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Abstract: The model-free implied volatility (MFIVol) is intended to measure the variability of 

underlying asset price on which options are written.  Analytically, however, it does not measure 

exactly the variability under jump diffusion.  Our extensive empirical study suggests that the 

approximation error can be as much as about        although most samples over the data 

period exhibit less than    errors.  Even with the non-negligible errors, the MFIVol may be still 

considered a valid volatility measure from the perspective of risk-neutral return density, in the sense 

that it is bounded by the two variability measures as well as reflecting the shape of the risk-neutral 

density via its higher central moments. 

 Keywords:  Jump-diffusion model; Model-free Implied Volatility; Risk-neutral probability 

density; Volatility index (VIX) 

 JEL Classifications:  C58, C65, G12 

1. Introduction 

Britten-Jones and Neuberger (2000) proposed a methodology that measures, without the need 

to specify an option model, the return variability of an underlying asset implied by option prices. 

This approach has generated great interest from both academics and practitioners. Many of today’s 

publicly available volatility indices are calculated by this methodology, and some derivatives 

written on those indices are traded in the market
1
. Among others, the options and futures on 

volatility index, VIX, traded on the Chicago Board Options Exchange, and the variance swaps (or 

volatility swaps) traded at OTC are the derivatives of volatilities calculated by this methodology. 

An implied return variability calculated without an option model is called “model-free implied 

variance” (MFIV) and its square root is known as “model-free implied volatility” (MFIVol). The 

MFIV is intended to measure the expected total instantaneous return variability of an underlying 

asset over the option life written on the asset. The return variability can be expressed in two ways. 

One may use either the effective rate or the continuously compounding rate for the instantaneous 

rate of return. For convenience, we call the expected variability using the former rate as “expected 

total return variability” (ETRV) and the latter as “expected quadratic variation of return” (EQVR). 

                                                      
1 See Carr and Lee (2009) for an overview of the development of volatility derivatives. 
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The two variabilities are the same when the asset price follows a diffusion process, and thus the 

distinction between the two is not necessary. Analytically the MFIV measures exactly the ETRV 

and EQVR. If the asset price has a jump component, however, the two variabilities are not the same 

and the MFIV just approximates them
2
. As discussed in the seminal work of Merton (1976), a 

significant part of asset price volatility may be comprised of jumps
3
. Therefore, the validity of the 

MFIV as a measure of ETRV might depend on how small the approximation errors are. There are 

conflicting views, however, about the significance of the error size. Jiang and Tian (2005) and Carr 

and Wu (2009) use some illustrative parameter values of the stochastic volatility jump model of 

Bates (1996) and show that the effect of jumps on the error size is arguably small. On the other 

hand, there is a view that the jump component in the asset price process is large enough to make the 

replication of a variance swap difficult, even theoretically
4
. 

Strictly speaking, the approximation error size would depend on the jump parameter values. 

Therefore, we argue that its significance is a valid empirical question. In this paper, under the 

assumption that option prices are consistent with the stochastic volatility jump diffusion model of 

Bates (1996), we calibrate it to the S&P 500 index option data each day for the period of 2009 - 

2012. Then, using the formulas for annualized MFIV, annualized ETRV, and EQVR for the jump 

diffusion model, we calculate the error sizes of the MFIVol’s obtained from the calibrated 

parameter values. The empirical results show that for most samples during the data period the errors 

are less than   . However, we find that the MFIVol can often provide a poor estimate of the square 

root of the ETRV (EQVR) and that the approximation errors can reach up to    (  ). The results 

show that the MFIV is rather close to the EQVR. We also find that the MFIV lies between the two 

variability measures. In other words, the MFIV overestimates (underestimates) the EQVR when it 

underestimates (overestimates) the ETRV. 

While the ETRV (or EQVR) attempts to explain the expected value of asset return variability 

over time, the MFIV can be interpreted within the risk-neutral density framework. Martin (2013) 

shows that the model-free implied variance (MFIV) equals twice the negative first moment of the 

continuously compounding rate of change over option life under the forward risk-neutral probability 

measure. Using no-arbitrage and the definition of the cumulant of a random variable, the MFIV is 

expressed in terms of higher central moments, implying that the risk-neutral density provides a 

specific relationship between the first moment and the higher moments. In this sense, we may view 

the MFIVol as a valid volatility measure that reflects a risk-neutral density shape via its higher 

central moments and that is bounded by the two variability measures, the ETRV and EQVR. 

