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Abstract

THE EVALUATION OF AN ANDROID PERMISSION MANAGEMENT

SYSTEM BASED ON CROWDSOURCING

By Pulkit Rustgi

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2019.

Director: Dr. Carol Fung,

Assistant Professor, Department of Computer Science

Mobile and web application security, particularly concerning the area of data

privacy, has received much attention from the public in recent years. Most appli-

cations are installed without disclosing full information to users and clearly stating

what they have access to. This often raises concerns when users become aware of

unnecessary information being collected or stored. Unfortunately, most users have

little to no technical knowledge in regard to what permissions should be granted and

can only rely on their intuition and past experiences to make relatively uninformed

decisions.

DroidNet, a crowdsource based Android recommendation tool and framework, is

a proposed avenue for the technically incapable. DroidNet alleviates privacy concerns

and presents users with permission recommendations of high confidence based on the

decisions from expert users on the network who are using the same applications. The

framework combines an interactive user interface, used for data collection and pre-

senting permission recommendations to users, with a transitional Bayesian inference

vii



model and multiple algorithms used for rating users based on their respective exper-

tise levels. As a result, the recommendations that are provided to users are based on

aggregated expert responses and their confidence levels.

This work presents the completed DroidNet project in its entirety, including the

implementation of the application, algorithms, and user interface itself. Additionally,

this thesis presents and utilizes a unique collection of real-world data from actual

Android users. The primary goal of this work is to evaluate the effectiveness and ac-

curacy of DroidNet’s recommendations and to show that regular mobile device users

can benefit from crowdsourcing.
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CHAPTER 1

INTRODUCTION

Mobile applications, or apps for short, have become a part of most individuals day

to day lives. Whether it be dealing with business, social interaction, or marketing

prospects, apps are ubiquitous. According to a report, the Google Play Store, which

houses most Android apps, first surpassed 1 million unique apps available for down-

load in July 2013. Currently, as of June 2019, the store has over 2.7 million apps

available for download [1] which shows mobile development’s unparalleled rise over

the past decade.

With such a large user base that only appears to be broadening, concerns with

privacy and security only seem to be growing. Due to the nature and rate of growth

for marketplaces housing these apps, such as the aforementioned Google Play Store

and its competitor the Apple App Store, it seems nearly impossible to verify the

true intention of an application before it is uploaded to a market. As a result, this

means that the current permission management for privacy control on the Android

operating system (OS) heavily depends on users. Users have to manually decide

what permissions an app can access after an app is installed. Apps are free to request

users give access to whatever resources they claim to need, as most of the time these

requests are not validated nor the developers held responsible.

Because of the lack of reliable verification processes, other than developers apps

being checked manually, up to 70% of apps request access to permissions that they do

not necessarily even require [2]. This translates to untrustworthy apps with hidden

agendas often being downloaded by unsuspecting users. These malicious third-party
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apps not only steal private information, such as online credentials, private messages,

contacts, and the user’s live location, but also cause the victim to experience monetary

loss. In rare cases, these malicious apps even utilize users’ devices to send text

messages as well as paid phone calls [3].

Permissions requested by these, or any, apps are often displayed to users through

a dialog window with little information other than their name being disclosed. This

has proved to be ineffective since users may not entirely understand what resource an

application is requesting access to and/or they have no time or incentive to look into

what granting or denying a specific request may cause [4, 5]. Even then, only a small

percentage (3%) of users correctly respond to requests that relate to permissions [2].

Thus, less proficient users often turn to more seasoned experts with a greater

understanding of a particular field or application for questions concerning settings re-

lating to permissions. DroidNet[6], proposed by Rashidi et al., is a solution that helps

users alleviate their privacy and security concerns through seeking opinions from ex-

pert users. DroidNet is a permission control system that examines individual users’

app permission settings and compares them with recommended decisions through

crowdsourcing. When mismatches between permissions and recommendations from

the framework are found, DroidNet notifies users on its live network through An-

droid’s notification system so that they can potentially revise their decisions. The

recommendations are crowdsourced, meaning they rely on both verified expert users

as well as highly rated normal users who use the same apps.

The tool also allows users to easily view permissions requested by each individ-

ual app, in much more efficient manner than Android’s current design, as well as

manage them utilizing a simple system framework that provides the following major

functionalities:
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• A front-end user interface and launcher pages to indicate which apps DroidNet

is currently monitoring.

• A back-end engine to collect each users’ installed application and its correspond-

ing permissions and responses.

• A recommendation system and display to guide users.

• A user-based ranking algorithm to rank security risks of each mobile application

as well as their permissions.

DroidNet is a live tool available on the Android market, through the Google

Play Store, that provides users with secure permission recommendations for apps

installed on their device. This work describes the process behind the development

of the application itself, the implementation of the back-end algorithms associated

with the application used for ratings and recommendations, and the evaluation of

how practical and reliable the system is for the average users on the network using a

real-world dataset.

1.1 Summary of Contribution

The contributions of this work are as follows:

• Implementation of the Android DroidNet application.

• Collection of unique dataset containing users as well as their respective apps

and permissions.

• Implementation of multiple algorithms associated with DroidNet.

• Unique recommendations tailored to any current and future DroidNet users.

4



CHAPTER 2

BACKGROUND

Crowdsourcing is defined as a distributed online process that often involves the In-

ternet and the participation of a crowd [7]. It is often described as an outsourcing

process involving data collection done through tools, such as Google Forms or Ama-

zon Mechanical Turk, where users complete a predefined task. These surveys are

often aimed at the collection of data enclosed within a small subset of the general

population that still have key overlapping factors or characteristics. This overlapping

factor can be one of many data points, such as demographic information, or even the

participation in a common activity. The only key aspect of this factor is that it often

shapes the dataset and is generally the initial motivation behind the data collection

itself it.

This chapter briefly overviews Android’s native architecture and general design.

First, it details permissions, and what they are, in the context of Android apps.

Next, an in-depth discussion takes place on how various permissions are generated

by developers, what permissions are presented as requests to users, and what specific

types of permissions, and their associated groups, mean. Then, management and

requests in relation to permissions are discussed.

Following the discussion of permission management and request handling, other

existing mobile privacy solutions are covered in order to understand the type and

extent of work done similar to DroidNet. Lastly, this chapter introduces DroidNet

and its currently implemented rating model for users. In addition to this, it includes

the changes made to the initial DroidNet design in order to refine results as well as
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accommodate the Android OS and, as aforementioned, its permission management

and recommendation system.

2.1 Permission Types and Classification

Android utilizes various categories of permissions that are split into larger groups.

Android refers to these groups as permission groups. These permission groups con-

tain individual permissions that fit a particular group or category as deemed appropri-

ate by Android. Application developers may place various Application Programming

Interface (API) calls into their application to initialize these permission requests and

prompt the user to take action. A full example of the process can be seen in figure 3.

According to the Android developer portal, if an application requests even a

single permission through the API that falls into one of these permission groups the

whole permission group is either denied or granted depending on the user’s answer to

the request [8]. This behavior is particularly troublesome as only the group permission

is shown to the user rather than getting into the specifics of which exact permission

the application requires access to.

What’s even more concerning is when an application requests access to a particu-

lar ”dangerous permission”, or permissions that grants access to sensitive information

on your device, such as contact lists. Due to the aforementioned behavior of permis-

sion groups, other permissions falling into the same group no longer need to request

access from the user in any future cases, regardless of how relevant the permissions

are to the application [8].

This paper examines ten out of twelve possible Android permissions. They are

as follows, with definitions as provided through the developers of Android themselves:

• Storage Access: Used for runtime permissions related to the shared external
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storage.

