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Abstract

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene that encodes the
peroxisomal ATP-binding cassette (ABC) transporter subfamily D member 1 protein (ABCD1), which is referred to as the
adrenoleukodystrophy protein (ALDP). Induction of the ABCD2 gene, the closest homolog of ABCD1, has been mentioned as
a possible therapeutic option for the defective ABCD1 protein in X-ALD. However, little is known about the transcriptional
regulation of ABCD2 gene expression. Here, through in silico analysis, we found two putative TCF-4 binding elements
between nucleotide positions 2360 and 2260 of the promoter region of the ABCD2 gene. The transcriptional activity of the
ABCD2 promoter was strongly increased by ectopic expression of b-catenin and TCF-4. In addition, mutation of either or
both TCF-4 binding elements by site-directed mutagenesis decreased promoter activity. This was further validated by the
finding that b-catenin and the promoter of the ABCD2 gene were pulled down with a b-catenin antibody in a chromatin
immunoprecipitation assay. Moreover, real-time PCR analysis revealed that b-catenin and TCF-4 increased mRNA levels of
ABCD2 in both a hepatocellular carcinoma cell line and primary fibroblasts from an X-ALD patient. Interestingly, we found
that the levels of very long chain fatty acids were decreased by ectopic expression of ABCD2-GFP as well as b-catenin and
TCF-4. Taken together, our results demonstrate for the first time the direct regulation of ABCD2 by b-catenin and TCF-4.

Citation: Park C-Y, Kim H-S, Jang J, Lee H, Lee JS, et al. (2013) ABCD2 Is a Direct Target of b-Catenin and TCF-4: Implications for X-Linked Adrenoleukodystrophy
Therapy. PLoS ONE 8(2): e56242. doi:10.1371/journal.pone.0056242

Editor: Cara Gottardi, Northwestern University Feinberg School of Medicine, United States of America

Received October 6, 2012; Accepted January 7, 2013; Published February 21, 2013

Copyright: � 2013 Park et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from the National Research Foundation, Korean Ministry of Education, Science and Technology (the Bio &
Medical Technology Development Program, 2012M3A9B4028631 and 2012M3A9C7050126), Korea Health technology R&D Project, Korean Ministry of Health &
Welfare (A120254 and A100694). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dwkim2@yuhs.ac

Introduction

X-linked adrenoleukodystrophy (X-ALD) is the most common

peroxisomal disorder and is caused by mutations or large deletions

of one or more exons in the ABCD1 gene located in Xq28, which

encodes the peroxisomal member of the ATP-binding cassette

(ABC) transporter subfamily D member 1 (ABCD1), also known as

adrenoleukodystrophy protein (ALDP) [1,2]. X-ALD has an

incidence of 1 in 17,000 males, and has several clinical

phenotypes, namely severe childhood cerebral form (CCALD,

early-onset type), a slowly progressive form called adrenomyelo-

neuropathy (AMN, late-onset type), and adult cerebral form

(ACALD) [3,4]. Currently, no therapeutic drugs for X-ALD are

available, although gene correction of autologous hematopoietic

stem cell with a wild-type version of the ABCD1 gene by a lentiviral

vector has been shown to provide clinical benefit in X-ALD

patients [5]. ABCD1 transports very long chain fatty acids

(VLCFAs; those with more than 22 carbon atoms) or their CoA

derivatives across the peroxisomal membrane for b-oxidation.

Recently, it was demonstrated that human ABCD1 was able to

transport VLCFA-CoA into the peroxisome in a yeast system [6].

Dysfunction of ABCD1 results in increased levels of saturated

(C24:0 and C26:0) and monounsaturated (C26:1) VLCFAs in the

plasma and tissues of X-ALD patients, due to the reduced b-

oxidation of VLCFAs in peroxisomes [7]. Recently, we first

reported the generation of X-ALD patient-derived induced

pluripotent stem (iPS) cell models [8]. Generated X-ALD iPS

cells were successfully differentiated into oligodendrocytes, the

main cell type affected by the disease, and notably revealed the

underlying pathophysiology which had not been observed in

patients’ fibroblasts or animal models.

ABCD2 encodes the ALDP-related protein (ALDRP or ABCD2)

that share high homology with ABCD1 implying their functional

redundancy or functional overlap [9]. Indeed, overexpression of

ABCD2 has been shown to normalize peroxisomal b-oxidation

and prevent accumulation of VLCFAs in cultured human

fibroblast cells obtained from an X-ALD patient [10–12] and in

an Abcd1 knockout mice model [13]. In addition, it has been

reported that levels of VLCFAs are restored by pharmacological

induction of the ABCD2 gene [10,14,15]. Thus, this complement-

ing gene can be an attractive target for X-ALD therapy [16].

b-catenin is not only a key protein involved in cell-cell adhesion

complexes with E-cadherin, but also an important component of
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the Wnt signaling pathway, which is involved in diverse cellular

processes including cell growth, migration, differentiation, gene

transcription, development of the nervous system, and self-renewal

of stem cells [17–20]. In the presence of Wnt signaling,

cytoplasmic b-catenin translocates into the nucleus [21] where it

forms a transcription complex with the lymphoid enhancer factor/

T-cell factor (LEF/TCF) DNA binding protein, resulting in the

transcription of target genes [22]. There are four TCF proteins

(TCF-1, LEF-1, TCF-3, TCF-4) in mammalian cells [23]. In the

absence of Wnt signaling, the TCFs interact with transcriptional

repressors (such as Groucho) and gene expression of target genes is

inhibited [24].

