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Cell migration is an essential activity of the cells in various biological phenomena such as embryonic development,
wound healing of damaged tissue, capillary vascularization in angiogenesis and migration of leukocytes to kill the
bacteria around the wound site. The properties of nanofibrous surface enhancing cell adhesion, proliferation, migra-
tion and differentiation are necessary for application in tissue engineering. Recently, fabricated scaffolds at the
nanometer scale are very similar to the architecture of natural human tissue, because of the development of nanofi-
bers. In this study, we observed different cell migration behaviors on PLGA nanofibers with different diameters.
0.4 µm and 1.4 µm PLGA fibers were fabricated by electrospinning. Adhesion of neonatal human dermal fibroblasts
(nHDFs) on the PLGA scaffolds was quantified by MTT assay. Real time observation system was used to analyze the
migration of nHDF on the 0.4 µm and 1.4 µm PLGA scaffolds. There are no significant differences in cell attach-
ment between 0.4 µm and 1.4 µm PLGA nanofibers. However, the migration was affected by the thickness of the
PLGA fiber. The cells were migrated along with the 0.4 µm PLGA fiber but did not cross 1.4 µm PLGA fiber. In this
research, it would be evaluated that different diameter of electrospun PLGA fiber effect on the cell migration and
proliferation, and it could be applied for the development of the fibrous scaffold in tissue engineering.
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Introduction

n a variety of biological phenomena, cell migration plays a

very important role. In the inflammatory response, leuko-

cytes migrate into the areas where insult has occurred, and

then they affect phagocyte and immune functions. Cellular

migrations are prominent in morphogenic processes ranging

from gastrulation to development of the nervous system in

embryogenesis. In normal physiology and pathology, migration

remains crucial for the adult organism. Migration of fibroblasts

and vascular endothelial cells is essential for wound healing. In

metastasis, tumor cells immigrate from the initial tumor mass

into the circulatory system, which they subsequently leave and

migrate into a new site. Finally, cell migration is crucial to

technological applications in tissue engineering and playing an

essential role in colonization of biomaterials scaffolding.1,2)

As tissue engineering has been developed, therapeutic prod-

ucts have manufactured by combination of matrix scaffolds

with cell responsive biomolecules or viable human cell systems,

for the repair, restoration, or regeneration of damaged cells or

tissue.3-5) 

The electrospinning is a very simple method for the prepa-

ration of synthetic polymeric fibrous meshes acting as extra-

cellular matrices.6) Electrospun fibers have very thin diameter,

ranging downward from micrometers to few nanometers. The

small diameter of electrospun fibers provides a high surface

area, a high length to diameter ratio, and to volume ratio.

These characteristics are useful in a variety of applications, such

as separation membranes, wound dressing materials, artificial

blood vessels, in nano-composites, as a nonwoven fabric, and

many other applications.7) Electrospun scaffolds help cells to

grow by providing adequate mechanical support. In general,

the electrospun scaffolds should have biocompatible and bio-

degradable characteristics for the tissue replacement, and pos-

sess good mechanical properties for implantation. In recent

years, many polymeric nanofibers have been fabricated by

electrospinning method for various applications such as artifi-

cial skin,8) artificial blood vessels,9) bone tissue engineering.10)

In this study, we investigated the effect of the diameter of the

electrospun nanofiber on cell migration for effective control of

the cell behaviors.
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Materials and Methods

Cell culture
Cell studies were performed using primary cultured neonatal

human dermal fibroblasts (nHDFs, Lonza). Cells were main-

tained in Dulbeco's modified eagle's medium (Welgene, Korea)

with 10% fetal bovine serum (FBS, Welgene) and 10% anti-

biotic solution (Welgene), at 37oC in a 5% CO2 incubator, and

the medium was changed every 2-3 days. Cells were subcul-

tured with 0.25% trypsin/EDTA when they reach 50~70%

confluence.

Preparation of electrospun fiber
Electrospinning method was used to fabricate poly(DL-lactic-

co-glycolic acid) (PLGA, Lakeshore Biomaterials, Inc, AL, USA)

nanofibers of copolymer ratios of 75:25. The polymer solu-

tions were prepared by dissolving 0.85 g or 2 g of PLGA in

each 10 mL of 1,1,1,2,2,2-hexafluoro-2-propanol (HFIP, Sigma,

MO, USA), and mixed well for 4 hours using magnetic stirrer

(Corning, California, USA). 8.5% (w/v) and 20% (w/v) of PLGA

solutions were placed in a 10 mL syringe fitted with 23 G or

30 G needle, respectively. The high voltage power supplies

with 18 kV and 20 kV were employed at a distance 10 cm

between the paper foil (cathode) and the needle tip (anode).

