT in
terminal areas (19). Thus, SERT and the 5-HT1A receptor
are two important serotonergic markers, both direct and
indirect, in assessing the effects of long-term SSRI
treatment.

The present study sought to answer one primary and
two secondary questions regarding the effects of SSRIs
on the developing primate brain. First, does long-term,
prepubertal fluoxetine treatment have effects on the
serotonergic system that are discernible in adulthood?
Second, do these effects vary based on rearing conditions,
i.e., whether the monkeys were maternally separated or
normally reared? Third, does fluoxetine induce any long-
lasting behavioral changes into adulthood? To answer
these three questions, 32 differentially reared monkeys
received either fluoxetine or placebo from age 2 to 3 years,
which corresponds to the prepubertal period. Monkeys
were scanned at ∼4.7 years with two serotonergic positron
emission tomographic (PET) radioligands: [11C]DASB for
SERT and [11C](R)-RWAY for 5-HT1A receptors.

Method

Study Design

At birth, 32 male rhesus monkeys (Macaca mulatta) from four
annual birth cohorts were randomly assigned to maternally
separated or normally reared conditions (i.e., eight newborns
from each of 4 years were equally divided between the two
rearing conditions). Maternal separation consisted of the stan-
dard protocol as previously described (20) (see supplemental
methods in the data supplement that accompanies the online
edition of this article).

At 2 years of age, half of each rearing group was randomly
assigned to receive either fluoxetine or placebo. Although the
allometric scaling of doses between species is controversial, most
pharmacologists agree that the best index of whether one has
corrected for differences in absorption and disposition of a med-
ication is the similarity of the resulting plasma concentrations
across species. Thus, we selected doses of fluoxetine for this
study that produced concentrations of fluoxetine and norfluox-
etine (a pharmacokinetic measure) and 5-hydroxyindoleacetic
acid (5-HIAA; a pharmacodynamic measure) that were similar to
those concentrations seen in human patients (21, 22). Fluoxetine
(3 mg/kg/day) or placebo was administered orally in mashed
bananas for 1 year. This dosage results in steady state fluoxetine
concentrations of ∼70 ng/mL and norfluoxetine concentrations
of ∼220 ng/mL, both of which are in the clinical range for children
(23) (see methods and Figure S1 in the online data supplement).
A number of pharmacological agents were used as part of routine
veterinary care for the monkeys. For example, all monkeys re-
ceived intramuscular injections of ketamine (7 mg/kg) and
xylazine (6 mg/kg) four times for MRI scans. In addition, mon-
keys received telazol (2–6 mg/kg) a total of 8–10 times over the
course of the study; this agent was administered prior to blood
draws and CSF taps. All monkeys received twice daily feedings
and access to water ad libitum. The study was approved by the
Animal Care and Use Committee of the National Institute of Men-
tal Health.

Positron Emission Tomography (PET) Scans

All monkeys (mean age=4.7 years, SD=0.6; mean weight=7.4 kg,
SD=1.5) underwent 120-minute dynamic scans on a Focus 220
(Siemens Medical Solutions, Knoxville, Tenn.) using two PET
radioligands: [11C]DASB to label SERT and [11C](R)-RWAY to
label 5-HT1A receptors (24, 25). The injected activity, specific
activity, and injected mass dose of both radioligands were similar
for monkeys that were administered either placebo or fluoxetine
(see Table S1 in the online data supplement).

Calculation of Binding Potential (BPND) Using
a Reference Tissue Model

Binding potential (BPND), which is the ratio at equilibrium of
specific binding to nondisplaceable uptake in the brain, was used
to measure receptor density (26). Binding potential was cal-
culated with a reference tissue model, using cerebellar white
matter as the reference region for both radioligands. With regard
to the location of the SERT and 5-HT1A receptors, we a priori
selected only three regions: the raphe, the hippocampus, and the
neocortex. The raphe contains serotonergic neurons with high
densities of SERT and somatodendritic 5-HT1A autoreceptors.
Both the hippocampus and the neocortex primarily have 5-HT1A
receptors postsynaptically.