Weinhofer et al., via promoter studies, demonstrated that sterol

regulatory element-binding proteins (SREBPs), a family of

transcription factors that control the metabolism of cholesterol

and fatty acids, are involved in transcription of the ABCD2 gene

[25,26]. However, the identities of other transcription factors

involved in transcription of the ABCD2 gene are not known. In this

study, we investigated putative transcription factors affecting the

expression of ABCD2 gene through in silico analysis, and found

two putative LEF-1/TCF binding elements between nucleotide

positions 2360 and 2260 of the promoter of the ABCD2 gene. To

our knowledge, this is the first report that b-catenin and TCF-4

directly regulate the expression of ABCD2; this direct regulation

may provide a new drug discovery strategy for X-ALD.

Materials and Methods

Cell Cultures
HepG2 cells (human hepatocellular carcinoma cell line) were

cultured in RPMI1640 medium (Sigma) supplemented with 10%

fetal bovine serum (FBS) and 1% penicillin/streptomycin (Invitro-

gen). Huh7 cells (human hepatoma cell line) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% FBS and 1% antibiotics. Human X-ALD fibroblasts from a

single patient with X-ALD (CCALD type; GM04496, Coriell

Institute) were cultured in Eagle’s minimumessential medium

(MEM, Invitrogen) supplemented with 15% FBS and 1%

antibiotics. Human dermal fibroblast (HDF) cells were purchased

from Invitrogen (#C-004-5C) and were cultured as recommended

by the supplier.

Plasmids, Reporter Gene Constructs, and Site-directed
Mutagenesis

Expression vectors for Flag-tagged constitutively active b-

catenin (b-catenin 4A; S33A, S37A, T41A, S45A), Myc-tagged

wild-type TCF-4, and dominant negative TCF-4 (lacking the b-

catenin binding site; DN-TCF-4) were obtained from Addgene

(plasmid #24204, #16514, #24310, respectively; Cambridge CA)

[27,28]. The human ABCD2-GFP expression vector was pur-

chased from OriGene (#RG211199). Human ABCD2 promoter

fragments (21300, 2800, 2500, 21300/2500, 2360, 2260,

2160 bp) were amplified by PCR using i-MAXTM II DNA

polymerase (iNtRON biotechnology, Korea) from HDF genomic

DNA as a template, and subcloned into the pGL3-basic (Promega)

vector. The primer sequences containing restriction sites are listed

in Table 1. The ABCD2 promoter sequence (starting from

21300 bp) was aligned with the sequence of human chromosome

12 (NCBI, Gene ID: 225). Mutations in the LEF-1/TCF binding

sites were introduced using the 800-luc reporter plasmid by

overlap extension PCR as described previously [29]. In brief,

PCRs were performed to generate two DNA fragments (59

fragment and 39 fragment) containing overlapping ends using the

following specific primers:

mTBE1-59primer, 5- GATG-

TAATTCGCCCTGCTCTCTCCTCA -3 and

mTBE1-39 primer, 5- TGAGGAGAGAGCAGGGCGAAT-

TACATC -3;

mTBE2-59 primer, 5- TTCAAGGTTAGAAGG-

GAAGCTGCGAGG -3 and

mTBE2-39 primer, 5- CCTCGCAGCTTCCCTTC-
TAACCTTGAA -3. Putative LEF-1/TCF binding sites are shown

in bold, and mutated sequences are underlined. After two rounds

of PCR, each full-length construct with the desired mutation

(800 bp DNA fragment) was amplified with primers for 800-luc

(Table 1), and subcloned into the pGL3-basic vector. A construct

with mutations in both TBEs (Dm TBE) was generated by further

mutation of TBE2 from a TBE1-mutated plasmid. The sequences

Table 1. Primer pairs used in the construction of ABCD2 promoter fragments.

Constructs Positions Primer Sequences#

21300 luc 21302/21 Forward 59-GTACTCGAG GAAACCTGCAAAAGACAA-39

Reverse 59-GGACAAGCTT TTTCCCAGTTACCCAAAC-39

2800 luc 2800/21 Forward 59-GAACTCGAG TCTTTTCTGATCCGTTTC-39

Reverse 59-GGACAAGCTT TTTCCCAGTTACCCAAAC-39

2500 luc 2499/21 Forward 59-GAACTCGAG ACTGAAATCTTACCGAAG-39

Reverse 59-GGACAAGCTT TTTCCCAGTTACCCAAAC-39

21300/2500 luc 21302/2500 Forward 59-GTACTCGAG GAAACCTGCAAAAGACAA-39

Reverse 59-GGACAAGCTT AGATACCGCAAACAGAAG-39

2360 luc 2360/21 Forward 59-GAACTCGAG CTCTCTGAACTCCTGTTT-39

Reverse 59-GGACAAGCTT TTTCCCAGTTACCCAAAC-39

2260 luc 2260/21 Forward 59-GAACTCGAG CTCACAGCCAATGAGGGG-39

Reverse 59-GGACAAGCTT TTTCCCAGTTACCCAAAC-39

2160 luc 2160/21 Forward 59-GAACTCGAG ATCTGTCACAGCAGAACA-39

Reverse 59-GGACAAGCTT TTTCCCAGTTACCCAAAC-39

#NOTE: Underlined italic letters represent irrelevant sequences and restriction enzyme sites (XhoI and HindIII) used for cloning.
doi:10.1371/journal.pone.0056242.t001
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of all reporter constructs were verified by DNA sequencing

