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Cosmology with next generation radio telescopes

by Amadeus Witzemann (Wild)

The next generation of radio telescopes will revolutionize cosmology by

providing large three-dimensional surveys of the universe. This work presents

forecasts using the technique 21cm intensity mapping (IM) combined with

results from the cosmic microwave background, or mock data of galaxy

surveys. First, we discuss prospects of constraining curvature independently

of the dark energy (DE) model, finding that the radio instrument HIRAX

will reach percent-level accuracy even when an arbitrary DE equation of state

is assumed. This is followed by a study of the potential of the multi-tracer

technique to surpass the cosmic variance limit, a crucial method to probe

primordial non-Gaussianity and large scale general relativistic e↵ects. Using

full sky simulations for the Square Kilometre Array phase 1 (SKA 1 MID)

and the Large Synoptic Survey Telescope (LSST), including foregrounds, we

demonstrate that the cosmic variance contaminated scenario can be beaten

even in the noise free case. Finally, we derive the signal to noise ratio for the

cosmic magnification signal from foreground HI intensity maps combined

with background galaxy count maps. Instruments like SKA1 MID and

HIRAX are highly complementary and well suited for this measurement.

Thanks to the powerful design of the planned radio instruments, all results

confirm their potential and promise an exciting future for cosmology.
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1 Introduction

During the last few decades, cosmology has made significant progress. A

large number of precise observations greatly decreased uncertainties in the

science, it is thus said that we have entered the era of ‘precision’ cosmology

(Planck Collaboration XIII, 2016; Alam et al., 2017). The most successful

model in modern cosmology, Lambda Cold Dark Matter (⇤CDM), or

Concordance Cosmology, is based on observations of the spectrum and

temperature fluctuations of the cosmic microwave background (CMB)

(Planck Collaboration XIII, 2016), galaxy clustering (Sánchez et al., 2017;

Alam et al., 2017), the abundances of light elements and their isotopes (e.g.

Walker et al., 1991; Smith et al., 1993; Copi et al., 1995; Burles & Tytler,

1998), and last but not least on measurements of redshifts and distances to

type Ia supernovae (Riess et al., 1998; Perlmutter et al., 1999). While a few

problems and tensions remain (Dodelson, 2003), it describes with incredible

precision both low redshift observations at z < 1, e.g. galaxy surveys, and

the extremely high redshift measurements of the CMB with z ⇡ 1100.

CMB photons last scattered during the epoch of recombination, 300000

years after the big bang, when the Universe cooled enough for electrons and

protons to combine. They have traveled freely through space since. This black-

body radiation is an extremely powerful probe of early universe physics and

significantly contributed to the success of big bang theory (Dodelson, 2003).

Since its first detection in the mid-1960s by Penzias and Wilson, high-precision

full-sky maps of temperature fluctuations in the CMB have been obtained by

the spacecrafts Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett

et al., 2003) and Planck1, giving great insight into early Universe large scale

structure.

Amongst the probes of the late-time Universe, Type Ia supernovae and

1www.esa.int/Our Activities/Space Science/Planck
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galaxy clustering statistics stand out. They provide independent means of

constraining redshift-distance relations as well as maps of cosmic structure.

The widely accepted notion of the accelerating expansion first came up with

Hubble rate constraints from supernova observations, and is strengthened by

results from galaxy clustering, most notably the Dark Energy Survey (DES2)

and the Sloan Digital Sky Survey (SDSS3). These large-area surveys in

optical and infrared frequencies directly probe large scale structure by

detecting galaxies and measuring their redshifts, thus greatly improving our

understanding of the accelerated expansion of the Universe. The cosmological

constant ⇤, of uncertain origin, contributing to the Universes energy density

and thus accelerating its expansion, is one of the basic parameters in ⇤CDM.

Dark energy, a popular extension to standard cosmology generalizing the

cosmological constant, is the concept of an energy form with potentially

varying, but mostly negative pressure. It remains one of the greatest

challenges in cosmology to distinguish between a cosmological constant, dark

energy, or an alternative explanation, and to fully understand the physical

origin of cosmic acceleration. Chapter 5 deals with the problem of the weakly

constrained dark energy equation of state and the degeneracies that thus

arise with other cosmological parameters. It presents a way to analyze

observations in a model-independent way.

When Zwicky (1937) found that galaxy cluster mass estimates based on

their luminosities yield results greatly di↵erent from dynamical mass

measurements, the first evidence for a non-radiating matter, so called Dark

Matter (DM), was provided. Later observations of galaxy masses (e.g. Rubin

& Ford, 1970), the growth of large scale structure (e.g. Croft et al., 2002;

Kunz et al., 2016) and gravitational lensing mass estimates (e.g. Tyson et al.,

1990) also called for DM. In standard cosmology, roughly 85% of all matter is

thought to be dark (Planck Collaboration et al., 2016), but its nature and

origin are still unknown and alternative explanations that do not require the

DM concept still are not ruled out. See Arun et al. (2017) for a review of

theories and observations of dark matter.
2www.darkenergysurvey.org
3www.sdss.org
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With most available cosmological data located either at extremely large

redshifts, like the CMB, or at comparably close distance to us, there remains

a great lack of data at intermediate redshifts. Therefore current data is

unable even to constrain simple extensions to standard cosmology. Especially

the range of 1  z  6, where much of the important evolution in the

universe takes place, has received a lot of attention in recent years. Mapping

the matter distribution over a large fraction of this redshift range would

allow us to unambiguously constrain more general models of dark energy, as

well as cosmic curvature, among many other things (Morales & Wyithe,

2010). Redshifts beyond z ⇠ 6, including the Epoch of Reionization and the

Dark Ages, are also extremely interesting, but even harder to probe than

lower redshifts (Lewis & Challinor, 2007; Furlanetto et al., 2006; Fan et al.,

2006). In essence, measuring a much greater range of redshifts will not only

allow us to probe the redshift dependence of important cosmological

quantities, like the Hubble rate or the equation of state of dark energy, but

also enable us to test and potentially extend ⇤CDM cosmology and

fundamental theories of gravity at scales and energies never explored before

(Pritchard & Loeb, 2012; Hall et al., 2013). Planned optical experiments, like

the spacecraft Euclid4 (Laureijs et al., 2011) and the Large Synoptic Survey

Telescope5 (LSST Science Collaboration et al., 2009) will greatly increase

precision, survey area and redshift depth of galaxy clustering data. In a very

innovative approach, the next generation of radio telescopes, like the Square

Kilometer Array (SKA)6 or HIRAX (Newburgh et al., 2016a), promises to

map an even larger volume of the Universe with extremely precise redshift

information. The still young field of radio cosmology will provide new and

independent measurements of the distribution of matter in the universe,

completing the picture drawn by supernova, optical galaxy and microwave

observations, and removing degeneracies still present in today’s data sets.

Specifically, measuring the redshifted emission from the 21cm line emission of

neutral hydrogen is greatly promising (Pritchard & Loeb, 2012; McQuinn

et al., 2006; Bull et al., 2015b; Furlanetto et al., 2006). It will allow us to

4www.euclid-ec.org
5www.lsst.org
6www.skatelescope.org
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probe the redshift dependent distribution of neutral hydrogen, which is

thought to trace the underlying dark matter field, over wide and mostly

unexplored regions deep into space.

While the nature of CMB data is in principle two-dimensional, and all

current galaxy clustering as well as supernova data is at very low redshifts,

the data obtained by this new generation of telescopes will be of a fully three-

dimensional nature. This work points out some of the weaknesses of current

data sets, and shows new ways to overcome modeling and analysis problems

using the power of three-dimensional data.

Specifically, chapter 5 demonstrates how curvature constraints heavily

rely on the assumptions on dark energy. Although the current modeling of

dark energy as the cosmological constant ⇤ explains available data very well,

this might be due to the small volume explored by that data. The lack of

good physical understanding of dark energy justifies the consideration of

more general equations of state of dark energy (DE EOS) than needed to

describe the CMB and low redshift observations alone. Assuming that the

DE EOS is not necessarily fixed, but could be varying with time, greatly

weakens curvature constraints. Data gathered by an instrument like HIRAX

will put tight constraints on ⌦k, even in a model with an entirely free

functional form of the DE EOS. In order to demonstrate this, we simulate

data as obtained from HIRAX and develop a model-independent technique to

derive curvature constraints.

By combining data from planned radio experiments with planned galaxy

surveys, e.g. the Large Synoptic Survey Telescope (LSST)7 or Euclid8, we

expect to yield tighter constraints than each type of survey could obtain

individually. An example of such a synergy between di↵erent experiments is

the multi-tracer technique, which requires measurements of two or more

biased tracers of the dark matter background. The technique benefits from

tracers with very distinct biases. It is argued that certain observables can

thus be measured up to a precision surpassing the cosmic variance limit. This

fundamental limit is commonly thought to be insurmountable. It arises due

to the finite size of the observable universe, or of a given survey, which limits

7www.lsst.org
8www.euclid-ec.org
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the statistical sample size of large structures. By using a combination of

di↵erent surveys, however, one hopes to measure some quantities up to much

higher precision than cosmic variance would allow. In section 6, we

thoroughly investigate the potential of the multi-tracer technique in the case

of combining maps from LSST and SKA. We simulate data sets for each

instrument and realistically contaminate the intensity maps with foreground

radiation. We find that, after the cleaning of the foreground contamination,

the cosmic variance limit can still be breached albeit at a much smaller

margin than when foreground e↵ects are ignored. We conclude by o↵ering an

explanation for this e↵ect and discuss potential ways to solve the problem

using other survey combinations.

In chapter 7, we look at an entirely di↵erent way of combining optical and

radio maps, forecasting the signal to noise ratio for a detection of the cosmic

magnification signal. We use foreground HI maps acting on and magnifying

the clustering of background galaxies. This weak e↵ect is predicted by the

theory of General Relativity and is notoriously hard to detect. Using the

future instruments SKA, HIRAX and LSST, though, the prospects are bright

and a detection seems likely.
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2 The standard model of

cosmology

This chapter introduces concepts of standard cosmology and basic extensions,

which form the physical basis to this work. Largely following the excellent

book by Dodelson (2003), the Friedmann-Lemâıtre-Robertson-Walker space

time metric, the Friedmann equations and the most common distance notions

in cosmology are introduced in section 2.1. The chapter is concluded with a

very brief discussion of the large scale structure in the universe in section 2.2,

putting special emphasis on the angular power spectrum, including a derivation

in a general example.

