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ABSTRACT

Genomic sequence duplication is an important
mechanism for genome evolution, often result-
ing in large sequence variations with implications
for disease progression. Although paired-end
sequencing technologies are commonly used for
structural variation discovery, the discovery of
novel duplicated sequences remains an unmet chal-
lenge. We analyze duplicons starting from identified
high-copy number variants. Given paired-end
mapped reads, and a candidate high-copy region,
our tool, Reprever, identifies (a) the insertion
breakpoints where the extra duplicons inserted
into the donor genome and (b) the actual sequence
of the duplicon. Reprever resolves ambiguous
mapping signatures from existing homologs, repeti-
tive elements and sequencing errors to identify
breakpoint. At each breakpoint, Reprever recon-
structs the inserted sequence using profile hidden
Markov model (PHMM)-based guided assembly. In
a test on 1000 artificial genomes with simulated
duplication, Reprever could identify novel duplicates
up to 97% of genomes within 3 bp positional and
1% sequence errors. Validation on 680 fosmid
sequences identified and reconstructed eight
duplicated sequences with high accuracy. We
applied Reprever to reanalyzing a re-sequenced
data set from the African individual NA18507 to
identify >800 novel duplicates, including insertions
in genes and insertions with additional variation.
polymerase chain reaction followed by capillary
sequencing validated both the insertion locations
of the strongest predictions and their predicted
sequence.

INTRODUCTION

Copy number variation (CNV) is a form of structural
variation that alters the number of copies of DNA seg-
ments and includes events like deletion and duplication.
The advent of paired-end sequencing technologies enabled
such CNVs to be identified in a near-nucleotide level. So
far, a many algorithms including discordant paired-end
mapping (PEM) (1–4), read-depth methods (5,6), split-
read (7–9) and de novo sequence assembly of donor
genomes (10–12) have been applied to detect and charac-
terize CNVs.
We focus here on the problem of copy number expan-

sions. The regions with higher copy numbers are duplicons
of a reference genome segment that was re-inserted into
the donor genome at a different location. The character-
ization of these sequences involves identifying the location
of the inserted breakpoint and the sequence of the
duplicated insertion. Insertion breakpoint identification
has been addressed earlier (13–15), as also reconstruction
of inserted regions using de novo assembly techniques.
NovelSeq (15) was the first study that provided both so-
lutions in identifying novel (non-reference) sequence inser-
tion. This has been reattempted by Parrish et al. (16), with
accuracy of 90–92%. Despite this extensive work on
CNVs, the problem of breakpoint location and recon-
struction of duplicated sequence (high CNV regions) has
not been addressed satisfactorily. As Supplementary Table
S1 shows, among all of the insertions, and breakpoints
reported by multiple groups on the Yoruban individual
NA18507, there is not a single reconstruction targeted
on duplicated sequences.
This lack of data suggests that the tools for reconstruc-

tion of duplicated sequence are lacking. Reconstruction is
phenotypically important, as multiple duplications of
mutated genes might also lead to an expansion of
mutant proteins [e.g. mutations in ERBB2 (17)]. Unlike
deletion or novel sequence insertion events, however,
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read mapping in these regions is innately confounded.
Multiple copies in reference and donor, repeat elements
and segmental duplications frequently obscure mapped
read counts. Some duplicates exist as a truncated form
of the original copy (18,19) causing uneven depth of
coverage. We address these issues explicitly.
We analyze target CNV regions with a low copy increase

in donor using a pipeline called Reprever (repeat resolver).
The final goal of Reprever is first, to detect breakpoints of
the extra copies in donor, and second, to reconstruct the
inserted sequence at the discovered breakpoints. Reprever
includes a number of tools that are mainly clustered to
RepreverLOC and RepreverSEQ to achieve the goals, respect-
ively (Figure 1). We start this, given a list of candidate
regions with increase in copy number (H) that can be
obtained from any of the conventional CNV identification
tools, such as CNVer (4). For each H, RepreverLOC finds
the breakpoint considering the homologous regions in the
reference. All the paired-end reads of different types (e.g.
concordant, discordant or orphan) around the breakpoints
are retrieved and saved for the next step (Figure 1, step 1–7
and box 1). RepreverSEQ, given the list of breakpoints and
paired-end reads, reconstructs the inserted sequences (as
well as H’s homologous sequences) using profile hidden
Markov model (PHMM). We explain the details with
other optimization techniques in ‘Materials and Methods’
section.
Reprever mainly targets low-copy non-tandem

duplicons. This covers most duplicons generated by hom-
ologous recombination mechanism. However, there are
other mechanisms, including tandem duplications, and
also other rearrangements, such as breakage fusion
bridge, chromothripsis and retrotransposon-mediated
expansions. These have been investigated by other
specialized tools (20–22). A series of rigorous tests,
including simulated genomes, completed fosmid sequences
and polymerase chain reaction (PCR)/capillary sequenc-
ing, confirmed the accuracy of Reprever (see ‘Results’
section). Using Reprever, we could also identify many
novel duplicates in the first time. Thus, our tool directly
addresses the problem of repeat identification, which is
one of the most challenging and unexplored parts of SV
analysis and should help uncover the functional role of
CNV expansions.

MATERIALS AND METHODS

To identify predicted duplicons, we present two pipelines
built around the tools RepreverLOC and RepreverSEQ,
which are applied in order. We will first describe how
these two pipelines work in conjunction with detailed
methods, then other procedures for data preparation
and processing.

Pipeline for RepreverLOC

RepreverLOC takes two kinds of data for its input; (i)
paired-end mapping data, along with the reference
genome, and (ii) a candidate list of copy count increased
regions. After execution, it outputs (i) multiple insertion
breakpoints, one for each duplicon, (ii) confidence score

for every breakpoint and (iii) paired-end reads assigned to
the input region or any related regions. RepreverLOC

consists of seven steps as shown in Figure 1 and Box 1.

Preparing input for RepreverLOC

Paired-end mapping data of donor sample (NA18507 and
NA12878) are prepared as described earlier in the text. We
tested RepreverLOC on two types of Illumina Paired-end
(100� 2, 500-bp insert, 40� coverage and 150� 2, 350-bp
insert, 20� coverage) reads. Although Reprever can be
applied to paired-end data of any quality, we assume
that too low coverage or small insert size may compromise
overall performance. As previously described, three can-
didate CNV region sets are also prepared.

Homolog recruitment
The first step in the pipeline implementing RepreverLOC is
a recruitment of homologs. Define a homolog of H as a
genomic region Hi such that (i) the length difference
j ‘ðHiÞ � ‘ðHÞ j are bounded and (ii) the sequences AHi

and AH (in the meaning of answer sequence of H) are
similar. To recruit homologs, we wrote a script using
Blat to query AH against the reference genome. Regions
with >95% sequence similarity and <20% block size were
recruited as homologs. The output of recruitment is a
homology set H= fH1,H2, . . . ,Hng, where H1 is the
original candidate region and H2 . . .Hn are its homologs.