(SolGent, Korea).
Transfection and Luciferase Reporter Assays

For reporter assays, HepG2 cells were seeded in a 24-well

culture plate and transiently transfected with 0.3 mg reporter

plasmids and 50 ng of pRL-SV40 plasmid (Promega) containing

the Renilla luciferase gene under the control of the Simian virus 40

Figure 1. Analysis of luciferase reporter constructs to determine the minimal DNA sequence required for human ABCD2 promoter
activity. (A) Schematic representation of the human ABCD2 promoter showing the two putative LEF-1/TCF binding sites identified with Genomatix
software (MatInspectorTM). The two putative TCF binding sites (TBE1 and TBE2) are located at nucleotide positions 2324 to 2318 and 2299 to 2293
relative to the ATG translational start site in the upstream sequence of ABCD2 promoter. (B) Each reporter construct was transfected into HepG2 cells
using Fugene6 (upper panel), whereas these constructs were electroporated into fibroblast cells from an X-ALD patient with a microporator (lower
panel). Thirty-six hours after transfection, cells were harvested, and luciferase activities were determined and normalized by Renilla luciferase activity.
Data represent the mean (6SEM) of triplicate experiments and each experiment was repeated three times. *p,0.05; **p,0.01; ns, not significant.
doi:10.1371/journal.pone.0056242.g001

Regulation of ABCD2 by b-Catenin and TCF-4

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56242



promoter using Fugene6 transfection reagent (Roche). The total

amount of transfected DNA was kept constant by adding an empty

vector. Fibroblasts isolated from an X-ALD patient were

electroporated with 0.5 mg reporter plasmids and 0.2 mg of pRL-

SV40 plasmid using a microporator transfection system (NeonTM,

Invitrogen). Cells were pulsed twice with a voltage of 1,100 (V) for

30 ms. After the two pulses, cells were seeded in a 12-well culture

plate. At 36 h after transfection (or electroporation), cells were

harvested and luciferase activities were determined by measuring

luminescence activity. Data were normalized by Renilla luciferase

activity. For overexpression of b-catenin and TCF-4, cells were

transfected (or electroporated) with each plasmid using Fugene6

(for HepG2 and Huh7) or a microporator (for X-ALD fibroblasts).

Forty-eight hours after transfection, cells were harvested for

luciferase activity measurement, western blot analysis, and

immunofluorescence staining.

RNAi
Scrambled, b-catenin and ABCD2 siRNA were purchased from

Genolution Pharmaceuticals (Korea). HepG2 or X-ALD fibro-

blasts were transfected with scrambled siRNA (5-ACGUGACAC-

GUUCGGAGAA-3), b-catenin siRNA (5-CUGGGACCUUG-

CAUAACCU-3) or ABCD2 siRNA (5-

GAUUAUGUCUUCAUACAAA-3 and 5-GCAUGAUAAAG-

GUUAUACA-3) using LipofectamineTM RNAiMAX (Invitrogen).

Three to four days after transfection, cells were harvested to

measure mRNA or protein levels, luciferase activities, and VLCFA

levels.

Chromatin Immunoprecipitation (ChIP) Assay
ChIP assay was performed as described previously [30]. In brief,

cells were grown to 80% confluency on 100-mm culture dishes,

and then the proteins in cells were cross-linked to DNA by adding

formaldehyde for 10 min at RT. Cells were then washed and

sonicated to shear chromatin DNA to less than 1000 bp in length.

Sheared chromatin was precleared by adding protein G-agarose/

salmon sperm beads (Millipore) and then incubated with either

1 mg anti-rabbit IgG or anti-b-catenin antibodies overnight at 4uC,

then for another 2 h at 4uC with protein G-agarose/salmon sperm

beads. Following washes, the protein/DNA cross-links were

reversed by heating at 65uC overnight, and the DNA fragments

eluted. Eluted DNA fragments were used for PCR analysis using

the following human ABCD2 promoter-specific primers:

forward, 5-GTTTTGTTCGCCAGCAGATGGCCTGAT-3;

reverse, 5-CCGCTGCATCTACCGGGAATGATTCTC-3.

Amplified DNA fragments were visualized by agarose gel

electrophoresis.

Figure 2. b-catenin and TCF-4 increase the transcriptional activity of ABCD2. (A) HepG2 cells were cotransfected with ABCD2 promoter
reporter (800-Luc) plasmids together with the indicated expression plasmids. At 36 h after transfection, cells were harvested, and luciferase activities
were determined. The amount of DNA in each transfection was kept constant by adding an appropriate amount of pcDNA3 empty vector. (B) HepG2
cells were transfected with either scrambled or b-catenin siRNA and were then further transfected with 800-Luc 24 h later. Luciferase activity was
determined 48 h later (left panel). The efficacy of silencing was verified by real-time PCR (right panel). Data represent the mean (6 SEM) of triplicate
experiments and each experiment was repeated three times. *p,0.05.
doi:10.1371/journal.pone.0056242.g002
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RNA Isolation and Real-time PCR
Total RNAs were isolated from cells using TRIzol reagent

(Invitrogen). The cDNAs were synthesized usingthe iScriptTM

cDNA synthesis kit (Bio-Rad) from 1 mg of total RNA. Expression

of b-catenin, ABCD2, and GAPDH was determined by real-time

PCR using SYBRH Premix Ex Taq (Takara) on a CFX

ConnectTM real-time PCR system (Bio-Rad) according to the

manufacturer’s instructions. Real-time PCR was performed using

the following specific primer sequences: b-catenin-f, 5-ATGTC-

CAGCGTTTGGCTGAA-3 and.

b-catenin -r, 5-TGGTCCTCGTCATTTAGCAGTT-3;

ABCD1-f, 5-GGAGCTGGTGGCAGAGGA-3 and

ABCD1-r, 5-ACAGCCACCATGAGCAGG-3;

ABCD2-f, 5-GATAACTGGTCCCAATGGTTG-3 and

ABCD2-r, 5-TCCCGAAGACTTCCAAGAGA-3;

GAPDH -f, 5-CCCCTCAAGGGCATCCTGGGCTA-3 and

GAPDH -r, 5-GAGGTCCACCACCCTGTTGCTGTA-3.