• Location Access: Used for permissions that allow accessing the device loca-

tion.

• Contact Access: Used for runtime permissions related to contacts and profiles

on this device.

• Phone Access: Used for permissions that are associated telephony features.

• Camera Access: Used for permissions that are associated with accessing cam-

era or capturing images/video from the device.

• Microphone Access: Used for permissions that are associated with accessing

microphone audio from the device.

• In-App Purchases: In-App Purchases (or IAPs) are available to be made in

the app or game using Google Play In-app Billing.

• SMS Access: Used for runtime permissions related to user’s SMS messages.

• Calendar Access: Used for runtime permissions related to a user’s calendar.

• Sensors: Used for permissions that are associated with accessing body or en-

vironmental sensors.

Activity Recognition as well as Call Logs are the remaining two permissions, but

they were not analyzed due to a lack of available results or apps utilizing them. This

would mean that any recommendation being made would inherently lack credibility.

2.2 Permission Management and Requests in Android

Most Android warnings relating to permissions are not taken into account by

users [9]. Ultimately, many warnings have little to no impact on their decisions and

alternative solutions, other than the currently implemented interface dialogs created

by the native Android OS environment warning users, are needed. However, while
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Fig. 1.: Manual Process for Modifying App Permissions

many attempts to create alternatives have been attempted, ultimately the system

must be tested as well as shown to be trustworthy to the regular mobile user who

lacks the technical knowledge to make informed decisions.

While third-party systems may need validation and extensive testing, the An-

droid system for permission management periodically goes through changes and up-

dates which may not be straightforward for users. Additionally, the current user

interface (UI) is cluttered and involves unnecessary steps to access specific system

pages which the average user may not be aware of. User interfaces are also dependent

on a phone’s manufacturer, and the current version of an OS heavily dictates the

design scheme they follow. These areas may potentially cause a sense of confusion

in a user when first navigating through a new device or when updating to a new OS

version.

Most importantly, as discussed in the following subsection, users are not given

the opportunity to make there own choices upon an app’s initial install.
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Fig. 2.: Example Android Permission Request

2.2.1 Permission Management

Most mobile apps come with their own individual permissions once downloaded.

Each application on Android, downloaded from the Google Play Store, initially comes

with all of its permissions denied, or turned off. If a user ever wants to change an

app’s permissions, they must go through the Android ”Settings” menu, select which

application they want to alter, and then modify the settings individually for each

permission (as shown in figure 1). The issue with this system design is that users are

disincentivized by the process taking far too long. To users, the intrinsic cost, on the

surface, for modifying each app appears to not be worth it. They simply want to use

the application and aren’t concerned with the consequences that may occur later.

2.2.2 Permission Requests

Permission requests have changed over time, specifically in the fashion they are

presented. Android versions below 6.0, codename ”Marshmallow”, granted an appli-

cation access to all requested permissions at installation time. Currently, and in any

version above 6.0, permission requests are displayed on-screen once a user installs an

application and opens it on their device (see figure 2 for an example).

These requests are situational and are triggered by predefined events relating to

the app’s behavior, but are called by specific in-device actions. Calls for requests
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Fig. 3.: Permission Request Flow [8]

are generated by the developer meaning apps may or may not necessarily require the

requested permission(s) to function. Alternatively, an application may on load up

be designed to request a various set of permissions by the developer through placing

specific API calls targeted at an application being opened for the first time.

2.3 Existing Mobile Privacy Solutions

Multiple attempts to alleviate concerns with mobile application privacy have

taken place. However, previously proposed solutions, as detailed in this section, all

lack the idea of including users’ expertise levels when making recommendations.

RecDroid, proposed by Rashidi et al. [10], was a previous iteration and the initial

idea behind DroidNet. RecDroid functioned by allowing apps to be installed in two

different modes: (1) trusted mode; (2) probation mode. At run time, if the installed

app is run on probation mode it is required to request permissions from users when

attempting to access sensitive resources. In trusted mode, the app in question is not

required to request any permissions as all permission requests are considered trusted.

However, the idea was simply not feasible as RecDroid required modifications to be
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made to the Android OS.

Android v4.3 briefly had a feature that allowed for users to disable permissions

and their requests for selected apps on their devices. This feature, named App Opps

[11], was labeled as experimental and removed due to the fact that individual permis-

sions that were required by apps to fully function could be disabled causing an app

to malfunction and crash.

Following the principal of least privilege, Lin et al. similarly propose permission

management selecting a set of minimal permissions that allowed an application to

keep its intended functionality [12]. The analysis for the proposed recommendations

was done through a static code analysis tool named Androgaurd which looked at a

set of user privacy profiles.

Similarly, a technique for selecting a minimal set of permissions for an application

to use is proposed by Ismail et al. [13]. However, the solution they propose repack-

ages apps with a pre-defined set of permissions, creating an unreasonable amount of

combinations. The primary fault with this implementation is the idea of an applica-

tion being repackaged in order to create an unknown amount of feasible permission

combinations.

Gort [14], a semantic based solution proposed by Shahriyar, analyzes an app’s

behavior while also examining the context and semantics of the app’s description(s).

Workers are also asked to examine an application and decide whether a permission

request makes sense, and if so whether that request should be granted or denied.

Liu et al. propose PriWe [15], which identifies permission requests based on

users’ expectations. Users with similar responses to a set of permission requests are

looked at, and similar users are identified and shown each others setting profiles.

Yang et al. suggested the idea of a system for users to be able to share their per-

mission recommendations with others [16]. They proposed that users leave comments
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Table 1.: DroidNet Notations

or reviews for specific apps and that these reviews be ranked in order to display a set

of top reviews that represent high quality settings for apps.

Lastly, and most similar to DroidNet other than RecDroid, Agarwal et al. pro-

pose PMP [17]. PMP collects privacy data and uses majority voting to recommend

settings to other iOS users. While it may collect application data similar to DroidNet,

PMP results in a high false recommendation rate due to using simple majority voting

instead of weighted voting [18].

2.4 DroidNet Network

The lemmas and proofs for the algorithms and equations included in this section

can be found in the original DroidNet paper [6] and will not be repeated in this section.

Rather, this section will discuss the surface level knowledge and terminology needed

to understand how the app’s design, rating system, and recommendation system were

developed in order to evaluate it. Table 1 shows the notations provided by the original

paper.

This section begins by introducing and defining the following user types on the

network:

• Seed Experts
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• Regular Users

1. Direct Users

2. Indirect Users

3. Disconnected Users

2.4.1 Seed Experts

Seed experts (SE) are users that are preselected as having advanced knowledge

relating to one or more apps being utilized for ratings. Seed experts are given a

rating of 1.0, which is the highest possible rating on the network, and every permis-

sion decision they have made is assumed to be correct. Seed experts are also used

to begin the initial rating of other users on the network, beginning with users who

directly share one or more overlapping apps with them. The set of permission set-

tings/recommendations made by seed experts is referred to as the ground truth (GT),

and the apps associated with these permissions ground truth apps respectively.

Fig. 4.: DroidNet Graph Cases Between Users [6]
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2.4.2 Direct Users

A direct user is defined as a neighbor, or a user on the network that shares an

application overlap exceeding threshold θ (where θ is generally equal to one), of a

seed expert (see figure 4a). Initially, each user overlapped with a seed expert has its

permissions compared for matches and mismatches. Once the initial set of compar-

isons is made, and the similarity tuple of permissions for the current user calculated,

both the rating and confidence of said user can be found. Additionally, direct users

participate in the rating of indirect users as discussed in the next subsection.

