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Abstract  

The objective of this thesis is to formulate and solve the sensor placement problem for damage 

localization in a sensor network. A Bayesian estimation problem is formulated with the time-of-

flight (ToF) measurements. In this model, ToF of lamb waves, which are generated and received 

by piezoelectric sensors, is the total time for each wave to be transmitted, reflected by the target, 

and received by the sensor. The ToF of the scattered lamb wave has characteristic information 

about the target location. By using the measurement model and prior information, the target 

location is estimated in a centralized sensor network with a Monte Carlo approach. Then we 

derive the Bayesian Fisher information matrix (B-FIM) and based on that posterior Cramer-Rao 

lower bound (PCRLB), which sets a limit on the mean squared error (MSE) of any Bayesian 

estimator. In addition, we develop an optimal sensor placement approach to achieve more 

accurate damage localization, which is based on minimizing the PCRLB. Simulation results show 

that the optimal sensor placement solutions lead to much lower estimation errors than some 

sub-optimal sensor placement solutions.  
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1 Chapter 1 Introduction  

 

1.1   Background  

 

In the past few years, the emergence of the networked multi-agent systems [1] is noticeable in 

different fields such as signal processing, automatic control, optimization, and communications. 

These systems can be used in numerous areas of sensor networks [2], robotic networks, 

unmanned aerial vehicles, and autonomous automobiles. Also, the network systems have been 

deployed in applications like defense, health, environment, and transportation. In all of these 

applications, damage1 can occur over their operational life cycle. One of the important 

technologies to detect the damage is structural health monitoring (SHM) [3]. It monitors the 

structural performance and detects the fault at its early stage to avoid catastrophic failures [4] 

[5]. It provides information by combining sensor technology and algorithms.  

One of the common sensor technologies for monitoring the structure health is piezoelectric 

sensors, due to the fact that they can be used as transmitter (Actuator) and receiver (Sensor) at 

the same time [6]. 

 
1 Note: In this thesis, damage, fault, and target are used interchangeably.   
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Piezoelectric transducers generate lamb waves signals. The lamb-wave-based method is used as 

a SHM technique for fast damage detection in plate-like structures [7]. Lamb-waves spread over 

wide distances with low amplitude loss, hence increase the probability of large-area coverage. In 

addition, due to a high sensitivity, they can detect very small faults. 

Sensor networks have been studied in research areas like sensing, detection, localization, and 

tracking of objects [8] [9]. They have a significant role in the performance of the SHM system, 

providing high coverage with small number of transducer elements [10]. It can be defined as an 

array of sensors schemed to get measurements from the environment. 

We can evaluate the presence of damage by transmitting and receiving the reflected waves from 

sensors. This technique for damage detection utilizes distinct arrangements of piezoelectric 

transducers to activate and receive the lamb wave [11] [12]. One of these arrangements is pitch-

catch method where lamb wave is transmitted by ultrasonic actuator and received by another 

ultrasonic sensor at a different position [13]. So, the damage localization method can be 

developed based on the range measurements to estimate the damage location. This algorithm 

can be applied using four different types of measurements such as, Time of Flight (ToF), Time 

Difference of Arrival (TDoA), Received Signal Strength indicator (RSSI), and Angle of Arrival (AoA).  
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 The ToF method estimates distance between two nodes using time-based measurements. It is 

used here because of its high accuracy. The ToF of the scattered waves contains information 

about the damage location [14] [15] [16] [17]. Damage location is estimated by solving a set of 

nonlinear equations including the relation between damage location and ToF. These nonlinear 

equations were solved by using a nonlinear least squares Gauss–Newton optimization algorithm 

to estimate the damage location [16] [17].  

In this thesis, the sizes of the actuators, sensors, and damage are not considered in damage 

localization. A maximum a posteriori probability (MAP) estimation method was proposed by 

Flynn et al. [10] which increases the damage localization probability. The likelihood function of 

the ToF measurements was presented in [18]. To estimate the damage location, we apply the 

Bayesian approach using the ToF measurements with consideration of the uncertainties from 

modeling and measurements in a centralized sensor network. The local sensor nodes transmit 

their measurements to a localization center which is based on a Monte-Carlo method to update 

the system state estimate. 

Furthermore, sensor placement problem is investigated in this thesis. SHM systems gain the 

maximum probability of damage detection, if sensors are placed optimally [19]. Sensor 

placement plays an important role on the estimation accuracy of damage localization. In this 

thesis, the sensor placement problem is formulated as an optimization problem. Here the sensor 

positions need to be optimized to have a minimum error for damage localization [20]. For 
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optimization, we define a set of candidate sensor positions and select sensor positions which 

provide the most information in order to maximize estimation accuracy.  

There are several existing criteria for sensor selection. Approaches for solving sensor placement 

for object estimation can be largely divided into two categories. The first criterion is based on 

information theoretic measures, such as entropy and mutual information. The Second one is 

based on posterior Cramer-Rao lower bound (PCRLB). The drawback of information theoretic 

measures is their high computational complexities which are exponential in the number of 

sensors and not applicable to a large sensor network, whereas the computational complexity of 

PCRLB is linear in the number of sensors. The PCRLB is a lower bound on the mean squared error 

(MSE) of any estimator of the random parameter, which indicates a performance limit and can 

be used as a criterion for optimal sensor placement. The PCRLB matrix is the inverse of Bayesian 

Fisher information matrix (B-FIM), which is obtained by summation of the expectation of the FIM 

and a term related to the prior information. So, the PCRLB [21] is used as a criterion for optimal 

sensor placement such that the minimum trace or the minimum determinant of the PCRLB matrix 

can be deemed as the maximum damage information gathered by the sensors. 

In this thesis, we use a Monte Carlo method to compute the PCRLB for a nonlinear, Gaussian 

Bayesian estimation problem. 

 

1.2   Main Contributions 

 

In this section, we present our main contributions in the thesis: 



13 
 

• Apply the Bayesian estimation approach to the damage localization problem by utilizing 

the ToF of Lamb wave propagation and considering measurement uncertainty. We solve 

this estimation problem by using a Monte Carlo method. 