Re-mapping sequencing data
Starting with a homology set H, we searched all mate pairs
that have at least one read mapping within H 2 H from
the whole-genome mapping file (.bam). Multiple mapping
information was not included in the whole-genome
mapping data, but Phred-scaled mapping quality
[‘MAPQ’ in SAM format (23)], read sequence and read
quality (‘QUAL’) were preserved for secondary blat
search used in breakpoint specificity analysis.

Read classification
For a homology set H, we classify the mate pairs mapping
to H as follows (see also Supplementary Figure S5):

. Two-end reads have both reads mapping completely
within H.

. One-end reads have one read mapping within (in-
ternal) and the other mapping outside of H (external).

. Concordant reads have the two reads mapping to dis-
tances that are within the acceptable variation of insert
size. Thus, for 500-bp insert reads, we can accept all
reads with end points within 300–800 as being con-
cordant and discordant otherwise. A concordant-one-
end (respectively, discordant-one-end) read has one
end mapping within H and the other read mapping
concordantly (respectively, discordantly) outside H.

. Orphan-one-end reads have one read unmapped.

. Orphan reads are completely unmapped to any
portion of the genome.

Read realignment
An orphan-one-end read has one mapped and one
unmapped read. In this step, the unmapped read is
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re-analyzed to classify the reasons and rescue if possible.
There are many ways a read generated from donor cannot
be mapped to the reference (Supplementary Figure S4);
excessive variation in the read (>5-bp SNPs and micro
insertion/deletion), split over a breakpoint and insertion
boundary, repeat elements (e.g. Short Interspersed
Nuclear Elements (SINEs), Long Interspersed Nuclear
Elements (LINEs), simple tandem repeats) and/or bad
sequencing quality cause a mapping loss.

Starting with the set of orphan-one-end reads with one
end mapping to candidate region H, we first filtered out

the reads in which �10 nt had <Q20 quality score in
Phred-scale. Next, we used a Smith–Waterman alignment
to rescue reads that could be aligned to regions in ±1-kb
region of the homology set H. The read was alignable if (i)
the sequence similarity >92 and (ii) alignment score >80%
of one in a perfect match. Based on the newly aligned
position, the rescued orphan-one-end read was classified
as one of the following: two-end read (aligned to H); con-
cordant-one-end read (aligned to flanking regions of H)
and discordant-one-end read (aligned to flanking regions
of H). For non-alignable orphan sequences, we used a

H
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1
2

3

5

6

7

8

4

H

D

H

D

donor sample

short reads (mate-pairs)

Paired End Sequencing
Identify CNVs 

(read-depth & read-pair analysis)

Homology search

Homology set

Mapping

Read classification
Read realignment

Reference

Donor

Breakpoint search
and classification

Consensus assembly

one-end read
(discordant)one-end read

(concordant)
one-end read

(orphan)
two-end read

D1

D2

D3

D4

SNPs

two-end read set

v. iterate

i. for each 
two-end read

ii. assign with
one read

iii. train with
the other

iv. guided assembly with two end reads

boundary sequences trained 
by one-end reads

repeat elements
split

clean cluster mixed cluster partial cluster

1

Box 1.  Classification of breakpoints by read clustering

Box 2. Iterative construction of consensus sequences by guided assembly
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Figure 1. The overall pipeline of Reprever. Insertion breakpoints and consensus sequences of copy count increased regions are assessed through
eight steps from donor sample preparation. (1) Donor genome is paired-end sequenced to generate mate pairs. (2) Copy count increased region H is
predicted from conventional CNV prediction methods, such as read-depth analysis or comparative hybridization. (3 and 4) Search homologs of each
copy count increased region H in the reference. As read count and mapping is confounded because of the non-unique sequences, we merge and
repartition the mate pairs mapped to the homolog set H= H1,H2, . . . ,Hnf g. (5) Each mate pair is further classified into five classes by its mapping
information (Supplementary Figure S5). (6) Reads with ambiguous or orphan mapping are realigned to be rescued. (7) Insertion locations of extra
copies are analyzed by RepreverLOC tools. Based on discordant read signatures (red mate pairs), putative breakpoints (yellow ovals) are inferred and
interrogated by three independent tests: breakpoint shape (Box 1), breakpoint specificity and breakpoint coverage (data not shown. See ‘Materials
and Methods’ section). (8) Once insertion locations are finalized, RepreverSEQ tools reconstruct the sequence at the breakpoint, as well as all the
existing homologs using profile hidden Markov model (PHMM) (Box 2). The PHMMs are trained from boundary to center, as mate-pairs are
iteratively assigned to train model parameters.
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command line version of RepeatMasker (ver 3.3.0) to
find out the portion and the kind of included repeat
elements.

Scoring breakpoints

The location of an insertion breakpoint can be inferred
from a cluster of external ends of discordant-one-end
reads (Supplementary Figures S3 and S5C). We define a
cluster of H as a set of reads discordantly mapped to Hi 2

H that does not contain an empty region of length H in
between and is distal from all other reads at least length of
H. Initially, RepreverLOC takes all clusters into account
and then calculates confidence scores for each cluster
using two features. These are breakpoint specificity and
breakpoint composition.

Breakpoint specificity
Discordant one-end reads are the primary source of
breakpoint finding. However, not every discordant one-
end read conveys the same amount of information.
Although reads that are aligned uniquely in the genome
can be used as a critical evidence of insertion breakpoint,
some reads that can be aligned to multiple regions merely
indicate one possible mapping out of many.
Define a discordant one-end read r=(r1, r2) and is ini-

tially aligned to (q1, q2) where qi is the mapped genomic
position of read ri. We will first identify how specific the
mapped positions are. We define a match m ¼ ðp, eÞ of a
read as a pair of mapped position p and its edit distance e
in the alignment. We query each read ri against reference
genome using Blat to retrieve a match set:

Mi ¼ fmi1,mi2, . . . ,miNi
g ð1Þ

¼ fðpi1, ei1Þ, ðpi2, ei2Þ, . . . , ðpiNi
, eiNi
Þg ð2Þ

where Ni is the total number of possible mapping positions
of ri, pik is the kth (0 � k � Ni) mapped position of ri and
eik is the edit distance in the kth match. Thus, the match
sets of read r1, r2 of r are defined as

M1 ¼ fðp11, e11Þ, ðp12, e12Þ, . . . , ðp1N1
, e1N1
Þg ð3Þ

M2 ¼ fðp21, e21Þ, ðp22, e22Þ, . . . , ðp2N2
, e2N2
Þg ð4Þ

Now we define, a paired match set M as a Cartesian
product of M1 and M2 (M1 �M2). Naturally, each
paired match mij is defined as a pair of two matches
(m1i, m2j) (0 � i � N1, 0 � j � N2). The edit distance of
paired match eðmijÞ can be calculated as the sum of two
edit distances (e1i+e2j).
Depending on the relative positions of two matches, a

paired match can be either concordant or discordant.
We define a best paired match mA 2M as the paired
match with lowest edit distance. Similarly, we define a
best concordant paired match mC 2M as the concordant
paired match with lowest edit distance. Now, for all
discordant paired matches, we select ones whose edit
distance is lower than eðmCÞ. In other words, we always
prefer best known concordant paired match to any dis-
cordant paired matches unless they represent better

alignment. Thus, a preferred discordant paired match set
D is defined as

D ¼ fmij 2M j eðmijÞ < eðmCÞ, 0 � i � N1, 0 � j � N2g

ð5Þ

For each d2D, we calculate a score based on the edit
distance e(d). We first calculate the size of subset NðDxÞ,
where Dx is the subset of D all of whose elements have edit
distance x. Now, for each preferred discordant match pair,
a specificity score of d is calculated like later in the text:

sðdÞ ¼
10�ðeðdÞ�eðmAÞÞ

NðDeðdÞÞ
ð6Þ

The score is maximum, 1, when the edit distance is the
lowest among the all paired match set and there is only
one such pair. As edit distance grows, the score decreases
asymptotically.