2.1 Metric and distances

We start with the distance, also called proper time or line element, which is

generally given by the space-time metric gµ⌫ as

ds2 = gµ⌫dxµdx⌫ , (2.1)

where Einstein’s summation rule is applied and the infinitesimal coordinate

separations dxµ have indices µ and ⌫ running from 0 ! 3. Making use of the

standard cosmological assumption of a homogeneously expanding, isotropic

universe, the metric is heavily constrained. It can only take the form

ds2 = �dt2 + a2(t)�ijdxidxj, (2.2)

with scale factor a, cosmic time t and i, j from 1 ! 3. The metric of constant

time hypersurfaces �ij is also constrained and can be written as (Peter & Uzan,

2009)
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dx2 ⌘ �ijdxidxj =
dr2

1 � kr2
+ r2(d✓2 + sin2(✓)d�2). (2.3)

Here dx2 denotes the 3D line element with radius r, the curvature of the

metric is k and the infinitesimal solid angle is d✓2 + sin2(✓)d�2. In standard

cosmology, space is assumed to be flat, i.e. k ⌘ 0 (Dodelson, 2003). This

implies �ij ⌘ 1 in Euclidean coordinates, which gives the flat Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric

gµ⌫ =

0

BBBB@

�1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

1

CCCCA
. (2.4)

The redshift is usually defined as 1 + z = �now/�emit, with �emit the

wavelength of any radiation at its emission and �now at the time of its

detection. Using the common convention that the scale factor today a0 ⌘ 1,

their relation can easily be shown to be

1 + z =
1

a
. (2.5)

Besides this cosmological contribution, the redshift also contains other

contributions from peculiar velocities (Doppler e↵ect) and gravitational

redshift, both ignored for now.

2.1.1 The Friedmann equations

The Einstein equations describe the relation between energy, or more

specifically, the energy-momentum-stress tensor Tµ⌫ and the metric. In the

case of cosmology, the general equations with 10 components,

Gµ⌫ = 8⇡Tµ⌫ , (2.6)
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can greatly be simplified to yield the Friedmann equations (Dodelson, 2003).

The relation between metric and Einstein tensor

Gµ⌫ = Rµ⌫ � 1

2
gµ⌫R (2.7)

can be expressed using the Christo↵el symbols1

�µ
↵� =

gµ⌫

2

�
g↵⌫,� + g�⌫,↵ � g↵�,⌫

�
(2.8)

and the Ricci scalar R = gµ⌫Rµ⌫ as well as Ricci tensor

Rµ⌫ = �↵
µ⌫,↵ � �↵

µ↵,⌫ + �↵
�↵��

µ⌫ � �↵
�⌫�

�
µ↵. (2.9)

To the interested reader, Misner et al. (1973) is a voluminous but pedagogic

and thorough resource on gravitation and di↵erential geometry in general as

well as in a cosmological context.

Using the Hubble rate H = ȧ/a and Newton’s gravitational constant G,

the time-time component (µ = ⌫ = 0) of the Einstein equation for the non-flat

FLRW metric can be simplified to

H2 =
8⇡G

3
⇢ � k

a2
+

⇤

3
, (2.10)

which is called the first Friedmann equation.

Here ⇢ contains the energy density of matter and radiation, it is the time-

time component of the energy-momentum-stress tensor (Peter & Uzan, 2009),

and ⇤ is called the cosmological constant. The space components of Einstein’s

equations give Friedmann’s second equation

⇢̇ + 3H(⇢ + P) = 0, (2.11)

relating scale factor, density and pressure P .

The energy density ⇢ is a sum of components with di↵erent equations of

state. We model them as perfect fluids obeying w⇢ = P with equation of state

1We use commas as a shorthand for partial derivatives with respect to the coordinates
x, e.g. g↵�,⌫ ⌘ @g↵�/@x⌫
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parameter w. The most important components of ⇢ are the radiation density

⇢r (photons and neutrinos), the matter density ⇢m (baryonic and non-baryonic,

e.g. visible and dark matter) and the dark energy density ⇢DE. Matter in the

universe can be modeled as pressure-less dust, i.e. wm = Pm = 0, equation

2.11 then implies ⇢m / a�3. Radiation, on the other hand, has Pr = ⇢r/3,

giving ⇢r / a�4. Standard cosmology assumes that dark energy is described by

the cosmological constant, the equation of state is fixed at wDE ⌘ �1, which

gives a constant density (Dodelson, 2003).

We define the critical density ⇢cr ⌘ 3H2/(8⇡G) and the density parameters

⌦⇤ =
⇤

3H2
,

⌦k = � k

H2a2
,

⌦i =
⇢i

⇢cr
, for i = m, r, (2.12)

which turns the first Friedmann equation (eq. 2.10) into a constraint equation

(Peter & Uzan, 2009):

⌦m + ⌦r + ⌦⇤ + ⌦k = 1, (2.13)

where ⌦k ⌘ 0 in standard cosmology.

We will denote the value of any of these density parameters today (a = 1)

as ⌦i,0. Assuming the standard model of cosmology, recent measurements of

the density parameters are presented in table 2.1 (from Planck Collaboration

XIII, 2016). If allowed to vary, the same experiment constrains curvature to

|⌦k,0| . 5 ⇥ 10�3.

Allowing for k 6= 0 is one of the most basic extensions and has not been

ruled out by observations yet (Leonard et al., 2016). Most theories of inflation

predict a very small amount of curvature in the late-time universe, e.g. slow-

roll eternal inflation ⌦k,0 < 10�4 (Guth et al., 2014) and false-vacuum eternal

inflation ⌦k,0 > �10�4 (Kleban & Schillo, 2012). This level of precision has

not yet been achieved and likely requires strong assumptions or knowledge of

dark energy, see e.g. chapter 5 or Leonard et al. (2016) for more information.
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⌦⇤,0 ⌦m,0 ⌦r,0 ⇥ 105 H0

0.691 ± 0.006 0.309 ± 0.006 9.21 ± 0.22 67.7 ± 0.5

Table 2.1: Parameter constraints from Planck Collaboration
XIII (2016), with H0 in units of km s�1 Mpc�1. The error
on ⌦r,0 was calculated from the CMB temperature following

Dodelson (2003). These results assume a flat universe.

Another extension to ⇤CDM is to include more general dark energy

models than ⇤, which greatly a↵ects curvature constraints. A basic model

uses a first order Taylor expansion for its equation of state (called the CPL

parametrization), wDE = w0 + zwa/(1 + z) (Linder, 2003; Chevallier &

Polarski, 2001), but this is not enough to model all possible degeneracies that

arise between curvature and dark energy with a general equation of state.

Allowing for a comparably complex dark energy model, as well as for

curvature, makes constraining either of them very di�cult, if not impossible,

with present data-sets. Model independent tests of curvature are discussed in

e.g. Clarkson et al. (2007), Takada & Dore (2015) and Nesseris & Sapone

(2014). In chapter 5 we examine the e↵ects of the dark energy equation of

state on curvature constraints with HIRAX. We consider dark energy with a

general, piecewise constant redshift dependence as well as the CPL

expansion.

2.1.2 Distance measures

To calculate the comoving distance to an object at a(t), we start with the

FLRW metric

0 = ds2 = dt2 � a2dx2, (2.14)

which yields dt2/a2 = dx2 and thus

� ⌘
Z t

0

t

dx =

Z t
0

t

dt0

a(t0)
=

Z 1

a

da0

a02H(a0)
. (2.15)

The maximum comoving distance anything could have traveled since the

beginning of the universe, ⌘ =
R t

0
dt0

a(t0) , is called conformal time or comoving

horizon.
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Observations of the angle subtended by objects with known physical size l

(such objects are called standard rods) measure the angular diameter

distance. It is defined as DA = l/� where � is the (small) subtended angle of

the object. In order to relate this distance measure to the comoving distance,

a cosmological model needs to be assumed:

DA = aSk(�). (2.16)

Here the function

Sk(�) =
sinh

�p
⌦k,0H0�

�

H0

p
⌦k,0

. (2.17)

relates the the comoving radius � of a sphere centered at � = 0 to its

comoving surface 4⇡Sk(�)2, in other words r = Sk(�). Equation 2.17 is valid

for any sign of ⌦k and converges to Sk = � for ⌦k,0 ! 0. Similarly to the

angular diameter distance, the radial measurement of a standard rod is an

extremely useful probe. Instead of the distance, it allows direct constraints on

the redshift dependence of the Hubble rate via d�/dz ⇠ 1/H(z). Combining

measurements of radial and angular standard rods has an immense potential.

As curvature enters equations 2.10 and 2.16 in distinct ways, its contribution

can thus unambiguously be extracted if H and DA are measured well enough

on the same redshift range. See Blake & Glazebrook (2003), chapter 5, or the

next section 2.2 or for more information.

There are other distance measures in cosmology, a very important

example is the luminosity distance to an object of known absolute luminosity

L. The relation between observed flux F , absolute luminosity, comoving and

luminosity distance is DL ⌘ L/(4⇡F ) = �/a.

Constraining the redshift - distance relation, e.g. by measuring the redshifts

to objects of known physical size or luminosity, is one of the most important

probes of cosmology and has significantly contributed to the advancement and

success of modern cosmology. Arguably the most well known example is the

Nobel-prize winning work on type Ia supernovae, the first detection of the

Universe’s accelerated expansion Riess et al. (1998); Perlmutter et al. (1999).

A more recent example is Conley et al. (2006).
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2.2 Inhomogeneities and Anisotropies

While the universe is thought to be homogeneous and isotropic on the largest

scales, small deviations from this arise due to cosmic structure formation.

The clustering statistics of cosmic structure contain an immense amount of

information on physics and processes in the history of the universe. Large

and small scale structure surveys with planned radio and optical telescopes

will facilitate the use of much of the great potential of this information. They

promise to create precise maps of the matter distribution over vast volumes.

Apart from being an important probe of the physics and cosmological model

needed to describe their inhomogeneities and anisotropies, such maps can

also provide cosmologists with a standard rod, the Baryon Acoustic

Oscillations. These oscillations are a remnant of physics in the early universe

and allow constraints on the redshift-distance and redshift-Hubble rate

relation on a much larger range than ever probed before.

2.2.1 The 3-D power spectrum

Inhomogeneities can be characterized with the over-density �(~x) = ⇢(~x)/⇢̄� 1,

where ⇢̄ is the mean of a density ⇢(~x). The power spectrum P (k) is related to

the Fourier transformed over-density �(~k) as

h�(~k)�(~k0)i = (2⇡)3P (k)�3(~k � ~k0), (2.18)

where �3 is the three-dimensional Dirac delta and angular brackets denote

an average over the entire space (Dodelson, 2003). This definition imposes

h�(~k)�(~k0)i = f(k = |~k|) and ~k = ~k0, which is true thanks to the translational

and rotational invariance given by the principles of homogeneity and isotropy.

