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Resolving intravoxel white matter structures 
in the human brain using regularized regression 
and clustering
Andrea Hart1, Brianna Smith1, Sean Smith1, Elijah Sales1, Jacqueline Hernandez‑Camargo1, Yarlin Mayor Garcia1, 
Felix Zhan1, Lori Griswold2, Brian Dunkelberger2, Michael R. Schwob3, Sharang Chaudhry3, Justin Zhan3* , 
Laxmi Gewali3 and Paul Oh3

Introduction
The human brain is primarily composed of neural tissue, which is responsible for receiv-
ing and relaying electrical impulses for a variety of purposes. Neuronal cells (neurons) 
have three primary components: a cell body which contains all of its organelles, the sig-
nal input structures (dendrites), and the signal output structures (axons). Typically, den-
drites are much shorter projections than axons. Dendrites and cell bodies are located on 
the outer edges of the brain and are collectively called grey matter. Axons, referred to as 
white matter, tend to be interior to grey matter [1].

The brain exhibits functional specialization, causing axons to traverse the brain 
from one functional group to another, relaying information. As this information fre-
quently requires more than one axon to relay the complete signal, many axons are 
grouped together in fiber tracts known as nerves [2]. Nerves within the body are eas-
ily distinguishable due to their length and separation from other neural tissue. How-
ever, the sheer amount of neuropil that cross and intertwine within the white matter 
makes it extremely difficult to uniquely isolate and identify individual nerves and 
their paths within the brain. Adding to this complexity, neural pathfinding is not so 
highly correlated from one brain to the next; moreover, it would be difficult to get a 
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clear picture of any one person’s brain by analyzing another’s [3]. Although the exact 
technology that delineates these neural pathways does not exist at this time, current 
medical imaging modalities, such as dMRI, can be leveraged for this purpose.

Diffusion magnetic resonance imaging (dMRI) relies on the temporary application 
of a magnetic field applied in several gradient directions to excite water molecules, 
causing molecular reorientation and motion, and ultimately creating detectable sig-
nals [4]. The reorientation of water molecules is restricted by the tissue composition; 
therefore, a baseline signal is achieved based on how much water is localized within 
a subregion of the brain. In addition, the motion caused by the gradients in the mag-
netic field dampens these baseline signals. This ultimately allows dMRI to provide 
insight into the microscopic details of tissue architecture and allows the mapping of 
white matter tracts throughout the brain. Furthermore, an impactful aspect of using 
dMRI for tracing neural pathways is that it can be done non-invasively and in-vivo 
using mathematical modeling. Applications of tracking white matter include treat-
ment and management of traumatic brain injuries, neurodegenerative diseases, and 
pre-surgical visualization of the brain [5].

Data from dMRI are collected for small artificially-divided subregions in the brain 
called volumetric pixels, or voxels. Voxels are cubes of side length 1–3 mm and form 
a 3-dimensional grid for picturing the brain. This is similar to visualizing images in 
2-dimensions with pixels. The overall problem of mapping neural pathways can be 
thought of, mathematically, as resolving white matter structures for all voxels within 
the brain. Using dMRI data for understanding intravoxel white matter structure is a 
mathematically challenging problem. Several strategies have been proposed in lit-
erature [6–21]. Additionally, the difficulty is increased given that there is no “gold-
standard” for evaluating the process.

Several novel methods exist to detect neural fiber orientation using dMRI data. 
Additionally, there have been multiple attempts to obtain high angular resolution of 
white matter fiber. Though the objectives of these methods seem related, there does 
not yet exist a method to combine these efforts and resolve intravoxel white matter 
structures in regards to both orientation and concentration.

The proposed method attempts to resolve white matter with robust accuracy using 
elastic net and clustering techniques. Compared to existing methods, the proposed 
method is less computationally expensive, since elastic net regression is employed. 
Additionally, the inclusion of elastic net regularization allows variable selection and 
shrinkage within the method. These advantages offer more robust results over exist-
ing methods that strictly employ classical least-squares regression.