Western Blot Analysis
Total cells lysates were prepared using cell lysis buffer

containing protease inhibitor cocktail (Roche) and sodium

orthovanadate (Sigma) for 20 min on ice as described previously

[31]. The Bradford assay (Bio-Rad) was used to determine protein

concentration. Equal amounts of protein were subjected to 10%

SDS-PAGE and transferred to a PVDF membrane (Millipore).

The membrane was blocked and then incubated for 2 h at RT

with one of the following antibodies: anti-b-catenin antibody (Cell

Signaling Technology), anti-b-actin and anti-Flag antibody

(Sigma), or anti-Myc antibody (Santa Cruz Biotechnology).

Following three washes, the membranes were incubated with

horseradish peroxidase-conjugated secondary antibodies (Jackson

Immuno Research Laboratories) for 1 h at RT. Antibody-labeled

proteins were visualized using ECL solution (Amersham Biosci-

ences).

Confocal Microscopy
X-ALD fibroblasts were electroporated with ABCD2-GFP

expression plasmid, and cells were seeded on cover glass. Two

days after electroporation, cells were washed in phosphate-

buffered saline (PBS) and fixed in 4% paraformaldehyde and

0.1% Triton X-100 for 20 min at RT. Cells were further

incubated in 5% bovine serum albumin (BSA) for 20 min at

RT, and then incubated with anti-PMP70 polyclonal antibody

(Millipore) for 2 h at 37uC. After three washes in PBS, cells were

incubated with Alexa Fluor 594-conjugated donkey anti-rabbit

IgG (Invitrogen) for 1 h at 37uC. After two washes with 0.1%

Triton X-100 in PBS and three washes in PBS, cells were analyzed

using a confocal microscopy system (Olympus).

VLCFA Analysis
X-ALD fibroblasts were harvested by trypsinization, and the cell

pellet (26105 cells) was dissolved in PBS. VLCFA analysis was

performed by Seoul Clinical Laboratories (Korea) as described

previously [32]. VLCFAs were determined by methyl ester

formation [33]. In brief, heptacosanoic acid (C27:0) was added

as the internal standard to each sample. Then methylene chloride

in methanol and acetyl chloride were added and the samples were

heated for 1 h at 75uC to allow the formation of methyl esters.

After cooling, potassium carbonate solution was added to quench

the reaction by neutralization. The resulting fatty acid methyl

esters were extracted with hexane solution, followed by extraction

with acetonitrile to remove polar compounds. The hexane layer

was taken and evaporated to dryness under a gentle stream of

nitrogen. The dry residue was reconstituted in hexane for gas

chromatography analysis.

Statistical Analysis
The data are presented as means6 SEMs. Student’s t-test was

used for statistical analysis. p,0.05 was considered statistically

significant.

Figure 3. Contribution of the two TBE sites within the ABCD2
promoter to b-catenin/TCF-4 mediated transcriptional activa-
tion. (A) HepG2 cells were cotransfected with the indicated expression
plasmids along with either wild-type (WT) 800-Luc reporter plasmid
containing wild-type (WT) sequences or double mutant (Dm) 800-Luc
reporter plasmid containing mutations in the two TBE sites of the
ABCD2 promoter. Mutated sequences are underlined (lower panel). At
36 h after transfection, cells were harvested, and luciferase activities
were determined. The amount of DNA in each transfection was kept
constant by adding an appropriate amount of pcDNA3 empty vector.
Data represent the mean (6 SEM) of triplicate experiments. (B) A ChIP
assay was performed by immunoprecipitation of DNA/protein com-
plexes from HepG2 cells with an anti-b-catenin antibody. The
immunoprecipitated DNA was amplified with primers specific for the
ABCD2 promoter. Purified rabbit IgG (IgG) was used as a negative
control. Input DNA (before immunoprecipitation) was amplified as a
positive control for the PCR. The amplified DNA was analyzed by
agarose gel electrophoresis.
doi:10.1371/journal.pone.0056242.g003
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Results

Identification of LEF-1/TCF Binding Sites within the
Promoter of the Human ABCD2 Gene

To investigate transcription factors that could potentially

regulate ABCD2, we first analyzed transcription factor binding

elements with a proximal region of the promoter of this gene. The

upstream sequence (21300 bp) of the ABCD2 promoter subcloned

in this study was identical to that of reported sequence on human

chromosome 12 (NCBI, Gene ID: 225) (data not shown). By in

silico analysis with Genomatix software (MatInspectorTM), we

identified the two putative LEF-1/TCF binding elements (TBEs)

located at nucleotide positions 2324 to 2318 (TBE1) and 2299 to

2293 (TBE2) within the upstream sequence of the ABCD2

promoter (Fig. 1A). To investigate the involvement of b-catenin/

TCF-4 on transcriptional activation of the ABCD2 gene, we

measured promoter activity from various lengths of the ABCD2

promoter in HepG2 cells expressing constitutively active b-catenin

protein [34]. We found that the 21300 bp, 2800 bp, and

2500 bp promoter fragments showed full transcriptional activity

compared to the pGL3 basic group (negative control group)