Finally, a breakpoint score is calculated by adding up
all scores of corresponding discordant match pairs.
RepreverLOC uses 2.0 (which corresponds to at least two
unique and unambiguous discordant one-end reads) as a
threshold for valid breakpoint.

Breakpoint composition
The composition of a breakpoint is described by the size,
length and coordinates of the cluster of external ends of
one-end mapped reads. The size and length are defined as
(respectively) the number of reads included in the cluster
and the span (in bp) from the beginning of the first read in
the cluster to the end of the last read. For a read with
insert size I and read length L, the length is expected to
be 2ðI� LÞ. Likewise, the expected size can be easily
calculated from the average depth of coverage.
Deviation from these expected sizes are suggestive of am-
biguous mapping.

Note that forward-strand reads in the cluster should
precede all reads on the reverse strand around a true
breakpoint (Supplementary Figure S3A). An indication
of ambiguous mapping is a cluster in which the forward
and reverse strand reads are mixed together in the cluster
(Supplementary Figure S3B). This may be caused, for
example, when the reference genome already has the
homology at the site of predicted breakpoint; this indi-
cates that there is no true insertion breakpoint. To
quantify this, we classified the discordant one-end reads
in a cluster into four classes. Define a potential breakpoint
b and a match (p, e) of a read r. The read r is

(1) forward-upstream, where p � b and mapping is
forward, or

(2) reverse-upstream, where p � b and mapping is
reverse, or

(3) forward-downstream, where p > b and mapping is
forward, or

(4) reverse-downstream, where p > b and mapping is
reverse.

As described, 1 and 4 support the breakpoint, whereas 2
and 3 do not; moreover, they are counter evidences. We
define these reads as conflicting reads.
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The conflicting reads are used to penalize the
breakpoint score. Briefly, we subtract the score of every
conflict read from the breakpoint score (see previous para-
graph). If the conflicting reads are unique and unambigu-
ous, it significantly compromises the breakpoint’s
confidence. Optionally, we can set a rule for stricter filtra-
tion. For example, filtering out all the breakpoints in
which any conflict reads exist leaved only 1267
breakpoints from 4533 searched from NA18507.

Pipeline for RepreverSEQ

RepreverSEQ takes RepreverLOC’s output (candidate
breakpoints and corresponding paired-end reads) to re-
constructs sequences of inserted duplicates, as well as
every homologous region H 2 H by re-distributing ini-
tially mapped mate pairs. We will use a term duplicon to
indicate any donor region from given homologs or pre-
dicted duplicates, which will be reconstructed by
RepreverSEQ at the end. A brief outline of RepreverSEQ
is provided in Figure 1 Box 2 and Supplementary Figure
S9. To reconstruct the sequences, it models each duplicon
using PHMMs. The algorithm iteratively partitions and
aligns mate pairs to one of the PHMMs that has the
highest likelihood of generating it. However, as some un-
trained PHMMs are initially identical, the initial assign-
ment is not straightforward. Fortunately, we can
differentiate boundary regions using discordant-one-end
reads; these have one read anchored to (presumably
unique) flanking regions (Supplementary Figure S9A).
Therefore, the initial model parameters of the PHMMs
are trained using the discordant-one-end reads. The
steps are

Creating initial PHMMs
We start with a reference sequence of each duplicon as the
template. When there is no reference sequence available
(e.g. insertion breakpoints), a subsequence of the longest

duplicon is used; we not know which exact homolog is
copied to the breakpoint before reconstructing its
sequence. The start and end position of the subsequences
are deduced from the mapped locations of the discordant
one-end reads (Supplementary Figure S10). We model
each duplicon with a profile HMM, described by the
tuple ðQ,V,�,A,BÞ referring to states, symbols, initial
state distribution, transition and emission probabilities,
respectively. The states include match states, one for
each nucleotide of the duplicon, as well as insert/delete
states to allow gaps. The output alphabet consists of a
single nucleotide (‘A’, ‘T’, ‘G’ and ‘C’), as well as combin-
ations (e.g. ‘M’= ‘A’ or ‘C’, ‘R’= ‘A’ or ‘G’ and
‘N’=any nucleotide) and an empty character (null).
The emission and transition probabilities are initialized
based on a single observation of the template sequence
(Supplementary Method).

Retraining PHMMs
Assume that a donor chromosome has n+m copies of H
where n is the number of pre-existing homologs and m is
the number of newly inserted copies in the donor. All the
mate pairs initially mapped to any of n homologs are re-
cruited and partitioned into subsets Rk(1 � k � n+m).
First, concordant-one-end reads from n homologs are
assigned to the corresponding Rk. Second, each discord-
ant-one-end read r is assigned with respect to its external
read mapping; if the external read is mapped to flanking
regions of ith homolog or jth breakpoint, r is assigned to Ri

or Rj, respectively. After the initial assignment, the reads
in Rk are used to retrain the PHMMMk.
We apply the read re-alignment procedure (see the cor-

responding description in RepreverLOC section) to increase
sequence coverage and reduce false assignments that
comes from mapping ambiguity. The initial whole
genome mapping allows at most 5–6 bp difference from
the reference genome, which results in massive orphan
reads at some duplicates with additional variations. In
contrast, a random mapping among equally scored pos-
itions (e.g. Burrows-Wheeler Aligner (BWA)) often causes
false discordance in mate pairs, which originated from a
same homolog; this should be classified to two-end reads.
Before training, we could resolve majority of this ambigu-
ity by local realignment. After initial mate pair assign-
ment, we collected orphan and discordant one-end reads
to perform pairwise alignment (Smith–Waterman) against
the reference sequences of the duplicons. As shown in
Supplementary Figure S4, newly aligned mate pairs are
reassigned by following criteria:

. Orphan-one-end ! two-end-reads: the unmapped
(external) read is alignable (see ‘Read Re-alignment’
section) to any Hi 2 H.

. Orphan-one-end ! concordant one-end-reads: the
unmapped read is alignable to any 1-kb flanking
regions Li or Ri where the mapped (internal) read is
mapped to Hi.