• Derive the PCRLB as a sensor management criterion which is the inverse of the B-FIM. The 

B-FIM consists of contributions from both the measurement and the prior information. 

• Implement optimized sensor placement by minimizing the PCRLB. The goal is maximizing 

the damage localization performance by designing an efficient algorithm for sensor 

placement. 

 

1.3   Thesis Organization  

 

The rest of the thesis is organized as follows. In Chapter 2, a Bayesian damage localization 

problem using TOF of scattered Lamb waves is formulated. Also, a Monte Carlo method for 

finding the posterior distribution of the damage position is presented. In Chapter 3, the Bayesian 

FIM and the PCRLB are mathematically derived. In Chapter 4, the PCRLB is applied for optimal 

sensor placement for damage estimation in sensor networks and an algorithm is proposed for 

solving the sensor placement problem. In Chapter 5, the numerical study for our model and 

simulation results are presented. Finally, conclusion and suggestions for future work are provided 

in Chapter 6. 
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2 Chapter 2 Bayesian Estimation  

 

2.1   Bayesian Estimation Problems 

The Bayesian approach is a statistical method that uses Bayes' theorem to obtain the posterior 

probability density function. It computes the estimate of  the fault state using sensor 

measurements and prior information. In this thesis we use the Bayesian approach to find the 

fault location. 

The general observation model to estimate the unknown fault is provided by the following 

measurement equation [22]: 

 

𝒛 = h(𝐱, 𝐯) (2-1)  

 

where h (.) is in general a nonlinear function, 𝐱 is the state vector, and 𝐯 is a white Gaussian 

measurement noise, which is assumed to be independent of 𝐱. The unknown state, is modeled 

as a Gaussian distributed random variable with known mean and covariance [22]. 

2.2   Bayesian Approach for ToF-based Damage Localization 

 

The Bayesian approach to estimate the damage location based on the ToF of lamb waves in 

sensor network, is presented in this section. To estimate the fault location, lamb waves will be 

sent from the actuators to the damage and then the reflected wave will be received by sensors. 

Pitch-catch method will be used for this sensor network, which means that the omnidirectional 

wave is sent to the surface of the plate and captured as a reflected wave returning at the 

reflected angle. 

The ToF can be defined as the length of a path divided by the wave propagation speed. 
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We consider a plate with a centralized sensor network including multiple sensors and actuators.  

The ToF would be the total time for a lamb wave to be sent from an actuator to the damage, 

reflected by the damage, and received by a sensor. 

 We assume that the sensors, actuators, and damage are located in a 2-D plate. The ToF 

calculation for the lamb waves is illustrated in Figure 2-1. 

 

 

 

 

 

 
Figure 2-1. ToF model for the scattered Lamb wave in the ith actuator–sensor path. 

 

The calculated ToF is shown in [14] as: 

 

𝑇𝑖
𝑐(𝜽) =

√(𝑥𝑑 − 𝑥𝑎)2 + (𝑦𝑑 − 𝑦𝑎)2

𝑉𝑔
+

√(𝑥𝑑 − 𝑥𝑖𝑠)2 + (𝑦𝑑 − 𝑦𝑖𝑠)2 

𝑉𝑔
 

(2-2) 

 

where (𝑥𝑑,𝑦𝑑) denotes damage location, (𝑥𝑎,𝑦𝑎) represents actuator location, and (𝑥𝑖𝑠,𝑦𝑖𝑠) 

represents the 𝑖th sensor’s location for 𝑖 = 1, 2, … , 𝑁𝑝. Therefore, there are totally 𝑁𝑝 different 

paths. The wave propagation speed (𝑉𝑔) of the lamb waves is assumed to be a constant. The 

unknown parameters are (𝑥𝑑,𝑦𝑑), which are denoted by 𝜽 = [𝜃1, 𝜃2]
𝑇 = [𝑥𝑑 , 𝑦𝑑]𝑇 .  

 

Damage (𝑥𝑑, 𝑦𝑑
) 

Sensor (𝑥𝑖𝑠 , 𝑦𝑖𝑠
) 

Actuator (𝑥𝑎, 𝑦𝑎
) 
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2.2.1   Measurement Model  

 

Because of uncertainty, we model the measured ToF in the 𝑖th actuator–sensor path, 𝑇𝑖
𝑚 [14] as: 

 

𝑇𝑖
𝑚= 𝑇𝑖

𝑐 (𝜽) +휀  , 휀~𝒩(0,  𝜎𝜀
2) (2-3) 

 
in which 휀 is a white Gaussian measurement noise with zero mean and variance of 𝜎𝜀

2. 

To calculate the posterior PDF, we need to find the likelihood function which is:  

 

𝑝(𝑫|𝜽) =
1

(2𝜋𝜎𝜀
2)𝑁𝑝/2

∗ exp [−
1

2𝜎𝜀
2

 ∑(𝑇𝑖
𝑚 − 𝑇𝑖

𝑐 (𝜽))2

𝑁𝑝

𝑖=1

]      (2-4) 

where 𝑫 = [ 𝑇1
𝑚, 𝑇2

𝑚, … , 𝑇𝑁𝑝
𝑚  ] T is the measured ToF data.                    

Now the posterior PDF is defined as: 

 

𝑝(𝜽|𝑫) ∝ 𝑝(𝑫|𝜽)𝑝𝜋(𝜽)        (2-5) 

where 𝑝𝜋(𝜽) is the prior PDF. 

 

2.2.2   Centralized Sensor Network  

As illustrated in Figure 2-2, in this centralized sensor network, sensors receive the raw ToF 

measurements and then will send them to the target localization center to estimate the target 

state. 