2. Volatility Measures for Diffusion Processes 

We begin with a brief discussion of two different measures of variability: the expected total 

return variability (ETRV) and the expected quadratic variation of return (EQVR) under the 

assumption that the asset price follows a diffusion process. The two variability measures are 

                                                      
2 Both variability measures are used in literature. For example, Jiang and Tian (2005) use ETRV and Carr 

and Wu (2009) use EQVR for their studies. 
3 Recently Todorov (2010) and Todorov and Tauchen (2011) test for jumps in the VIX index and find 

strong evidence supporting jumps. 
4 The jumps are considered to be one of the reasons why variance swaps collapsed during the credit 

crisis of 2008-2009. In addition to the jump issue, the replication of variance swap is known to be 
difficult in practice because it requires a full range of option strikes.  See Demeterfi et al. (1999), Carr 
and Corso (2001) and Bondarenko (2014) for its theoretical replication. 
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essentially the same and can be estimated by the model-free implied variance (MFIV) as shown by 

Britten-Jones and Neuberger (2000). We then review the properties of the MFIV as a structural 

parameter of a risk-neutral density. 

Consider a forward contract expiring at time   with a forward price of    at time  . Assume 

that    follows a diffusion process, 

 
   

  
        (1) 

where    is the instantaneous variance at time   and    is a Wiener process under the forward risk-

neutral measure  . Britten-Jones and Neuberger (2000) show that 

   
    

   

  
 
  

 

    
               

  

 

 

   (2) 

where         is the forward European call option price at time   with strike price   and 

expiration  . We call the left-hand side of Identity (2) “expected total return variability” (ETRV) 

which we denote by   . Under the process (1),     is the expected sum of all instantaneous return 

variances over the option life: 

     
    

   

  
 
  

 
    

           
  

 
    

     
 

 
                                    (3) 

Thus, the identity (2) implies that we can estimate the ETRV (  ) by the right-hand side of  

(2), which depends only on the option prices of the same expiration  . For this reason, the quantity 

obtained by the right-hand side of (2), which we denote by   ,  is called model-free implied 

variance (MFIV) and its square root is known as model-free implied volatility (MFIVol). 

Now let    be the continuously compounding rate of change in    over time interval       such 

that 

      
                                                                                     

By Itô’s Lemma, we can express the process of    as 

    
 

 
   

 

 

       

 

 

                                                    

Then we can use the variability of    as an alternative to the ETRV. Let us call the variability 

on time interval       “expected quadratic variation of return” (EQVR), denoted by   . A simple 

calculation following the definition of the quadratic variation yields 

     
          

    
 

 
   

 

 

       

 

 

    

 

    
     

 

 

     

where      denotes the quadratic variation on time interval      . Hence, the two measures of total 

variability, ETRV and EQVR equal each other when the underlying asset prices follow the 

diffusion process. Both can be estimated by the MFIV. We show in the next section that the two 

variability measures differ each other when the asset prices contain jumps and the MFIV is not 

equal to either of them. 
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Now let us consider the MFIV as a structural parameter of the risk-neutral density resulted 

from any stochastic processes, either diffusion or jump-diffusion.  Jiang and Tian (2005) show the 

MFIV can also be written in terms of forward prices: 

              
            

Plugging into the above equation, we obtain
5
 

       
                                                                            

After all, the MFIV equals two times the negative expected rate of return    under the forward 

risk-neutral measure 
6
. 

Using the no-arbitrage condition, Martin (2013) expands the MFIV in terms of the central 

moments of    to get 

     
  

 

 
  

    
 

  
  

                                                    

where    and    are the skewness and excess kurtosis of    respectively. Equation (6) states that 

the MFIV is solely determined by the mean of    while Equation (7) explains the MFIV in terms of 

the second and higher central moments of   . Thus, the risk-neutral density provides a specific 

relationship between the mean and the higher central moments. This implies the MFIV captures the 

shape of the risk-neutral density in terms of higher central moments of the return as a specific way 

of measuring volatility. 