In this work, a novel method employing regularized regression and clustering is 
proposed. The method aims to determine the number of nerves and their direction 
within a single voxel of the brain. It modifies an existing intravoxel diffusion model 
and provides ground for accurate estimation. A review of related research is pro-
vided in "Related work" section. A formalism is presented in "Methods" section and 
performance evaluation in "Experiments and results" section. Finally, a discussion 
and concluding remarks are provided in "Discussion" and "Conclusion and future 
work" sections, respectively.
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Related work
Several papers propose methods to determine white matter geometry given dMRI data 
[6, 11, 12, 14, 18–20]. These methods utilize classical least-squares regression, which 
does not allow variable selection or shrinkage to be performed. Additionally, performing 
a stepwise selection process to determine the selected variables would be computation-
ally expensive.

Other papers employ sparse Bayesian learning to estimate white matter fiber or utilize 
collaborative super-resolution [10, 15, 16]. However, these methods become computa-
tionally expensive when running large data sets. The proposed method offers a relatively 
robust process with a small computational cost.

Given large data sets, some methods analyze the affect of white matter on the diffusiv-
ity [8, 9]. These papers signal the importance of the robustness of the diffusivity param-
eter. The mathematical models presented in [13, 21] provide a foundation for ensuring 
this robustness.

By adopting the elastic net framework developed in [22], the proposed method allows 
variable selection for diffusivity and nerve amount. This selection enables the method to 
operate with computational efficiency while offering promising results in resolving intra-
voxel white matter.

Other recent works from our research group include [23–33].

Methods
The intravoxel diffusion signals have been previously modeled by the ball-and-stick 
model [9]. Mathematically, this model may be written as

where S0 represents a baseline signal with no diffusion gradient, ri is the direction of 
the  ith diffusion gradient, bi is an experimentally set b-value for the ith signal, d is the 
apparent diffusivity, f = (f0, f1, . . . , fK ) is a vector of volume-fractions, (θj ,φj) represent 
the elevation and azimuthal angles of the principal diffusion direction of the jth nerve 
respectively, g(·, ·) is a matrix that rotates around the elevation and azimuth angles, µi 
is the expected  ith dampened diffusion signal, and n represents the number of diffusion 
signals obtained.

Note that the above system can be linearized by dividing by S0.

where µ is a vector containing all expected diffusion signals and M is referred to as the 
dictionary matrix. The number of columns of M correspond to the number of compart-
ments within a voxel ( K + 1 ), and the rows correspond to the number of signals (n). 
Each entry of the matrix represents the dampening effect of a particular compartment 
with respect to a given gradient direction. Mathematically, M can be written as:

(1)µi = S0



f0e
−bd +

K
�

j=1

fje
−bdrti g(θj ,φj)ri



, i = 1, 2, . . . , n

(2)
µ

S0
= Mf
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In some previous applications of the ball-and-stick model, S0 is thought of as an 
unknown parameter. Since this parameter is directly measurable, it is possible to realize 
values in Eq. 2. It is further considered that a noisy version of these scaled observed sig-
nals, y , are actually observed with ǫj ∼ N (0, σ 2)(iid).

At this point, Eq. 4 can be reinterpreted as a linear regression problem, as long as M is 
observed. Although observing M is not possible directly, it is computable if d and K can 
be determined.

Addressing d

The apparent diffusivity, d, is an unknown parameter but can be discerned within a rea-
sonable range of values that make sense for the human brain. In this work, experiments 
are performed at multiple values to assess the performance of the method in relation to 
the imprecision in the estimated value of d. This is referred to as a sensitivity analysis of 
d.

Choosing K

The method of representing the direction of nerves in a voxel can be represented by 
points on the surface of a sphere of unit radius, without the loss of generality. This means 
that the parameters θ and φ for any nerve are contained within the intervals (0◦, 180◦) 
and (0◦, 360◦) , respectively. Furthermore in this scenario, diametrically opposite points 
are equivalent, so it suffices to work on a hemisphere. This translates to φ being con-
tained in an interval (0◦, 180◦) . Since, the number of nerve fibers, K, within a voxel is 
unknown, it is chosen to (severely) overestimate the number of nerves and obtain their 
directions by subdividing these intervals into roughly one hundred equal parts. Thereby, 
a grid with each point representing a unique nerve within the voxel is obtained. This is 
shown in Fig. 1.