 
 
 
 
 
 
 
 



17 
 

 
 
 
 

 

 
 
 

 

Figure 2-2. Centralized sensor network 

 

2.3   A Monte Carlo Based Approach for Bayesian Estimation 

 

2.3.1   Background  

 

A Monte Carlo (MC) based approach is adopted in this thesis to calculate the probability 

distribution of the target state. This algorithm is based on sequential random sampling. We use 

this approach because the posterior probability density function (PDF) has no closed form. The 

MC based approaches can be used in different ways in statistics. One way is for numerical 

integration. In this case we have a nonlinear integral that is difficult to compute, and we can use 

this method to find the integration in a convenient way. Another usage is for optimization which 

alleviates the local minimum problem by allowing random exit from the local minimum and finds 

the global minimum. Also, Monte Carlo based approaches can be used for state estimation via 

important sampling [23] [24]. 

 

 

Actuator Target 

Sensor 1 

. 

. 

. 

. 

Target 
localization / 

Monte Carlo 
Algorithm   

State 
Estimate 

Sensor N 
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2.3.2   Monte Carlo Sampling  

 

Using Monte Carlo sampling to estimate the posterior PDFs of unknown parameters, we generate 

a lot of random variables from the prior PDF. We sample normally distributed set of random 

variables with mean and covariance of the prior distribution. 

We assume that unknown random variable (𝜽) is Gaussian distributed and find it from prior PDF 

(𝑝𝜋(𝜽)) for 𝑁 independent samples, called particles. 

𝜽𝑗~ 𝑝𝜋(𝜽)∼ 𝒩(𝛍, 𝚺)      ,     j = 1, 2, …,  𝑁    

The Monte-Carlo expectation would be as [24]: 

𝐸{𝑓(𝜽)} = ∫𝑓(𝜽) 𝑝(𝜽) 𝑑𝜽 ≈  
1

𝑁
∑𝑓(

𝑁

𝑗=1

𝜽𝑗) (2-6) 

where 𝑝(𝜽) is the PDF of 𝜽 and 𝑓(𝜽) is an arbitrary function of 𝜽. 

This estimate approaches the true value if the number of samples goes to infinity. Due to the 

discrete nature of Monte Carlo sampling, it is difficult to find the PDF. Hence, with an 

approximation in terms of discrete distribution, we have: 

𝑝(𝜽) ≈ ∑𝑤𝑗𝛿(𝜽 − 𝜽𝑗)

𝑁

𝑗=1

 (2-7) 

where 𝑤𝑗 is proportional to the likelihood of each sample, namely      

𝑤𝑗 ∝ 𝑝(𝑫|𝜽𝑗) 
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2.3.3   Importance Sampling  

 

We use importance sampling to generate samples from a proposal distribution [25]. Then 

importance sampling would be used to reweight the particles, hence we obtain an approximation 

of the true posterior distribution. We can use this technique as a variance reduction technique 

in the Monte Carlo method. In the importance sampling, some random samples with higher 

weight are more important than others. Hence, these more important samples are resampled 

more frequently, then it will lead to a reduction in estimator variance.  

If we assume 𝑝(𝜽) and g(𝜽) are desired and proposal density functions respectively, then g(𝜽) 

can be chosen to have the minimum variance. 𝑤𝑗
′ is known as the importance weight. 

𝑤𝑗
′ ∝

𝑝(𝜽)

g(𝜽)
 (2-8) 

 
where the normalized importance weights �̃�𝑗′𝑠 are given by: 

 

�̃�𝑗′s =
𝑤𝑗

′

∑ 𝑤𝑗
′𝑁

𝑗=1

 (2-9) 

 
The estimated state can be approximated by: 

 

�̂� ≈ ∑�̃�𝑗′s 

𝑁

𝑗=1

𝜽𝑗  (2-10) 
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2.4   Mean Squared Error (MSE) 

 

The MSE gives us the information about the average squared difference between the estimated 

and true parameters. Hence lower MSE would be the desirable result. 

The MSE matrix is defined as [22]: 

 

MSE = 𝐸 {(�̂� − 𝜽)(�̂� − 𝜽)
𝑇
}  (2-11) 

where �̂� and 𝜽 are the estimated and true parameters respectively. 

In the next section, we compare the obtained MSE with posterior Cramer-Rao lower band.  
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3 Chapter 3 Posterior Cramer-Rao Lower Bounds for Bayesian Estimation 

 

3.1   Background  

 

Cramer-Rao lower bound (CRLB) [22] is a lower bound on the variance of any unbiased estimator 

of a fixed parameter. It is derived by getting the inverse of Fisher information matrix, that is 

defined as an expectation of the negative second order derivative of the likelihood function. 

Van Trees presented the posterior Cramer-Rao lower bound (PCRLB) [21] for estimators of 

random parameters. It provides a theoretic performance limit for a Bayesian estimator and 

creates a lower bound on the mean-squared error for any estimator of the random parameter. 

Here we want to obtain the optimal PCRLB for a sensor network in a centralized architecture. 

 

3.2   Classical Cramer-Rao Lower Bounds 

 

Van Trees showed that the MSE is bounded by the PCRLB [21] : 

 

𝐸{(𝒙(𝒛) − 𝒙)(�̂�(𝒛) − 𝒙)𝑇} ≥  𝑱−1 (3-1) 

 

where state 𝒙 is a random vector to be estimated and 𝒛 is the observation. �̂� (𝒛) is an estimator 

of 𝒙 which is a function of 𝒛. This inequality means that the MSE of any estimator cannot go 

below its PCRLB. The PCRLB can be used for both parameter estimation and state estimation. 

where 𝑱 is the posterior Fisher information matrix: 

 

𝑱 = 𝐸{−∇𝒙∇𝒙
𝑇 log 𝑝(𝒙, 𝒛)} (3-2) 
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and the expectation is taken with respect to joint PDF 𝑝(𝒙, 𝒛).  ∇𝒙∇𝒙
𝑇 is the second order 

derivative.  

 

3.3   PCRLB for Nonlinear Damage Localization Problem  

 

3.3.1   Fisher Information Matrix 

 

In general, based on the Cramer-Rao lower bound theory, the mean squared error of any 

unbiased estimator should not be lower than the inverse of Fisher information matrix. 