. Orphan-one-end ! discordant one-end-reads: the
unmapped read is alignable to any 1-kb flanking
regions Li or Ri where the mapped read is mapped
to Hjði 6¼ jÞ.

Algorithm RepreverSEQ

Input: Copy count increased region and homologs
Hið1 � i � nÞ, putative insertion breakpoints
bjð0 � j � mÞ, paired-end mapping of donor
sequences

Output: Consensus sequences of each duplicon.
1. ClassifyReads: Partition one-end reads to get a

subset Rkð1 � k � n+mÞ for each duplicon.
2. CreatePHMMsMk, one for each duplicon.
3. while (not TerminatingCondition�)
4. do Retrain: for eachMk: train parameters usingRk.
5. Recruit: for each unassigned two-end read r,

assign r to Rk� s.t.
6. k� ¼ argmaxk Prðrk jMkÞ

7. for eachMk

8. do report the ML sequence Ik.

�See later in the text for further definition.

PAGE 5 OF 14 Nucleic Acids Research, 2013, Vol. 41, No. 12 e128

 by guest on D
ecem

ber 3, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/


. Discordant-one-end! two-end-reads: the external read,
which originally mapped to Hj with its mate (internal)
mapped to Hjði 6¼ jÞ, is comparatively alignable to Hi

with respect to Hj. The comparativeness can be defined
by a maximum difference of sequence similarity/SW
score between two different templates.

Training a PHMM includes updating emission and
transition probabilities at the site of new observations.
Assume that we observed Ok time of an alphabet vk at a
given match state. The total number of observations O isP

Ok. Given a set of background observations ck, the
general form of the emission probability function is

bðvkÞ ¼
xOk+yck
zO+wc

+�, ð7Þ

where x, y, z and w are weight variables. The updated
emission probability bðvkÞ after O times of observation
should satisfy following constraints.

bðvkÞ /
Ok

O
ð8Þ

� � bðvkÞ � 1� � ð9Þ

X

k

bðvkÞ ¼ 1 ð10Þ

Equation (8) constrains the emission probability to be
proportional to the observation frequency. Equation (9)
forces the emission probability for each alphabet to
converge before 0 or 1 with regard to the sequencing
error rate�. The sum of the probabilities for all possible
emission should be 1 [Equation (10)]. Using the con-
straints, the general emission probability formula
(Equation 7) can be rewritten (Supplementary Method)

bðvkÞ ¼
ð1�m�Þ�Ok+ðck � c�Þ

�O+c
+�, ð11Þ

where r is the training rate and is empirically trained.
Transition probabilities can be trained in a similar way
(see Supplementary Methods for detail).

Recruiting reads
The initial training of PHMMs using discordant-one-end
reads in Rk provides the essential differences in the
duplicons at the boundaries. Define the frontiers of each
PHMMs as the two regions within which the PHMMs
have been trained.
In the recruiting step, we consider the ends of a two-end

read s ¼ s1s2 . . . sn that lies within the trained frontiers and
assign s to Rk� where

k� ¼ argmax
k

Prðs jMkÞ

Prðs jMkÞ can be computed using the Viterbi algorithm.
Let LMk

ði, qÞ denotes the probability of emitting the first i
symbols of s and ending in state q. Then,

LMk
ði, qÞ ¼ max

q0
fLMk

ði� 1, q0Þ aðq0, qÞgbðq, siÞ ð12Þ

whereas Prðs jMkÞ ¼ maxq LMk
ðn, qÞ. The main trick is in

the initial setting. We use the mapping of s to H to enforce
a subset of initial states where s1 is emitted. This helps
speed-up the alignment with no loss of accuracy.
Finally, s is assigned toMk only if (i) it is the ML solution
and (ii) the probability exceeds a minimum threshold.
Thus, at each stage, some reads remain unmapped, to be
considered in subsequent stages.

Terminating conditions
There are two terminating conditions: when all two-end
reads are assigned to profile HMMs and when there are no
two-end reads newly assigned after a round of iteration.
The first condition implies that all the PHMMs are separ-
able by existing two-end reads. The second condition
usually occurs when there is a non-separable region (e.g.
a few hundred base pairs of identical region that is shared
by multiple duplicates) causing a lack of variation seeds,
which extend the trained region and moves the frontiers
toward center. In the second condition, RepreverSEQ stops
the training procedure and reports the most likely
sequence inferred so far.

Data preparation and processing

Here, we briefly describe the procedure for data prepar-
ation and processing. For the complete information,
please refer to the corresponding Supplementary Method
sections.

Simulated data and test
One thousand artificial reference ‘genomes’ R were con-
structed as follows: each genome had five, 50 kb ‘chromo-
somes’, selected at random from chr1 of hg18. For each
genome, an artificial donor genome D was generated by
introducing up to four copies of a random 1–3 kb duplicon
(Di). Each duplicon allows additional variations in both of
size and sequence.

To evaluate accuracy in simulated data, we compared
each inferred duplicon sequences Ii against the true (but
unknown) donor duplicons Ai using BLAST (BLASTN
ver. 2.2.25) to compute %-identity, aligned lengths and
bit scores. The accuracy of breakpoint location was also
calculated from positional difference between the true and
inferred breakpoints. Finally, we classified each instance
according to the similarity between the template sequence
AH and Ai to investigate performance as a function of
divergence.

Sequencing data
Paired-end sequencing (SRX016231, Illumina 100� 2 base
and � 500-bp insert, 40�) of Yoruban individual
(NA18507) was downloaded from NCBI’s Sequence
Read Archive website (http://www.ncbi.nlm.nih.
gov/sra?term=SRX016231). Human genome reference
assembly (NCBI36/hg18) was downloaded from UCSC
Genome Browser. To map the sequencing data to the ref-
erence genome, a paired-end mapping version of BWA
was used. All parameters were set to default except a
maximum allowed edit distance. Another whole-genome
sequencing data set (SRR034939, 150� 2 base and
� 350-bp insert, 20�) of European individual

e128 Nucleic Acids Research, 2013, Vol. 41, No. 12 PAGE 6 OF 14

 by guest on D
ecem

ber 3, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt339/-/DC1
http://www.ncbi.nlm.nih.gov/sra?term=SRX016231
http://www.ncbi.nlm.nih.gov/sra?term=SRX016231
http://nar.oxfordjournals.org/


(NA12878) was downloaded from the Sequence Read
Archive (SRA) and processed similarly.

Candidate copy number increased regions
Three independent CNV call sets were used as Reprever
input. First, a CNV list of 500 regions was downloaded
from the online version of the study (24). We selected
100 regions marked with ‘duplication’ out of 500 and
further reduced to 85 by filtering out short (5 1 kb)
duplications. Second, a list of 206 regions that are pre-
dicted to have absolute copy number bigger than 2 (CN
4 2) in NA18507 genome was downloaded from the
project website (http://www.sanger.ac.uk/research/areas/
humangenetics/cnv/highres_discovery.html) (25). A third
data set was generated by running CNVer v0.8.1 (4) on
the NA18507 sequencing data set. As required by CNVer,
we first re-mapped the reads using bowtie to report all
good alignments using the suggested parameters. We ran
CNVer with parameter min_mps=5, thus requiring a
cluster to contain at least five supporting mappings. Of
the initial 5325 CNVs, we selected 2022 copy number
increased regions (relative donor copy change >0) and
further reduced to 1876 long (> 1 kb) regions.