(Fig. 1B, upper panel). However, a fragment containing 21300/

2500 bp of the ABCD2 promoter showed only a 2.3-fold increase

in activity compared to the negative control group (Fig. 1B, upper

panel). Similar results were obtained for the X-ALD fibroblasts

isolated from a patient (Fig. 1B, lower panel). These data indicate

that the region 500 bp upstream of the ABCD2 promoter is an

important region for transcriptional activity in both cell types.

Interestingly, the 2360 bp fragment, which does not contain a

sterol regulatory element (SRE) showed full transcriptional activity

in HepG2 cells (Fig. 1B, upper panel). In addition, the promoter

activity of a 2260 bp fragment lacking the two TBEs sequence

was less than half that shown by the 2500 bp or 2360 bp

fragments (Fig. 1B, upper panel). In contrast, in the X-ALD

fibroblasts, the promoter activity of the 2360 bp fragment was

half of that obtained from the 2500 bp fragment, while the

promoter activity of the 2260 bp fragment was significantly lower

than that of the 2360 bp fragment (Fig. 1B, lower panel). These

Figure 4. b-catenin and TCF-4 up-regulate mRNA levels of ABCD2. HepG2 cells were cotransfected with Flag-tagged constitutively active b-
catenin (Flag-catenin 4A) and Myc-tagged TCF-4 expression plasmids. (A) At 48 h after transfection, mRNA was isolated from transfected cells. The
levels of ABCD1 and ABCD2 mRNA were measured by real-time PCR and were normalized to GAPDH expression (upper panel). Data represent the
mean (6 SEM) of triplicate experiments. Total cell lysates harvested from transfected cells were immunoblotted with the indicated antibodies (lower
panel). Protein expression of b-actin was used as a loading control. **p,0.001; ns, not significant; control vector transfected cells versus b-catenin and
TCF-4 transfected cells. (B) HepG2 cells were transfected with either scrambled or b-catenin siRNA. At 3 days after transfection, mRNA was isolated
from transfected cells. The levels of ABCD1 and ABCD2 mRNA were measured by real-time PCR and normalized to GAPDH expression (upper panel).
*p,0.05; ns, not significant; scrambled transfected cells versus b-catenin siRNA transfected cells. Efficacy of silencing was verified by western blotting
with anti-b-catenin antibody (lower panel). Protein expression of b-actin was used as a loading control.
doi:10.1371/journal.pone.0056242.g004
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results suggest the existence of a potential positive regulatory

element(s) within the 2360/2260 region of the ABCD2 promoter

in both cell types.

Activation of ABCD2 Promoter by b-catenin and TCF-4
To further investigate transcriptional regulation of ABCD2, cells

were transfected with the 800-Luc reporter plasmid alone or

combinations with b-catenin active mutant (4A), wild-type TCF-4,

dominant negative (DN)-TCF-4 expression plasmids. As shown in

Fig. 2A, expression of the active b-catenin mutant protein resulted

in only 2.6-fold activation of the ABCD2 promoter (Fig. 2A, lane 2)

due to the presence of an endogenous active mutant form of b-

catenin in HepG2 cells [34]. Interestingly, the promoter activity of

the ABCD2 gene was 15-fold greater in cells expressing wild type

TCF-4 protein than cells expressing empty vector (Fig. 2A, lane 3).

In contrast, promoter activity was slightly decreased in cells that

expressed DN-TCF-4 protein (Fig. 2A, lane 5). These results

strongly suggest that b-catenin and TCF-4 interact to activate

transcription of the ABCD2 gene. Consistent with these results, we

found that cotransfection of b-catenin and wild-type TCF-4

expression plasmids resulted in a 21.1-fold induction in promoter

activity (Fig. 2A, lane 4), whereas cotransfection of b-catenin and

DN-TCF-4 plasmids resulted in only a 2.5-fold induction in

promoter activity (Fig. 2A, lane 6).

To determine the role of b-catenin in ABCD2 promoter

transactivation in HepG2 cells, endogenous b-catenin expression

Figure 5. Levels of VLCFAs in fibroblasts from an X-ALD patient were restored by ectopic expression of ABCD2-GFP. Primary
fibroblasts isolated from an X-ALD patient were electroporated with either GFP or ABCD2-GFP expressing plasmid using a microporator. (A) At 48 h
after electroporation, cells were fixed and incubated with anti-PMP70 antibody for 2 h. After washing with PBS, cells were incubated with Alexa Fluor
594-conjugated donkey anti-rabbit IgG for 1 h. Immunofluorescence staining was analyzed using a confocal microscopy system. Cells were
counterstained with 49,6-diamidino-2-phenylindole (DAPI) to label nuclei. (B) At 48 h after electroporation, mRNA was isolated from cells. The levels of
ectopically expressed ABCD2 were measured by real-time PCR and normalized to GAPDH expression. Data represent the mean (6 SEM) of triplicate
experiments. (C) At 4 days after electroporation, cells were harvested and the levels of VLCFA were measured. The values are expressed as the ratio of
C26:0 to C22:0. Data represent the mean (6 SEM). *p,0.01; GFP-expressing cells versus ABCD2-GFP-expressing cells.
doi:10.1371/journal.pone.0056242.g005
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was knocked-down using specific siRNAs. Real-time PCR

analysis revealed that the expressions of both wild-type (WT)

and active mutant forms (Mut) of b-catenin in HepG2 cells

were efficiently reduced by siRNA transfection (Fig. 2B, right

panel). Subsequently, we showed that the promoter activity of

the ABCD2 gene was decreased by b-catenin silencing (Fig. 2B,

left panel). These data indicate that both b-catenin and TCF-4

are required for the transcriptional activation of ABCD2.