2.4.3 Indirect Users

Indirect users are users not connected directly to a seed expert, but share a

common overlap with a rated direct user (see figure 4c). Two users become indirect

neighbors if they share an application overlap with a third intermediary user. Indirect

users are able to participate in the rating of other unrated users as long as they share

an application overlap with them. Users assigned ratings through other indirect users

are also referred to as indirect users.

2.4.4 Disconnected Users

Disconnected users are can be defined as regular users who have no neighbor

or application overlap on the network, thus making them unreachable in any graph.

These users are unable to be rated or participate in the permission recommendation

process. Additionally, the apps they provide are not included in the pools set of

potentially rated apps, as they share no overlap to provide sufficient recommendation

verification.
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2.4.5 User Expertise Rating

A rating is defined as a classification or ranking of someone or something based

on a comparative assessment of their quality, standard, or performance. DroidNet

functions by assigning each user on its network a rating, or expertise level. Expertise

level can be defined as the probability that a user makes the correct decision when

granting or denying a permission. To calculate the total expertise level of user i each

overlapped application must have their permissions compared to either a seed expert

or an expert user, and the total number of matching and mismatching permissions

calculated and used for a final rating. This set of comparisons can be referred to as

the similarity between two users, and is defined in the paper as the following tuple

shown in equation 2.1 and 2.2:

(2.1)

(2.2)

In these equations, q ε [0, 1] refers to a remembering factor that’s used to discount

past observations which in turn puts an emphases on more recent permissions and

recommendations. C 0 refers to a constant weighting of the initial belief. The initial

belief is used to make sure that an unrated user, or child user, remains a lower score

than the neighbor(s) that went into its rating calculation, or parent(s). The weight
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of this constant is used in every final rating calculation for direct and indirect users.

This means that even if a user matches its parent neighbor(s) entirely in terms of

permission, meaning every grant and deny request is identical, said user will still

have a slightly reduced score.

(2.3)

(2.4)

The rating of a direct user is done by comparing the number of matching per-

missions over the total number of permissions for all overlapped seed experts while

using a constant value of the initial belief for normalization. Equations 2.3 and 2.4

respectively show how rating and confidence scores are calculated for a direct user i

connected to one seed expert using a similarity tuple.

(2.5)

(2.6)

When calculating ratings for indirect users, the existing rated users participating

in the propagation must surpass a minimum rating threshold. The rating threshold

(RT) is an arbitrary threshold placed to filter already rated users. This threshold is

primarily utilized in calculations done for indirect neighbors of a seed expert, as direct
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neighbors of seed experts receive ratings from them without indirect influence. The

expertise level of indirect users can be calculated using the formulas seen in equation

2.5 and 2.6 where pi and pu refer to the true/known expertise levels of user i and u

as described in Table 1.

(2.7)

(2.8)

However, a temporary placeholder value must be used to initially estimate pi as

it is unknown (and currently being calculated). The intuitive choice is to select the

assumed expertise in the initial round of every user, with round and initial round

being denoted as t and t0 respectively, to be 1
2

as that is considered ”average” exper-

tise. Once that placeholder value is selected, the values for αi and βi are calculated

iteratively by replacing pi with the previous rounds expertise level Ri
(t-1). This is

done until the values converge, or fall below a defined threshold when subtracting the

previous round from the current rounds value. This process is done for every rated

neighbor that a user has that falls above a rating threshold (as described later). The

user i ’s final score is calculated as Ri = αi/(αi + βi) where αi and βi are the summation

of all the previously calculated neighbors α’s and β ’s respectively in the iterative step

above (shown in equations 2.7 and 2.8).
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Essentially, the rating equation of a user with neighbors can be simplified to

the number of correctly matching responses plus a constant C 0 divided by the total

number of overlapping permissions plus two times C 0. As a reminder, only users with

sufficient ratings, exceeding a predefined RT, and confidence levels, denoted as C, are

used in rating calculations involving other unrated users.

2.4.6 Estimating User Ratings

The requirements for a user to be rated depend on three factors: (1) the round

the user is rated on; (2) the constant factor C 0 used for value normalization in

calculations; and (3) the RT. Here, a round refers to the particular order and iteration

that a rating takes place. The amount of rounds that take place are dependent on

the quantity, quality, and diversity of the data being analyzed. However, rounds are

consistent in the order they take occur. The general structure of user rating relating

to rounds is as follows:

1. Round 1: Seed Experts receive ratings.

2. Round 2: Direct Users receive ratings.

3. Round 3 - Second To Last Round: Indirect Users receive ratings.

4. Final Round: Users unable to be rated are classified as unratable indicated by

a negative rating.

For clarity, figure 5 shows the full algorithm, Algorithm 1, from the original

paper.
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Fig. 5.: DroidNet Rate All Regular Users Algorithm [6]
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2.4.7 Providing Permission Recommendations for Applications

Once every user receives their rating from the direct and indirect rating methods,

or they are unable to be rated, the network is capable of recommending permissions

for each available application in its existing pool. As described in the original paper,

the algorithm for recommendations requires the following:

1. The application having its permission rated.

2. The set of users above the expertise threshold τe with the application installed.

3. The maximum and minimum threshold to consider granting a permission τd.

Similar to the RT, the expertise threshold, denoted as τe, is a threshold used for

filtering out users with insufficient rating. τe is selected arbitrarily, but should be

kept on the higher end due to the value representing what the network considers a

sufficient enough score for any rated user to be seen as an expert. As the idea behind

weighted voting is for a larger emphasis to be placed on higher rated users, result

accuracy should increase with reduced participation from less inexperienced users.

The maximum and minimum decision thresholds are thresholds used for the

weighted voting recommendation system and its associated algorithm. The algorithm,

labeled Algorithm 2 in the original paper, is shown in figure 6. The threshold for

permission recommendation can be denoted as τd. As calculated in the algorithm, a

permission recommendation depends on its aggregate score, which can be calculated

as α
α+β

. Here, α and β represent the summation of the total number of users who

voted yes, meaning grant, or, meaning deny, that app’s permission respectively. It is

important to note that only users who exceed the τe are used in recommendations.

Once the aggregate score is calculated, a permission recommendation can take

any of the three following cases:
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• Grant

• Deny

• No Recommendation Available (NRA) due to insufficient scoring

Case 1, the recommendation to grant a permission, occurs when the aggregate

score of a permission falls above the required threshold τd. Case 2, the recommen-

dation to deny a permission, occurs when the score of a permission falls below the

threshold value 1 - τd. Case 3 occurs when the score of a permission falls in between

the upper and lower thresholds of τd and 1 - τd. In each of these cases, the confidence

at which the recommendation is made is represented by the calculated score.

Three classifications for confidence level, high, medium, and low, are used in

order to communicate to DroidNet users the internal confidence of the recommenda-

tion without detailing the intricacies of the defined threshold(s). The first level of

”high” occurs when a permissions confidence level is greater than 0.66. A ”medium”

recommendation occurs when a confidence level falls between 0.66 and 0.33. Lastly, a

low recommendation occurs when confidence falls below 0.33. DroidNet aims at high

confidence recommendations, but depending on the selected value of τd the other two

cases may occur at low rates.

The full implementation and design of these algorithms can be found in the

following chapter.
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Fig. 6.: DroidNet Weighted Voting for Recommendation Algorithm [6]
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CHAPTER 3

DROIDNET IMPLEMENTATION AND DESIGN

This chapter overviews the general infrastructure of the DroidNet framework, as

shown in figure 7. Specifically, this section discusses DroidNet’s proposed implemen-

tation in the original paper and how the live implementation of DroidNet differs.

This chapter begins with describing the implementation of the project in terms of

specifications and design. It then details each of the individual DroidNet components

and their purposes. Finally, a description of the original proposed recommendation

algorithms as well as the modified algorithms are presented.