Interpreting the MFIV alone as a fear index is difficult, however, because it is silent about the 

down-side risk. For example, the same MFIV values imply the same variabilities of underlying 

asset price, but they can reflect two distinct skewness values, one negative and the other positive. 

For an illustration, we consider the stochastic volatility model of Heston (1993). The variance    is 

specified by the Cox, Ingersoll and Ross (1985) model: 

                                                                       

where    is a Wiener process and is correlated with    at rate  .  It is straightforward to obtain the 

MFIV for the Heston model: 

   
    

    

 
                                                                

Equation (9) shows that the MFIV does not depend on the correlation parameter   and the 

volatility of volatility  . 

Using various combinations of   and  , we can generate the same MFIV’s with different 

skewness by using the moment generating function. Figure 1 plots the skewness on pairs of   and   

with the MFIV held constant at    
    .  We set     for both figures and we use        and 

                                                      
5 See Martin (2013). In Appendix, we also prove explicitly by using the general European call option 

pricing formula. 
6 We also have     

        
        

under the risk-neutral measure   when the interest rate is constant  . Hence, the MFIV is two times 
the difference between the risk-free return rate and the expected risky return rate. 
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    for the left figure and the right figure, respectively. Both figures exhibit the same   ’s, but 

skewness is negative for the left figure and positive for the right. In other words, the same MFIV’s 

do not imply the same down-side risks.  Or we can easily conjecture that a larger MFIV does not 

necessarily implies a greater down-side risk. 

  

Figure 1. Using the stochastic volatility model of Heston (1993), we plot the skewness of 

return on the pairs of   and   with         and     for both figures, and         and 

0.5 for the left figure and the right figure, respectively.  

3. Volatility Measures for Jump-Diffusion Processes 

We now derive the formulas for the two variability measures and the model-free implied 

variance under jump-diffusion in a simple and succinct way. Then we examine the difference 

between the two measures relative to the MFIV by using a numerical illustration. 

Suppose that a forward price    follows a jump-diffusion process: 

   

  
                                                                

where    is a compensated compound Poisson process, independent of process    and the Wiener 

process    under the forward measure  . As usual, the process    is specified as 

                  
  

   
 

where    is a Poisson process with risk-neutral intensity   ,      
  is a sequence of independent and 

identically distributed random variables, and      
         is the expected jump amplitude. 

Using Itô’s lemma, we get the stochastic process of    defined in as 

    
 

 
   

 

 

       

 

 

                                                   

where       
  
         .  Taking expectation on yields, 
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Hence, it follows from that 

   
     

        
     

 

 

              
                            

We also have by (10) 

     
    

   

  
 
  

 

    
       

 

 

    

 

    
                         

     
     

 

 
         

                                                                                  

where we use the fact that    and    are independent. Lastly, from (11), we obtain the expected 

quadratic variation of return (EQVR): 
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where we use the fact that    and       are independent. 

We see from (12), (13), and (14) that the three quantities MFIV (  ), ETRV (  ) and EQVR 

(  ) are not the same in the presence of jumps unless     , that is, there are no jumps. 

Now let us check the difference between    and the two variability measures,    and   . 

Using Equations (12) and (13), we can write 

                                                              (15) 

where                                  
                                                                        

By using the Maclaurin series of function   , the error    can be expanded as follows: 

       
    

  

 

   

  
    

       
 

 
  

    
   

 

 
  

    
                         

which means that the size of the difference    depends on the third and higher moments of   . The 

difference between    and    is obtained from Equations and as 

      
                                                                  

where                                          
    

                                                             

The series expansion of    yields 

         
 

  

 

   

  
    

        
 

 
  

    
   

 

  
  

    
                     

Again, the difference    depends on the third and higher moments of   . 
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Since       and       in general, it may be too strong to claim that they are negligibly 

small. Now we examine the size of    and    under the stochastic volatility jump (SVJ) model of 