Figure 6. b-catenin and TCF-4 reduce the levels of VLCFAs by
affecting ABCD2 gene induction. Primary fibroblasts isolated from
an X-ALD patient were electroporated with Flag-tagged constitutively
active b-catenin (4A active mutant) and Myc-tagged TCF-4 expression
plasmids using a microporator. (A) At 48 h after electroporation, mRNA
was isolated from cells. The levels of ABCD2 mRNA were measured by
real-time PCR and normalized to GAPDH expression (upper panel). Data
represent the mean (6 SEM) of triplicate experiments. At 48 h after
electroporation, total cell lysates harvested from transfected cells were
immunoblotted with the indicated antibodies (lower panel). Protein
expression of b-actin was used as a loading control. (B) Four days after
electroporation, cells were harvested and the levels of VLCFA were
measured. Values are expressed as the ratio of C26:0 to C22:0. Data
represent the mean (6 SEM). *p,0.001; GFP-expressing cells versus b-
catenin and TCF-4-expressing cells.
doi:10.1371/journal.pone.0056242.g006

Figure 7. Silencing of b-catenin in X-ALD fibroblasts increased
VLCFA levels. Primary fibroblast cells isolated from an X-ALD patient
were transfected with either scrambled or b-catenin siRNA. (A) At 3 days
after transfection, mRNA was isolated from transfected cells. The levels
of ABCD2 mRNA were measured by real-time PCR and were normalized
to GAPDH expression (upper panel). Data represent the mean (6 SEM)
of triplicate experiments. At 3 days after transfection, the efficacy of
silencing was verified by western blotting with anti-b-catenin antibody
(lower panel). Protein expression of b-actin was used as a loading
control. (B) Four days after transfection, cells were harvested and the
levels of VLCFA were measured. The values are expressed as the ratio of
C26:0 to C22:0. Data represent the mean (6 SEM). *p,0.001; scrambled
transfected cells versus b-catenin siRNA-transfected cells.
doi:10.1371/journal.pone.0056242.g007
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Contribution of the Two TBE Sites within the ABCD2
Promoter to b-catenin/TCF-4 Mediated Transcriptional
Activation

To determine whether the two putative TBEs identified in this

study are required for b-catenin/TCF-4-mediated transcriptional

activation, we introduced mutations into the TBEs and performed

luciferase assays. To destroy the binding sequence of LEF-1/TCF,

we mutated two nucleotides within each TBE motif (Fig. 3A, lower

panel). First, we investigated the effect of mutations in TBE sites

on promoter activation in Huh7 cells. Mutation of either of the

TBE sites significantly decreased transcriptional activation by b-

catenin/TCF-4 (Fig. S1). However, the greatest reduction was

observed when both TBE sites were mutated (Fig. S1), hence we

used the construct with mutations of both TBE sites for further

experiments in HepG2 cells. As expected, we found that mutation

of both TBE sites strongly reduced transcriptional activation by b-

catenin/TCF-4 as well as basal levels of transcription (Fig. 3A). In

the absence of ectopic expression of b-catenin/TCF-4, luciferase

activity was decreased 5-fold by of the TBE mutations. Moreover,

ectopic expression of b-catenin/TCF resulted in a 10.8-fold

induction in ABCD2 promoter activity when wild-type TBEs

sequences were present, compared to a 4.5-fold induction when

the TBEs were both mutated (Fig. 3A). These results indicate that

b-catenin/TCF-4-mediated transcriptional activation of ABCD2

can be blocked by mutating the TCF-4 binding elements in the

ABCD2 promoter region. Similar results were obtained in the X-

ALD fibroblasts (Fig. S2).

To determine if the ABCD2 promoter is a direct target of the b-

catenin/TCF-4 complex, we performed a chromatin immunopre-

cipitation (ChIP) assay. We used either normal rabbit IgG or b-

catenin antibodies for ChIP, and amplified the DNA using specific

primers for the ABCD2 promoter containing the two TBEs. As

shown in Fig. 3B, the ABCD2 promoter was immunoprecipitated

by the b-catenin antibody, but was not immunoprecipitated by the

normal IgG antibody. These data indicate that a transcription

factor complex containing b-catenin binds directly to the ABCD2

promoter.

Upregulation of ABCD2 Gene Expression via b-catenin
and TCF-4

We examined whether mRNA level of ABCD2 gene was

increased by ectopic expression of active mutant b-catenin (4A)

and wild-type TCF-4 in HepG2 cells. mRNA expression of

ABCD2 was compared between control vector-transfected or b-

catenin and TCF-4-transfected cells after total RNA extraction. As

shown in Fig. 4A, ABCD2 expression was elevated by ectopic

expression of b-catenin and TCF-4. In contrast, ABCD1 expression

was unaffected by these proteins (Fig. 4A). We also confirmed the

increased expression of transfected b-catenin and TCF-4 proteins

by western blot analysis (Fig. 4A, lower panel). Unfortunately, we

were unable to detect an increased protein level of ABCD2 as a

result of commercially available antibodies not working against the

ABCD2 protein. Conversely, transcript expression of ABCD2 was

significantly decreased by siRNA-mediated b-catenin knockdown in

HepG2 cells (Fig. 4B). However, ABCD1 expression was not

decreased by b-catenin knockdown (Fig. 4B). We verified the

knockdown of b-catenin by western blotting (Fig. 4B, lower panel)

using a specific antibody against b-catenin.