Fosmid clone sequences and validated insertions
A data set of 226 fully sequenced fosmids from NA18507
was downloaded from NCBI GenBank via Human
Genome Structural Variation Project homepage (http://
hgsv.washington.edu/). We conducted the following pro-
cedures to discover insertion sequences that are contained
in the fosmid set. (i) Run Blat for each fosmid sequence
against the hg18 reference genome to determine mapping
sites. (ii) Classify the fosmid match into four classes:
normal, deletion, insertion and others. (iii) For insertion
matches, extract exact location and sequence and (iv)
query inserted sequences to hg18 to check novelty and
the type of sequences. Detailed procedure can be found
in the Supplementary Method. Another data set of 454
fully sequenced fosmids from NA12878 was downloaded
and processed similarly to discover 74 insertions. Of 74,
we found seven were unambiguously duplicated (61 novel,
6 undetermined).

RESULTS

Performance test using simulated data

The performance of Reprever was tested on 1000 artificial
test genomes each of which consists of five 50 kb chromo-
somes (extracted from Chromosome 1 of hg19) and
manipulated to contain up to four duplicates of a
randomly selected block. We applied Reprever pipeline
to this test set and tested on (i) accuracy of breakpoint
number and position and (ii) accuracy of reconstructed
sequences (see ‘Materials and Methods’ section for
details).
The exact number of breakpoint could be inferred in

93.9% of test donor genomes. In 90.3% of the cases
with four duplicons, RepreverLOC identified all
breakpoints; the number improved to 97% going with
n=1 duplicons (Figure 2A). The average size of gap
between actual and inferred breakpoint position was
3.15 bp, predicting >98% of breakpoints in 15-bp error
(Figure 2B). For the test genomes whose breakpoints are
successfully identified, we used RepreverSEQ to reconstruct
the duplicon. Let AH represent the sequence of the high
CNV region H. In the donor, we have up to four mutated
copies ofH, each represented by Di. Let Ai and Ii represent
the true, and reconstructed, sequences, respectively, of the
ith duplicon. RepreverSEQ reconstructed each Ii from the
paired-end mappings of the donor to the reference.
Figure 2C shows the results on the consensus recon-

struction of the duplicons in 969 test cases (n=1) each
with a single duplication in the donor. The inferred and
true duplicons (I2 $ A2) have only 0.18% mismatch rate
on average versus the original template (A2 $ AH), which
has 3.11%. Thus, Reprever resolves 94.2% of sequence
discrepancy (Figure 2C pink versus green bar).
Moreover, reconstruction influenced sequence accuracy
of orthologous regions (e.g. D1) by re-distributing reads
into their origins to accept only relevant variants.
Reprever could successfully reconstruct multiple dupli-
cates without losing accuracy (Figure 2D).
Two factors affect reconstruction. If duplicons are too

similar (nearly identical), differentiating among the dupli-
cate sequences is hard. Alternatively, if the similarity is too

A B C D

Figure 2. Performance test of Reprever in breakpoint and sequence inference. Totally 1000 simulated genomes are constructed and underwent
random duplication up to four copies. (A) RepreverLOC identified up to 97% of the breakpoints. In >90% of four copy insertion cases, RepreverLOC

exactly found insertion sites. (B) Distribution of error between true/inferred breakpoints. Errors <0 denotes that the inferred breakpoints are located
upstream of true breakpoints, errors >0 denotes downstream. The average error size is 3.15 bp. (C) Accuracy of reconstructed duplicate sequences in
969 test genomes. Comparisons between the true and inferred sequences (A1 $ I1,A2 $ I2) are measured in sequence dissimilarity using BLAST.
Compared with the reference sequence AH, which is the best estimate sequence for extra copies without reconstruction, RepreverSEQ-inferred
sequences have much less mismatches to the true answers (green bars). The performance is consistent regardless of initial diversity among duplicons
(red bars). (D) RepreverSEQ can reconstruct multiple duplicates simultaneously without an accuracy loss.
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low, reads from the duplicated regions are not likely to be
mapped in the reference, suggestive of an insertion, rather
than a duplication. As shown in Figure 2C, Reprever
infers the duplicons with high accuracy (� 0:31% diver-
gence) regardless of the degree of initial divergence
(A2 $ AH).

Validation with sequenced fosmid clones

We tested Reprever’s ability to reconstruct duplicated in-
sertions using high quality completely sequenced fosmid
clones, which have been used in the past to confirm many
structural variations. Although high quality, the available
fosmid data are sparse and provide only a handful of
examples. We downloaded 226 fosmid clones generated
from a Yoruban genome (NA18507, library ABC8) from
GenBank via Human Genome Structural Variation
Project (http://hgsv.washington.edu/). We found 16 inser-
tions from the 226 fosmid clones (see ‘Materials and
Methods’ section). The 16 insertions include four previ-
ously reported insertions by Kidd et al. (26), who used the
early version of the fosmid data (22 fosmid clones).
Comparing against the reference using Blat (27) revealed
that 12/226 (4/22) were novel insertions that were not
duplicated, two undetermined because of clone mapping
ambiguity (see Supplementary information for details),
leaving two for Reprever analysis. Note that, the
breakpoint regions were highly noisy and require extensive
orphan rescue procedures that are supported by Reprever
(Figure 3A). The two duplicated regions were recon-
structed by RepreverSEQ.
We next downloaded 454 complete fosmid sequences

from the European (CEPH) individual NA12878 (library
ABC12), chosen for availability of both fosmid clones, as
well as high-coverage paired-end sequencing data
(SRR539363, 150� 2 paired-end read, 350 insert size,
�20� coverage). Kidd et al. have reported 30 non-
Variable Number Tandem Repeat (VNTR) insertions in
NA12878 (28). We analyzed these 30 insertions, as well as
an additional 44 insertions derived from the 454 sequences
(‘Materials and Methods’ section). Of these 74, we found
61 to be novel, 6 undetermined and 7 to be duplicated.
RepreverSEQ was used to successfully reconstruct 6/7 of
duplicated sequences leaving one tandem duplication.
The full list of analyzed fosmid clone is available in
Supplementary Data set S1.
We tested how the reconstructed sequences diverged

from their original templates. Figure 3B shows sequence
dissimilarity matrices among the template and recon-
structed sequences. BLASTN is used to calculate the
sequence identity. The assembled sequence
(Ins.Reprever) variates from its original template (Ref1
or Ref1 to RefN when multiple templates are used).
Note that RepreverSEQ also reconstructs donor sequences
at the template sites as well (Don1 to DonN). The recon-
structed sequence of the 1.2-kb insertion at chr3:99413889
of NA18507 (Figure 3B upper left) showed 97.9% similar-
ity with the fosmid clone, which has been greatly increased
from 91.1% of the template sequence. Note that the Don1
remains almost unchanged to make a clear cluster shown
in the dendrogram. Similarly, the 6-kb insertion at

chr1:16935165 of NA12878 (Figure 3B upper right) was
successfully reconstructed achieving 98.4% sequence simi-
larity to the fosmid (from 96.2% of Ref1 and 96.4% of
Ref2). In other cases, including repeat element (LINE)
insertion, RepreverSEQ hardly changed template se-
quences, which turned out the inserted sequence is
almost identical to its template (Figure 3B lower and
Supplementary Table S2 for details).