The syringe pumping speed was 1 ml/h and PLGA nanofibers

were formed on the paper foil. PLGA nanofibers also accumu-

lated on the slide glass to observe the migration of nHDFs.

Prior to performing the experiment, the electrospun scaffolds

were dried for three days in a fume hood to remove the sol-

vents. PLGA nanofibers accumulated on the slide glass and

electrospun scaffolds were sterilized under UV light overnight.

The thickness of electrospun PLGA nanofibers were measured

by scanning electron microscope (SEM, Hitachi S-4700, Tokyo,

Japan).

Attachment assay of nHDF on nanofibers 
The weights of both 8.5% (w/v) and 20% (w/v) electrospun

PLGA scaffolds were prepared with 80 mg and each scaffold

was placed in a separate well of a 24 well tissue-culture plate

for cell seeding and attachment test. nHDFs were seeded on

the scaffolds at a density of 1 × 105 cells of each well and inside

of silicon O-ring (inner diameter = 15.6 mm) on the slide

glass. After 4hr incubation in the 5% CO2 incubator at 37
oC,

the unattached cells and culture medium were simultaneously

removed by pipette, followed by washing the specimens with

phosphate-buffered saline (PBS). Then, MTT (3-[4,5-dimethylth-

iazol-2-yl]-2,5-diphenyl tetrazolium bromide) reagent (5 mg/ml

MTT in PBS) was added to each well and inside of silicon O-

ring on the slide glass. After removal of the media and MTT

reagent, 80 mg of electrospun PLGA scaffold (DMSO soluble)

was placed in the silicon O-ring on the slide glass then dime-

thylsulfoxide (DMSO) and glycine buffer were added onto the

specimens to dissolve the blue crystals. The optical density

(OD) of the dissolved solute was then measured by a micro-

plate reader (Molecular Devices, California, USA) under a light

source of 570 nm wavelength. 

Real time observation system
We used the real time observation system (Figure 1) to ob-

serve the migration of the cells on the PLGA nanofibers. The

real time observation system consisted of incubator system

installed with the microscope to observe live cells migration.

The incubator was regulated by temperature and gas compo-

sition controlling program (CCP ver. 3.8, Live Cell Instrument,

Korea) under proper environment for cell (CO2 5%, 37
oC). 

Image acquisition
The cells were cultured in the incubator placed on the micro-

scope stage, and cell images were recorded every 5 minutes

for 24 hours by the change-coupled device (CCD) camera

(Electric Biomedical Co. Ltd., Osaka, Japan). Images were con-

veyed directly from a frame grabber to computer storage using

Tomoro image capture program and memorized them as JPEG

image files.

Cell tracking and evaluation of cell migration
PLGA nanofibers accumulated on slide glasses were placed

on the mini incubator (Live Cell Instrument) and then nHDFs

were seeded on the 8.5% (w/v) and 20% (w/v) at a density of

4 × 103 cells/sample. After a 2 hr attachment period, fresh

medium was added. PLGA nanofibers accumulated slide glass

seeding nHDFs was mounted on the bottom plate of real time

observation system. For data analysis, captured images were

imported into Adobe Photoshop 7.0. Image analysis was car-

ried out by manual tracking that put a dot on the position of

cell nuclei in picture and plotted cell migration pathway by

connecting the dots. Cells undergoing division, death, or migra-

tion outside the field of view were excluded from the analysis.

Results and Discussion

Surface morphology of PLGA nanofibers
Figure 2 shows the morphologies of 8.5% (w/v) and 20% (w/

Figure 1. Schematic diagram of the real time observation sys-
tem for the evaluation of cell migration.
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v) PLGA nanofibrous scaffolds. The electrospun nanofiber de-

posits randomly to form a fused fiber mesh, and fiber diame-

ter can be controlled by varying electrical potential, throw dis-

tance, needle diameter, and solution concentration.11-14) The

fiber diameter was regulated by changing the concentration of

PLGA solution or voltage. High viscosity of PLGA solution

induces thicker fibers than that with low viscosity, and the thin-

ner electrospun fibers are produced as the voltage of power

supply is increasing. To manufacture thick electrospun fibers,

however, we set the low voltage as possible and use high vis-

cosity of PLGA solution. Two electrospun fibers of different

thickness were needed to compare the migration and cell

adhesion on thin fibrous scaffold with those on thick fibrous

scaffold. Small beads were connected with thin 8.5% (w/v)

PLGA nanofibers (Figure 2a) and these beads are related to the

viscosity of polymer solution, net charge density, instability of

the jet of polymer solution, fiber diameters.15-18) The 8.5% (w/

v) PLGA nanofibers with few beads were distributed evenly at

18 kV and the fiber diameter was 0.4 µm as estimated from

SEM images (Figure 2a, b). Figure 2(c) and (d) represent the

20% (w/v) PLGA fibers were spread uniformly and connected

with no beads at 20 kV. The diameter of 20% (w/v) PLGA fiber

was 1.4 µm (Figure 2d).