Bates (1996). In the Bates model, the forward price has a process of (10), the process    is the same 

as (8) of Heston’s stochastic volatility model, and the random variable    is normally distributed 

with mean          
 

 
  

  and variance   
  where          . Taking the expected value on 

both sides of (8) and solving the resulting differential equation, we have by (12) 
7
 

   
    

    

 
               

                                 

Finally, we can write Equations and for the Bates model as follows
8
: 

         
                    

 
         

 
   

   

and                                     
 

 
  

  
 
                 

Since the CBOE volatility index, VIX, is computed by using one hundred times the square root 

of the annualized model-free implied variance, we examine the differences    and    in the same 

manner as follows: 

        
     

 
  

  

 
                                             

and                                                          
     

 
  

  

 
                                                

Figure 2 displays the contour plots of    and    as functions of    and   , while the other 

parameters are fixed at     ,    ,     and              as used in Jiang and Tian 

(2005). The differences between the ETRV’s and the MFIV’s measured in a square root of the 

annualized quantity range between    and    given the set of parameter values. As expected, 

when the absolute value of    and    are large, the differences get larger. Regardless of the size of 

  , however, the differences are zero when jump size (  ) equals zero. On the other hand, the 

differences between the EQVR’s and the MFIV’s range between    and   , indicating that the 

MFIV is close to the EQVR measure.  In general, we can say that    is smaller than    in absolute 

value and thus the MFIV more closely approximates the EQVR than the ETRV.  Note also that a 

large value of average positive (negative) jump coupled with a higher    makes the MFIV 

underestimate (overestimate) the ETRV and overestimate (underestimate) the EQVR. In other 

words,    and    (or    and   ) take the opposite sign when    varies from negative to positive, 

which their series expansions (17) and (20) and imply. This indicates the MFIV lies between the 

                                                      
7 Note that the MFIV does not depend on the correlation parameter   and the volatility of volatility  . 

However, the higher central moments are dependent on these two parameters. 

8 Carr and Wu (2009) also derived    and    
 . We derive them here again to compare with    in a 

simple way. 
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two volatility measures, the ETRV and the EQVR. The next section evaluates empirically the 

economic significance of the differences. 

  

Figure 2. The figures display the contour plots of    and    as functions of     and 

   , when    ,     , and                

4. Calibration of the Stochastic Volatility Jump Model 

Since the difference between the MFIV and the ETRV (or EQVR) depends on the jump 

parameter values, its economic significance is an empirical question. We examine this issue by 

calibrating the stochastic volatility jump model of Bates (1996), assuming that the option prices are 

consistent with the Bates model. 

We use SPX option data, European options written on the S&P 500, covering 2009 to 2012.
9
 

The sample period follows immediately after the 2008 Lehman Brothers bankruptcy. The 

subsequent mortgage crisis probably produced option prices with unusually high implied volatilities 

and very steep volatility smiles related to the Black-Scholes-Merton model. 

To minimize potential noise in the data for a more accurate calibration, we filter the data as 

follows. We exclude options for which the bid price or the open interest is zero as well as when the 

maturity is less than 10 days to minimize market microstructure concerns. Then we select the 

options of the first two expiration dates instead of including options of all expiration dates.
10

 

Therefore, each day, there are two groups of expiration options. We eliminate the option if either 

the call or put option of the same expiration and strike price is missing.  

                                                      
9 We get the “optsum” data from the CBOE Market Data Express. The data set contains an end of day 

option summary for CBOE traded call and put options. This includes volume traded, open interest, 
open, high, low, bid-ask prices on the last quote of the day and the last underlying asset price. We use 
only the “standard” series type of options out of various option series type such as LEAP, Weekly, 
Quarterly and Custom provided by the CBOE. 