Closer inspection of the variated regions confirms the
accuracy of reconstruction. We ran multiple sequence
alignment of the sequence groups using clustalW (29).
Figure 3C depicts the most variable sites of the two recon-
structed sequences. As shown, most variations were per-
fectly corrected including a 4-bp deletion (Figure 3C lower
left). We also found that the remaining mismatches after
reconstruction (1�4%) can be explained by the unreach-
able central region bounded by long inseparable se-
quences. We expect that longer read length and insert
size will increase the coverage to resolve remaining
regions.

Application to NA18507 genome

The Yoruban individual NA18507 has been re-sequenced
and analyzed many times and serves as a useful template
for duplicon discovery and reconstruction. We used four
independent gain call sets for initial input of Reprever: (i)
1876 copy number increased regions predicted by CNVer
in this study (SRX016231, 2� 100-bp reads, 40�
coverage), (ii) 85 previously predicted regions on Chr 1
by Yoon et al. (24), (iii) 206 regions predicted to have
absolute copy number greater than two using high-reso-
lution oligonucleotide array by Conrad et al. (25) and (iv)
1000 randomly selected regions sized to match the CNVer
call set (� 4:6±0.5 kb) as a negative set (see ‘Materials
and Methods’ section for preparation procedure and
Supplementary Data set S2 for the whole list). Note that
the array-based call was made using different reference
genome (NA10851, a CEPH male), and the absolute
copy number may not indicate a relative copy number
increase against hg18 (e.g. the reference genome may
also have increased copies).

First, we attempted to discover the location of extra
copies that originated from the given regions (see
‘Materials and Methods’ section). RepreverLOC identified
4533 (4102, 174, 180 and 77 from CNVer, Yoon, Conrad
and random call set, respectively) breakpoints from 1263
(1103, 54, 67 and 39 like earlier in the text) of the given
regions (Table 1). Although there is no true gold standard
of high-CNV regions, the significantly lower breakpoint
acceptance rate of the random set (3.9%, 39/1000)
compared with the other (58.8, 63.5 and 32.5%) indirectly
represents the robustness of Reprever in filtering potential
false-positive CNV calls. Conversely, the use of commonly
called regions significantly increased the breakpoint
finding rate. In particular, we assume that the high reso-
lution (� 50 bp) of the array-based call set can provide
more exact boundary of duplication events when
combined with other call sets. As shown in Table 1,
RepreverLOC accepted 10 of 11 (90.9%) of Conrad calls
that are also predicted by CNVer and Yoon. Although
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Reprever does not evaluate given CNV inputs to be true
or false, the positive correlation between the rate of
breakpoint discovery and the level of evidences shows
that the availability of highly accurate CNV regions
would increase the chance of finding the insertion
location of their extra copies.
As described previously, we identify other (homolo-

gous) regions on the reference genome for each given
region (Figure 1 and ‘Materials and Methods’ section).
We found that the consideration of homologs including
read recruitment from the homologous regions signifi-
cantly increased read coverage around the breakpoint.
Of 906 594 discordant paired-end reads anchored around
breakpoints, 78.8% (713 948) were collected from
homologs. For example, a duplication of chr1:553585–
560412 into chr8:63177985 could be reconstructed with
higher coverage by considering a homolog (chrM:3915–
9756) of the given region (Supplementary Figure S1). In
this case, 70.6% (24/34) of discordant one-end anchored
reads were collected from the homologs to provide richer
information about breakpoint location and sequence.
Each predicted breakpoint was scored by Reprever

using several independent features. We used the (i)
quantity, (ii) specificity and (iii) composition of discordant
one-end reads to calculate scores (see ‘Materials and
Methods’ section and Supplementary Figures S2 and
S3). Briefly, each discordant read was highly weighted if
it is the only possible alignment in the genome. Otherwise,
it was penalized by the matching accuracy (edit distance)
and the number of other possible mappings. The

composition represents coordinates and positions of dis-
cordant reads around breakpoints. Intuitively, we expect
all the anchored reads in the upstream of a breakpoint to
be mapped forward, whereas the downstream reverse.
Reads of conflict coordination were used to penalize the
breakpoints. This score can be used for further prioritiza-
tion of discovered breakpoints. For example, we automat-
ically prioritized 1267 (1153, 40, 74 from CNVer, Yoon
and Conrad) highly confident breakpoints with good (> 2)
score and perfect (no conflicting reads) composition for
sequence reconstruction.

We tested the potential impact on genes caused by
duplicon insertions. Not surprisingly, a majority of the
breakpoints (81.3%, 1017 of 1267 highly confident ones)
are intergenic. However, in some cases, the insertion
breakpoint location is directly within a gene and may
impact the phenotype (Table 2, full list in
Supplementary Table S3). In many of these cases, the
CNV and its insertion breakpoints are clustered in
regions with known duplications, suggesting non-allelic
homologous recombination (NAHR) as the mode of
CNV formation. For example, we observed four duplica-
tion events on 1q21.1 inserting into genes from the neuro-
blastoma breakpoint (NBPF) family (Table 2). CNVs in
this region have been shown to produce aberrant tran-
scripts in the NBPF family and increase susceptibility to
neuroblastoma (30). We detected even more complex

Table 2. Predicted breakpoints in gene region

Breakpoint Region Gene Score CNV source

chr1:16766464 Intron NBPF1 62.07 CNVer
chr1:16775357 CDS NBPF1 33.02 CNVer
chr1:16778388 CDS NBPF1 100.07 CNVer
chr1:16784684 CDS NBPF1 37.8 CNVer
chr1:16792907 Intron NBPF1 105.0 CNVer
chr1:21665540 Intron NBPF3 38.91 CNVer
chr1:143665870 Intron PDE4DIP 39.2 CNVer
chr1:143989906 Intron NOTCH2NL 25.3 CNVer
chr1:144008986 CDS NBPF10 43.25 CNVer
chr1:144011688 Intron NBPF10 24.3 CNVer
chr1:144013697 Intron NBPF10 27.01 CNVer
chr1:147009280 CDS NBPF16 22.42 CNVer
chr1:147965460 Intron LOC729130 30.57 CNVer
chr2:91467172 Intron LOC389000 21.46 CNVer
chr2:95963046 Intron LOC400986 37.5 CNVer
chr2:95965655 Intron LOC400986 95.25 CNVer
chr2:95967599 Intron LOC400986 117.56 CNVer
chr3:197148075 CDS LOC727978 26.93 CNVer
chr3:197149586 Intron LOC727978 37.05 CNVer
chr3:197150946 Intron LOC727978 24.0 CNVer
chr4:191100462 Intron FRG1 21.48 CNVer
chr4:191105726 Intron FRG1 33.2 CNVer
chr5:98898838 Intron LOC728104 29.67 CNVer
chr6:24791875 Intron ACOT13 31.0 Conrad
chr9:66729560 Intron LOC653458 38.62 CNVer
chr11:89298719 Intron LOC729384 28.56 Conrad
chr12:69819920 Intron TSPAN8 89.0 Conrad
chr15:26137336 CDS HERC2 25.98 CNVer
chr16:33492794 Intron LOC401847 31.81 CNVer
chr22:18976441 Intron LOC729461 31.7 CNVer

Top 30 scored breakpoints are listed here. The entire list including
intergenic regions is available in Supplementary Table S3.
CDS, coding DNA sequence.