Binding potential was calculated in three steps 1): coregister-
ing PET and MR images in template space, 2) generating time-
activity curves, and 3) performing kinetic analysis. Dynamic PET
images were coregistered to averaged MRI templates from six
monkeys in standardized space. Time-activity curves were
generated using predefined regions of interest for both the
neocortex and the hippocampus (27) and manually for the raphe
(28). For the neocortex, five different cortical regions were com-
bined and weighted for volume: the frontal, cingulate, temporal,
parietal, and occipital cortices. The raphe (volume=110 mm3) was
drawn using a circular region of interest directly on three slices
(one midsagittal and two adjacent) of the summed PET images.
Radioactivity concentrations were expressed as standardized up-
take value, which normalizes for weight and injected activity.
Kinetic analyses were performed using the multilinear reference
tissue model with two parameters, which requires a priori es-
timation of k2 of the cerebellum (k2:), the clearance rate constant
from cerebellum relative to a region of specific binding. Using
the multilinear reference tissue model, k2: values were obtained
from the cerebellum relative to the thalamus for [11C]DASB and
from the cerebellum relative to the neocortex for [11C](R)-RWAY.
[11C]DASB binding had a good fit with a one-tissue compartment
model. [11C](R)-RWAY binding had a good fit with a two-tissue
compartment model (27, 29). As such, the start times (t*) were set
to 0.25 minutes for [11C]DASB and 50 minutes for [11C](R)-RWAY.
Parametric images were generated using PMOD 3.0 (PMOD Tech-
nologies, Zurich, Switzerland).

Voxel-Wise Analysis

An exploratory voxel-wise analysis of the whole brain was
performed using parametric images and statistical parametric
mapping (SPM8, Wellcome Trust Centre for Neuroimaging, U.K.).
Parametric images were generated using the multilinear reference
tissue model with two parameters, smoothed to full width at half
maximum of 4 mm and analyzed using a factorial design in SPM.
Statistical parametric maps were initially thresholded at un-
corrected p,0.05, and an exploratory stringent Gaussian random
field theory cluster level (i.e., family-wise error) correction for
multiple comparisons was applied.

Social Behavior

Peer social behavior was evaluated in a series of round robin
tests that took place between 4 and 8 months after the initiation
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of drug administration and then again 2–6 months after drug
cessation (see supplemental methods in the online data sup-
plement for further details of the ethogram). Behaviors from the
ethogram were consolidated into nine composite measurements:
locomotion, stereotypy, passivity, affiliation (physical proximity
or grooming), dominance, submissiveness, coo vocalizations, bark
vocalizations, and social (attack or bite) or nonsocial (cage shake)
aggression. However, only eight of these were analyzed as a result
of insufficient variability for one of the nine measures (aggression).
Intra- and interrater reliability were greater than 0.85 on all scored
behaviors.

Statistics

We used rearing-by-drug analyses of variance (ANOVA) to
examine both interaction and main effects in the PET studies and
a rearing-by-treatment-by-period ANOVA for each of the eight
behavioral composite measurements for the behavioral studies.
For both PET and behavioral studies, we report the uncorrected
p value, the correction factor, and the corrected p value. We used
IBM SPSS 19.0.0.1 (http://www-01.ibm.com/software/analytics/
spss/) for statistical analysis.