𝐸 {[�̂�(𝐃) − 𝜽]
2
} ≥ 𝑰(𝜽)−1 (3-3) 

 

We compute the Fisher information matrix 𝑰(𝜽), which is obtained by taking the integral of the 

negative of the second order derivative of the log likelihood function [26]. 

𝑰(𝜃) = −𝐸 {
𝜕2𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜽2 } = 𝐸 {[
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜽
]
2

}             (3-4) 

 

where 𝑝(𝑫|𝜽) is the likelihood function as we mentioned in (2-4).  

The parameter vector is 𝜽 = [𝜃1, 𝜃2]
𝑇 which has two unknown parameters. Hence, we have a 

2×2 Fisher information matrix [26]. 

 

𝑰(𝜽) =  

[
 
 
 
 𝐸 {[

𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃1
]
2

} 𝐸 {
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃1

𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

 𝜕𝜃2
}

𝐸 {
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃1

𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

 𝜕𝜃2
} 𝐸 {[

𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃2
]
2

}
]
 
 
 
 

 (3-5) 
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The matrix is symmetric and it is positive definite. 

From (2-4), the log-likelihood function can be derived as: 

𝑙𝑜𝑔𝑝(𝑫|𝜽) = log
1

(2𝜋𝜎𝜀
2)𝑁𝑝/2

−
1

2𝜎𝜀
2

 ∑(𝑇𝑖
𝑚 − 𝑇𝑖

𝑐 (𝜽) )2

𝑁𝑝

𝑖=1

) (3-6) 

Since 𝑙𝑜𝑔
1

(2𝜋𝜎𝜀
2)𝑁𝑝/2 is not dependent on 𝜽, so its derivative with respect to 𝜽 would be zero. 

 The derivative of 𝑙𝑜𝑔𝑝(𝑫|𝜽) with respect to 𝜃1 is: 

𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃1
=

1

𝜎𝜀
2
∑(𝑇𝑖

𝑚 −

𝑁𝑝

𝑖=1

𝑇𝑖
𝑐(𝜽)) (

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃1
) (3-7) 

where 
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃1
  is: 

(
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃1
)   =

(𝜃1 − 𝑥𝑎)[(𝜃1 − 𝑥𝑎)2 + (𝜃2 − 𝑦𝑎)2]−1/2

𝑉𝑔

+
(𝜃1 − 𝑥𝑖𝑠)[(𝜃1 − 𝑥𝑖𝑠)

2 + (𝜃2 − 𝑦𝑖𝑠)
2]−1/2

𝑉𝑔
 

(3-8) 

Similarly, the derivative of 𝑙𝑜𝑔𝑝(𝑫|𝜽) with respect to 𝜃2 is:  

𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃2
=

1

𝜎𝜀
2
∑(𝑇𝑖

𝑚 −

𝑁𝑝

𝑖=1

𝑇𝑖
𝑐(𝜽)) (

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃2
) (3-9) 

 

where 
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃2
  is: 

 

(
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃2
)  =

(𝜃2 − 𝑦𝑎)[(𝜃1 − 𝑥𝑎)2 + (𝜃2 − 𝑦𝑎)2]−1/2

𝑉𝑔

+
(𝜃2 − 𝑦𝑖𝑠)[(𝜃1 − 𝑥𝑖𝑠)

2 + (𝜃2 − 𝑦𝑖𝑠)
2]−1/2

𝑉𝑔
 

(3-10) 

To solve each term of the FIM, we calculate the expectation of these derived derivatives. 
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𝐸 {[
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃1
]

2

} =  
1

𝜎𝜀
2
∑ (

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃1
)

2𝑁𝑝

𝑖=1

 (3-11) 

𝐸 {[
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃2
]

2

} =  
1

𝜎𝜀
2
∑ (

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃2
)

2𝑁𝑝

𝑖=1

 (3-12) 

𝐸 {
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃1
 
𝜕𝑙𝑜𝑔𝑝(𝑫|𝜽)

𝜕𝜃2
} =  

1

𝜎𝜀
2
∑ (

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃1
)(

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃2
)

𝑁𝑝

𝑖=1

 (3-13) 

 

So, the FIM would be: 

𝑰(𝜽) =
1

𝜎𝜀
2

[
 
 
 
 
 

∑(
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃1
)

2𝑁𝑝

𝑖=1

∑(
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃1
)(

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃2
)

𝑁𝑝

𝑖=1

∑ (
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃1
)(

𝜕𝑇𝑖
𝑐(𝜽)

𝜕𝜃2
)

𝑁𝑝

𝑖=1

∑(
𝜕𝑇𝑖

𝑐(𝜽)

𝜕𝜃2
)

2𝑁𝑝

𝑖=1 ]
 
 
 
 
 

 (3-14) 

 

3.3.2   Bayesian Fisher Information Matrix 

 

Now, after calculating the FIM, we present the B-FIM as: 

  

B-FIM = ∫ 𝑰(𝜽)𝑝𝜋(𝜽) 𝑑𝜽 + 𝐸𝑝𝜋
{−𝛻𝜽𝛻𝜽

𝑇𝑙𝑜𝑔 𝑝𝜋(𝜽)}= 𝑰𝐷 + 𝑰𝑃 (3-15) 

 

B-FIM consists of two parts. The first part is the integral of classical-FIM with respect to the prior 

distribution 𝑝𝜋(𝜽) and the second part is related to the prior information.  
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3.3.2.1   Integral of Classical-FIM 

 

To solve the first part (𝑰𝐷), because of the nonlinearity of Fisher information matrix elements, it 

is difficult to solve the double integral. We use a set of random samples (particles) and apply a 

Monte-Carlo method to calculate the integral. 