Performing the regression

Now that it is possible to compute M, regression analysis can be performed. Given that 
the model has been over-parameterized, it is important to remove all nerves that do not 
have a contribution. This is achieved by using a form of regularized linear regression 
called elastic net [22]. In classical regression, the estimate for f  is obtained by minimiz-
ing the following function:

(3)M =













e−b1d e−b1dr
t
1
g(θ1,φ1)r1 . . . e−b1dr

t
1
g(θK ,φK )r1

e−b2d e−b2dr
t
2
g(θ1,φ1)r2 . . . e−b2dr

t
2
g(θK ,φK )r2
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e−bnd e−bndr
t
ng(θ1,φ1)rn . . . e−bndr

t
ng(θK ,φK )rn













.

(4)y = Mf + ǫ

(5)C(f) = ||y −Mf ||2
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In contrast, elastic net regularization adds a penalty term with the function in Eq.  6 
being minimized.

The reason classical least-squares regression is not employed is that there is no variable 
selection or shrinkage performed in the operation, and performing stepwise selection 
process would be computationally expensive. The adoption of elastic net regularization 
within this method allows variable selection for d and K, which is necessary to run the 
proposed efficient algorithm. If existing methods were employed, the classical least-
squares regression would inhibit the reasonable selection of d and K.

Processing the output

In Eq. 6 when α is set to 1, a strenuous variable selection process is implemented. This 
can potentially cause the model to be under-identified, meaning that some, or all, nerve 
contributions cannot be accounted for in the signals. On the other hand, setting α to 0 
causes too many nerves to be represented. Given this sensitivity, α is chosen closer to 0 
to prevent potential underdetection of nerves. This leads to each true nerve being over-
estimated by a group of closely-related nerves. Therefore, to further reduce the number 
of nerves to a plausible number, clustering is performed. Partitioning around mediods 
(pam) is performed based on a dissimilarity matrix using an adjusted angular distance, 
the need for which arises due to the axial nature of the data.

where ω(v,w) = cos−1
(

v·w
||v||2||w||2

)

 and v,w ∈ R
k.

Algorithm

The overview of the steps used for nerve estimation are shown in Alg. 1 and a pictorial 
overview is shown in Fig.  2. If existing methods for resolving intravoxel white matter 
were employed, values of d and K could not be determined. Steps 1 and 2 of the algo-
rithm require the flexibility of choosing values for these parameters. Thus, the elastic net 
is vital in ensuring this algorithm can run properly.

(6)C(f) = ||y −Mf ||22 + (1− α)||f ||1 + α||f ||22

(7)ωadj(·, ·) = min(ω(·, ·),π − ω(·, ·)),

0 50 100 150

0
50

10
0

15
0

Direction of nerves

Fig. 1 Grid showing 10,000 nerves within the voxel
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Algorithm 1 Algorithm for obtaining nerves through regression and cluster-
ing
Require: {ri, bi, yi}ni=1
1: Select multiple plausible values for d
2: Select K (ideally very large value)
3: Obtain set {(θj , φj)}Kj=1
4: Compute M
5: Set α and perform elastic net regularized regression to obtain a sparse estimate for

volume fractions, f
6: Take all nerves with non-zero volume fractions and perform clustering to determine true

number of nerves and their directions

Experimental results
Different experiments were performed to verify the accuracy of the proposed method. 
We consider only the undirected and attributed graph for all the experiments. All the 
experiments are executed on 64 GB main memory in Intel Core i5 @ 3.70GHz on a Win-
dows 10 operating system. Python 2.7 is used to implement the algorithms with net-
workx package for graph related operations.