Results

Selecting Dosage of Fluoxetine

To select a dosage of fluoxetine to mimic that used
therapeutically in humans, we conducted a pilot study in
a separate group of 12 monkeys that received three doses
of fluoxetine (0.5, 2, or 3 mg/kg) in an attempt to ap-
proximate the levels of drug exposure in humans (see
Figure S1 in the online data supplement) (14, 15). Spe-
cifically, we measured the plasma concentrations of drug
and the expected decrease of 5-HIAA concentrations in
CSF (22). These 12 monkeys received oral fluoxetine for
3–4 weeks. Blood and CSF were sampled 24 hours after the
last drug administration. The lowest dosage (0.5 mg/kg)
resulted in undetectable plasma concentrations of fluox-
etine and norfluoxetine and no changes in 5-HIAA con-
centrations in CSF. Compared with levels in humans
treated chronically with 20 mg/day, the intermediate
dosage (2 mg/kg) generated lower plasma concentrations
of fluoxetine and norfluoxetine. Again, compared with
levels in humans treated chronically with 20 mg/day, the
3 mg/kg dosage generated lower plasma concentrations
of fluoxetine but comparable plasma concentrations of
norfluoxetine (see Figure S1 in the online data supple-
ment). At both 2 and 3 mg/kg of fluoxetine, 5-HIAA con-
centrations in CSF were reduced in monkeys relative to
placebo, although not to the extent reported in humans
(see Figure S2 in the online data supplement). Based on
these pilot data, as well as previously published studies, we
selected the 3 mg/kg dosage because it provided similar
pharmacokinetic measures as humans taking 20 mg/day,
albeit slightly lower pharmacodynamic measures.
To confirm that these pharmacokinetic measures were

achieved during the study, we measured plasma concen-
trations of drug and its active metabolite in the first cohort
of eightmonkeys. The concentrationsweremeasuredduring
and after the treatment period. During drug administration,

the concentrations were 41 ng/mL (SD=25.2) for fluoxetine
and 159 ng/mL (SD=78.4) for norfluoxetine. In the placebo
group, concentrations were undetectable. Eight weeks
after drug administration, concentrations of both fluoxe-
tine and norfluoxetine were also undetectable in either the
drug- or placebo-administered groups.

PET Imaging

For both [11C]DASB and [11C](R)-RWAY, the distribution
and time course of brain uptake were similar to those
observed in previous studies (18, 27). [11C]DASB uptake in
the monkey brain reflected the known distribution of
SERT, with high binding in the raphe, thalamus, and
caudate (Figure 1, top row). [11C](R)-RWAY uptake in the
monkey brain reflected the known distribution of 5-HT1A
receptors, with high binding in the cingulate cortex and
hippocampus (Figure 1, bottom row). With regard to time
course of uptake for both radioligands, higher density
regions had later times of peak uptake, reflecting the
greater amount of radioligand that had to be delivered to
achieve equilibrium binding. For both radioligands, uptake
in cerebellar white matter (the reference region) peaked
early and was similar between groups of animals, the latter
fulfilling a requirement to use reference tissue modeling.

Serotonin Transporter

Fluoxetine upregulated SERT binding in the neocortex
(+19%, F=12.8, df=1, 31; p,0.00132=0.002; Figure 2) and
the hippocampus (+17%, F=6.6, df=1, 31; p,0.01632=0.032;

FIGURE 1. Distribution of [11C]DASB Binding to Serotonin
Transporters (SERT) and [11C](R)-RWAY Binding to Serotonin
1A (5-HT1A) Receptors in the Representative Brain of
a Normally Reared Monkey That Received Placeboa
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a The top row summed images from 30 to 60 minutes show high
SERT density in the thalamus, raphe, and caudate. The middle row
MRI images show the anatomical structures for the coregistered
PET images. The bottom row summed images from 30 to 60
minutes show high 5-HT1A receptor density in hippocampus and
cingulate. SUV=standardized uptake value.
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see Figure S3 in the online data supplement). Whole-brain
voxel-wise analysis revealed that fluoxetine’s effects on
cortical binding were localized to the lateral temporal,
cingulate, and orbitofrontal cortices (Figure 3). However,
only the lateral temporal and posterior cingulate survived
multiple comparisons at the voxel level after family-wise
error correction (see Table S2 in the online data supple-
ment). Maternal separation had no significant effect on
SERT binding. Two-way ANOVA analysis also revealed no
statistically significant rearing-by-treatment interaction in
either the hippocampus or neocortex.