Under the assumption that scale and time dependence can be separated into

two factors, the primordial potential �p and the late-time potential � can be

related as

�(~k, a) =
9

10
�p(~k)T (k)

D(a)

a
, (2.19)

where the transfer function T (k) describes the evolution of perturbations, and

the growth function D describes the scale-independent growth. The growth
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rate is defined as f = d log D/d log a and the potential obeys gii = a2(1 + 2�)

(i 6= 0). Neglecting the small contribution of radiation, the relation becomes

�(~k, a) =
3

5

k2

⌦mH2
0

�p(~k)T (k)D(a), (2.20)

or in terms of the power spectra

P (k, a) =

✓
3

5

k2

⌦mH2
0

T (k)D(a)

◆2

P�(k), (2.21)

with the power spectrum of the primordial potential P� serving as the initial

condition, derived from inflationary theory. We can now calculate the root

mean square mass fluctuation within a sphere of radius R (Fan et al., 1997):

�2
R =

1

2⇡2

Z
dkk2P (k)W 2

R(k), (2.22)

where the window function WR is the Fourier transformed top hat function with

radius R. The parameter �8 is called the matter fluctuation at R = 8h�1Mpc

and is often used to set the overall normalization of P .

As stated before, cold dark matter as well as dust have zero pressure and

represent the overwhelming majority of matter in the universe. Without

pressure to smooth out inhomogeneities, all modes that entered the horizon

evolve identically (Dodelson, 2003). By definition, this evolution is described

by the growth factor, which can be derived analytically, see Dodelson (2003).

In order to obtain precise estimates of the transfer function T , however,

numerical methods are necessary to solve the Einstein and Boltzmann

equations. There exist publicly available codes giving accurate and

computationally e�cient results, e.g. CMBFAST Seljak & Zaldarriaga (1996)

and CAMB Lewis et al. (2000). The main reference of this chapter, Dodelson

(2003), presents interesting and pedagogic derivations of analytic results in

the large and small scale limits.

2.2.2 Baryon Acoustic Oscillations

The speed of sound in the early universe plasma sets a fundamental limit to

the maximum distance any acoustic wave could have traveled before
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recombination. At recombination, the plasma cooled su�ciently to form the

first neutral atoms, thus decoupling baryons and photons and preventing any

further propagation of sound waves. This distance, ⇠ 150 Mpc comoving

distance (Eisenstein & Hu, 1998), is called the sound horizon, and is

observable in the CMB (e.g. Spergel et al., 2007) and in galaxy clustering

(Eisenstein et al., 2005; Cole et al., 2005) as a preferred clustering scale in

real space (the acoustic peak), or as the so-called Baryon Acoustic

Oscillations (BAO) in the matter power spectrum. Thanks to their large

scale, the BAO remain in the linear regime since decoupling and are therefore

a highly robust standard ruler even at low redshifts, normalizable with CMB

data (Eisenstein et al., 2007, 1998; Hu et al., 1999; Wagner et al., 2008). For

a good summary of the BAO in the CMB, see e.g. Hu & Dodelson (2002). In

Padmanabhan & White (2009) it is demonstrated that the acoustic peak is

both shifted and broadened during structure formation. These e↵ects are well

described by second order perturbation theory and are less than ⇠ 1%. The

BAO fraction fBAO is defined by splitting P (k) into a smooth and an

oscillatory part, such that

P (k) = (1 + AfBAO(k))Psmooth(k), (2.23)

with the BAO amplitude A. This separation is often done such that fBAO has

no smooth overall trend (Blake & Glazebrook, 2003; Bull et al., 2015b).

Figure 2.1 shows the forecast constraints on fBAO for HIRAX, a radio

interferometer further described in section 4.1. Its range of sensitivity is

optimized for BAO measurements in both angular and radial direction, thus

allowing for simultaneous measurements of DA and H down to a 1%-level.

The H constraints are slightly better thanks to the good frequency resolution

of 21cm intensity mapping experiments (see chapter 5).

2.2.3 The angular power spectrum

Expanding a function in terms of spherical harmonics is suitable especially on

a spherical surface, e.g. the night sky, or the surface of the earth. The popular

text book on electrodynamics Jackson (1999) contains a detailed introduction
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Figure 2.1: Fisher forecasted constraints on fBAO for HIRAX.
HIRAX is an interferometer optimized for BAO measurements,
thus also putting tight constraints on DA and H over a wide
redshift range. This figure shows the combined constraint from
all frequency bins. The forecasts presented in chapter 5 are
derived from these BAO constraints, which are shown here for
illustration. Further details and references are given there.
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to this set of functions. Any function V(n̂), where n̂ is a unit vector, can be

written as a sum with coe�cients a`m:

V(n̂) =
1X

`=1

X̀

m=�`

a`mY`m(n̂), (2.24)

with the complete set of orthonormal functions {Y`m| ` 2 N, m 2 Z, � ` 
m  `}, the spherical harmonics. It is common to refer to the coe�cients a`m

as multipole moments, and to ` as multipole. The notation
P

`,m will be used

as a shorthand for
P1

`=1

P`
m=�` from now on. Inverting eq. 2.24 is straight

forward, giving

a`m =

Z
d⌦Y ⇤

`m(n̂)V(n̂), (2.25)

where the superscript ⇤ denotes complex conjugation.

Due to isotropy and homogeneity, it is impossible predict the value of a

specific a`m in cosmology, but one can calculate the distribution from which

it is statistically drawn. While the mean value is always zero, ha`mi = 0, the

variance, which we call angular power spectrum C`, is given by

ha`ma⇤
`0m0i = �``0�mm0C`, (2.26)

where again the delta function �ij = 1 if i = j and 0 otherwise. To derive the

C`’s in a practical example, we follow Battye et al. (2013) (note the change of

notation). Starting from any kind of 3D overdensity �T̃ (~x, z), e.g. a normalized

temperature fluctuation, its projection on the sky can be calculated as

�T (n̂) =

Z 1

0

dzW (z)�T̃ (�(z)n̂, z), (2.27)

where the projection kernel W describes the selection of sources which are

projected. This varies depending on the survey and the observed objects, e.g.

for a galaxy number count survey, W is given by the normalized number density

of detected galaxies LSST Science Collaboration et al. (2009), or for intensity

mapping it is often taken to be a top hat window function, see e.g. chapter 7.

We first transform to Fourier space �T̃ (�(z)n̂, z) =
R

d3k
(2⇡)3 T̃ (~k, z)ei�(z)n̂~k and

use the Rayleigh plane-wave expansion with spherical Bessel functions j` and
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unit vector k̂, ei
~k~x = 4⇡

P
`,m i`j`(kx)Y`m(n̂)Y ⇤

`m(k̂), to rewrite eq. 2.27 as

�T (n̂) = 4⇡
X

`,m

i`
Z

dzW (z)

Z
d3k

(2⇡)3
�T̃ (~k, z)j`(k�(z))Y ⇤

`m(k̂)Y`m(n̂). (2.28)

The expressions for the multipole moments and their variance become

lengthy,

a`m(n̂) = 4⇡i`
Z

dzW (z)

Z
d3k

(2⇡)3
�T̃ (~k, z)j`(k�(z))Y ⇤

`m(k̂), (2.29)

ha`ma⇤
`0m0i =

Z
dzW (z)

Z
dz0W (z0)

Z
d3k

(2⇡)3

Z
d3k0

(2⇡)3

⇥⌦�T̃ (~k, z)�T̃ (~k0, z0)
↵
j`(k�(z))j`0(k

0�(z0))Y ⇤
`m(k̂)Y ⇤

`0m0(k̂0), (2.30)

but the variance can be simplified using the orthonormality of the spherical

harmonics, and assuming that �T̃ is a biased tracer of the dark matter field.

The latter means that we express its power spectrum in terms of the dark

matter power spectrum Pcdm (see eq. 2.18), i.e.

h�T̃ (~k, z)�T̃ (~k0, z0)i ⌘ (2⇡)3�(~k � ~k0)b(z)b(z0)Pcdm(k)D(z)D(z0), with the

tracer bias b. This gives

C` =
2

⇡

Z
dzb(z0)W (z)D(z)

Z
dz0b(z0)W (z0)D(z0)

⇥
Z

k2dkPcdm(k)j`(k�(z))j`(k�(z0)). (2.31)

We use Limber’s approximation (Loverde & Afshordi, 2008) to estimate the k

integral for large ` as

Z
k2dkPcdm(k)j`(k�)j`(k�0) ⇡ Pcdm

✓
` + 1/2

�

◆
�(� � �0)

�2
, (2.32)
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and change variables dz0 = H0E(z0)d�0 to finally write

C` = H0

Z
dzE(z)

✓
b(z)W (z)D(z)

�(z)

◆2

Pcdm

✓
` + 1/2

�(z)

◆
. (2.33)

In a more general situation, the quantity of interest is not normalized, in which

case a redshift dependent factor needs to be included, for example by using

b(z) ! b(z)T̄ (z), with T̄ the mean of T̃ at redshift z. In section 4.4.3, T̄ and

b are discussed in the case of 21cm intensity mapping. See below for a brief

discussion of this in the context of galaxy number counts, which allows to write

equation 2.33 for the large-scale, angular galaxy power spectrum.

2.2.4 The galaxy bias

The galaxy bias bg linearly relates the clustering of galaxies to that of the

underlying dark matter background. The galaxy power spectrum is often split

into two summands, Pg(k) = P1h +P2h, where the one-halo term P1h describes

the clustering of galaxies within the same dark matter halo, and the two-halo

term P2h is the power spectrum of galaxies populating di↵erent halos. On

scales larger than the size of a typical halo, P1h becomes negligible, Pg(k) ⇡
P2h. In what follows, we also ignore the internal structure of halos, which is

reasonable on large scales and allows for an easy relation between the galaxy

power spectrum and halos. Using the halo mass function nh(m), the halo bias

bh and the mean number of galaxies within a halo of mass m hNg|mi, one can

write (Cooray & Sheth, 2002)

Pg(k) = Pcdm

✓Z
dmnh(m)bh(m)

hNg|mi
n̄g

◆2

| {z }
b2
g

, (2.34)

where the factor on the right side is the galaxy bias. The mean number of

galaxies is given by n̄g =
R

dmnh(m)hNg|mi, and the halo bias can be

calculated from gravitational collapse, giving results that agree well with

simulations (Sheth & Tormen, 1999):
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bh = 1 +
q⌫ � 1

�̃
+

2p/�̃

1 + (q⌫)p
. (2.35)

Here ⌫(m, z) = �̃2(z)/�2(m), �̃(z) = �c/D(z), �c = 1.686 and the parameters

(p, q) = (0.3, 0.707). Using this galaxy bias, along with an appropriate window

function W (z) representing the galaxy population and magnitude threshold

of the telescope, equation 2.33 describes the large scale angular clustering of

galaxies (compare equation 7.14). Throughout this work, we will use two

similar functions to calculate the galaxy bias. Chapter 6 takes bg = 1 + 0.84z

from LSST Science Collaboration et al. (2009) and in chapter 7 we use fits

from Alonso et al. (2015b).
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3 Forecasting methods

All genuine research presented in this thesis assesses the applicability of novel

data analysis techniques on data obtained from yet to be finished instruments.