 We can consider prior PDF as a summation of 𝑁𝑝𝑐 number of particles: 

 

𝑝𝜋(𝜽) ≈  
1

𝑁𝑝𝑐
∑ 𝛿(𝜽 −

𝑁𝑝𝑐

𝑗=1
𝜽(𝑗))          &         𝜽(𝑗) = [𝑥𝑑

(𝑗), 𝑦𝑑
(𝑗)]𝑇~ 𝑝𝜋(𝜽) (3-16) 

                                                  𝑰𝐷 = ∫𝐼(𝜽)𝑝𝜋(𝜽) 𝑑𝜽  

              = ∫ 𝑰(𝜽)
1

𝑁𝑝𝑐
∑𝛿(𝜽 −

𝑁𝑝𝑐

𝑗=1

𝜽(𝑗)) 𝑑𝜽 

                =
1

𝑁𝑝𝑐
 ∑∫𝛿(𝜽 − 𝜽(𝑗)) 

𝑁𝑝𝑐

𝑗=1

𝑰(𝜽)𝑑𝜽 

(3-17) 

Based on the [27] , using the Dirac (impulse) delta function defined by: 

 

𝛿(𝒙) = 0    ∀ 𝒙 ≠ 0 (3-18) 

 
and  

∫ 𝛿(𝒙) 𝑑𝒙 = 1
∞

−∞

 (3-19) 

  

We have ∫ 𝛿(𝜽 − 𝜽(𝑗))𝑑𝜽 = 1 , then the first part of equation would be:  

 

𝑰𝐷 = ∫ 𝑰(𝜽)𝑝𝜋(𝜽) 𝑑𝜽 = 
1

𝑁𝑝𝑐
∑ 𝑰

𝑁𝑝𝑐

𝑗=1
(𝜽(𝑗)) (3-20) 
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The above satisfies the normalization property of a PDF in that it integrates to unity. Hence by 

summing FIM matrices evaluated at 𝑁𝑝𝑐 number of particles, we have an approximation of the 

integral. 

 

3.3.2.2   Prior-FIM 

 

To solve the second part (𝑰𝑃), we calculate the expectation with respect to the prior distribution. 

The probability density function (PDF) of a Gaussian (normal) random variable, 𝑥 ~𝒩(μ, 𝜎2), is: 

 

𝑝(𝑥)= 𝒩(𝑥; μ, 𝜎2) ≜   
1

√2𝜋 𝜎
e

(x−μ)2

2σ2  (3-21) 

 

We assume that the prior distribution follows a Gaussian distribution. 

𝑝𝜋(𝜽)∼ 𝒩(𝛍, 𝜮) 

where 𝛍 = [𝜇1, 𝜇2]
𝑇 and 𝜮= diag (𝜎2, 𝜎2) are the mean and covariance matrix of the prior 

distribution. 

Because we have two unknown random variables, which are independent, so the probability 

density function is multiplication of PDFs of the two random variables.  

𝑝𝜋(𝜽)= 
1

2𝜋𝜎2 exp {−
1

2𝜎2
[(𝜃1 − 𝜇1)

2 + (𝜃2 − 𝜇2)
2]}  (3-22) 

With 3-22) 𝑰𝑃 becomes: 
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𝑰𝑃 =

[
 
 
 
 𝐸 {

𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃1
}
2

𝐸 {
𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃1

𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃2
}

𝐸 {
𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃1

𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃2
} 𝐸 {

𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃2
}
2

]
 
 
 
 

 (3-23) 

 
Taking the logarithm on both sides of (3-22), we have:  

 

𝑙𝑜𝑔𝑝𝜋(𝜽) = log
1

2𝜋𝜎2
−

1

2𝜎2
[(𝜃1 − 𝜇1)

2 + (𝜃2 − 𝜇2)
2] (3-24) 

 
By taking derivative of 𝑙𝑜𝑔𝑝𝜋(𝜽) with respect to the random variable (𝜃1, 𝜃2), only functions of 

(𝜃1, 𝜃2) are considered for derivation and the rest becomes zero.  

 
𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃1
= −

1

𝜎2(𝜃1 − 𝜇1) (3-25) 

𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃2
= −

1

𝜎2(𝜃2 − 𝜇2) (3-26) 

By taking the expectation of these derivatives, we have: 

𝐸 {
𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃1
}
2

=
1

𝜎2
 (3-27) 

𝐸 {
𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃2
}
2

=
1

𝜎2
 (3-28) 

Because these two unknown parameters are independent, hence: 

 

𝐸 {
𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃1

𝜕𝑙𝑜𝑔𝑝𝜋(𝜽)

𝜕𝜃2
} = 0 (3-29) 

 
So, 
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𝑰𝑃 = [

1

𝜎2
    0

0    
1

𝜎2

] (3-30) 

 
By summing both parts, the B-FIM is determined as: 

 

B-FIM =
1

𝑁𝑝𝑐
∑ 𝑰

𝑁𝑝𝑐

𝑗=1
(𝜽(𝑗)) + [

1

𝜎2     0

0    
1

𝜎2

] (3-31) 

 

3.3.3   Bayesian Cramer-Rao Lower Bound 

 

By finding B-FIM in the previous section, the PCRLB matrix is simply its inverse: 

PCRLB = (B-FIM)-1 

To improve the estimation results, we can use the PCRLB as a sensor management criterion for 

the optimal sensor placement. In the next section, we will show how we use the minimum PCRLB 

criterion for sensor placement. After finding both the MSE and PCRLB, we can compare them to 

show that the PCRLB indeed gives a lower bound on the MSE that an estimator can achieve. In 

Chapter 5, the results for this inequality will be shown. 
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4 Chapter 4 Sensor Placement for Damage Localization 

 

4.1   Sensor Management Criteria  

 

The objective of the sensor placement problem is to determine sensor locations that minimize 

the estimation error. The sensor positions are the parameters that we want to optimize. 

Therefore, the estimated target location based on the optimization will be more accurate. 

Approaches to solve the sensor management for target localization/tracking are mostly based on 

two criteria. The first one is based on the PCRLB [28] [29] and the second one is based on 

information theoretic measures, such as entropy, mutual information, etc. [30] [31, 32]. 

However, information theoretic measures are computationally intensive, particularly for a large 

number of sensors, because it is exponential in the number of sensors, whereas PCRLB is linear 

in the number of sensors [33]. Hence, we propose a posterior Cramer Rao lower bound based 

approach to optimize the positions of sensors. 