Kinetic modeling essentially calculates the area under
the time activity curves from time zero to infinity. Without
a clear identification of the time of peak uptake and rate
of washout (slope) prior to the end of the scan, the ex-
trapolated area to infinity is vulnerable to error. Our scan
period of 120 minutes was sufficient to calculate binding
potential for both the neocortex and hippocampus, be-
cause both of these regions had early peak uptake and
fast washout (see Figure S4, panel A, in the online data
supplement). However, we could not reliably quantify
binding potential in the raphe because of its late time of
peak uptake (consistent with its high SERT density), its slow
washout from the brain, and its relatively high noise at later
scan times. In fact, in someanimals, radioactivity continued
to rise in the raphe for the entire 120-minute scan (see
Figure S4, panel A, in the online data supplement); that is,
we could not clearly identify the time of peak uptake. Such
rising time-activity curves seemed randomly distributed in
all four groups of monkeys. For these reasons, we excluded
the raphe from our analysis of [11C]DASB binding.

5-HT1A Receptor

In contrast to [11C]DASB, [11C](R)-RWAY showed a time-
activity curve in the raphewith a clearly defined time of peak
uptake and rate of washout (see Figure S4, panel B, in the
online data supplement). Thus, all three regions (hippocam-
pus, neocortex, and raphe)were analyzed for [11C](R)-RWAY.
Neither fluoxetine nor maternal separation had a statis-

tically significant effect on 5-HT1A receptor binding
(Figure 4). Although 5-HT1A receptor binding in the raphe
was increased by 23% in maternally separated monkeys,
this finding did not survive the statistical correction for the
three regions examined (F=5.1, df=1, 29; p,0.0333=0.09).
Furthermore, no statistically significant effect was ob-
served for each individual variable or any of the inter-
actions using voxel-wise whole-brain analysis.

Social Behavior

Eight behaviors expressed in a social context (see Table
S3 in the online data supplement) were examined for
effects of drug (i.e., fluoxetine compared with placebo),
rearing, and period (i.e., whether animals were observed
“during treatment” or “after treatment” with either flu-
oxetine or placebo). None of the behavioral effects of drug
or rearing were statistically significant after correcting for
multiple comparisons. However, overly liberal, uncorrected
thresholds generated results that could be pursued in
future studies. Namely, fluoxetine reduced dominance
displays both during and after the treatment period in
both rearing groups (F=4.75, df=1, 28; p,0.03838=0.30). In
addition, a drug-by-period interaction was observed for
submissive displays (F=4.22, df=1, 28; p,0.04938=0.39),

FIGURE 2. Effects of Fluoxetine and Maternal Separation on Serotonin Transporter (SERT) in the Neocortexa
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a Panel A shows fluoxetine upregulated SERT by 19%. Panel B shows that maternal separation had no statistically significant effect on SERT.
BPND=binding potential; bars represent mean6SD.

* p,0.00132=0.002.
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reflecting between-group differences after, but not during,
fluoxetine treatment (Figure 5). Finally, we observed main
effects of both period and rearing (independent of flu-
oxetine treatment) on other behaviors. Period effects were
observed for locomotion (F=5.95, df=1, 28; p,0.0238=0.16),
passivity (F=18.01, df=1, 28; p,0.000238=0.002), and affili-
ative behaviors (F=22.35, df=1, 28; p,0.0000638=0.0005).
Only the period-related increase in passivity and decrease
in affiliative behavior survived the statistical correction for
multiple comparisons. The causes of these period-related
effects are unknown but could reflect developmental
changes, as the animals were almost 1 year older after
treatment than during treatment.
Rearing effects were observed for locomotion (F=4.26,

df=1, 28; p,0.04838=0.38), stereotypy (F=7.01, df=1, 28;

p,0.01338=0.10), and bark frequency (F=5.04, df=1, 28;
p,0.0338=0.24). These rearing effects were unaffected by
fluoxetine and persisted across both testing periods.
However, as with the effects of treatment, none of the
effects of rearing survived corrected statistical thresholds.

Discussion

This study examined the effects of long-term prepuber-
tal fluoxetine administration on serotonergic neurotrans-
mission in young adult monkeys (4.7 years old) that were
either maternally separated or normally reared from birth.
Fluoxetine persistently upregulated [11C]DASB binding
in the neocortex and hippocampus, regardless of rearing
and more than 1.5 years after drug cessation. Whole-brain

FIGURE 3. Fluoxetine Increased Serotonin Transporter (SERT) Binding in the Lateral Temporal, Cingulate, and Orbitofrontal
Cortices as Shown by Whole-Brain Voxel-Wise Analysisa

p value (uncorrected) <0.01 <0.001 <0.0001 <0.00001

a The four different colors represent uncorrected p values. The coregistered MRI template is shown in grayscale and is merged with each PET
image.