Experiments and results

The method’s performance was tested using multiple synthetic datasets. The datasets 
included 64 diffusion gradients with bi = 3000 for 1–3 nerve systems. Although the 
model assumes additive Gaussian noise is added to the observations in Eq. 4, the data is 
simulated using Rician noise to ensure positivity of signals. The procedure for obtaining 
noisy signal is shown in Eq. 8.

To account for the total amount of noise in the system, the signal-to-noise ratio (SNR) is 
defined by 1

σ
 . Nine datasets were simulated using Eq. 1 with S0 = 1 in conjunction wth 

Eq. 8, one for each of 1-, 2-, and 3-nerve system at SNR = 30, 20, 10 (low, medium, high 
noise). The true diffusivity was assumed to be d = 0.001mm2/s . To test the sensitivity of 
the diffusivity parameter, three dictionaries were created with different diffusivity values: 
d = 0.005 , d = 0.001 , and d = 0.002 . These correspond to 50% of true value, 100% of 

(8)yi =

√

(

µi

S0
+ ǫi,1

)2

+ ǫ2i,2, ǫi,k ∼ N (0, σ 2)

Fig. 2 Pictorial overview of algorithm
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true value, and 200% of true value. It should also be noted that the lowest and highest 
chosen values form a reasonable range for apparent diffusivity in the human brain.

Tables 1, 2, and 3 present the nerve direction estimation for 1-, 2-, and 3-nerve sys-
tems, respectively. To summarize the precision of the estimated directions in relation to 
the true values, the adjusted angular deviation was calculated by using Eq. 7. Further-
more, a mean angular deviation is also presented for multi-nerve systems. It should also 
be noted that the α-value for elastic net (Eq. 6) was set to 0.2 except in the 3-nerve sys-
tem at SNR = 10  where it was set to 0, and 1-, 2-nerve systems with d = 0.0005 where 
it was set to 1. Given the large number of experiments, Figs. 3, 4, 5, 6 and 7 present a 
graphical view of the estimation corresponding to the bolded lines in Tables 1, 2, and 3.