Table 1. Reprever analysis on NA18507 data given three independent

gain calls and one negative call

Call set (size) n.accepted (rate) n.breakpoint

Each call set
CNVer (1876) 1103 (58.8%) 3993
Yoona (85) 54 (63.5%) 168
Conrad (206) 67 (32.5%) 173
Random (1000) 39 (3.9%) 77

Overlapping call setb

CNVer+Yoon (27) 22 (81.5%) 63
CNVer+Conrad (96) 55 (57.3%) 194
Yoon+CNVer (16) 9 (56.3%) 30
Yoon+Conrad (3) 3 (100.0%) 11
Conrad+CNVer (9) 8 (88.9%) 9
Conrad+Yoon (2) 2 (100.0%) 2
CNVer+Yoon+Conrad (2) 2 (100.0%) 4
CNVer*Yoon (12) 10 (83.3%) 13
CNVer*Conrad (9) 8 (88.9%) 24
Yoon*Conrad (2) 2 (100.0%) 3

For each call set, RepreverLOC scans potential insertion breakpoints of
the given regions.
n.accepted, number of regions that have at least one matching
breakpoint; n.breakpoint, number of total breakpoints.
aThis call set was targeted only to Chr 1.
bWe define an overlapping call set A+B as the subset of call set A,
which takes every region rA 2 A in the condition of existence of a
region rB 2 B, which overlaps at least 50% of rA. Overlapping call
set A�B is similarly defined but contains regions where the overlap is
satisfied reciprocally. In other words, at least 50% of rB is also in rA,
and vice-versa.
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signatures that cause alternative transcripts with potential
copy number change. For example, we found a clear
breakpoint signature between the second and third exon
of MUC20, which encodes a member of mucin protein
family and has multiple transcript variants. A previous
study reported CNVs in this region among different
ethnicities (6). We observed a gene conversion between
two exons, which is potentially caused from an
NAHR within its segmental duplication pair that
explains the accompanying copy number changes
(Supplementary Figure S7).

Finally, using RepreverSEQ, we reconstructed the
sequence of 885 insertion locations from 1267 highly con-
fident breakpoints. The reconstructed duplicons ranged
between 17 and 18418 bp (average: 1689 bp) in length
and contained 37 mismatches (1.4 gaps), for a divergence
of 2.2%. These rates are much higher than reported single-
nucleotide variation (SNV) frequencies [0.107 and 0.014%
for SNPs and indels (31)], suggesting that the majority of
the duplications are ancient events.

Confirmation of reconstructed duplicons

From the highly confident NA18507 duplicons, we
selected regions of top 30 scores. Of the 30, in only 10
regions we could design primers for PCR amplification;
note that the inserted duplicated sequence with repeat
elements around the breakpoints significantly reduces
the sequence uniqueness for primers. Although we do
not attempt a strict statistical validation of the predicted
regions, mainly because of the unavoidable effects from
the accuracy of initial CNV calls and sparseness of
amplifiable regions, confirmation of the selected regions
gives a good practical picture of Reprever analysis. We
could identify 9/10 duplicons exist in the NA18507
genome. Here, we will describe four regions in detail by
comparing with PCR–Sanger sequencing results (see
Supplementary Figure S12 for full result).

CNV duplicons
Figure 4A shows the four selected region in their genomic
context. In the first example, CNVer predicted a copy
number increase of a 6.8 kb segment in chr1, and Yoon
had also called a 6 kb CNV in a nearby location. In
creating the homologous set of reference sequences,
RepreverLOC identified a homologous region with 98.7%
sequence similarity in the mitochondrial chromosome of
the reference (chrM:3915–9756). The RepreverLOC

breakpoint analysis predicted an inverted duplication at
chr8:63177988 landing on a LINE element (L1PA16).
However, the reconstruction revealed a much smaller
inserted segment, comprising only 1.3-kb subregion of
the original CNV. We suspect that the original CNV call
was due to the mtDNA duplication.

In example 2, a 1.2-kb CNV region was identified to be
unique in the reference. Using RepreverLOC, an insertion
breakpoint was identified in chromosome 16
(chr16:76346444). Although the breakpoint signature
was clean, there was an abnormal pattern of paired-end
mappings within the CNV. Analysis revealed it to be a
partial 400-bp inversion in the duplicon (orange blocks

in Figure 4A2). Using the reference CNV sequence (after
inversion) as template, RepreverSEQ was used to recon-
struct the duplicon.
In a similar fashion, the remaining two CNV candidates

were analyzed using Reprever. Unlike the previous cases,
they are located in known segmental duplication regions
(dotted arrow-shaped blocks, Figure 4A3 and 4) making
the whole analysis even harder because of the identical
sequences around the breakpoint. Nevertheless, the
remapping procedure in Reprever’s specificity analysis
uses confirms the breakpoints, and by extension, the
change in copy number. The arrangements of repeat
elements around the original segments and breakpoints
suggest that the event is more likely a deletion in the ref-
erence genome instead of a duplication in the donor; two
repeat element arrangements in Figure 4A completely
match except the �5-kb deleted region between two
AluSg elements (red lozenges), indicating a forward
slippage in the replication. We can see a similar pattern
in the last case (Figure 4A4).
Read coverage around the four breakpoints are shown

in Figure 4B. We see a clear drop of read count at each
predicted breakpoint (red arrows). The ML estimate of
zygosity (see ‘Materials and Methods’ section) reveals
examples 1 and 3 to be heterozygous and 2 and 4 as
homozygous.

PCR amplification
A redundant set of 19 primer pairs were designed to
capture the boundaries of the duplicons (Figure 4C; the
corresponding regions are denoted as red encircled
numbers in Figure 4A). For example, primer pair 1
consists of one primer sequence (�25 bp) from the 50

region upstream of the breakpoint Chr 8 and the other
from the negative strand of inserted 1.3-kb Chr 1 segment.
Amplification validates the novel insertion. As shown in
the figure, we could amplify many products, most of which
are the predicted size. In cases where non-specific products
were unavoidable, desired products were gel extracted
before sequencing (see ‘Materials and Methods’ section).
We also included a few primer pairs to test zygosity.