Predicting or forecasting the constraining power of a given instrument-data

analysis combination requires a set of statistical tools; the ones used for this

thesis are reviewed here. After starting with Bayes theorem, an introduction

to Fisher formalism will then present a quick way to estimate performance.

Markov Chain Monte Carlo methods, giving much better precision at the cost

of increased computation demand, are reviewed at the end of this chapter.

3.1 Bayes’ theorem

The conditional probability p(A|B), i.e. the likelihood of A given that B is

true, can be rewritten in terms of p(B|A) and the prior probability p(B) using

Bayes theorem (Kendall et al., 1987). This is useful when p(B|A) is comparably

easy to calculate, but p(A|B) is not directly accessible, often the case in data

analysis. It allows easy estimation of the likelihood of a cosmological model

with parameters ⇥ being true, given a data set y. We write Bayes’ theorem as

p(⇥|y) =
p(y|⇥)p(⇥)R
p(y|⇥)p(⇥)d⇥

. (3.1)

The prior probability p(⇥) is generally motivated either by results from other

experiments, a physical understanding of the model, or set to be uninformative

(see e.g. Je↵reys prior (Je↵reys, 1946)). The denominator in eq. 3.1 is a scaling

factor, often called the evidence for the model, and only has to be considered

when di↵erent models are compared. It is irrelevant for this work, where a

model-independent approach is desired. In chapter 5, we exclusively used flat

priors, i.e. priors which are zero outside a set parameter range, and equal to

one inside.



3.2. Fisher matrix formalism 21

The likelihood L ⌘ p(y|⇥) is generally calculated as (see also eq. 5.8):

L = exp

✓
�1

2
(⇠ � µ)TC�1(⇠ � µ)

◆
, (3.2)

where ⇠ is a vector containing all measurements of observables and µ contains

the model prediction of the observables given the fiducial model ⇥. The

covariance matrix C is determined by the total measurement error

(instrumental and cosmic variance contributions).

3.2 Fisher matrix formalism

Fisher formalism is very useful for quick estimates of posterior parameter

distributions, under the assumption that all involved probability distributions

are Gaussian. A brief and concise starting guide can be found in Coe (2009).

The Fisher matrix is simply the inverse of the parameter covariance matrix

and can be calculated as

Fjk = (C�1)jk =
X

b

1

�2
b

@fb
@⇥j

@fb
@⇥k

, (3.3)

where fb(⇥), for b 2 {1, ..., B}, is the model prediction of an observed quantity

yb with Gaussian uncertainty �b and ⇥ denotes the fiducial parameters. We

can also relate the Fisher matrix to the probability of the parameters given

the data, p(⇥|yb) (see eq. 3.1), as

Fjk = �
⌧

@2 log p(⇥|yb)
@⇥j@⇥k

�

b

. (3.4)

A Fisher matrix can easily be transformed to a new parameter set ⇥0 using

the transformation matrix Mjk = @⇥j

@⇥0
k
,

F 0 = MTFM. (3.5)

The diagonal of the covariance matrix contains the Gaussian uncertainties,

with all other parameters marginalized. If one instead wants to fix a certain

parameter, i.e. assume perfect prior knowledge on it, its row and column
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have to be removed from the Fisher matrix before inverting. Fisher matrices

from di↵erent data-sets can be added to yield the combined constraints, i.e.

F =
P

i Fi. Their ease of use and computational speed makes Fisher

matrices a great rough estimation method for parameter constraint forecasts,

but only if they are expected to follow Gaussian distributions. A nice

application in a cosmological context is presented in Albrecht et al. (2009).

In more complex situations, or when more precision is desired, Markov Chain

Monte Carlo methods deliver a computationally e�cient means to sample

and access the full posterior distribution.

3.3 Markov Chain Monte Carlo: a tool for

forecasting and parameter estimation

Markov Chain Monte Carlo (MCMC) methods significantly improve the

computational e�ciency of complex model analyses in Bayesian statistics

Kass et al. (1998). The range of applications is vast and spreads across many

disciplines of science, data analysis in modern cosmology is almost

unthinkable without it (see e.g. are Abbott et al., 2018; Planck Collaboration

XIII, 2016; Lewis & Bridle, 2002; Audren et al., 2013). Chapter 5 in this

work heavily relies on MCMC methods to derive model independent

constraints on curvature. Without the e�cient use of MCMC methods and

algorithms, such an analysis would be extremely di�cult, if not unfeasible.

This section presents a brief overview of the method we used.

When forecasting for future instruments, the experimental covariance

matrix (eq. 3.2) can also be derived using Fisher formalism. Depending on

the complexity of the model, calculating eq. 3.2 can still be computationally

challenging, making direct sampling very di�cult. Furthermore, complex

models often include a set of nuisance parameters ↵ in ⇥. Their distribution

is not interesting itself and they need to be marginalized in order to obtain

the relevant posterior. Denoting the parameters without the nuisance

parameters as ⇥̄, the exact result of a marginalized posterior is obtained by

integrating
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p(⇥̄|y) =

Z
p(⇥, ↵|y)d↵. (3.6)

Given a large set of nuisance parameters ↵, this integral can be extremely

di�cult to compute. Fortunately, an MCMC method automatically provides

samples from the marginalized distribution (Foreman-Mackey et al., 2013).

3.3.1 Sampling distributions

A widely known and easy to implement MCMC sampling algorithm is the

Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953).

From a starting point ✓0 in parameter space, it uses random numbers to

sample the jumping distribution, which sets the step size to the candidate ✓0

for the first iteration ✓1. Any candidate ✓0 for sample i + 1 is accepted or

rejected based on the acceptance ratio p(✓0|y)/p(✓i|y) = r. The candidate is

accepted if either r � 1 or if a random number in the interval [0, 1] is less

than or equal to r. This measure prevents the algorithm from permanently

remaining at a local maximum in the distribution. A Metropolis-Hastings

algorithm set up with a well chosen starting point and jumping distribution

will generate samples which quickly converge to the desired distribution after

a burn-in period, which we discuss in more detail in subsection 3.3.2.

However, finding a good jumping distribution is one of the major challenges.

This distribution is parametrized with so-called tuning parameters, which

often have to be hand-picked, and when ill chosen, they significantly increase

the autocorrelation (see subsection 3.3.2) and burn-in time. Depending on

the dimensionality of the problem, and the shape of the distribution, hand

tuning the parameters for a Metropolis-Hastings based algorithm may

quickly become impractical. Attempts to computationally determine the

optimal tuning parameters often require long burn-in phases, where smaller

samples are used to optimize the parameters (e.g. Dunkley et al., 2005;

Widrow et al., 2008). For this work we used the openly available python

package called emcee (Foreman-Mackey et al., 2013), which is based on the

a�ne-invariant ensemble sampler proposed by Goodman & Weare (2010). An

immense benefit of this sampler is the low number of only 1 or 2 tuning
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parameters, as compared to / N2 for Metropolis-Hastings with an

N -dimensional model. Another major advantage is the simultaneous

sampling of the distribution using a number of K walkers, which evolve

independently. This again improves the autocorrelation and allows for

e�cient multiprocessing, distributing the walkers on di↵erent CPUs.

3.3.2 Convergence

With many convenient software packages available, MCMC samplers are easy

and quick to set up. Arguably the trickiest part about it is judging the

performance of an algorithm, and deciding on the necessary number of steps

to sample the distribution su�ciently and accurately. A good summary of

this topic is given in Cowles & Carlin (1996). This subsection elaborates on

the techniques used in chapter 5.

Amongst many other options to quantify convergence, the Gelman Rubin

test (Gelman & Rubin, 1992; Brooks & Gelman, 1998) stands out as a tool to

help gauge the necessary number of elements in an MCMC sample. It exploits

the presence of multiple chains to evaluate their convergence by comparison,

making it particularly useful combined with the emcee package, which runs K

walkers at the same time. We define �̄2 as the mean of the variances of all

chains, i.e. �̄2 = 1
K

PK
i=1 �̂2

i , where each walker has variance �̂2
i . The posterior

mean of all chains is µ̄ = 1
K

PK
i=1 µ̂i, with µ̂i the mean of walker i. If we write

the variance of the mean of individual walkers as V = 1
K�1

PK
i=1(µ̂i � µ̄)2, the

true full variance �2 can be estimated with a weighted sum

�̄2
+ =

n � 1

n
�̄2 + V. (3.7)

Following Brooks & Gelman (1998), the sampling variability of the overall

mean µ̄ can be accounted for using a pooled posterior variance estimate V̂ =

�̄2
+ + V/K. The potential scale reduction factor (PSRF) is then defined as the

ratio of the pooled posterior variance and the mean variance of all walkers,

R̂c = a
V̂

�̄2
. (3.8)
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The correction due to a = (d̂ + 3)/(d̂ + 1) is usually small because the degrees

of freedom estimate d̂ tends to be very large at convergence. The PSRF is

close to unity for a converged posterior, and can thus be used as a diagnostic.

Depending on the requirements, the imposed conditions can be more or less

stringent. It is important to remember, though, that even the common choices

of R̂c < 1.2 or 1.1 are not always enough to guarantee convergence. It can

help to also monitor �̄2 and V̂ separately and to keep track of R̂c as a function

of iteration number, as it may not be monotonously decreasing (Brooks &

Gelman, 1998).

Once a chain is converged and long enough, the unconverged burn-in

sample has to be removed. The remainder may still su↵er from significant

autocorrelation, which can lead to a bias towards tighter constraints. The

autocorrelation time ⌧ (e.g. Sokal, 1997) is defined as the minimum number

of steps between two points in order for them to be fully uncorrelated. It is a

useful concept to diagnose and correct for autocorrelation, and to estimate

the necessary number of steps in the chain. The autocorrelation function

Ā(t) for a finite chain fi with n elements can be estimated as

Ā(t) =
1

n � t

n�tX

i=1

(fi � µ)(fi+t � µ), (3.9)

where µ denotes the mean of the chain, and we normalize A(t) ⌘ Ā(t)/Ā(0).