FIGURE 4. Main Effects of Fluoxetine and Maternal Separation on Serotonin 1A (5-HT1A) Receptor Density in the Raphea
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a Panel A shows that fluoxetine had no statistically significant effect on 5-HT1A receptor density. Panel B shows that maternal separation
increased 5-HT1A receptor density by 23%, which did not reach significance after correction for multiple comparisons across the three regions
(p,0.0333=0.09). BPND=binding potential; bars represent mean6SD.
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voxel-wise analysis revealed thatfluoxetinehada statistically
significant effect in the lateral temporal, cingulate, and
orbitofrontal cortices. Interestingly, maternal separation
at birth, which had previously been shown to induce
lasting behavioral abnormalities in monkeys (17), had no
significant effect by itself on SERT binding in either the
neocortex or hippocampus in this cohort of monkeys; this
negative finding is tempered by the small number of
placebo-exposed monkeys in each of the two rearing
conditions.

With regard to the 5-HT1A receptor, fluoxetine had no
significant effect in the neocortex, hippocampus, or raphe.
While maternal separation increased 5-HT1A receptor
binding in the raphe by 23% compared with normal
rearing, this finding did not reach significance after
correcting for multiple comparisons across the three
regions (p=0.0333=0.09). No rearing-by-treatment inter-
action was observed in any region for either SERT or
5-HT1A receptor. Taken together, our results demonstrate
that long-term prepubertal fluoxetine treatment altered
a key serotoninergic marker (SERT) into young adulthood,
regardless of rearing.

Behavioral Effects of Adverse Rearing and Fluoxetine
Treatment

A number of behavioral and neuroendocrine abnormal-
ities have been demonstrated in maternally separated
monkeys (17, 30). Furthermore, previous studies with the
current cohort, conducted prior to fluoxetine exposure,
found that the adversely rearedmonkeys displayed several
abnormal behaviors or responses, including increased
fear-potentiated startle, increased consummatory behav-
ior, increased cortisol secretion, altered locomotor activ-
ity, and altered circadian patterns (31, 32). However, these
rearing-related differences diminished as the animals
aged. In the present study, no statistically robust rearing
effects were found in either social behavior or other

behaviors not reported here, including potentiated startle
and cortisol. It is unclear whether the failure to find effects
of rearing in adultmonkeys was the result of habituation to
repeated testing, repeated exposure to ketamine for routine
handling, low statistical power (only eight monkeys in the
two placebo cells), or normalization as a result of aging.
Just as differential rearing for the first 6 months after

birth had no consistent effects on behavior, fluoxetine
administered from age 2 to 3 years had no statistically
significant effect on behavior. However, this negative
finding must be tempered by the small sample size and
relative high variability in the behavioral measures. For
example, displays of dominance and submissiveness
showed the greatest response to fluoxetine, with an effect
size of 0.8, an effect considered to be medium-to-large in
most behavioral studies. Nevertheless, using appropriate
statistical criteria (two-tailed alpha=0.05 and power=0.8),
an adequately powered study testing for an effect size of
this magnitude requires 104 monkeys divided among four
groups. Our study had only 32. Nevertheless, our cohort
was unique and valuable, thereby justifying exploratory
analyses to identify potential findings to be pursued either
in a more focused way or in a much larger study.