10 Bardgett, Gourier and Leippold (2013) state that “although the standard SVJ model performs well at 
representing the smiles of volatility for both markets on a given date, its dynamics is not sufficiently 
flexible to accommodate for the dynamical properties embedded in the time series of option prices.” 
Considering their remarks, we use only the option data of the two expiration dates for a better fit. 
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Thus, our observations contain matched call and put options. Given the matched options, we 

then compute the implied volatility using the Black-Scholes-Merton model. If the calculated 

implied volatility is negative, we delete the corresponding observation from the sample because it is 

obviously underpriced. For each put-call pair, we check its parity condition. This requires dividend 

yield information, which is assumed to be known. Instead of using the actual realized dividend 

yields,
11

 we estimate the dividend yields as follows. We first find the implicit SPX forward price by 

setting                  , where we use the options of the strike price at which the absolute 

difference between the call and put prices is smallest. Since the arbitrage-free forward price must be 

      
       , we solve for the dividend yield of  , given   ,   , and   , where we use Treasury 

bill yields as the risk-free rate.
12

 If the Treasury bill yield for a specific maturity does not exist, we 

interpolate linearly between the adjacent yields. Using the put-call parity condition, we calculate 

synthetic call prices ( =       
              ) corresponding to the bid, the ask and the 

midpoint price of a put and check if any one of the calculated synthetic call prices falls in the 

boundary of the call bid and ask prices. If none of them lie within the boundary, we treat it as a 

violation of the put-call parity and exclude the observation from the sample. Lastly, we delete the 

entire sample if the number of call-put option pairs is less than 22, considering the SVJ model has 

eight parameters to be estimated. 

Table 1 summarizes the data set obtained after the above filtering process. A total of 977 

trading-day samples over 4 years is obtained. Each sample contains a minimum of 22 to a 

maximum 148 pairs of call and puts. The two expirations of each sample are on average around 

0.09 years and 0.22 years. 

Table 1. Data summary 

Note: The data sample 

each day includes two 

option expirations,    

and   . The number of 

pairs/day means the 

number of put and call 

option pairs of the same 

strike price and 

expiration date. 

 

We calibrate the Bates model by minimizing the objective function (24), which is essentially 

the sum of squares of the relative price difference of the actual market option prices and the model 

prices
13

. We pick the mid-point of the bid and ask prices as the actual option price as CBOE does 

                                                      
11 We can find the actual dividend yields using S&P500 index with and without dividends. We find that 

the actual dividend yields are stable for more than approximately four-month periods. However, they 
are quite varying for shorter periods. 

12 This dividend estimation approach is used for the VIX calculation at CBOE. 

13 The model prices are computed by using the formula in Bates (2006) with the reformulated 
characteristic function in Gatheral (2006). 

Year 
Number of 

Trading Days 
   Avg    Avg 

Number of Paris/Days 

Avg Min Max 

2009 242 0.094 0.252 70 22 108 

2010 239 0.088 0.215 71 22 138 

2011 250 0.082 0.208 74 27 148 

2012 246 0.084 0.209 64 22 96 

All Years 977 0.087 0.221 69 22 148 
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for its VIX calculation. Instead of using the data for either calls or puts only, we use both puts and 

calls for the given range of strike prices as shown in the following objective function: 

    
           

     
 
  

     

    
           

     
 
  

     

                        

where   and   are the actual call and put prices and   and   are the model prices. We calibrate the 

model with the constraint,       , which is often imposed to insure the positive variance process 

of almost surely. To avoid the potential problem of a local solution that may occur for different 

starting parameter values, we follow a two-step approach in favor of no jumps. First, we calibrate 

the model with no jumps. Second, we use the calibrated parameter values as the starting values for 

the Bates model with starting jump parameter values of zero. 

Figure 3 below plots the annualized MFIVol’s calculated with the calibrated parameter values 

and a longer expiration date for each trading day. Over the sample period, the figure exhibits sudden 

spikes of the MFIVol around every 1.5 years. 

 

 

Figure 3.  The model-free 

implied volatilities for the 

period from 2009JA02 to 

2012DE31. The volatilities 

are calculated with the 

calibrated parameter values 

of the Bates model. 

 

 

 

Figure 4 on p.11 plots 

the histograms of the absolute size of   (  ) and the percentage of   (  ) relative to   . A 

majority (about     and    ) of the samples show that the relative error sizes are less than   . 