Fig. 7.: DroidNet Architecture
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3.1 Tools and Languages

DroidNet was developed in Android Studio and written in Java. Queries made

when accessing DroidNet’s associated database entries are done using SQL in con-

junction with PHP. The Android Studio version the application was deployed on was

3.2.

The following are the complete set of tools and technologies used in its develop-

ment:

• Android Studio

• phpMyAdmin

• Eclipse IDE

• MySQL

• SQLite

3.2 User Interface

The DroidNet interface is split up into four core sections, or pages. They are as

follows:

• The registration and tutorial page(s)

• The launcher and main page of the application

• The permission management page

• The recommendations page for each individual user and their apps

This section, and the subsequent subsections, detail the purpose and general

overview of each of the aforementioned pages. Each of the individual pages make up

key components of the application. The flow from page to page is shown in figure 8.

For the purposes of this paper a description of the DroidNet settings page will not
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Fig. 8.: DroidNet Page Flow

be described, as its functionality is confined to the actual DroidNet application and

was not required to be utilized for evaluation purposes.

3.2.1 Registration and Tutorial Pages

Upon initial install the user is initially presented with an End-User License Agree-

ment (EULA) which must be accepted. The EULA is required for protection purposes,

both for the user and the developer, as it allows for much needed transparency for

those willing to read it. Users are then required to fill out a form-based page that is

presented to them, as shown in figure 9. This page, and form, is primarily used for

this works demographics, as users are later defined by hashed and salted device ID’s

rather than manual input for consistency. The form information users are required

to fill for registration are as follows:
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1. Email

2. Password

3. Password Confirmation

4. Age Group

Fig. 9.: DroidNet Registration Fig. 10.: DroidNet Notification Alert

As the device ID can be used for identifying a user due to its uniqueness it is

kept obscured from the network and never stored in plaintext. This applies to all

users’ passwords as well, which in addition is salted. Once the form is submitted the

user can progress onto the tutorial pages. The app’s tutorial consists of three pages

which show in animated format the functionalities of the application and what the

user can expect from it. After completing the tutorial the user is prompted to verify

that they understood it, and if they agree they are then granted access to the full

application itself.
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Fig. 11.: Launcher Page Fig. 12.: Permission Page Fig. 13.: Permission Popup

3.2.2 Launcher Page

The launcher page functions as the main or front page of the application itself.

The page works like the actual Android launcher page, but also as an indicator to

the user as to what apps are being monitored by their DroidNet application. Each of

the launcher item’s images are replaced with an identical image with a small overlay

containing the DroidNet DN logo, as shown in figure 11. Through here the user

is able to navigate to the other parts of the application, such as the permissions,

notifications, and settings page.

3.2.3 Permission Management Page

Figure 12 shows the permission management page, or Permission Center, which

comes with two functionalities. To alleviate some of the aforementioned Android UI

design problems, DroidNet provides the user with a modified management page that

has the following functionalities:
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1. A scrollable interface that functions as an intractable list of all downloaded

applications.

2. A redirect to a popup overlay for each individual application when an applica-

tion’s respective list element is clicked, selected, or pressed on.

The primary interface functions much like Android’s current implementation of

the ”Apps” page, as shown earlier in subsection 2.2.1 figure 1. Once an application in

the list is clicked, a popup page displaying the current permission settings is displayed

as an overlay. The unique aspect of the permissions page, other than its popup, is its

ability to display permission matches and mismatches between the user and Droid-

Net’s recommendations. As shown in figure 13, an app’s permission is highlighted

in green on the popup overlay if the user’s decision matches DroidNet’s recommen-

dation for it and red if it does not. Otherwise, the permission remains highlighted

in white indicating no recommendation is available. Additionally, the popup shows

the confidence for each highlighted permission, regardless of its color, as long as a

recommendation by the network exists.

If the user chooses to modify a permission and take into account DroidNet’s

suggestion, they are able to navigate through the permission popup by clicking the

”GO TO SETTINGS” button. This will take them to their Android devices

native permission managemnt page, as Android apps are not allowed to interfere

with system settings and permission management directly. This process reduces the

amount of steps compared to directly accessing the Android settings page directly

and then finding an application in order to modify its settings. After the user arrives

at the app’s settings page, if the permission they navigated from has an alternative

recommendation, an overlay popup dialog detailing DroidNet’s recommendation and

confidence is displayed as a reminder (see figure 15).
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DroidNet Confidence and Color Intervals
High Green

Medium Yellow
Low Red

Table 2.: DroidNet Confidence Colors

Confidence classification, as discussed in subsection 2.4.7, determines the color

selection of the circle displayed in the popup dialog. The colors associated with each

confidence are displayed in Table 2.

3.2.4 Recommendation Page

DroidNet’s in app recommendations page, also referred to as the notification cen-

ter (NC), houses all of its up to date recommendations for a users’ mismatching

app’s permissions. Once the application is done loading it undergoes a synchroniza-

tion process. This process, as seen in figure 16, is responsible for comparing the

internal DroidNet database on the user’s device, containing the permission entries

of every application and the status of those permissions, to an identical table stored

online. If mismatches are found between the two databases every online record is

updated to match the offline record for a user.

After synchronization is complete, the users permission settings are compared to

a table consisting of DroidNet’s recommended permission settings. A flag is thrown

alerting the user of mismatches and an entry of that mismatched permission is added

to the list of permissions needing to be changed in the notification center. The

insertion of new entries into the notification center creates a notification message

that’s displayed to the user through the Android notification bar. The notification,

as seen in figure 10, contains information relating to the new recommendation, such
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Fig. 14.: Notifications Fig. 15.: Overlay Dialog Fig. 16.: Synchronization

as the app name and advise permission setting. If the notification is double tapped,

or pressed on, the user is redirected to the notification center.

Notification entries are also intractable via left swiping. Once an entry in the list

of notifications is left swiped, as shown in figure 14 the user can perform two actions.

They, and their functionalities, are as follows:

1. Trash/Delete: Removes the notification and presents the user with the option

of blocking all future notifications for that specific permission.

2. Settings: Much like the ”GO TO SETTINGS” button on the previously

discussed permissions page popup dialog, this button redirects the user to the

Android permission management page for the related notifications application.

If the trash/delete action is selected the user is also given the option of disabling

future related notifications for a specific permission. If they select to disable or block

notifications, neither the notification center nor the Android OS will show DroidNet
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notifications until that permission is removed from the block list.

Additionally, identical to the permissions page, if a user clicks the settings button

they are brought to the permissions associated Android settings page. Then, as afore-

mentioned, a popup dialog reminding the user of what permission requires changing

and DroidNet’s confidence for the recommendation is displayed as an overlay (see

figure 15).

3.3 Server-side Implementation

The DroidNet network and architecture requires various operations to be per-

formed by the client. Specifically, DroidNet utilizes a database and back-end algo-

rithm for permission recommendation as well as user rating. This section, and the

following subsections, cover those relationships and explain their implementation and

importance.

3.3.1 Database

A database is needed to store entries submitted from users upon completion

of the synchronization process discussed in subsection 3.2.4. Three tables exist in

DroidNet’s primary database: (1) the main table, responsible for storing sensitive user

information, such as their email, age, and hashed device identifier; (2) the permissions

table, which contains a list of every users’ permissions and whether they were granted

or denied; (3) a generated list of permission recommendations for every app able to

receive them.

These tables are populated in two different ways. Method one is through POST

queries using Android Volley, which is a HyperText Transfer Protocol (HTTP) li-

brary. The alternative method is through string requests done through queues. Al-

ternatively, requests can be sent and values inserted through the usage of the Android
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HTTPURLConnection class.