Note that in practice, it is more e�cient to compute A in Fourier space than

by using equation 3.9 directly. The integrated autocorrelation time is

⌧ =
1X

t=�1
A(t) (3.10)

and can be estimated in di↵erent ways; we used the software package emcee.

A sample directly generated by MCMC methods generally su↵ers from non-

negligible autocorrelation, which can be removed by ‘thinning the chain by

the correlation time ⌧ ’, i.e. discarding all but the ⌧ ’th elements in the chain.

Assuming that the number of elements in the chain is large enough, n � ⌧ ,

the resulting sample should be free from autocorrelation for t 6= 0 and thus

accurately represent the true distribution. The concept of the autocorrelation
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time is only useful when applied to a converged chain.
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4 Radio cosmology

The Planck measurement of the CMB has almost reached the cosmic variance

limit on large scales, but mapping of the more late-time structure in the

universe su↵ers from significantly larger uncertainties, if any data is available

at all. Planned optical telescopes, like LSST and Euclid, aim to vastly extend

the volume of previous galaxy surveys. Their range is limited, however, by

the requirement of resolving individual galaxies, which needs high

sensitivities and thus long observation times, and by dust, which is a major

limitation for optical surveys at higher redshifts. The addition of large radio

telescopes to the set of cosmological instruments will supply vital information

on a much deeper redshift range. This will open many observational windows,

calling for new data analysis methods and strategies. One of these strategies

is intensity mapping of the 21cm line emission of neutral hydrogen. Intensity

mapping does not resolve individual sources but detects integrated emission

of all objects within a given pixel. This technique will facilitate observations

of particularly large volumes at the expense of weaker angular resolution.

Section 4.1 briefly reviews the planned radio and optical instruments used

for this work. Then, sections 4.2, 4.3 and 4.4 summarize di↵erent types of

planned radio surveys and corresponding cosmological probes, following Square

Kilometre Array Cosmology Science Working Group et al. (2018) as a main

reference. Special emphasis is put on 21cm intensity mapping, which forms

the basis of chapters 5 - 7.

4.1 Planned radio and optical instruments for

cosmology

Among the planned radio telescopes, this work specifically focuses on the

Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX), and the
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Square Kilometre Array1 (SKA). These complimentary instruments will share

their site in the Karoo desert in South Africa. HIRAX is planned as a set of

1024 6 m radio dishes arranged in a close-packed square grid. This

interferometer will operate on a frequency range of 400-800 MHz, which

corresponds to a redshift range of 0.8-2.5. The design is primarily optimized

to extract the BAO feature from the 3D power spectrum of 21cm intensity

maps; see chapter 5 for more information. In contrast to more conventional

telescope designs, HIRAX will not have a tracking machinery. It will instead

use the earth’s rotation to observe stripes of the sky by drift scanning, see

also 5.2.2. After a certain amount of time, all dishes are manually rotated

and pointed to a new direction, thus observing another stripe of the sky.

Thanks to the large field of view, HIRAX is also expected to detect many

transients, like Fast Radio Bursts (FRB), which are still poorly understood

(Newburgh et al., 2016b), but might be used for cosmology (Walters et al.,

2018).

The SKA is an immense international project. Initiated in the 1990s, it is

planned to consist of individual antennas spread out across many countries in

southern Africa and Australia. After completion of its precursors and

pathfinders, first observations with a partial array of SKA phase 1 (SKA1)

are scheduled to take place until 2020. An upgrade to SKA phase 2 (SKA2)

during the 2020s is designed to increase collection area 10-fold (Garrett et al.,

2010; Ekers, 2012; Huynh & Lazio, 2013). There are several pathfinder

projects, like the Australian SKA Pathfinder2 (ASKAP) (Schinckel et al.,

2012), the Hydrogen Epoch of Reionization Array3 (HERA) (DeBoer et al.,

2017), the Murchison Widefield Array4 (MWA) (Lonsdale et al., 2009) and

the successor of the Karoo Array Telescope (KAT), MeerKAT5 (Jonas &

MeerKAT Team, 2016), whose construction in the Karoo in South Africa was

finished in 2018. Apart from intensity mapping and astrophysical probes, it

can also provide unrivaled HI galaxy surveys in the pre-SKA1 era

1www.skatelescope.org
2www.atnf.csiro.au/projects/askap
3reionization.org
4www.mwatelescope.org
5www.ska.ac.za/science-engineering/meerkat
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(Cunnington et al., 2018). Section 4.4.4 documents Fisher forecasts provided

for the MeerKLASS cosmological survey proposal (Santos et al., 2016).

SKA1 LOW, located in Western Australia, is a planned aperture array

of 512 stations in a large core with three spiral arms, giving it a maximum

baseline of 65 km, observing at 50 - 350 MHz. Its main science drivers are the

Epoch of Reionization and pulsar physics (G. Labate et al., 2017).

This work puts special emphasis on SKA1 MID, located in the Karoo in

South Africa. Observing at frequencies ranging from 350 to 1750 MHz, it will

consist of all 64 MeerKAT dishes with 13.5 m diameter, whose construction

has already been finished, and 133 SKA dishes with 15 m diameter (Square

Kilometre Array Cosmology Science Working Group et al., 2018). MeerKAT

is used as an independent instrument until completion of SKA1 MID, with

which it will then be merged. The dish signals will be both correlated with

each other (interferometry) and used in the so-called ‘single dish mode’,

simply adding the autocorrelation signals of each one. The former allows

resolving extremely small scales, while the latter makes scanning of large

scale modes possible, which is vital for cosmological surveys, e.g. probing the

matter power spectrum. The much larger dish size, as well as the longer

separation of dishes (baselines) and the smaller total number of dishes

compared to HIRAX, give SKA1 MID a very di↵erent set of properties,

strengths and weaknesses, albeit observing much of the same frequency

range. In particular, while HIRAX’ interferometric resolution is optimized for

a BAO detection, it misses larger scales due to its limited field of view.

Observations in single dish mode do not su↵er from this kind of restraints,

large scale coverage being determined simply by the survey area. Therefore

larger scales can be mapped by SKA1 MID in single dish mode, but also

when working in interferometer mode it adds information on the smallest

scales, thanks to extremely long baselines and large dish sizes. In order to

maximize scale and frequency coverage, combining information obtained from

several instruments like SKA and HIRAX is imperative and allows to extract

the maximum amount of information from the data acquired; see chapter 7

for an analysis that greatly benefits from the combination of SKA1 MID and

HIRAX. For more information on radio astronomy, Wilson et al. (2013)
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provides a thorough resource, especially on the mentioned single dish

observations, interferometry and aperture arrays.

It is also very advantageous to combine radio data sets with optical

galaxy surveys. Although this work is focused on radio cosmology, analyses

using real and simulated ‘mock’ data from optical surveys are additionally

presented. Existing galaxy clustering data is used from data release III of the

Sloan Digital Sky Survey6 (SDSS) Sánchez et al. (2017), which allows BAO

constraints from its galaxy counts with precise spectroscopic redshift

information. Data collection with its dedicated 2.5 m optical telescope,

located at the Apache Point Observatory7 in New Mexico, started in 2000

and is ongoing still (Gunn et al., 2006). Among the large number of planned

optical surveys, the Large Synoptic Survey Telescope8 (LSST) stands out due

to its large overlap of survey area with the SKA. LSST is a single large

instrument with an 8.4 m primary mirror, currently under construction in

Chile, with planned completion in 2019. Its extremely large field of view will

make it a pristine survey telescope, locating billions of distant galaxies and

measuring their photometric redshifts (LSST Science Collaboration et al.,

2009).

4.2 Radio continuum

By using the integrated emission of a source over a very broad frequency range,

a radio continuum survey is able to detect and resolve comparably weak and

distant sources, and to a large extent even resolves shapes of galaxies. The

main sources of radio continuum emission are active galactic nuclei and star

formation (Wilman et al., 2008). Inevitably, such a survey lacks the redshift

precision of an emission line survey, but photometric redshifts can be obtained

up to a redshift of zphoto�max ⇠ 2.0 (Square Kilometre Array Cosmology Science

Working Group et al., 2018). Useful observables are the distribution of shapes

of objects and number count statistics, thus the following probes stand out

particularly for a radio continuum survey:

6www.sdss.org
7www.apo.nmsu.edu
8www.lsst.org
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• Weak gravitational lensing

The path of light propagating through the universe is bent by the

matter it encounters, resulting in image distortions. The term weak

lensing refers to the case of images distorted so weakly that a single

lensed source does not allow for a detection of the deflection. An

introduction to this statistical measurement is presented in Dodelson

(2003). The very long observed wavelengths in the radio generally make

it very hard to resolve shapes of individual sources. However, a large

instrument like SKA1 can meet the resolution requirements needed for

competitive weak lensing analyses in the radio (Square Kilometre Array

Cosmology Science Working Group et al., 2018). Apart from

autocorrelating cosmic shear measurements of a radio telescope,

cross-correlations to the optical can be used to reduce systematic e↵ects

on galaxy shape measurements from either survey. This is based on the

the assumption that shape measurements in the optical and radio do

not su↵er from the same systematic e↵ects. Such a cross-correlation

analysis retains most of the constraining power of the individual

surveys, where the forecasts for SKA1 are comparable to the

performance of experiments such as the Dark Energy Survey (DES)

(Dark Energy Survey Collaboration et al., 2016). Weak lensing is

sensitive to the geometry of the universe, and therefore an especially

useful tool to constrain the equation of state of dark energy (Patel

et al., 2010). An introduction to weak gravitational lensing can be

found in Bartelmann & Schneider (2001); while Patel et al. (2010)

presents an exploratory analysis in the radio.

• Angular correlation

Without the requirement of resolving shapes, the angular correlation of

radio galaxy number counts brings insight into the large scale

distribution of galaxies, and thus of the underlying dark matter

distribution. The resulting parameter constraints do not always

improve upon those from presently available data like the CMB, but do

provide a largely independent measurement (Camera et al., 2012;

Ferramacho et al., 2014).
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• Cosmic dipole

Slight deviations from large scale isotropy of the universe are expected

to be dominated by the proper motion of the solar system with respect

to the CMB. However, other e↵ects, like large scale structures, can

contribute (Bengaly et al., 2018). From CMB data alone, it is di�cult

to distinguish between di↵erent contributions to the dipole, but a radio

continuum survey can provide important independent measurements

and thus allows us to disentangle the sources of the dipole signal.

Available data seems to indicate good agreement of the dipole

directions, but a considerable discrepancy, a factor of 2 � 5, in the

amplitude. See e.g. Blake & Wall (2002); Colin et al. (2017), and for a

detailed study with SKA1 and SKA2 see Bengaly et al. (2018).