4.2   Sensor Placement Based on PCRLB 

 

In this problem, the minimum trace or determinant of the PCRLB, can be defined as the maximum 

measurement information of the target location received by the sensors. Our goal is, to 

determine the optimal sensor locations based on the prior information of the target position. 

To solve the optimal sensor placement, we 

1. Use the derived Fisher information in the past section to evaluate the estimation 

accuracy. 

2. Design an algorithm to find the optimum sensor locations by minimizing the trace of the 

PCRLB. 
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4.2.1 Algorithm for Optimal Sensor Placement  

 

We assume a 2-D plate with area of A × B. The plate is discretized in to M cells (grid points) and 

each cell has unit area. Sensors are placed in these cells. We have 𝑁 sensors with 𝐾 possible 

locations, and the sensors should be placed such that the minimum cost (trace of PCRLB) will be 

obtained. Having 𝑁 sensors and 𝐾 possible locations, the combination of (𝐾
𝑁
) would be the search 

space for sensor placement, which is infeasible to compute if we assume lots of possible locations 

for sensors [34].  

Hence to find the optimum sensor locations, we use a person-by-person algorithm which can be 

used for large optimization problem [35]. This algorithm is guaranteed to find a locally optimal 

solution after its convergence. It optimizes one sensor’s location at each step. The algorithm will 

end by achieving minimum trace of PCRLB after the iterations end [36]. 

Because our sensor placement algorithm is based on the Bayesian CRLB, then the B-FIM should 

be used which is obtained in (3-31): 

 

B-FIM = 𝑰  ̅(𝛉) = 𝑰𝐷 + 𝑰𝑃    

PCRLB = [𝑰  ̅(𝛉)]−1 

 

 

The minimum trace of PCRLB would be the minimum cost. 
 
Definition 1:  A point 𝒑∗ is an optimum sensor location if  

 
𝒑∗ = argmin(𝐽𝑇(𝒑))             where   𝐽𝑇(𝒑) = trace (PCRLB) 
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In this algorithm, we initialize sensor positions in 𝑀 by 𝑀 grid. Then we assume that 𝑁 sensors 

follow a uniform distribution within a plate: 

 
𝑎 ≤, 𝑝𝑖𝑥𝑠 ≤ 𝑏 ; 𝑎 ≤ 𝑝𝑖𝑦𝑠 ≤ 𝑏             ,           𝑖 = 1, 2, … ,𝑁 

(𝑎, 𝑏) is the range specified for sensor locations in the plate.  

 
 To perform optimization, 

1. First, we need to initialize the sensor’s location. We assume random value for the sensor’s 

location within the specified range of a plate. 

2. We suppose Sensor 1 location is a variable and other (𝑁 − 1) sensors are fixed. Among 

all the possible grid locations for Sensor 1, the location that has the minimum trace of 

PCRLB will be selected as the optimum position. 

3.  After finding the optimum location for Sensor 1, we do the same for the next sensor. It 

means that Sensor 2’s location is variable now and Sensor 1, Sensor 3, ..., Sensor 𝑁 are 

fixed. Again, the best location for Sensor 2 will be found with the minimum trace of PCRLB. 

4. In this way, in each loop one sensor would be variable and the rest are fixed to find the 

optimum sensor position for the minimum PCRLB. This loop would be repeated until the 

result (trace of PCRLB) converges and improvement is really small. So, the result gives us 

the optimum locations by achieving minimum trace of PCRLB. 
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5 Chapter 5 Simulation Results 

 

5.1   Sensor Geometry  

 

We assume a square plate for the model. The size of the plate is 300 mm × 300 mm. Four sensors, 

one actuator, and the damage are on this plate. The origin of the coordinate system is set at the 

center of the plate. The table and figure below show the plate layout. All the measurements are 

in mm [14].  

Table 5-1. Coordinates of the actuator, sensors and damage on the plate 

 Actuator Sensor 1 Sensor 2 Sensor 3 Sensor 4 Damage  

Coordinates(mm) 
(
0

0
) (

−90

−90
) (

−90

90
) (

90

−90
) (

90

90
) (

40

20
) 

 
  

 

 

 

 

          

 

 

 

 

 

 

Figure 5-1. Layout of a plate with an actuator, sensors, and damage 

Sensor 1 

Sensor 2 Sensor 4 

Sensor 3 

Actuator 

Damage 

180 mm 

180 mm 

x 

y 



33 
 

We assume that, the wave propagation speed is 𝑉𝑔 =1500 × 103 mm/sec. 

Also, measurement noise 휀, which was defined in (2-3), is Gaussian with 𝜎𝜀
2 =10−12. 

To estimate the posterior distribution, we use 10,000 Monte-Carlo runs. The prior PDF of the 

target state is assumed to be Gaussian with mean 𝛍 = (40
20

) , and covariance matrix 𝚺 =

[
𝜎𝑥

2 0

0 𝜎𝑦
2] 

 

Standard deviations of 𝜎𝑥 = 5,  𝜎𝑦 = 5 would be assumed for the prior information. 

The updated estimate in (2-10) is: 

�̂� ≈ ∑ �̃�𝑗′s 𝑁
𝑗=1 𝜽𝑗   

The equation is the weighted sum of the particles with 𝑁 = 105 particles. After finding the 

updated estimate, the MSE will be achieved as well. 

 

5.2   Damage Location Estimation 

 

Estimation for damage localization is simulated by Monte-Carlo sampling in MATLAB. Figures  

5-2 and 5-3 show the minimum mean squared error (MMSE) estimates (the mean of posterior 

PDF) of x and y coordinates of location of damage over 10,000 Monte Carlo runs. 

 

Figure 5-2. MC samples for MMSE estimates of X-coordinate of damage location 
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Figure 5-3. MC samples for MMSE estimates of Y-coordinate of damage location 

 

The histograms for the two parameters are illustrated in Figures 5-4 and 5-5 respectively. Normal 

distributions are employed to fit the histograms. 