The requests are then sent through a placeholder website using cPanel for hosting

and GoDaddy.com for domain registry. The SQL database can be accessed through

a phpMyAdmin portal. The key data collected from each query contains information

relating to the user and permission data and matches the pattern <ID, App Name,

Permission, Value>. The tuple can be seen in figure 7, at the beginning of this

chapter, which describes DroidNet’s architectural design.

3.3.2 Algorithm Implementation

The algorithm used for producing recommendations consists of the following:

1. Create ”User” and ”Application” objects by reading in CSV files from the

database and storing their values in each object respectively.

2. Select C 0 value.

3. Rate direct users by comparing them to the permissions of any existing seed

expert(s) described in subsection 2.4.5.

4. Rate the remaining users by treating them as indirect neighbors and using the

iterative method described in subsection 2.4.5.

5. Label any remaining users as un-rateable after the users in round t-1 and t

remain the same.

6. Select τe and τe threshold values.

7. Display recommendations for all or selected applications.

3.3.3 User Rating Algorithm Modifications

The original DroidNet paper developed a rating algorithm for a generated dataset

and failed to take into account user behavior relating to Android apps. Specifically,
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permissions requests are made individually rather than all being initially shown at

once. As aforementioned, Android apps come with their permissions initially denied.

Users must make decisions for permissions (see subsection 2.2.1) as events related to

those permissions occur in the application environment.

The original assumption looked at users and made comparisons between every

application’s permission and DroidNet’s seed experts permissions. However, it may

be the case that a user never encountered a permission through the course of using an

application. Thus, if a user is not presented an option to grant or deny a permission,

that permissions settings (generally denied) is not indicative of their decision, nor

should impact their true expertise level.

The modified algorithm only compares permissions that users have granted, or

approved, to those of seed experts. This modification allows filtration for apps and

permissions that were installed by users, but never accessed or used. While this results

in fewer overall comparisons, it in turn reflects in a more accurate representation of

a user’s decisions shown through their final rating.

Additionally, this works implementation of the DroidNet recommendation algo-

rithm puts zero emphasis on a user’s generated confidence level. Users are also not

require to have a minimum amount of installed apps or permissions as a threshold to

participate in permission recommendations. It is important to note that as a result,

there is no requirement other than a single recommendation being made by one or

more users above the expertise threshold for DroidNet to generate a recommendation

for any given permission.
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CHAPTER 4

EVALUATION

This section contains the bulk of the paper’s novel contribution. Additionally, it

includes statistical information relevant to the collected dataset, such as the amount

of users, permissions, age groups, and other relevant points. The following subsections

discuss methodologies and results sfor the core evaluation done on the implementation

of DroidNet in order to verify its implementation and design.

4.1 Data Collection

Data for evaluation purposes was collected through the official DroidNet applica-

tion advertised through Amazon Mechanical Turk and the Google Play store. Users

who took the survey were instructed to simply install the application, wait a short

amount of time for a verification code and the synchronization process, responsible for

inserting data, to be complete. Once they verified they had downloaded the applica-

tion through inputing a generated verification code, unique to each participant, into

a text field available through survey, they were instructed to uninstall the application

from their device(s). If the verification code they reported matched a column that

was inserted into one of DroidNet’s online database tables they received a monetary

reward as compensation. Participants had full notice of what information was being

collected, specifically that no sensitive or identifiable information would be stored.

Once the DroidNet application is open, logged in, and registered to a device and

user, the application will attempt to synchronize with an online database to query

and insert entries. The synchronization process, which is completed on application
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Total GT Apps 55
Total Unique Users 307
Total Unique Apps 5599

Total Unique Permissions 10
Total Unique App-Permission Combinations 18369

Total Permissions Collected 58385
Average Number of Permissions Requested Per App 3

Table 3.: User and Permission Dataset Statistics

load up, can be seen in figure 16. These values are inserted into the database in one

of the two methods mentioned in subsection 3.3.1.

4.1.1 Statistical Relevance (Dataset Statistics)

Before analysis, data integrity and diversity must first be examined to assure that

enough rating rounds were completed, and a sufficient spread of user types present

for an accurate evaluation when examining recommendations.

As shown in Table 3, on average each application requests three unique permis-

sions. It also shows the total numbers of individual users in the dataset to be 307,

which is sufficiently large enough that the true rating distribution of the network,

or at least an apparent curve, should be visible after analysis. Additionally, it also

shows relevant datapoints relating to collected permissions and application installs.

Demographic data, specifically age, is shown in pie chart form (see figure 17).

Gender, region information, education level, or other demographics were not recorded.

Initially, this type of data was collected under the assumption that region based statis-

tics would be present through the console for managing and viewing user statistics.

However, after further examination, sufficient region statistics are not present and

will not be looked at in the remainder of this paper.
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Fig. 17.: Age Group Distribution

Fig. 18.: User Type Distribution
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Fig. 19.: Application Install Popularity

Additionally, the total amount of users and their distribution throughout the

network is shown as a pie chart in figure 18. As aforementioned, this information is

important in analyzing how different user types impact not only the overall network

average, but also how indirect and direct user’s ratings influence each other. For

further topology based definitions see section 2.4.

Figure 19 and 21 display the amount of apps downloaded by individual users in

terms of popularity. In figure 19, which has had its x-axis logarithmically scaled for

clarity, the left side of the graph shows the frequency of unique apps with the most

installs, where the right side shows the frequency of the least installed apps. It is

worth noting that 3848/5599 apps were unique to their respective users (see figure

19).

Figure 20 shows the distribution of the permission groups in the collected dataset.

Storage access is by far the most requested permission group, appearing 13128 times

out of 58385 application permissions, with a 22.49% request rate. Body sensors

appeared to be the least requested group, being requested 157 times, or 0.269% of

the time.

Next, the impact of the initial belief value on the distribution of the network

generated through the mentioned dataset will be looked at.
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Fig. 20.: Frequency of Permissions in Dataset

Fig. 21.: 20 Most Popular Installed Applications from Dataset

4.2 Impact of Initial Belief Values

The initial belief, C 0, is a constant value used for normalization and artificial

rating reduction for users, as described in 2.4.5. Other factors that impact rating are

required to be kept consistent to properly observe the impact of the initial belief on

the rating distribution. As the rating threshold largely impacts the distribution of

user ratings throughout the network, a constant value must be selected for it. The

original DroidNet paper selects the RT value to be kept constant at 1
2
. Thus, the

proceeding sections will do so as well in an attempt to model the behavior shown in

the original work.
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Type
Constant

2 5 10

Relaxed

Normal

Aggressive

Table 4.: Values for Initial Belief C 0

Fig. 22.: Calculated User Expertise Distribution for RT = 0.5 and C 0 = 5

Table 4 shows the values of the initial belief that this subsection will examine. As

the initial belief impacts the networks rating distribution, each distribution generated

from the C 0 values shown in the table will be analyzed and compared. Then, com-

parisons between all the distributions will be made and the most appropriate value

selected to remain constant for the remainder of this papers evaluation.

First, the C 0 value of five is examined, as it is the median value of the three initial

belief values chosen to be analyzed. The rounded down distribution of the network
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Fig. 23.: Calculated User Expertise Distribution for RT = 0.5 and C 0 = 2

ratings can be seen in figure 22. Columns labeled in red represent indirect users,

black represent disconnected users, green represent direct users, and blue represent

seed experts. From here, it is observed that 234 out of 307 users, or 76.22%, would

be considered to have a sufficient rating by our current variable values.