Restoration of VLCFA Levels in the Fibroblasts Derived
from an X-ALD Patient by Ectopic Expression of ABCD2-
GFP

Functional replacement of the ABCD1 protein (ALDP) by the

ABCD2 protein (ALDRP) has been shown to reduce VLCFA

accumulation in fibroblast cells isolated from X-ALD patients

[10,12]. To confirm this finding in our cell system, either GFP or

ABCD2-GFP expression vectors were electroporated into fibro-

blast cells isolated from an X-ALD patient. A punctuate spot

pattern of GFP signals from the ABCD2-GFP protein was

detected outside of the nucleus, and this pattern merged perfectly

Figure 8. b-catenin and TCF-4 regulate the levels of VLCFAs through ABCD2 gene induction. X-ALD fibroblast cells were transfected with
either scrambled or ABCD2 siRNA. Two days after transfection, cells were electroporated with Flag-tagged constitutively active b-catenin (4A active
mutant) and Myc-tagged TCF-4 expression plasmids using a microporator. (A) Two days after electroporation, mRNA was isolated from cells. The
levels of ABCD2 mRNA were measured by real-time PCR and normalized to GAPDH expression. Data represent the mean (6 SEM) of triplicate
experiments. (B) Four days after electroporation, cells were harvested and the levels of VLCFA were measured. Values are expressed as the ratio of
C26:0 to C22:0. Data represent the mean (6 SEM). *p,0.05; **p,0.01; ns, not significant.
doi:10.1371/journal.pone.0056242.g008
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with fluorescent signals from PMP70, which is a peroxisomal

marker protein (Fig. 5A). These results indicate that the ABCD2-

GFP fusion protein is able to correctly target the peroxisomal

membrane.

Since C26:0/C22:0 ratio is being used widely for diagnosing X-

ALD [33], we analyzed the ratio of C26:0/C22:0 to determine if

the ABCD2 protein had a compensatory effect. We found that

ectopic expression of ABCD2-GFP by electroporation resulted in a

10-fold induction in ABCD2-expression in fibroblasts relative to

the negative control (Fig. 5B). Interestingly, we observed that

ectopic expression of GFP-tagged ABCD2 resulted in a decrease in

the ratio of C26:0/C22:0, indicating that accumulated VLCFA

levels were reduced in the fibroblast cells from an X-ALD patient

by ectopic ABCD2 (Fig. 5C). These results in our cell system are

consistent with previous studies that reported that ABCD2 is

functionally redundant with ABCD1 [10–12].

b-catenin and TCF-4 Regulate the Levels of VLCFAs via
Induction of ABCD2 Gene

We next asked whether VLCFA levels decreased in response to

b-catenin and TCF-4-induced ABCD2 induction in X-ALD

fibroblasts. X-ALD fibroblasts were electroporated with either

GFP or active b-catenin and TCF-4 expression vectors. We

showed that mRNA level of the ABCD2 gene was increased by

overexpression of b-catenin and TCF-4 using real-time PCR

analysis (Fig. 6A, upper panel). Interestingly, we found that the

ratio of C26:0/C22:0 was significantly decreased by overexpres-

sion of these proteins (Fig. 6B). Conversely, mRNA levels of

ABCD2 decreased when b-catenin was silenced (Fig. 7A). In

addition, silencing of b-catenin resulted in a significant increase in

VLCFA levels (Fig. 7B). We further investigated whether b-

catenin/TCF-4-dependent change of C26:0/C22:0 is mediated by

induction of ABCD2. For this purpose, X-ALD fibroblasts were

transfected with ABCD2 siRNA. We observed that b-catenin/

TCF-4-dependent change of C26:0/C22:0 was abolished by

ABCD2 knockdown in X-ALD fibroblasts (Fig. 8). These data

indicate that b-catenin/TCF-4 are able to regulate the levels of

VLCFAs through ABCD2 gene induction.

Discussion

X-ALD, caused by mutations of the ABCD1 gene, is associated

with the accumulation of VLCFAs in the plasma and tissues of

patients [35]. At present, no therapeutic drug for X-ALD is

available; although Lorenzo’s oil reduces the levels of plasma

VLCFA with little or no effect on the disease progression [36]. The

cholesterol-lowing drug, lovastatin, was suggested as a potential

therapeutic drug for X-ALD [37,38], but did not decrease VLCFA

levels in a placebo-controlled clinical trial [39].

Induction of ABCD2 may be a promising treatment option for

X-ALD because expression of this protein can decrease VCLFA

levels in fibroblasts. However, little is known about transcriptional

activation of this gene or the mechanism of action of drugs that

have been reported to activate this gene, although a binding site

for SREBP1 (SRE at position 2401/2391) in the ABCD2

promoter has been reported [25]. We therefore investigated

transcription factors involved in the regulation of ABCD2 gene

expression.