4.3 21cm galaxy clustering

The hyperfine 21cm line emission of neutral hydrogen (HI), caused by a

forbidden spin flip of the electron, is of extremely low intensity. Detecting

and resolving the 21cm line emission of galaxies is di�cult even with next

generation telescopes and thus limited to comparably low redshifts (e.g.

z . 0.7 in the case of SKA1 and z . 2.0 for full SKA2 (Yahya et al., 2015)).

In spite of this limitation, HI galaxy surveys will likely be very competitive

and could provide the best dark energy figure of merit of all current or

planned large-scale surveys (Yahya et al., 2015). On top of the positions and

precise redshifts, which will be useful for clustering statistics, the sizes and

21cm line width of a subset of sources will also be available. The Tully-Fisher

relation allows direct estimates of peculiar velocities from the 21cm line

profile (Tully & Fisher, 1977; Koda et al., 2014), and can thus be used to

sample the peculiar velocity field of galaxies, which among other things is a

particularly useful tool to test theories of modified gravity, see e.g. Ivarsen

et al. (2016). While it is still unclear how well sizes of galaxies can be

measured with HI surveys, such data could be used to test the so-called

Doppler magnification, which is an e↵ect similar to weak gravitational
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lensing, but caused by the peculiar motion of galaxies (Bonvin, 2008; Bonvin

et al., 2017; Bacon et al., 2014).

When source sizes and line widths are unavailable, such a survey still allows

us to measure the 3D power spectrum of galaxies to great precision in both

angular and radial direction. An extremely interesting observable e↵ect in the

HI galaxy power spectrum is the Baryon Acoustic Oscillation (BAO) feature,

discussed in subsection 2.2.2. Optical spectroscopic experiments have already

detected BAO in the clustering of galaxies, but at di↵erent redshift ranges and

sky coverage, see e.g. Alam et al. (2017); Kazin et al. (2014).

Redshift Space Distortions (RSD) are another interesting small-scale e↵ect

introducing anisotropic clustering in redshift space Percival et al. (2011); Kaiser

(1987). RSDs occur on smaller scales than BAOs, but are expected to be

detectable with HI galaxy redshift surveys. Measurements of this anisotropy

allow for constraints in the galaxy bias and the linear growth rate f(z) (Square

Kilometre Array Cosmology Science Working Group et al., 2018)).

4.4 21cm intensity mapping

As stated before, the HI 21cm line emission is of extremely low intensity.

Even next generation radio telescopes will be able to resolve individual

sources only at low redshifts, unless survey geometries are kept narrow and

deep. To detect this for large scale structure surveys at higher redshifts, it is

necessary to use integrated emission of several sources within a given pixel, a

technique called 21cm intensity mapping (HI IM) (Battye et al., 2004;

Peterson et al., 2005; Furlanetto et al., 2006). Trading angular resolution for

larger survey volumes, the radial resolution of such a survey remains excellent

thanks to the characteristic 21cm line. For the advancement of precision in

cosmology, larger volumes are deemed more important than high angular

resolution. Mapping them will allow us to test many extensions of ⇤CDM

cosmology, which often produce degeneracies in current data sets, see

especially chapter 5 for a discussion on how mean spatial curvature can be

measured in a cosmology with an entirely free dark energy equation of state.
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For a review of the current state of emission line intensity mapping, see

Kovetz et al. (2017).

Large single dish instruments like the Parkes telescope and the Green

Bank telescope have already made detections using cross-correlations with

other surveys (e.g. Anderson et al., 2018; Masui et al., 2013), and an upper

limit on auto-correlation (Switzer et al., 2013), but most dedicated 21cm

intensity mapping experiments are radio arrays using interferometry. The

instruments used for the forecasts in this work are presented in subsection

4.1: HIRAX, MeerKAT and SKA1 MID. Another interesting example is the

Canadian Hydrogen Intensity Mapping Experiment9 (CHIME), which is

similar to HIRAX, but in the northern hemisphere. It uses cylindrical

reflectors and has no moving parts. The Hydrogen Epoch of Reionization

Array10 (HERA) is a specialized instrument for high-redshift 21cm intensity

mapping, sharing the site with MeerKAT in the Karoo. It consists of a

hexagonal grid of 14 m dishes made from PVC pipe stays covered in wire

mesh.

4.4.1 Cosmological probes

The nature of a single HI intensity map has similarities to the CMB: both

are intensity maps, not resolving individual sources. Thus a straightforward

approach to analyzing HI IM data is to adjust techniques known from CMB

analysis, like the angular power spectrum.

Following Battye et al. (2013), the observed mean brightness temperature

of 21cm radiation can be written as

T̄obs(z) = 44µK

✓
⌦HI(z)h

2.45 ⇥ 10�4

◆
(1 + z)2

E(z)
, (4.1)

with E(z) = H(z)/H0, the Hubble rate H (eq. 2.10), Hubble constant H0

and h = H0/100 km sec�1 Mpc�1. The HI density parameter ⌦HI ⌘ ⇢HI/⇢cr

(compare eq. 2.12) and HI bias bHI are major uncertainties in the model, with

9
https://chime-experiment.ca/

10
https://reionization.org/

https://chime-experiment.ca/
https://reionization.org/
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a more recent estimate of

⌦HIbHI = 4.3 ± 1.1 ⇥ 10�4 (4.2)

at 68% confidence at z = 0.8 (Switzer et al., 2013). Under the assumption of

neutral hydrogen being a linear tracer of the dark matter field, the HI bias bHI

is used to relate the HI over-density to that of dark matter. The 3D HI power

spectrum can then be written as

PHI(k, z) = T̄obs(z)2b2
HI

k3Pcdm

2⇡2
, (4.3)

with the wavenumber k and the dark matter power spectrum PCDM (Battye

et al., 2013). The 3D power spectrum is a very useful observable especially for

surveys probing large volumes. Working at the map level, we expand in terms

of spherical harmonics and simplify using the Limber approximation (Limber,

1954; Loverde & Afshordi, 2008):

CHI
` =

H0

c

Z
dzE(z)

✓
W (z)T̄obs(z)D(z)bHI

r(z)

◆2

Pcdm

✓
` + 1/2

r(z)

◆
, (4.4)

with the redshift window function W (z), the growth function D(z) and the

physical distance r (Battye et al., 2013). Measuring CHI
` not only allows us

to constrain the parameters controlling eq. 4.4, but by measuring the BAO

feature in Pcdm (in angular and radial direction), both the Hubble rate H(z)

and the angular diameter distance DA can be constrained over a large redshift

range. Such measurements are well suited for constraining dark energy (Chang

et al., 2008; Bull et al., 2015a; Bull et al., 2015b) or spatial curvature, as

shown in chapter 5. The SKA1 MID with its long baselines will not be able to

fully cover the angular BAO scales needed (Bull et al., 2015b), however, it will

contribute angular as well as full radial BAO data to specialized BAO detection

instruments like HIRAX or CHIME (Newburgh et al., 2016a; Bandura et al.,

2014).

Probes of ultra large scale e↵ects require single dish instruments with

very high survey speeds for voluminous surveys, approaching or exceeding

horizon scales (Bonvin et al., 2006; Challinor & Lewis, 2011; Yoo, 2010). One
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example of such an e↵ect is the scale dependent correction of the HI

clustering bias bHI / fNL/k2 due to primordial non-Gaussianities of the local

type fNL (Dalal et al., 2008; Matarrese & Verde, 2008). Cosmic variance is a

major contributor to the error in large scale structure measurements and

fundamentally limits the attainable precision, but there exist tricks to

improve accuracies of some observables beyond this limit. One example is the

multi-tracer technique, first proposed in Seljak (2009). It exploits

observations of di↵erent tracers of the dark energy background to cancel out

cosmic variance. In chapter 6, this technique is tested for a combination of

simulated SKA HI IM and LSST optical galaxy survey data. Apart from

potentially detecting primordial non-Gaussianities, this technique could allow

measurements of General Relativistic e↵ects, which manifest themselves

mostly on extremely large scales and thus su↵er significantly from cosmic

variance (Alonso et al., 2015b). Cross-correlations between the HI intensity

distribution and optical galaxies are also useful for other probes and analysis

methods, as they are free of all systematic errors which a↵ect one of the

surveys alone.

Intensity mapping of the HI 21cm emission line will provide a plethora of

other probes. One hopes to test neutrino masses and several inflationary

models of the early universe (Villaescusa-Navarro et al., 2015). Intensity

mapping experiments will also attend to one of the biggest open questions in

cosmology: the nature of dark matter. At intermediate and small scales, the

so-called free streaming of warm dark matter models is expected to produce a

suppression of power in the power spectrum. Deep and narrow surveys at low

frequencies could measure this characteristic suppression and thus provide

independent constraints on warm dark matter (Viel et al., 2012; Carucci

et al., 2015).

The accuracy of photometric redshifts in future optical galaxy surveys is

crucial for their constraining power, the availability of precise spectroscopic

redshifts remaining limited. Cross-correlating a galaxy survey with an HI

intensity survey could potentially improve photometric redshift

determination (Alonso et al., 2017; Cunnington et al., 2018; Square

Kilometre Array Cosmology Science Working Group et al., 2018). Although
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individual sources are not resolved in intensity mapping, cross-correlations

between a foreground HI IM and a background map, e.g. an optical galaxy

survey, can be used for gravitational lensing analyses. For example, it could

be possible to detect the cosmic magnification e↵ect, whereby the foreground

HI distribution would increase or decrease the apparent magnitude of

background galaxies, thus introducing a cross-correlation signal in well

separated redshift slices. This idea is examined in chapter 7.

4.4.2 Foreground contamination

A successful HI IM survey will have to overcome a number of technical and

theoretical challenges, from data infrastructure, instrument calibration, radio

frequency interference, to foreground removal and data analysis. For the

work presented in this thesis, the removal of cosmic foreground radiation is

important, especially because it can leave residuals and because it removes

some of the long wavelength radial modes of the signal (Liu & Tegmark,

2011; Thyagarajan et al., 2015; Bowman et al., 2009). There are di↵erent

sources of galactic and extra-galactic emission in the frequency range

observed by a 21cm experiment, most importantly galactic synchrotron

emission (GSE), free-free (galactic and extra galactic) emission and extra

galactic point sources (de Oliveira-Costa et al., 2008; Liu et al., 2009a). The

dominant contribution to foregrounds is GSE. Foregrounds exceed the

cosmological HI signal by 4 � 5 orders of magnitude; however, it is possible to

clean signals leaving only small foreground residuals. The publicly available

package CRIME11 (Alonso et al., 2014) is useful to generate simulated

foreground maps of five di↵erent sources (unpolarized and polarized) GSE,

galactic and extragalactic free-free emission and extragalactic radio point

sources.