Table 1 Estimation results for 1-nerve {(45, 45)}

ED: estimated direction; AAD: adjusted angular distance

SNR d = 0.0005 d = 0.001 d = 0.002

ED AAD ED AAD ED AAD

30 (120.6, 109.8) 84.21 (46.8, 45.0) 1.80 (48.6, 46.8) 3.83

20 (46.8, 46.8) 2.22 (46.8, 46.8) 2.22 (45.0, 46.8) 1.27

10 ( 46.8, 43.2) 2.22 ( 46.8, 43.2) 2.22 ( 45.0, 41.4) 2.55

Table 2 Estimation results for 2-nerves {(45, 45), (135, 45)}

ED: estimated direction; AAD: adjusted angular distance

SNR d = 0.0005 d = 0.001 d = 0.002

ED AAD Mean AAD ED AAD Mean AAD ED AAD Mean AAD

30 (48.6, 46.8) 3.83 3.715 (48.6, 45.0) 3.60 3.600 (48.6, 46.8) 3.83 2.550

(138.6, 45.0) 3.60 (138.6, 45.0) 3.60 (135.0, 43.2) 1.27

20 (48.5, 45.0) 3.50 4.515 (48.6, 41.4) 4.45 5.185 (48.6, 41.4) 4.45 5.875

(140.4, 46.8) 5.53 (140.4, 48.6) 5.92 (142.2, 46.8) 7.30

10 ( 46.8, 46.8) 2.22 4.900 ( 46.8, 46.8) 2.22 4.760 ( 48.6, 48.6) 4.45 4.990

( 142.2, 41.4) 7.58 ( 142.2, 43.2) 7.30 ( 140.4, 43.2) 5.53

Table 3 Estimation results for 3-nerves {(45, 45), (135, 45), (90, 135)}

ED: estimated direction; AAD: adjusted angular distance

SNR d = 0.0005 d = 0.001 d d = 0.002

ED AAD Mean AAD ED AAD Mean AAD ED AAD Mean AAD

30 (48.6, 41.4) 4.45 3.063 (48.6, 41.4) 4.45 2.813 (48.6, 41.4) 4.45 3.107

(136.8, 43.2) 2.19 (136.8, 43.2) 2.19 (135.0, 43.2) 1.27

(91.8, 136.8) 2.55 ( 91.8, 135.0) 1.80 ( 93.6, 135.0) 3.60

20 (50.4, 46.8) 5.56 5.380 (50.4, 46.8) 5.56 6.660 (48.6, 46.8) 3.83 7.193

(142.2, 39.6) 8.03 (142.2, 36.0) 9.33 (142.2, 34.2) 10.12

(93.6, 138.6) 2.55 (93.6, 138.6) 5.09 (95.4, 140.4) 7.63

10 ( 43.2, 70.2) 17.55 17.087 ( 39.6, 68.4) 16.57 12.833 ( 37.8, 64.8) 14.87 10.230

(145.8, 21.6) 18.27 (144.0, 30.6) 12.93 (142.2, 36.0) 9.33

( 81.0, 122.4) 15.44 ( 90.0, 126.0) 9.00 ( 93.6, 129.6) 6.49
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Discussion
The proposed method utilizes regularized regression and clustering techniques for 
estimation of the principal direction of nerves within a voxel. The method’s robustness 
has been heavily relied on because the apparent diffusivity, d, for the voxel is crudely 
picked from a plausible range. A test for sensitivity shows that the method’s performance 
is mostly unaffected when this parameter is obtained within a reasonable range of the 
true value. In the event that d is severely underestimated, the number of nerves can be 
overestimated, since some of the artificial nerves do not get eliminated by the regression 
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0.
0

0.
5

1.
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Fig. 3 One nerve, SNR = 10 , d = 0.001

Fig. 4 Two nerves, SNR = 10 , d = 0.0005
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step. This is explained by the inability of the system to produce higher dampening effects 
with little diffusivity and a small number of nerves. On the other hand, a severe overesti-
mation in d can cause an underestimation of nerves because their corresponding damp-
ening effects are exceedingly pronounced. In the case of 1-, 2-nerve systems at SNR = 30 
with d = 0.0005 , α (Eq. 6) had to be set equal to 1 to reduce overestimation of nerves. 
Alternatively in the future, it is possible to devise algorithms that learn d simultaneous to 
the regression. It is also possible to borrow information from other relevant algorithms 
or perform additional MRI-related experiments to obtain an estimated value of d, which 

Fig. 5 Two nerves, SNR = 10 , d = 0.002
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Fig. 6 Three nerves, SNR = 30 , d = 0.001
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would then reduce the onus of estimation off the assumptions of this model and make it 
easier to pick more lenient values for regularization.

It should also be noted that in the case of 3-nerve systems at SNR = 10 , the α-value 
had to be dropped to 0 exactly. This is explained by the complexity of the confounded 
dampening effect from the three nerves and high-noise. This issue is slightly harder to 
overcome, but it is argued that a finer discretization of the parameter space may poten-
tially provide a solution and even improve estimation accuracy.

Figures 3, 4, 5, 6 and 7 show that the number of clusters formed were obvious. This 
may not be the case in the future. Therefore, it would be advisable to run the clustering 
algorithm multiple times with a variable number of clusters, and, additionally, use an 
external criteria (such as the elbow method using sum of squared errors) to evaluate the 
best number of nerves.

The adoption of elastic net regularization enables variable selection for the proposed 
method. Given a sensible interval for the diffusivity parameter and a severe overestimate 
for the number of nerves, the selection for d and K are reasonable and can be used in the 
algorithm. This is computationally more efficient than running a Bayesian and collabora-
tive approach to estimate these variables.

Conclusion and future work
The proposed method has shown promising preliminary results in a host of unfavora-
ble conditions, including noisy data and imprecision in parameter assumptions. In the 
future, the method’s efficacy will be tested on real patient data along with a presentation 
of comparative analyses with other relevant methods in the field.

Abbrevations
MRI: magnetic resonance imaging; dMRI: diffusion magnetic resonance imaging; SNR: signal‑to‑noise ratio.

Fig. 7 Three nerves, SNR = 30 , d = 0.002
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