Cell attachment of slide glass and PLGA nanofibers
PLGA is better than non-hydrophilic polymers in respect to

cell adhesion and proliferation due to its hydrophilic property.19)

Addition of PLGA to poor hydrophilic PCL mats enhances

attachment and proliferation of L-929 cell and NIH 3T3 cell.11)

Nevertheless, we need to find out the effect of the thickness of

PLGA fibers on cell attachment because the differences

between cell adhesions in thin and thick PLGA fibrous scaffolds

may affect cell migration. Figure 3 shows the results of nHDF

attachment tests for 4 hr on the slide glass, 0.4 µm and 1.4 µm

PLGA meshes. There were no significant differences in nHDFs

attachment between the slide glass and PLGA meshes. This

indicates that the adhesion of nHDFs is less influenced by the

thickness of PLGA nanofibers. In cell affinity as slide glass

required situation, however PLGA fibrous scaffolds would not

need specific treatments to increase cell attachment.

Migration of nHDFs on slide glass and PLGA nanofibers
The migration of nHDFs seeded on the slide glass, 0.4 µm

and 1.4 µm thick PLGA nanofibers deposited on the slide

glasses was observed for 24 hr to figure out the relation of

diameter of nanofiber to migration of cells. Implanted scaffolds

should have an internal structure for vascular invasion. Subse-

quently, the cells are able to migrate on the surface of the

implanted scaffolds and also the infiltration of the cells in to the

scaffolds.20) Therefore we evaluate the migration of the cells on

PLGA fibrous scaffolds. To characterize the migration pattern of

nHDF, the position of cell nuclei was indicated with a dot and

represents the cell pathway by connecting the dots. nHDFs on

the normal slide glass migrate without space constraints (Figure

4a), and did not show directional migration (Figure 4b). 

We observed nHDFs on 0.4 µm thick PLGA nanofibers de-

posited on the slide glass migrate along the PLGA nanofibers

and pass the nanofibers easily (Figure 5). This aspect may relate

with the cell migration on micro patterned surface. Transmem-

brane proteins interacting with the micro patterned surface trig-

gers the intra-cellular signaling pathways, and this pathway

controls the cell responses.21,22) Cell micropatterning and bio-

microelectromechanical (Bio-MEMS) systems guide cell migra-

tion because the length scale of the features is similar to the

length scale of mammalian cells. NIH 3T3 fibroblast on the

“zigzag” patterns of microislands showed “zigzag” migration

pathway.23) It is considered that PLGA nanofibers played the

role of microarray in this experiment. Figure 6 indicates that

migration of nHDF is restricted by the 1.4 µm thick PLGA

nanofibers. Cells did not pass the 1.4 µm thick nanofibers and

were locked in small space surrounded by PLGA fibers. Thick

PLGA fibers block the natural migration of cells, and conse-

Figure 2. SEM micrographs of the 8.5% w/v (a,c) and 20% w/v
(b,d) PLGA nanofibrous scaffold.

Figure 3. Attachment of nHDF on the slide glass, 0.4 µm and
1.4 µm PLGA fibers.
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quently cell proliferation would be decreased. Cell infiltration

into scaffolds also might be inhibited by blocking the migration

of cells. Therefore, proper thickness of nanofibers should be

considered when fibrous scaffolds are fabricated.

Conclusion

In conclusion, cell adhesion was less dependent on the

thickness change of PLGA nanofibers from 0.4 µm to 1.4 µm

because of no significant differences of cell attachment between

the normal silde glass and electrospun PLGA scaffolds. Migra-

tion of nHDFs was affected by the thickness of PLGA nanofi-

bers. The cells passed the 0.4 µm thick fibers and migrate

along the PLGA fibers but did not cross the 1.4 µm thick

fibers. Therefore, diameter of electrospun nanofibers affect cell

migration and should be regulated properly for enhancing cell

migration, infiltration on the electrospun scaffolds. In this

research, it has been evaluated the effects on the cell migra-

tion in different diameter of fiber, and it could be applied for

the development of the fibrous scaffold in tissue engineering.
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Figure 4. nHDF migration pathway on the slide glass for 24 h (a), location of nHDF at different time (b).

Figure 5. nHDF migration pathway on the 0.4 µm PLGA fibers for 24 h (a), location of nHDF at different time (b).

Figure 6. nHDF migration pathway on 1.4 µm PLGA fibers for 24 h (a), location of nHDF at different time (b).
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