Isotropic foregrounds are simulated (in CRIME) using the power spectrum

from Santos et al. (2005)

C`(⌫1, ⌫2) = A

✓
lref
l

◆�✓
⌫2

ref

⌫1⌫2

◆↵

exp

✓
� log2(⌫1/⌫2)

2⇠2

◆
, (4.5)

11
https://github.com/damonge/CRIME

https://github.com/damonge/CRIME


38 Chapter 4. Radio cosmology

where A, ↵, � and ⇠ are model parameters, given in Alonso et al. (2014) (⇠ is

the frequency-space correlation length of the foreground emission). Radio

galaxies, active galactic nuclei and ‘normal’ galaxies will contribute to

foreground (or background) emission as point sources. Several surveys map

unresolved sources at the wavelengths relevant for HI intensity mapping and

can be used to estimate their angular power spectra (e.g. Di Matteo et al.,

2002). As pointed out in Alonso et al. (2014), extragalactic point sources

likely trace the same matter distribution as the HI signal, which potentially

leads to a correlation between foregrounds and signal. Ionized electrons

produce both a galactic and extragalactic low-frequency radio background via

free-free emission (e.g. Oh, 1999; Tegmark et al., 2000), which significantly

contributes to intensity mapping foregrounds.

Anisotropic synchrotron emission is by far the dominant

contribution, caused by high energy cosmic ray electrons accelerated by the

galactic magnetic field (Rybicki & Lightman, 1979; Pacholczyk, 1970). In

CRIME it is calculated by extrapolating the Haslam map (Haslam et al., 1982)

to the required frequency, and adding structure (the Haslam map has poor

resolution) from a Gaussian realization of the power spectrum in 4.5. The

intensity of unpolarized synchrotron emission follows a simple power law,

Tsync(⌫) / 1

⌫�
, (4.6)

with the spectral index � depending on the line of sight. The frequency

dependence of polarized synchrotron emission, however, is a↵ected by the

Faraday rotation e↵ect, introducing much more fluctuation with frequency

and making it more di�cult to model (see fig. 4.1). Any leakage of this into

the unpolarized signal, due to instrumental issues, would make the

synchrotron radiation much harder to subtract from the cosmological signal.

In the absence of extensive data on polarized synchrotron emission and the

structure of the galactic magnetic field, modeling based on observations alone

is di�cult (Haverkorn et al., 2008; Testori et al., 2008; Wolleben et al., 2006).

Other options include using existing models and the statistical properties of

synchrotron emission (Waelkens et al., 2009; Alonso et al., 2014). Figure 4.1

shows the frequency dependence of the cosmological signal as well as all five
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types of foregrounds simulated with CRIME. The severity of polarization

leakage depends on instrumental calibration, but generally increases towards

the galactic plane (Alonso et al., 2014).

Foreground removal techniques usually rely on the spectral smoothness

of foregrounds. Most recent studies suggest that using frequency information

in a line of sight approach is more promising than the use of angular

information (Harker et al., 2009; Gleser et al., 2008; Harker et al., 2010; Liu

et al., 2009b; Wang et al., 2006). Several methods exist, e.g. independent

component analysis, polynomial fitting or principal component analysis

(PCA). As a simple example, the foregrounds can be fitted with low order

polynomials and subtracted from the signal, leaving the cosmological signal’s

small scale variations largely intact. In chapter 6 we used PCA with the

publicly available package12 fg_rm. The frequency covariance matrix can be

computed by averaging over the number N✓ of lines of sight (Alonso et al.,

2015a)

Cij =
1

N✓

N✓X

n=1

T (⌫1, n̂n)T (⌫2, n̂n), (4.7)

where T (⌫, n̂) is the brightness temperature for line of sight n̂ at frequency

⌫. This matrix is then diagonalized, UTCU = diag(�1, ..., �N⌫ ), where N⌫ is

the number of frequency bins. The number Nfg of largest eigenvalues �i is

identified, and the matrix Ufg is constructed to contain only the corresponding

columns of U . The foreground maps s are then calculated by projecting the

brightness temperature maps on this basis of eigenvectors, i.e.

s = UT
fgT. (4.8)

Using an appropriate number Nfg, subtracting these maps removes most of

the foreground contamination. The cosmological signal is left largely intact,

albeit long-wavelength radial modes are lost. See chapter 6 for a discussion

of this problem. The small foreground residuals might still be non-negligible

in some cases. They are potentially problematic in the HI auto correlation

power spectrum, but they are very unlikely to remain in cross-correlations

with optical galaxies. Furthermore, depending on the aggressiveness of the

12
http://intensitymapping.physics.ox.ac.uk/codes.html

http://intensitymapping.physics.ox.ac.uk/codes.html
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Fast simulations for intensity mapping experiments 11

Figure 6. Frequency-dependence of the di�erent foregrounds and the cosmological signal along lines of sight with di�erent galactic
latitudes (given in the top right corner of each panel). The e�ect of Faraday decorrelation increases as we approach the galactic plane,
making the subtraction of the polarization leakage more challenging.

decorrelation, which is key to determining whether or not it
will be possible to subtract it.

In order to validate our model for the polarized syn-
chrotron foregrounds we have run Hammurabi using di�erent
parameters and spatial resolutions, and have compared the
results with the maps generated by our code. In particular,
we verified that the results shown below were qualitatively
stable for the di�erent models used by Hammurabi to sim-
ulate the galactic magnetic field and cosmic ray electron
density, the three-dimensional and angular resolution used
by the code and the spectral tilt of the small-scale magnetic
field. The fiducial simulation, for which we show results be-
low, was run using the models for the magnetic field and
CR density from Sun et al. (2008), three radial shells, an
angular resolution parameter nside = 256 for the observa-

tion shell, a radial resolution of � 0.1 kpc and a Cartesian
grid with resolution � 0.07 kpc (see Waelkens et al. (2009)
for an overview of these parameters). The rms variance of
the small-scale magnetic field was set to 3 µG. We generated
synchrotron sky maps for 150 frequency bins between 945
and 355 MHz.

There are two main e�ects that we want our mock maps
to reproduce:

• The degree of frequency decorrelation produced by the
frequency-dependent Faraday rotation is the main source of
complications in terms of foreground subtraction. Thus, we
must make sure that this decorrelation is correctly repro-
duced by our model. In order to quantify this decorrela-
tion we have computed the frequency-space power spectrum

c� 2014 RAS, MNRAS 000, 1–13

Figure 4.1: Picture taken from Alonso et al. (2014). It shows
the frequency dependence of the foreground and cosmological
signals (Tb) along lines of sight with di↵erent galactic latitudes,
given in the top left corner of each panel. Note that polarization
leakage varies much more at latitudes close to the galactic
plane, which makes its removal di�cult. This is due to
the frequency-dependent Faraday rotation a↵ecting polarized

synchrotron emission.
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foreground routine used, large scale modes of the radial HI power spectrum are

inevitably lost. Even though much of the cosmological information is contained

in the shorter wavelengths and the large scale angular modes remain una↵ected

by foreground cleaning, this is still the limiting factor in certain analyses. See

a discussion of foreground residuals as well as loss of modes in the multi-tracer

technique in chapter 6. A comparison of di↵erent foreground removal methods

can be found in Alonso et al. (2015a).

4.4.3 The 21cm signal model

The HI bias bHI relates the linear dark matter overdensity to the large scale

structure of neutral hydrogen. After reionization, hydrogen in the intergalactic

gas is ionized by radiation from the first sources in the universe. Large amounts

of HI only remain inside comparably dense collapsed structures (damped Ly↵

absorbers, DLA) within galaxies, shielding them from the ionizing radiation

(e.g. Pritchard & Loeb, 2012). Therefore, the HI bias can be related to the

halo bias similarly to the galaxy bias, but instead of the mean number of

galaxies in a given halo, one uses the mean mass of neutral hydrogen in a

halo MHI(m), and instead of the mean number density of galaxies, the density

⇢HI =
R

dmnh(m)MHI(m). This leads to the simple expression for the hydrogen

bias on large scales (Padmanabhan et al., 2015)

bHI =

Z
dmnh(m)bh(m)

MHI(m)

⇢HI
, (4.9)

where bh is given in equation 2.35 and nh is the halo mass function.

The mean observed brightness temperature of HI is given by the redshifted

21cm line emission brightness temperature at late times (e.g. Battye et al.,

2013)

T̄ obs
21 =

T̄ em
21

1 + z
=

3A21~c3

16f 2
emkBMH

(1 + z)⇢HI(z)

H(z)
, (4.10)

where kB is Boltzmann’s constant, ⌫em = 1420.4 MHz is the rest frame emission

frequency, ~ is the reduced Planck constant, c is the speed of light, MH is the

mass of the hydrogen atom and A21 is the spontaneous emission coe�cient of

the 21cm transition. For simplicity, T̄ obs
21 will often be referred to as T̄21.
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Both the HI brightness temperature and bias are still poorly constrained

from observations. In this work, di↵erent fitting functions will be used. The

fits vary slightly, but are all valid for comparably low redshifts (z . 3.7) and

linear scales. Chapter 5 and 6 use Bull et al. (2015b) for the modeling of

bHI and T̄21, while in chapter 7 we use fits from Alonso et al. (2015b) for the

hydrogen bias, and Santos et al. (2017) for the brightness temperature. For

a good summary of the physics governing the 21cm signal before and after

reionization, see e.g. Pritchard & Loeb (2012).

4.4.4 Forecasts for MeerKLASS

The Large Area Synoptic Survey for MeerKAT (MeerKLASS) is proposed to

cover ⇠ 4000 deg2 over 4000 hours and could potentially provide the first ever

measurement of the BAO feature using the 21cm intensity mapping technique.

We used the same Fisher forecasting code as in chapter 5, i.e. an adapted

version of the open-source python script provided in Bull et al. (2015b). The

forecasts are made for MeerKAT with 64 dishes of 13.5 m diameter and the

redshift dependent system temperatures of the L and UHF-band receivers. The

set of redshift dependent cosmological parameters is the matter fluctuation

�8 at 8 h�1Mpc times the growth rate f , the Hubble rate H, the angular

diameter distance DA and the BAO amplitude A, as defined in Bull et al.

(2015b), marginalizing all other parameters. For more information on the

Fisher forecasting technique, see chapter 3.