Effects of SSRIs on 5-HT Neurotransmission in
Rodents

Although the effects of long-term SSRI administration in
early life have not been investigated previously in mon-
keys, rodent studies found that SSRIs had long-term effects
on both neurochemistry and behavior that persisted into
adulthood (33, 34). Of direct relevance to the findings
presented here, two previous rat studies (5, 6) found that
fluoxetine upregulated SERT in cortical regions by ∼20%
when administered during the juvenile period, but not
during adulthood. Furthermore, fluoxetine exposure dur-
ing early life—but not adulthood—produced delayed, per-
sistent perturbations of emotional behaviors similar to

FIGURE 5. Main Effects of Fluoxetine on Social Behaviors in Monkeysa
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those seen in mice lacking SERT (35, 36). A rat study (34)
found that fluoxetine increased some depressive-like
behaviors but decreased others, with varying effects in
immature and mature rodents. Biochemical studies of the
effects of SSRIs on SERT and 5-HT1A receptors in rats
achieved varied and inconsistent results; various studies
(37–40) have noted increases, decreases, or no changes
in these markers, possibly a result of differences in
strain, age, sex, and genetic polymorphisms.

Effects of Maternal Separation in Monkeys

Previous PET studies of monkeys with a history of
maternal separation reported disparate effects on SERT
and 5-HT1A receptors (18, 41). The present study found
that maternal separation did not affect SERT density in the
neocortex or hippocampus, but excluded the raphe for
technical reasons. Two previous PET studies that used
[11C]DASB found that maternal separation either de-
creased SERT binding (18) or had no effect (42). Like the
present study, the previous negative report scanned older
monkeys (age 6.5 years in the study by Jedema et al. [42]
and age 4.7 years in the present study) than the one
positive study (age 3 years). Thus, it is possible that any
putative effects of maternal separation on SERT binding
may normalize by 5–6 years of age. Notably, the timing of
previous studies—between ages 3 and 6 years—bridges
the pubertal transition in rhesus monkeys, which typically
occurs at approximately 4 years of age.
Regarding 5-HT1A receptors, the only previous study

(41) found that maternal separation increased binding in
the dorso-medial prefrontal cortex of female, but notmale,
rhesus monkeys. However, this finding was likely not
statistically significant after correcting for multiple com-
parisons, i.e., the study included multiple regions and
three different measures of receptor binding (binding
potential, density, and dissociation constant). The values
of 5-HT1A receptor binding potential in the present study
differed from those in our previous publication (27)
because our new camera has higher resolution than the
old one. The resolution of the camera used in the present
study (SiemensmicroPET Focus 220) is∼1.6mm full width
at half maximum, whereas that of the old camera (GE
Advance) was ∼7 mm full width at half maximum. The
higher resolution explains why binding potential values for
a small region like the raphe are higher in the present study
than in the previous publication (27). In contrast, and as
expected, resolution had little effect on large regions like
the neocortex.

Advantages and Limitations

This prospective study in monkeys had the major
advantage of examining the long-term prepubertal effects
of fluoxetine in a well-controlled experimentally deter-
mined environmental setting. However, given the small
sample size of only eight monkeys per group, the study has
limited statistical power, making it vulnerable to both false

positive and false negative results. To minimize false
positives, we used stringent statistical analyses with both
the Bonferroni correction for multiple measures as well as
correction for multiple regions in our PET data. Neverthe-
less, our study was vulnerable to false negatives, which
may have occurred, for example, with regard to the effect
ofmaternal separation on 5-HT1A receptors in the raphe or
of either separation or fluoxetine on behavior.
A second limitation was that our PET study looked at

only one time point after fluoxetine administration. How-
ever, two previous studies in rats showed that fluoxetine
has age-dependent effects and persistently upregulated
SERT by ∼20%, primarily in cortical regions, when ad-
ministered during the juvenile period but not in adulthood
(5, 6). A third limitation was that our PET study used
ketamine to initially immobilize the monkeys; ketamine
has widespread effects on glutamatergic transmission and
induces rapid antidepressant effects in humans (43). To
minimize the effects of ketamine, we did not inject the
radioligands until at least 120 minutes after the ketamine
injection. Furthermore, while ketamine was used in all
monkeys, including those receiving placebo, SERT upreg-
ulation was observed only in the fluoxetine group, not in
the placebo group. A fourth limitation was that this and
all previous PET studies used antagonist radioligands for
the 5-HT1A receptor. Antagonists do not discriminate be-
tween the active and inactive states of G-protein coupled
receptors, including the 5-HT1A receptor. In neuropsychi-
atric disorders, the active (i.e., agonist-preferring) state of
the receptor might be more affected; thus, it would be
useful to investigate this issue using agonist radioligands
in the future.