 
Figure 5-4. Histograms of MC samples for the mean of posterior PDF of X-coordinate 
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Figure 5-5. Histograms of MC samples for the mean of posterior PDF of Y-coordinate 

 

Figures 5-6 and 5-7 display the joint prior and posterior PDF of the x–y coordinates of the location 

of damage in 3D. In comparison, we can see that the variance of the posterior information is 

reduced. 
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Figure 5-6. Joint prior PDF of x-y coordinates of damage location 

 
Figure 5-7. Joint posterior PDF of x-y coordinates of damage location 
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The contour of posterior PDF is shown in Figure 5-8. 

  

Figure 5-8. Joint posterior PDF in 2D contour 

 

5.3   MSE vs. PCRLB 

 

 In this section, we compare the MSE with the corresponding Bayesian CRLB. According  to the 

Cramer-Rao lower bound, the MSE corresponding to the estimator of a parameter should be 

larger than or equal to its lower bound. So the MSE is bounded from below as follows: 

E {[�̂�(𝐃) − 𝜽]
2
} ≥ 𝑰−1    ,  𝑰−1 =  PCRLB 

These tables display MSE and PCRLB values for x and y coordinates of the damage location. This 

comparison has been evaluated for different measurement noises. 

 

 

Actual Damage  

Posterior PDF of 

Damage Location 
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Table 5-2. MSE and PCRLB for 𝜎𝜀
2 = 10−15 

𝜎𝜀
2 = 10−15 𝜃1(𝑥𝑑) 𝜃2(𝑦𝑑) 

PCRLB 0.00049 0.00096 

MSE 0.00071 0.0014 

                                                          

Table 5-3. MSE and PCRLB for 𝜎𝜀
2 = 10−14 

𝜎𝜀
2 = 10−14  𝜃1(𝑥𝑑) 𝜃2(𝑦𝑑) 

PCRLB 0.0049 0.0096 

MSE 0.0051 0.0140 

 

Table 5-4. MSE and PCRLB for 𝜎𝜀
2 = 10−13 

𝜎𝜀
2 = 10−13  𝜃1(𝑥𝑑) 𝜃2(𝑦𝑑) 

PCRLB 0.0485 0.09 

MSE 0.0509 0.099 

 

Table 5-5. MSE and PCRLB for 𝜎𝜀
2 = 10−12 

 𝜎𝜀
2 = 10−12  𝜃1(𝑥𝑑) 𝜃2(𝑦𝑑) 

PCRLB 0.45 0.83 

MSE 0.4838 0.8758 
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Table 5-6. MSE and PCRLB for 𝜎𝜀
2 = 10−11 

𝜎𝜀
2 = 10−11  𝜃1(𝑥𝑑) 𝜃2(𝑦𝑑) 

PCRLB 2.79 4.2 

MSE 2.96 4.4 

 

As we see, both the MSE and PCRLB would increase, as the noise level increases. For all the 

different noise levels, the MSE is larger than the PCRLB, as expected. 

The graphs of this comparison are shown in Figures 5-9 and 5-10. As we can see, as noise level 

increases, the estimation error increases as well. 

 

 

 

Figure 5-9. MSE and PCRLB for 𝑥𝑑  with increasing noise variance  

0

0.5

1

1.5

2

2.5

3

3.5
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x d
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MSE
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Figure 5-10. MSE and PCRLB for 𝑦𝑑 with increasing noise variance  

 

5.4   Sensor Placement Geometry 

 

 In the sensor placement, we suppose our sensors are randomly distributed. In this thesis, the 

minimum number of sensors (3 sensors) are deployed in the 180×180 field to find the optimum 

estimation. All these 3 sensors are placed in the specified range of: 

 

𝒑𝑠1:             −90 ≤ 𝑝1𝑥𝑠 ≤ 90 ; −90 ≤ 𝑝1𝑦𝑠 ≤ 90  

𝒑𝑠2:             −90 ≤ 𝑝2𝑥𝑠 ≤ 90 ; −90 ≤ 𝑝2𝑦𝑠 ≤ 90  

𝒑𝑠3:             −90 ≤ 𝑝3𝑥𝑠 ≤ 90 ; −90 ≤ 𝑝3𝑦𝑠 ≤ 90  
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Implement the sensor placement algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5   Optimal Sensor Placement  

 

In this section, we design sensor placement such that the lowest trace of the posterior CRLB is 

achieved. We find optimal sensor placement for different locations of damage and actuator. In 

this way we can observe the effect of actuator locations on the sensor placement solutions. 

Example 1. Mean of the Damage location = (40
20

),  Actuator = (0
0
) 

The optimum sensor placement with actuator placed on the origin is shown in Figure 5-11. 

 𝒑𝑠1 = (38
18

),  𝒑𝑠2 = ( 56
−90

),  𝒑𝑠3 = (−18
90

) 

• 𝒑𝑠1 is a variable between [-90, 90] and 𝒑𝑠2 & 𝒑𝑠3 are fixed at their initial 

values. Among all the possible grid locations for Sensor 1, the location 

that has the minimum trace of PCRLB will be selected as the best 

position. 

 

𝑀 =  𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑆𝑒𝑛𝑠𝑜𝑟 1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠  

𝒑𝑠2 & 𝒑𝑠3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)  

𝑇𝑟_𝑃𝐶𝑅𝐿𝐵 = ∞  

𝑓𝑜𝑟 𝑒𝑠𝑐ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 ∈ 𝑀  

 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑃𝐶𝑅𝐿𝐵 ∶  

𝑇𝑟_𝑃𝐶𝑅𝐿𝐵(𝑗) corresponding to sensor locations j  

 

𝑖𝑓 𝑇𝑟_𝑃𝐶𝑅𝐿𝐵 > 𝑇𝑟_𝑃𝐶𝑅𝐿𝐵(𝑗)  

𝑇𝑟_𝑃𝐶𝑅𝐿𝐵 = 𝑇𝑟_𝑃𝐶𝑅𝐿𝐵(𝑗)  

𝑏𝑒𝑠𝑡_𝒑𝑠1 = 𝒑𝑠1(𝑗)   

 

• After finding the 𝑏𝑒𝑠𝑡_𝒑𝑠1, we do the same for 𝒑𝑠2 & 𝒑𝑠3 to find the 

𝑏𝑒𝑠𝑡_𝒑𝑠2 and 𝑏𝑒𝑠𝑡_𝒑𝑠3.  