Primer pairs 5/6 and 13/14 span the breakpoints
allowing two possible explanations. If the duplication is
heterozygous, these primer pairs will be amplified and
generate product from one normal (reference type) allele.
But in the homozygous duplication, PCR will fail due to
the ‘oversized’ insertion between two primers. Both of the
primer pairs 5 and 6 gave amplified products, whereas the
primer pairs 13 and 14 did not, showing that cases 1 and 2
are heterozygous and homozygous, respectively, as pre-
dicted by breakpoint coverage. We could not design
zygosity-testing primer pairs for the third and fourth
cases because of non-unique sequences.

Sanger sequencing
We performed Sanger sequencing on 10 amplified PCR
products (region 1, 2, 3, 4, 5, 6, 8, 11, 12 and 16) of 19
regions. The nine remaining regions could not be
amplified, or the sequence was of poor quality. All of
the confirmed sequences have close to the predicted struc-
ture, for example, a partial match to a breakpoint flanking
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A

B C

D

Figure 4. (A) Four cases are illustrated as examples. (1) A gain call is made at chr1:553585-560412 by CNVer (and chr1:554301–560300 by Yoon
et al.). RepreverLOC found that a �1.3-kb sub-region is duplicated into chr8:63177985. (2) Similarly, a gain call at chr1:67224800–67226000 by Yoon
is explained by RepreverLOC showing a duplication at chr16:76346444. Note that the inserted sequence has a partial inversion of 400-bp 50 segment
(orange block). (3 and 4) Two gain calls were made CNVer (chr16:16633477–16638823 and chr5:20868352–20870585). Insertion locations found by
RepreverLOC are located in bigger segmental duplication regions (dotted blue/red blocks). The arrangement of repeat elements (colored diamonds)
show that the copy number increase in the donor genome actually resulted from deletions in the reference genome. (B) Concordant read counts
around the putative breakpoints (red arrows). Coverage is calculated using whole-clone (red), end reads (green) and the gap between end reads (blue)
of mate pairs. The relative read count reduction predicts the allele zygosity (1/3 heterozygous and 2/4 homozygous). (C) PCR amplification of
duplicated regions. Primers are designed to capture duplication boundaries (encircled red numbers in A). (D) (upper) The inserted sequence of the
first case (at chr8:63177988) is identified by Sanger sequencing (annotated with PCR 1/2 and PCR 3/4). Totally 12 SNVs are found. Three consensus
sequences reconstructed by RepreverSEQ (green) recovered 11 of 12 variations (92%) for inserted sequence and found four additional variations in the
homologs (highlighted in yellow). (lower) The partial inversion of the inserted segment in the second case (at chr16:76346444) is confirmed by Sanger
sequencing with two SNVs. RepreverSEQ recovered one of them.
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region, followed by the inserted duplicate region. This
confirms the PCR products did not arise from non-
specific binding or from the amplification of similar
genomic regions.

Figure 4D shows the results of multiple sequence align-
ment among the reference sequences, reconstructed donor
sequences and the Sanger sequencing results. The recon-
structed sequence shows a dramatic improvement in
sequence size and identity. In the first case (chr1:553585–
560412), we found 12 SNVs at the PCR products, 11 of
which are recovered by RepreverSEQ (yellow ovals). We
also found four additional SNVs in homolog sequences.
The size of the reconstructed duplicate is only �10 bp
shorter at both ends (�20 bp in 1.3 kb), which is greatly
more accurate than that of the original CNV candidate
region (�6 kb). Note that the alternative, which is to treat
the reference CNV region as a representative of the
inserted duplicon, would be grossly more inaccurate.
The breakpoint location (chr8:63177985) was exactly pre-
dicted in Reprever. In the second case (chr1:67224800–
67226000), the partial inversion of the inserted segment
was confirmed by Sanger sequencing with only a 10-bp
positional error. Note a small inverted microhomology
around the breakpoints of the inverted region.
RepreverSEQ recovered one SNV (G!A) of two. The
high sequence similarity (99.7%) between the PCR
product and the reference region (forced to partially
inverted for comparison) shows that the duplication is a
recent event. By contrast, most of the other reconstruc-
tions have a higher amount of divergence than SNP
frequencies, suggesting that the duplication predated the
common ancestor, and the duplicon was subsequently
deleted in the reference genome.

DISCUSSION

Reconstructing the sequence of duplicated regions in a
donor genome, and identifying the breakpoints where
the duplicon is inserted, continues to be a challenging
problem. The difficulty increases with multiple duplicons
in the donor and in the reference. For example, consider
the CNVer prediction of 1-kb region with copy number
chaining from two to three in the NA18507 donor. A
homolog search reveals 150 reference loci to the region
with > 99% identity. The number increases with a less
stringent definition of homology. Even if the example is
extreme, it reveals why it is difficult to predict the loca-
tions of CNV expansions.

Although we do not attempt to settle the CNV identifi-
cation question using Reprever, we do provide a tool for a
deeper analysis of a candidate CNV expansion. A key
contribution of our approach is that in addition to
looking at reads mapping to the CNVs, we locate the in-
sertion breakpoints, and carefully analyze the reads
mapping to the breakpoints. We propose three distinct
ways of categorizing breakpoints and certifying their
validity. By extension, a valid CNV must contain at
least one valid insertion breakpoint. The approach helps
because the flanking region around the breakpoint is often
more specific than the sequence inside the duplicon. As a

gold standard of known duplication breakpoints and
duplicons is created, we will use these analyses as
features to train breakpoint validity.
The case of duplicated insertions is tricky. As the

duplicated sequence diverges from the original, it rapidly
becomes a ‘pure’ insertion, best assembled by de novo
methods. In that case, reads sampled from the donor
duplicon will not map to the original region, which in
turn will not be classified as a CNV expansion. Reprever
reclassifies and re-maps reads from the CNV and recruits
orphan into a template-driven assembly. Although not as
general as de novo reconstruction, it provides highly
accurate reconstructions for duplicons. In simulations
and real data, it does a good job of reconstruction even
when the duplicon is highly diverged. Nevertheless, it is
possible that we miss the reconstruction of other diverged
duplicons at the boundary, specifically when they contain
larger insertion/deletion events as well. Our future work
will investigate this using more sophisticated simulations
and other sequenced genomes.
Finally, the detailed impact on phenotype is potentially

important. Recent work has uncovered associations
between CNV expansions and diseases. By investigating
where the duplicons inserted (do they disrupt or mutate
functional regions) and what they contain (is an entire
gene and its regulatory sequence duplicated?), we can
provide a deeper insight into the causal mechanism for
associations. Such discoveries will help with a deeper
understanding of the role of CNVs in regulating diversity
and disease.

AVAILABILITY

The packaged software of Reprever with source codes and
example data is available at https://github.com/sak042/
Reprever.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5, Supplementary Figures 1–12,
Supplementary Methods, Supplementary Data sets 1 and
2 and Supplementary References (32–38).
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