Analyzing this, roughly 2
3

of users are considered to have sufficient expertise

by the networks standards, meaning that they are able to participate in the score

propagation concerning unrated users. This increases the potential amount of apps

that can later have permission recommended to them, as a larger amount of users

surpassing the initial RT allows for more indirect neighbors to receive ratings, thus

allowing their apps to be added into the pool of apps with rated users.

Next, the relaxed value, of the initial belief is used. Figure 23 shows a shift to

the right on the network, taking on a more left-tail centric curve as opposed to the

bell shaped curve seen in figure 22. However, the amount of users above the RT did
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Fig. 24.: Calculated User Expertise Distribution for RT = 0.5 and C 0 = 10

not shift at all, regardless of the distributions slight change, remaining at 234.

To understand why, the purpose of the initial belief must be understood. The

initial belief is used to add a weighted constant to the number of correct and incorrect

responses a user makes when compared to another user. This is used to guarantee that

the denominator in the equation for rating calculation always exceeds the numerator,

even with both users matching every permission setting with one another. The relaxed

C 0 value of two is inconsequential, and compared to the normal value used previously,

discussing the impact of the RT on the network, the value of the initial belief was

decreased. This inflates users’ scores as there is a lessening of gaps between users and

their direct neighbors providing them ratings.

Finally, the aggressive C 0 value is evaluated, altering the initial belief from two

to 10. Figure 24 shows a large shift in the rating distribution on the network towards

the center. The shape goes from being roughly bell curved to an extremely thin

41



Rating
C 0 2 5 10

Average 0.5972 0.5673 0.5452

Table 5.: Average User Ratings Modifying Initial Belief

curve with users peaking in the average rating group of 0.5 to 0.6. Much like the

previous C 0 value, the amount of users above the RT saw no change remaining at

234. However, the amount of users rated above 0.6 saw an extreme shift with most

users being placed into the 0.5 to 0.6 range.

A key observation to note about this user shift is that while the amount of users

above the RT may not have changed in any of the distributions, the average rating

experiences significant change (see Table 5). It is worth mentioning that the average

rating decreasing may not significantly impact the networks range distribution with

the current RT of 1
2
, as it remains greater with every value of C 0. However, it

indicates that an increased value of the initial belief translates to a normalization of

the network with most users falling into the expected average rating category of 0.5.

This limits the number of expert users substantially for the next subsection, where

users are required to have a minimum expertise in order to participate in permission

recommendation.

It becomes clear that the initial belief has a substantial impact on the networks

distribution, but only in the sense that its peak increases respective to its C 0 value.

Thus, the the distribution converges towards the ”true” average user rating. The

distribution of users that most represents a left-tailed distribution is ideal, due to the

inherent nature of users with higher expertise recommending a permissions correct

setting at a more consistent rate. As the relaxed C 0 value of two provides the dis-

tribution with the highest average rated user, as well as the highest rated individual
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users, the remaining evaluation proceeds by keeping the initial belief at a constant

value of two.

4.3 Metric Analysis and Discussion of Practicality

This section focuses on comparing a pre-selected set of popular apps and their

permissions with DroidNet’s recommendation system. Two metrics, accuracy and

coverage, are utilized in order to evaluate and discern whether the recommendations

provided by DroidNet are valid or not. Both the accuracy and coverage of recom-

mendations are dependent on multiple factors, as described in section 2.4.7.

Accuracy is defined as the quality or state of being correct or precise, and is cal-

culated by examining the total number of correct decisions or actions over the total

number of decisions possible (MatchingPermissions
TotalPermissions

). To calculate accuracy, in compar-

ison to another user or permission recommendation, simply add up the number of

matching permissions and divide by the total number of permissions an app requests.

The following sections use accuracy as a metric to evaluate whether or not DroidNet

is capable of making relevant and appropriate decisions on various types of apps.

When calculating accuracy, DroidNet not providing a recommendation is handled

by using a permission removal technique. Removal can be summarized as removing

the permission receiving a NRA status from the comparison pool. Thus, said per-

mission will not be counted as a mismatched permission. For example, if DroidNet

has NRA for the ”Location” permission on the ”Duo” application, but a seed expert

has a recommendation of ”Deny” the total number of permissions being compared to

will be reduced by one and the ”Location” permission ignored in the final accuracy

calculation. While removal may not negatively influence accuracy, it will still impact

the coverage metric.

Coverage is defined as the percentage of an app’s permission recommendations re-
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q Remembering Factor
RT Rating Threshold
C 0 Initial Belief
τe Expertise Threshold
τd Decision/Permission Recommendation Threshold

Table 6.: Variable and Threshold Definitions

ceiving a recommendation of either grant or deny by DroidNet. As aforementioned, if

a permission receives no recommendation coverage will be decreased. Using the same

example from above, if the ”Duo” application has four permissions and one receives

no recommendation while the other three receive recommendations by DroidNet the

total coverage will be 3
4
, or 75%.

In order to verify the quality of evaluation regarding permissions, the following

two variables are altered in the following subsection to show their individual impact

on the network:

1. The expertise threshold τe.

2. The decision threshold, τd, used for permission recommendations.

Two different types of analysis in regards to τd and τe are done. First, a broader

range of threshold values for τd and τe are looked at to view the impact of both cov-

erage and accuracy regarding recommendations. Combinations of these variables can

be seen in Table 7. Following this, the most optimal τd and τe values for both accu-

racy and coverage will be selected after viewing their impact on both metrics. Again,

these two sets of values will be kept constant, in addition to the other aforementioned

values, while examining a small subset of apps.

Table 6 reviews the definitions for all included variables and thresholds of im-

portance. As a note, a τd of 0.99 is represented as 1.0 for consistency.
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τe τd

0.0 0.5
0.1 0.6
0.2 0.7
0.3 0.8
0.4 0.9
0.5 1.0 (*0.99)
0.6
0.7
0.8

0.825
0.9
1.0

Table 7.: τe and τd Combinations

4.3.1 Coverage of Permission Recommendations

In order to assess the coverage of recommendations made by DroidNet, multiple

subsets of GT apps, or apps that received recommendations by the seed expert(s),

were examined. The subsets contained apps from the initial set of GT apps, but

were selected at random over 50 individual trials. The selection of these apps directly

impacts the rating distribution on the network, as apps included in the GT determine

direct users, who in turn determine and rate indirect users. In total, 5559 unique apps

and their possible 18369 total permissions were analyzed (meaning a unique total of

18369 app-permission combinations).

Figure 25 shows the coverage of the network dependent on the amount of GT

apps initially selected. The first subset consists of a single random app from the set

of GT apps. The following subset contains 11 with each subsequent subset containing

11 more apps. The final set examines all 55 GT apps provided by the seed expert(s).

As the amount of apps included in the GT inherently impacts the rating distribution
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Fig. 25.: Full Permission Coverage Dependent on Amount of GT Apps with τd = 0.5

Fig. 26.: Full Permission Coverage Using All GT Apps (55) with Varying τd

on the network, factors such as the C 0 and τd were kept constant. The C 0 was kept

constant at two, as aforementioned, and τd at 0.5.

Upon initial glance, from figure 25 it appears that the amount of apps selected

to be included in the set of GT apps have only a slight impact on the coverage of

permissions provided by DroidNet’s recommendations. However, it can be clearly seen

that as the number of GT apps increases, the coverage of permissions recommended

by DroidNet increases respectively. Multiple explanations for this slight, rather than

drastic, impact can be extrapolated.
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One explanation is the interconnectedness of the network. This indicates that

most users are able to be rated indirectly regardless of the amount of direct users.

Additionally, coverage already starts relatively high. To understand the true impact

of the amount of GT apps, the percentage increase from the original curve of each

subset of apps should be examined rather than looking at the overall coverage percent.