Thus we may argue that the effect of the jumps on the approximation errors is small. However the 

remaining samples show that the errors are greater than   . Table 2 provides more detailed 

information on the empirical distributions of their relative size. The figure shows that the maximum 

and minimum values of    are     and      respectively. These correspond to the maximum and 

minimum of its relative size of       and        respectively. Similarly, the maximum and 

minimum size values of    in the figure are     and      and the maximum and minimum of the 

relative size are       and       , respectively.  As shown in the simulation in the previous 

section, the empirical results also show that the MFIV (  ) is closer to the EQVR (  ) than to the 

ETRV (  ).  The potential size differences in our empirical study reach   , however, which may be 

still too large to be ignored. Our empirical results also confirm that    is always located between 

   and   . 
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Figure 4. The top left histogram plots the size of    of 977 daily estimates 

during years 2009-2012 and the bottom left plots the size of   . The right 

histograms plot the percentages of    and    relative to   .  

 

Table 2. Relative sizes of    and    

Year 

      

Avg STD Min Max Avg STD Min Max 

2009       1.45       1.10 0.35 0.80            

2010       1.16       0.74 0.32 0.63       2.46 

2011       1.23       2.08 0.35 0.67       3.10 

2012       1.03       0.61 0.30 0.54       2.02 

All Years       1.23       2.08 0.33 0.67       3.10 
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5. Conclusion 

In this paper, we empirically examine the size of the approximation errors of the model-free 

implied volatility (MFIVol) in measuring the square root of expected total return variability 

(ETRV) and the square root of expected quadratic variation of return within a framework of the 

jump diffusion model. Since the approximation error sizes would depend on the jump parameter 

values, we perform an empirical study by calibrating the stochastic volatility jump diffusion model 

of Bates (1996) to the S&P 500 option price data for the period between 2009 and 2012. We find 

that on average the error size is less than   . The standard deviations of the errors, however, are 

around    and the differences often reach more than   . Considering that asset price jumps are 

common in financial markets, this error seems non-trivial. 

We find that the approximation errors of the MFIV for the EQVR are smaller than the ones for 

the ETVR, suggesting that the MFIVol provides an estimate close to the square root of the EQVR. 

Thus, when one examines the information content of the MFIVol, it may be better to use the 

quadratic variation of return as the realization of the MFIVol. In addition, we find that the MFIVol 

takes a value between the square root of the ETRV and the square root of the EQVR. In other 

words, the model-free implied variance (square of MFIVol) is bounded by the two variability 

measures, the ETRV and EQVR. 

Since the model-free implied variance equals twice the negative first moment of the 

continuously compounding rate of change of the underlying forward price under the forward risk-

neutral measure and the first moment can be expressed in terms of higher central moments, the risk-

neutral density requires a specific relationship between the first moment and the higher moments. In 

this sense, the MFIVol reflects the shape of a risk-neutral density via its higher central moments 

regardless of the asset price process. 

Considering all of the above, we may conclude that the MFIVol is taken as a relevant measure 

of volatility although the MFIV is not exactly equal to either of the two variability measures under 

jumps. 

 

Appendix: Derivation of Equation (6) 

Consider a forward call option with the strike price   and the expiration date  .  Let       be 

the risk-neutral density for random variable   , where       
  

  
 . Then the spot call price is 

given by (Equation 9.4.7 on page 393, Shreve, 2013) 

               
                                                    

where        is the spot price of the zero-coupon bond that pays $1 at time T, and 

          

 
                      

 

 
                 

 

  
   

The pricing formula for European put options can be obtained similarly or by the put-call 

parity condition. Now we can write the model-free implied variance as follows. 
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where 

        
      

      
  

Since                        from (25), we rearrange    as follows. 

                
  

 

                                                                          

           
 

  
          

 

  
        

  

 

                  

            
 

  
                

 

  
    

  

 

       

By the variable substitution      
 

  
 , we get 

                            
 

  

       
 

  

            
 

  

       
 

  

   

           
 

  

 

  

                   
 

 

 

  

                                                 

          
 

  

  
                 

 

  

                                                               

Similarly, we have 

            
 

 

        

Hence, 
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