Implications

Readers should note thatmany findings from behavioral
and biochemical studies inmonkeys and other animals are
not replicated in humans. Accordingly, this study cannot
directly address the safety or efficacy of SSRIs in children
and adolescents with psychiatric disorders. Nevertheless,
we provide guidance below on which of our findings may
or may not parallel those in humans.
Most notably, this study was not designed to establish

whether SSRIs are effective in treating children or adoles-
cents with psychiatric disorders. First, the sample size was
too small to assess the efficacy of fluoxetine on the behav-
ioral effects ofmaternal separation inmonkeys. Second, this
animal model of maternal separation has never been vali-
dated as a measure of drug efficacy in humans.
In terms of potentially harmful effects associated with

SSRIs, we have no evidence that the persistent upregula-
tion of SERT observed here was either harmful or
beneficial to the monkeys. In light of the known plasticity
of the serotonergic system, we suspect that upregulation
of SERT may have been part of several compensatory
mechanisms to normalize 5-HT transmission in the brain.
Because the human brain is thought to have similar
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homeostatic mechanisms, chronic SSRI use during de-
velopment may persistently upregulate SERT in humans.
In fact,wedesigned this study inmonkeys tomimicfluoxetine
treatment in apediatric population. For example, the plasma
concentrations of fluoxetine and norfluoxetine in mon-
keys were similar to those in children (see Figure S1 in the
online data supplement); the duration of administration (1
year in monkeys, equivalent to approximately 4 years in
humans) occurs in clinical practice; and the drug had
a similar, albeit diminished, pharmacodynamic effect on
5-HT turnover inmonkeys as inhumans, indirectly assessed
as the concentration of a 5-HTmetabolite in CSF (see Figure
S2 in the online data supplement). In addition, the washout
period of more than 1 year resulted in no direct drug effect
in the brain. In fact, any residual drug, if present, would
have had the opposite effect—i.e., an apparent down-
regulation of SERT by competing with binding of the
radioligand.

The only way to know definitively whether SSRIs persis-
tently upregulate SERT in humans would be to study our
species. Based on our results, it appears that such PET
research studies, which are commonly performed in
adults, may well be justified. To our knowledge, no PET
study has examined the long-term effects of antidepres-
sants on the serotonergic system in the adult human brain.
It should be noted, however, that our results apply to the
administration of SSRIs only during the prepubertal period,
a time when the brain may have special developmental
sensitivities. Furthermore, ethical concerns about radia-
tion exposure to children, especially for an age-matched
healthy comparison group, would likely preclude such a
PET study. Nevertheless, given the robust, persistent ef-
fect of SERT upregulation observed in monkeys, it is pos-
sible that such changes would similarly be observed in
childrenexposed to SSRIs.However,wedonot knowwhether
such changes are restricted to a particular developmental
period; for instance, such persistent changes may or may
not occur when SSRIs are administered in adulthood.

Conclusions

This study was to our knowledge the first in nonhuman
primates to demonstrate that an antidepressant adminis-
tered during development has long-lasting effects in the
primate brain. The persistent SERT upregulation identi-
fied by the present study was a substantial, robust effect—
particularly for a PET study conducted with such a limited
sample size—and survived stringent statistical analyses
both at the regional and voxel levels. Specifically, 2-year-
old monkeys receiving fluoxetine, regardless of rearing,
had persistently upregulated SERT binding 1.5 years after
drug discontinuation. Implications regarding the efficacy
or potential adverse effects of SSRIs in patients cannot
be directly drawn from this study. Its purpose was to in-
vestigate the effect of SSRIs on brain development in
nonhuman primates using an experimental approach that

permitted the random assignment of long-term SSRI treat-
ment or placebo. In contrast, human studies are neces-
sarily confounded by the administration of SSRIs only to
children with mental disorders, which themselves could
affect brain development.
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