Coverage begins to converge as the number of apps included in the GT approaches

the maximum size of the original set for each τe value.

Another contributing factor is that the τd value was kept at the bare minimum,

effectively removing all recommendations of NRA, resulting in full coverage for an

application and its permissions occurring when even one user provided a permissions

input. As a result, it can be concluded that an app’s permission will be included

in the coverage of DroidNet recommendations regardless of the settings provided by

users for a τd of 0.5.

Figure 26 shows the extended coverage of all GT apps, as also displayed by

the last line in figure 25, modifying the τd. As seen in figure 26, coverage initially

starts high as most individuals can participate in recommendations due to a low τe

threshold, meaning more permissions receive recommendations. However, as both

the τd and τe increase the coverage of recommendations made by DroidNet decreases.

This can be explained by examining τd and τe individually.

Both figure 25 and figure 26 indicate that as τe increases there may be no user

of sufficient rating other than the seed expert(s) available to participate in providing

recommendations. This would lead to only the small subset of GT apps receiving

recommendations, and these recommendations would be the permission settings of

the seed expert(s) themselves. As seed expert recommendations should be followed

in most, if not all cases, an extremely high τe defeats the purpose of involving other

expert users in the recommendation process.
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It can be observed in figure 26 that coverage follows the same curve for nearly

every value of τd. An explanation for this would be the fact that the majority of apps

on the network were downloaded by one or a few users, meaning that said user(s)

would be one of few users participating in that app’s permissions recommendations.

This greatly increases the chance for agreement for what settings a permission should

follow, as less users participating in rating increases the likeliness of full or majority

agreement. As stated prior, as τd increases the total range of confidence values in

which a permission may receive a recommendation of ”Grant” or ”Deny” decreases,

inverse to ”NRA”. Notably, a τd of 1.0 identifies permissions that receive 100%

agreement between users.

Additionally, we must remember that the GT set only contains permission set-

tings for 1% of total apps, and while it may play an important role on initial user

ratings, its impact is largely dependent on the inclusion of the more popular apps in

its set. It should also be noted that 3848 apps were only installed by one user each

(see subsection 4.1.1 figure 19). As long as said user and their expertise level exceed

τe that application will effectively considered covered.

Thus, it can be concluded that the amount of apps included in the initial GT set

has a minor impact on the coverage of DroidNet’s recommendations, but it should

be noted that values converge as the amount of apps included in the GT set increase.

Additionally, both the τe and τd have noticeable impact on the coverage of DroidNet’s

recommendations. As values for both thresholds increase coverage decreases respec-

tively. Next, the impact of accuracy on the set of ground truth permissions will be

looked at.
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Fig. 27.: Accuracy Coverage Dependent on Amount of GT Apps with τd = 0.7

Fig. 28.: Accuracy for Complete Set of GT Apps

4.3.2 Accuracy of Recommendations for Ground Truth

For accuracy calculations, the 55 unique apps included in the original GT and

their 216 respective permissions were analyzed and compared to DroidNet’s recom-

mendations. It is important to note that during calculations, seed experts were re-

moved from the pool of participants used for recommendation as they would falsely

inflate accuracy. Similar to the coverage based trials, multiple subsets of the 55

ground truth applications were tested over 50 individual trials.

Figure 27 shows the accuracy of the network dependent on the amount of GT
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apps initially selected. The first subset consists of one random app from the set of GT

apps. The next contains 11 apps, with each subsequent subset containing 11 more.

The final set examines all 55 GT apps provided by the seed expert(s). It is clear

that only a small subset of GT apps are required for the accuracy of the network to

converge independent of the expertise threshold. The C 0 was kept constant at two, as

aforementioned, and τd at 0.7 (different from the 0.5 used for coverage calculations).

Figure 28 shows the accuracy of recommendations in terms of comparisons made

to the complete set of GT apps. The apparent curve of the graph, and each respective

τd line, indicates that as both the τd and τe increase the accuracy of recommendations

made by DroidNet increases as well. This is due to restricting the number of expert

users by threshold τe, as expert users are generally more likely to make fewer incorrect

decisions. However, this can also be due to the inherent number of users close to the

maximum expertise rating. As τe approaches 1.0 the only user(s) on the network

capable of making decisions are the initial seed experts. As seed experts are always

assumed to be correct, the confidence for their recommendations will as well be high

making τd effectively irrelevant.

Interestingly, it can be observed that accuracy decreases if τe is selected too high.

This can be attributed to the user rating distribution on the network. As the networks

distribution was selected to be left-tailed due to the selected C 0 value (see subsection

4.2), most users fall into the 0.6-0.8 rating range. As the expertise threshold increases,

fewer users are able to participate in permission recommendations and the accuracy

of the network begins to approach the true rating of a few selected expert users. This

finding can be isolated and observed by selecting a τe value of 0.825. This τe value

results in only one user being used for recommendations, as the highest rated user on

the network has a rating of 0.827.
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RT C 0 q
0.5 2 1

Table 8.: Variable Values Kept Constant for Permission Recommendation(s)

4.3.3 DroidNet Single Case Recommendation Comparisons

The remainder of this section analyzes actual DroidNet recommendations based

on the collected dataset mentioned in subsection 4.1.1. Specifically, it examines the

importance of the expertise and decision thresholds on the quality of recommendations

provided by DroidNet using the aforementioned metrics of accuracy and coverage.

Both the highest seen individual τe and τd combinations for accuracy and coverage,

selected respectively from figures 28 and 26, are chosen to be analyzed.

Relatively optimal constant values are used for the variables discussed in the

previous sections. A value of two, as discovered from section 4.2, for the C 0 is used.

The remembering factor q, for weighting influence of permissions based on experience,

is kept constant at one. A value of one means all permissions are weighted the

same, regardless of how recent an observation may be. These constant values can be

seen in Table 8, and the formula for permission recommendation can be reviewed in

subsection 2.4.7.

The set of apps used in this subsection were included in DroidNet’s initial set

of GT apps provided by seed experts, meaning these apps had a preselected set of

recommendations for each of their permissions that are assumed to be correct. It

is important to note that while these initial recommendations held a higher weight

in the initial selection and rating process for each user on the network, they do not

serve as a guaranteed prediction for the output of DroidNet’s recommendation system.

Aggregate recommendations by normal, expert, users can outweigh even seed experts,
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Ground Truth Applications and Selected Permissions

Shazam Tinder Snapchat Messenger

Camera - Deny In-App Purchases - Grant Camera - Grant Phone Access - Deny

Location - Deny Location - Grant Contacts - Grant SMS Access - Deny

Microphone - Grant Storage - Grant Location - Deny In-App Purchases - Grant

Storage - Deny Microphone - Deny Storage - Grant

Phone Access - Deny Location - Grant

Storage - Grant Calendar Access - Deny

In-App Purchases -

Grant

Contacts - Grant

Camera - Grant

Microphone - Grant

Table 9.: Seed Expert Permission Decisions

but are rare.

Table 9 shows four different apps and their respective permissions included in the

set of GT apps. These apps were selected due to their functionality and permissions.

Each individual application utilizes one or more specific, identifiable permissions and

cannot function properly without them being granted. Additionally, each application

was downloaded by a significant amount of unique users on the network (generally

over 10%). This precaution was taken in order to avoid inflated recommendation

scores as a potential result of only a few users participating in the recommendation

process. The following is a brief description of what each apps purpose is, as to

explain why specific permission functionality relating to permissions is required:

• Shazam: A music based application that requires the use of a devices micro-

phone in order to identify music/songs.

• Tinder: A dating application that requires the use of a devices current location

in order to identify other users in a selected nearby radius.
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• Snapchat: A photo and video sharing social media application that requires the

use of a devices camera in order to send pictures.