 

• Repeat this algorithm until the improvement is really small. 
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Figure 5-11. Optimal sensor placement for Actuator= (0, 0) and damage= (40, 20) 

Example 2. Mean of the Damage location = (40
20

), Actuator = (35
15

) 

In this example, we place the actuator very close to the damage to see how it would impact the 

placement of the sensors. 

𝒑𝑠1 = (38
18

),  𝒑𝑠2 = ( 50
−52

),  𝒑𝑠3 = (−38
68

) 

 

Figure 5-12. Optimal sensor placement for Actuator= (35, 15) and damage= (40, 20) 
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Example 3. Mean of the Damage location = (40
20

), Actuator = (−70
−85

). 

In this example, we move the actuator farther away from the damage. As it can be seen in Figure 

5-13, the optimal sensor locations have been moved to: 

𝒑𝑠1 = (38
18

),  𝒑𝑠2 = ( 90
−62

),  𝒑𝑠3 = (−66
90

) 

 

 

Figure 5-13. Optimal sensor placement for Actuator= (-70, -85) and damage= (40, 20) 

 

 

Example 4. Mean of the Damage location = (−40
−20

), Actuator = (−75
−85

). 

Finally, we move the damage location to the negative side of coordinate, and observe the effect 

on the movement of the sensors. 

𝒑𝑠1 = (−42
−22

),  𝒑𝑠2 = ( 62
−90

),  𝒑𝑠3 = (−88
−6

) 
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Figure 5-14. Optimal sensor placement for Actuator= (-70, -85) and damage= (-40, -20) 

 

 

We can see that the actuator has a small impact on the sensor placement. When we move the 

actuator closer or farther away from the damage, the sensors also tend to be placed closer or 

farther away to the mean of the damage location respectively. This happens due to the fact that 

the elements of Fisher information matrix are the functions of the distance of actuator and 

sensors from damage. So, to have the minimum PCRLB, sensors tend to be located closer to the 

target. One Sensor is always placed close to the target to get the most information from it. 

 

5.6   PCRLB Comparison 

 

In this section, we provide the trace of the PCRLB matrix for different sensor placement 

solutions with:  

mean of the damage location = (40
20

) and actuator = (0
0
). 

Table 5-7 shows that the trace of PCRLB of 1.6361 is achieved when the sensors are randomly 

placed in the plate, following a uniform distribution. The trace of PCRLB is 1.3330 when an 
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initial guess, reported in Table 5-1, is used to estimate the damage location. When the sensors 

are optimally placed in the plate, a minimum trace of PCRLB, 1.1797, is achieved. 

Table 5-7. PCRLB Comparison for different sensor locations 

Sensor Locations PCRLB Trace of PCRLB 

Random placement  [
0.5203 −0.4862

−0.4862 1.1158
] 1.6361 

Placement used in Table 5-1 [
0.4612 −0.3203

−0.3203 0.8718
] 1.3330 

Optimal placement  [
0.4303 −0.1668

−0.1668 0.7494
] 1.1797 

 

5.7   Uncertainty Ellipses  

 

In this section, we want to show the uncertainty ellipses of the prior, the measurement, and 

the posterior. 

 
Figure 5-15. Posterior, measurement, and prior uncertainty for 𝜎𝜀

2= 10−12 
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Figure 5-16. Posterior, measurement, and prior uncertainty for 𝜎𝜀
2= 10−11 

 

In Figures 5-15 and 5-16, we compare the uncertainty for different variance noises. As it can be 

seen, in both figures, the posterior uncertainty is smaller than the measurement uncertainty 

which means more accurate estimation is achieved. Also, with the larger noise, less 

measurement information will be achieved, so the uncertainty for the updated information will 

be increased.  
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6 Chapter 6 Conclusion 

 

The Bayesian model was shown to be successful for a large number of applications with increased 

estimation accuracy. One of the main contributions of this thesis is to compute the Bayesian-FIM 

and introduce the PCRLB for Bayesian estimation problems. 

In this thesis, we presented a Bayesian estimation approach for localizing a damage in a square 

plate by using multiple sensors, considering the uncertainties from modeling and measurements. 

After measuring the calculated ToF of waves in each actuator–sensor path, the Bayesian 

approach estimates the damage location. A MC algorithm for estimating the posterior 

distribution is proposed in this thesis. The target location estimate has a very low error. 

We presented an evaluation approach for Bayesian-FIM or PCRLB including an approximation. 

For the nonlinear systems, it is not realistic to have the analytical closed-form for the PCRLB. 

Hence, we proposed Monte Carlo approximation to provide a proper numerical evaluation 

solution. So, the PCRLB is calculated through this approximation. Furthermore, we compared it 

with the mean squared error for different measurement noises to illustrate that the PCRLB 

indeed provides a lower bound on the MSE. 

 The PCRLB has different usages in applications. One of the important fields is sensor 

management in sensor networks. Selecting a subset of sensors that have the most information 

can improve the estimation performance, while at the same time reduce the requirement for 

communication and the energy needed by sensors for local computation and communication. 

In this thesis, the derived PCRLB was used for sensor placement for target localization. The 

positions of multiple sensors were optimized, by minimizing the trace of the PCRLB matrix. 

The proposed algorithm applied here, select the sensor positions with the minimum cost. 
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Simulation results demonstrated the significantly improved localization performance by 

optimally placing the sensors.  

For the future work, PCRLB can be applied in recursive mobile sensor placement to improve the 

estimation results. Also, we can compare different criteria and optimization algorithms for sensor 

placement.  
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