By in silico analysis using Genomatix software (MatInspec-

torTM), we found two putative LEF-1/TCF binding elements

(TBEs) (Fig. 1A) in the promoter region of ABCD2 in addition

to the GC and CCAAT boxes reported in earlier studies

[40,41]. The TBE1 sequence (CTTTGCT) is one nucleotide

different from the TCF-4 binding sequence (CTTTG(A/T)(A/

T)) [42], whereas the TBE2 sequence (TTCAAAG) is an

inverted perfect match of the consensus sequence (Fig. 1A). To

investigate if these sites are involved in ABCD2 gene transcrip-

tion, we performed luciferase reporter assays using various

lengths of the ABCD2 promoter. Because the promoter of the

ABCD2 gene has putative TBEs, we chose HepG2 cells that

contain active b-catenin protein to investigate transcriptional

activation. In both HepG2 cells and fibroblasts from an X-ALD

patient, the 2260 promoter fragment showed minimal activity,

while the activity of the 2360 fragment differed according to

cellular context (Fig. 1). We further demonstrated that TBEs are

involved in transcriptional regulation of ABCD2 by performing a

mutagenesis study (Fig. 3A). Interestingly, we found that the

2260 fragment still had promoter activity in both cell types

even when the TBE sequences were deleted (Fig. 1A and 1B),

indicating the existence of another response element within the

promoter region.

Next, we showed that the promoter activity of ABCD2 was

elevated by ectopic expression of b-catenin and TCF-4 (Fig. 2A,

lane 4). We confirmed this finding in Huh7 cells that do not express

active b-catenin [43] (Fig. S3) and in CCALD fibroblast cells (data

not shown). Site-directed mutagenesis results provided direct

evidence that the TBEs within the ABCD2 promoter are

functionally involved in ABCD2 transcriptional regulation

(Fig. 3A). Through ChIP assays, we showed that b-catenin

containing complexes bind directly to the promoter region of the

ABCD2 gene (Fig. 3B). In addition, we demonstrated that gene

expression of ABCD2 is upregulated by overexpression of b-

catenin/TCF-4 (Figs. 4A and 6A) while downregulation occurs by

silencing of b-catenin (Figs. 4B and 7A) in both HepG2 cells and X-

ALD fibroblasts. Moreover, we showed that b-catenin/TCF-4

reduced the ratio of C26:0/C22:0 (Fig. 6B) as well as the levels of

C24:0 and C26:0 (data not shown) in the fibroblasts from an X-

ALD patient. Finally, we showed that this effect was reversed by b-

catenin silencing (Fig. 7B).

Transcription factors such as SREBPs [25,26], triiodothyronine

(T3)-liganded thyroid hormone receptor a (TRa)/SREBP-1 [44],

peroxisome proliferator-activated receptor a (PPARa) [42], and

the retinoic X receptor (RXR)/cis-retinoic acid [45] have been

reported to be regulators of the ABCD2 gene. However, we found

that b-catenin and TCF-4 not only increased transcription of the

ABCD2 gene, but also decreased levels of VLCFAs according to

the level of ABCD2 induction. We therefore speculate that

induction of ABCD2 by b-catenin and TCF-4 may decrease levels

of VLCFAs.

In this study, we demonstrated direct regulation of ABCD2 gene

expression by b-catenin and TCF-4, which are members of the

canonical Wnt signaling pathway. These findings may provide a

new strategy for developing drugs to treat X-ALD.

Supporting Information

Figure S1 Mutation of TBE sites within the ABCD2
promoter decreased b-catenin/TCF-4 mediated promot-
er activity in Huh7 cells. Huh7 cells were cotransfected with

the indicated expression plasmids along with either wild-type (WT)

800-Luc reporter plasmid containing wild-type (WT) TBE

sequences or 800-Luc reporter plasmids containing the mutation

of one or both TBE sites of the ABCD2 promoter (mTBE1,

mTBE2, and DmTBE, respectively). Mutated sequences are

underlined (lower panel). At 36 h after transfection, cells were

harvested, and luciferase activities were determined. The amount

of DNA in each transfection was kept constant by adding an
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appropriate amount of pcDNA3 empty vector. Data represent the

mean (6 SEM) of triplicate experiments. *p,0.001.

(TIF)

Figure S2 Contribution of the two TBE sites within the
ABCD2 promoter to b-catenin/TCF-4-mediated tran-
scriptional activation in fibroblast cells from an X-ALD
patient. Primary fibroblasts isolated from an X-ALD patient

were electroporated with the indicated expression plasmids along

with either wild-type (WT) 800-Luc reporter plasmid containing

the wild-type (WT) sequences or the double mutant (D-Mut) 800-

Luc reporter plasmid containing mutations in the two TBE sites of

the ABCD2 promoter. The mutated sequences are underlined

(lower panel). At 36 h after electroporation, cells were harvested,

and luciferase activities were determined. The amount of DNA in

each transfection was kept constant by adding an appropriate

amount of pcDNA3 empty vector. Data represent the mean (6

SEM) of triplicate experiments. *p,0.001.

(TIF)

Figure S3 b-catenin and TCF-4 increase the transcrip-
tional activity of ABCD2 in Huh7 cells. Huh7 cells were

cotransfected with ABCD2 promoter reporter (800-Luc) plasmids

together with the indicated expression plasmids. At 36 h after

transfection, cells were harvested, and luciferase activities were

determined. The amount of DNA in each transfection was kept

constant by adding an appropriate amount of pcDNA3 empty

vector. Data represent the mean (6 SEM) of triplicate exper-

iments.

(TIF)
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