• Messenger: A instant messaging application developed by social media giant

Facebook that allows its members to interact with other users on its network.

In the following subsections recommendations of NRA are highlighted in orange,

while mismatched recommendations are highlighted in red. Matching recommenda-

tions remain uncolored in black text.
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Deny NRA Grant
(0.0 - 0.5) N/A (0.501 - 1.0)

Table 10.: Permission Recommendation Ranges with τd = 0.5

4.3.3.1 Coverage Based Experimental Results

Table 10 shows the ranges for each recommendation type, which can be viewed

in each of the following tables next to each app’s respective permissions. Most im-

portantly, Table 11 shows all of the coverage based recommendations generated by

DroidNet.

Here, an expertise threshold of 0.0 and permission recommendation threshold of

0.5 are used to allow participation from every user with a given application installed.

After calculations, Table 13 shows the accuracy of recommendations provided by

DroidNet to be 19
23

, meaning a 82.61% permission match rate when compared to Table

9. Coverage was calculated to be 23
23

, or 100% coverage of permissions (see Table 13).

While every permission was covered by DroidNet, it can be seen by the per-

missions highlighted in red that a significant amount were recommended incorrect

or mismatched settings. Rather than provide more recommendations, users should

be provided with a greater amount of correct recommendations. From this we can

conclude that drastically increased, or more specifically complete, coverage allows

DroidNet the opportunity to potentially recommend incorrect settings due to lack of

accountability when involving lower rated users.
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Selected Application and Permission Recommendations for Highest Coverage

Shazam Tinder Snapchat Messenger

Camera - Deny In-App Purchases - Grant Camera - Grant Phone Access - Deny

Location - Deny Location - Grant Contacts - Grant SMS Access - Deny

Microphone - Grant Storage - Grant Location - Grant In-App Purchases - Grant

Storage - Deny Microphone - Grant Storage - Grant

Phone Access - Grant Location - Deny

Storage - Grant Calendar Access - Deny

In-App Purchases -

Grant

Contacts - Deny

Camera - Grant

Microphone - Grant

Table 11.: Results for Coverage Oriented τe and τd

App
Status

Match Mismatch Percent Match

Shazam 4/4 0/4 100%
Tinder 3/3 0/3 100%

Snapchat 4/7 3/7 57.86%
Messenger 8/9 1/9 88.88%

Table 12.: Accuracy for τe = 0.0 and τd = 0.5

App
Status

Covered Not Covered Percent Covered

Shazam 4/4 0/4 100%
Tinder 3/3 0/3 100%

Snapchat 7/7 0/7 100%
Messenger 9/9 0/9 100%

Table 13.: Coverage for τe = 0.0 and τd = 0.5
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Deny NRA Grant
(0.0 - 0.1) (0.101 - 0.9) (0.901 - 1.0)

Table 14.: Permission Recommendation Ranges with τd = 0.9

4.3.3.2 Accuracy Based Experimental Results

Similar to the previous subsection concerning coverage, Table 14 shows the ranges

for each recommendation type. Again, the recommendation results can be viewed in

Table 15.

The accuracy of recommendations provided by DroidNet for the four apps in

question when using an expertise threshold of 0.6 and permission recommendation

threshold of 0.9 can be seen in Table 16. After calculations, accuracy results in a

score of 12
12

, meaning a 100% permission match rate. Coverage, as shown in Table 17,

was calculated to be 12
23

, or 52.17% coverage of all selected permissions.

From this we can see DroidNet provides perfect accuracy when recommendations

are compared to the GT. However, coverage drops significantly to nearly half of the

available permissions. It can be concluded that the increased accuracy is due to the

involvement of an expertise threshold greater than 0.0. The trade off in coverage for

increased can largely be considered worth it, as false permission recommendations

pose greater harm than a lack of recommendations or incorrect ones.

Thus, it can be concluded that coupled with the coverage based recommenda-

tions, DroidNet is able to provide correct recommendations for a majority of apps

given the right threshold values for both τe and τd.
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Selected Application and Permission Recommendations for Highest Accuracy

Shazam Tinder Snapchat Messenger

Camera - Deny In-App Purchases - Grant Camera - Grant Phone Access - Deny

Location - NRA Location - Grant Contacts - NRA SMS Access - Deny

Microphone - Grant Storage - NRA Location - NRA In-App Purchases - Grant

Storage - Deny Microphone - NRA Storage - NRA

Phone Access - NRA Location - NRA

Storage - Grant Calendar Access - Deny

In-App Purchases -

Grant

Contacts - NRA

Camera - NRA

Microphone - NRA

Table 15.: Results for Accuracy Oriented τe and τd

App
Status

Match Mismatch Percent Match

Shazam 3/3 0/3 100%
Tinder 2/2 0/2 100%

Snapchat 3/3 0/3 100%
Messenger 4/4 0/4 100%

Table 16.: Accuracy for τe = 0.6 and τd = 0.9

App
Status

Covered Not Covered Percent Covered

Shazam 3/4 1/4 75.0%
Tinder 2/3 1/3 66.6%

Snapchat 3/7 4/7 42.86%
Messenger 4/9 5/9 44.44%

Table 17.: Coverage for τe = 0.6 and τd = 0.9
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis focused on both the evaluation and implementation of a proposed crowd-

source based permission recommendation framework named DroidNet. The need for

such a system is detailed greatly, and emphasized due to the ever growing, relatively

unmonitored, mobile application market. This work also provided the collection of a

unique real-world dataset containing a large amount of Android permission settings.

Additionally, the full implementation of the project and the impracticalities of

the original work are described. This includes both the implementation of the software

and all of its associated architectural components. Alterations to multiple algorithms

were also made with reasoning as to why they were done.

In-depth evaluation of the proposed recommendation system was also completed.

Two metrics, accuracy and coverage, were identified as valid indicators of high quality

recommendation results and were analyzed extensively over multiple areas. Variables

of great importance involved in the recommendation process were also analyzed in

order to identify values and trends of significance.

The results of this work show that it is more than feasible to create a permission

recommendation system while using input from both expert and regular users. This

work also shows that through the initial selection of expert users other high rated

users can be identified. In addition to this, it was also shown that both experienced

and inexperienced users can be assigned ratings/weights that result in the generation

of high quality, accurate, recommendations.

Future work and evaluation can be done in order to fine tune DroidNet’s settings.
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While multiple threshold and constant values were examined, a substantial amount

of combinations, including the most optimal settings, can still be found. A combi-

nation of such values could potentially result in DroidNet successfully reaching both

perfect coverage as well as accuracy. The collection of a larger, more diverse, dataset

in addition to the examination of a greater amount of users could provide further

insight into the true network rating distribution after utilizing DroidNet’s user rating

algorithm.

Additionally, changes to initial seed expert selection, and consequently the ap-

plications covered by the ground truth, can be made to improve the integrity of

recommendations. In the case that an unfit, or malicious, seed expert is selected for

the initial user rating process, a group consensus model can be implemented to vet

potential seed experts. In this model, the set of potential seed experts can compare

overlapping applications in order to identify a potential expert with incorrect recom-

mendations. If identified, users masquerading as experts are removed from the initial

candidate selection of seed expert users.

Lastly, further work can be done concerning the recommendations provided by

DroidNet to users. Specifically, the impact of recommendations can be analyzed by

examining whether a user chooses to follow DroidNet’s suggestions or ignore them.
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Appendix A

ABBREVIATIONS

App Application

OS Operating System

GT Ground Truth

API Application Programming Interface

SE Seed Expert

RT Rating Threshold

NRA No Recommendation Available
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