To find the optimal survey area for the relevant set of parameters, we

forecasted for di↵erent combinations of redshift binning, survey area and

integration time. Figures 4.2 to 4.5 plot signal to noise as a function of

survey area for three di↵erent integration times (red: 1000, blue: 2000 and

yellow: 4000 hours) and di↵erent redshift bins in each figure. For low redshift

bins, maximal survey area is always beneficial, i.e. for all parameters and

integration times. For higher redshift bins, this behavior changes. For lower

integration times especially, a smaller survey area Sarea of

4000  Sarea  10000deg2 is preferred for BAO detection, angular diameter

distance and f�8. Long surveys with 4000 hours integration time always

benefit from using the maximum sky area possible. The black dashed vertical
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Figure 4.2: Forecast parameter signal to noise as a function
of survey area for a wide high-redshift bin with z from 0.46 !
0.86. The red, blue and yellow lines correspond to 1000,
2000 and 4000 hours integration time respectively. This is the
highest redshift bin considered, using the UHF detector for
MeerKAT. For 1000 hours all parameters benefit from survey

areas  10000.

lines in each panel correspond to the survey area proposed for MeerKLASS

Santos et al. (2017).
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Figure 4.3: Forecast parameter signal to noise as a function
of survey area for a narrow redshift bin with z from 0.12 !
0.22. The red, blue and yellow lines correspond to 1000, 2000
and 4000 hours integration time respectively. In this case high

survey area always yields better constraints.

Figure 4.4: Forecast parameter signal to noise as a function
of survey area for a narrow redshift bin bin with z from 0.47 !
0.57. The red, blue and yellow lines correspond to 1000, 2000

and 4000 hours integration time respectively.
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Figure 4.5: Forecast parameter signal to noise as a function of
survey area for a narrow redshift bin with z from 0.35 ! 0.45.
The red, blue and yellow lines correspond to 1000, 2000 and
4000 hours integration time respectively. Here all parameters

except the BAO amplitude prefer maximal survey areas.
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5 Model-independent curvature

determination with 21cm

intensity mapping experiments

This work was published in the journal Monthly Notices of the Royal

Astronomical Society (MNRAS) (Witzemann et al., 2018) and also made

available online on the arXiv with number 1711.02179. I lead this project,

provided all results, calculations and derivations, figures, as well as the

majority of text. The collaborators M. G. Santos, A. Weltman and C.

Clarkson guided the project and its presentation, defined the scientific

rationale and edited the text. M. Spinelli provided advice on statistics and

MCMC methods. P. Bull contributed technical advice on the methods,

calculations and coding, guidance on presentation and checking of results as

well as the choice of figures. In addition to editorial work he also provided

text in the introduction and throughout the work. He and M. Santos were

mainly responsible for noticing the bias in the analysis method from Knox

(2006) (see fig. 5.3).

Recent precision cosmological parameter constraints imply that the

spatial curvature of the Universe is essentially dynamically negligible – but

only if relatively strong assumptions are made about the equation of state of

dark energy (DE). When these assumptions are relaxed, strong degeneracies

arise, making it hard to disentangle DE and curvature and thereby degrading

the constraints. In this chapter, we show that forthcoming 21cm intensity

mapping experiments such as HIRAX are ideally designed to carry out

model-independent curvature measurements, as they can measure the

clustering signal at high redshift with su�cient precision to break many of

the degeneracies. We consider two di↵erent model-independent methods,

https://arxiv.org/abs/1711.02179
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based on ‘avoiding’ the DE-dominated regime and on non-parametric

modeling of the DE equation of state respectively. Our forecasts show that

HIRAX will be able to improve upon current model-independent constraints

by around an order of magnitude, reaching percent-level accuracy even when

an arbitrary DE equation of state is assumed. In the same

model-independent analysis, the sample variance limit for a similar survey is

another order of magnitude better.

5.1 Introduction

Most viable models predict that only a very small amount of curvature should

remain after the end of inflation – smaller even than the Hubble-scale curvature

perturbations generated by quantum fluctuations. While some theories can

generate observable amounts of curvature, they tend to either be somewhat

contrived (e.g. see Bucher et al., 1995; Cornish et al., 1996), or are likely

to be accompanied by large-scale anomalies that would be visible in the CMB

(Aslanyan & Easther, 2015). Furthermore, several major classes of inflationary

theories explicitly predict that curvature should be small. False vacuum eternal

inflation would be ruled out by a detection of the curvature density parameter

at the ⌦K < �10�4 level, for example, while slow-roll eternal inflation would

be ruled out if ⌦K > +10�4 (Kleban & Schillo, 2012; Guth & Nomura, 2012).

Recent cosmological parameter constraints, most notably from the Planck

CMB temperature and polarization spectra combined with baryon acoustic

oscillation (BAO) constraints (Planck Collaboration XIII, 2016), have placed

upper limits on curvature of |⌦K| < 5 ⇥ 10�3 (95% CL) – still a factor of

50 in precision away from being able to put any serious pressure on eternal

inflation (Vardanyan et al., 2009; Leonard et al., 2016). However, this figure

is only achieved after making strong assumptions about the nature of dark

energy (DE), i.e. that it behaves exactly like a cosmological constant, with

an equation of state of w = �1. In fact, the equation of state of DE remains

unknown, with many candidate theories predicting slightly di↵erent equations

of state that can vary substantially with redshift (e.g. Huterer & Peiris, 2007;

Marsh et al., 2014; Raveri et al., 2017).
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When w is allowed to vary, the uncertainty increases on all parameters, as

the data must now constrain several additional degrees of freedom. A

common choice of parametrization, w(a) ⇡ w0 + wa(1 � a), introduces only

two additional degrees of freedom, but more general ‘non-parametric’

analyses (e.g. see Nesseris & Sapone, 2014) can introduce many more. Many

observables also depend on combinations of cosmological functions, like the

Hubble rate, for which there is at least a partial degeneracy between w(z)

and ⌦K (since, at the background level, an arbitrary DE equation of state

can partially mimic the redshift scaling of curvature). This goes beyond the

well-known ‘geometric degeneracy’, in which ⌦K and ⌦DE are degenerate

when constrained by the primary CMB power spectrum alone – even probes

that constrain distances or the Hubble rate at multiple redshifts are

susceptible to some (typically strong) degree of correlation between ⌦K and

w (Clarkson et al., 2007; Hlozek et al., 2008). The degeneracies that exist in

distances and the Hubble rate pull in opposing directions however, implying

that a combined measurement, using the BAO feature or similar, can reduce

the degeneracy significantly – even with no assumptions on w(z), as we show

here (see also Takada & Dore, 2015).

It is also possible to sidestep the problem of modeling w(z) entirely, if one

is willing to make a relatively mild assumption about the nature of DE. If

the energy density of DE becomes negligible at some point in the past, i.e.

⌦DE(z) ! 0 beyond some z > zM , it is possible to construct combinations of

distance measures such that the DE-dependent part cancels out (Knox, 2006).

In principle, this results in an observable that depends only on the matter

and curvature contributions to the Friedmann equation at z > zM , su�ciently

deep into the matter-dominated regime. For typical values of cosmological

parameters, matter domination occurs at z & 2, and so only high-redshift

probes such as the Lyman-alpha forest or 21cm intensity mapping (IM) can

be used for this test.

21cm intensity mapping is a relatively new technique that measures the

combined 21cm spectral line emission from many unresolved galaxies in each

pixel (Kovetz et al., 2017). By trading angular resolution for spectral

resolution and sensitivity, one can rapidly survey large cosmological volumes
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while retaining most cosmological information on large scales. Since the

underlying galaxy distribution is a biased tracer of the cosmic matter

distribution, so too are the measured intensity maps. By using these in a

similar way to other galaxy clustering observables (e.g. for BAO

measurements: Chang et al., 2008; Bull et al., 2015a; Villaescusa-Navarro

et al., 2017), one can measure distances out to significantly higher redshift

than a typical optical galaxy survey (Bull et al., 2015b). This is especially

true of 21cm IM, which uses the 21cm line from neutral hydrogen (HI) as a

tracer. Since HI is ubiquitous in the universe out to relatively high redshift,

and since radio telescopes can readily be built to cover very large frequency

(and thus redshift) ranges, 21cm IM is well-suited to performing large,

high-redshift cosmological surveys – and thus testing curvature in a

model-independent way.

In this chapter, we study the ability of forthcoming 21cm IM experiments to

constrain curvature in a model-independent way. Our particular focus is on the

Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX; Newburgh

et al., 2016b), a radio interferometer currently under construction in South

Africa. We assume a Planck 2015 flat ⇤CDM fiducial cosmology throughout,

with ⌦K = 0, ⌦M = 0.316, ⌦b = 0.049, ⌦rad = 9.13 ⇥ 10�5, and h = 0.67

(Planck Collaboration XIII, 2016).

5.2 Forecasting for HIRAX

5.2.1 Noise power spectrum

The closely packed square dish arrangement of HIRAX creates a particularly

high density of short baselines. We assume a square grid of 32 ⇥ 32 points

with a separation of 7 m (6 m dish diameter + 1 m free space in between).

For such a set up, the baselines range from 7 m to ⇠ 307 m. In what follows,

we neglect the geographical location (i.e. longitudinal coordinates) and

assume an observation pointed at the zenith and at HIRAX’ mean

observational frequency of ⌫̄ = 600 MHz. From the square grid it is straight

forward to count the number of dish pairs separated by a distance x, denoted

by N(x). We transform variables from physical distance x to unit-less
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Figure 5.1: A comparison of T 2
inst/n(u), which is proportional

to the instrumental noise, for the di↵erent HIRAX setups
considered. The mean observing frequency is set to ⌫ = 600

MHz.

u = x⌫̄/c, with the speed of light c, and calculate the baseline density n in

these discrete coordinates as n(u) = N(u)/(⇡((u + �u)2 � u2)), where �u

denotes the di↵erence between two adjacent baselines u. We follow Bull et al.

(2015b) to calculate the noise properties of HIRAX with this baseline density

n(u) and to derive the corresponding Fisher forecasts, see fig. 5.1. The noise

power spectrum is calculated as

CN =
T 2

sys

⌫21ttot

�4Sarea

A2
eFfov

1

n(u)
, (5.1)

where Tsys is the system temperature, ⌫21 is the rest frame frequency of the

21 cm line emission, ttot is the total integration time, � the observation

wavelength, the field of view is calculated as Ffov = (�/Ddish)2, Ae is the

e↵ective collecting area and Sarea denotes the survey area. Figure 5.1 shows

the inverse baseline density times the instrument temperature squared, which

is proportional to the instrument noise, for HIRAX with 1024, 529, 256 and

132 dishes.
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5.2.2 Drift scanning

The dish mounts of HIRAX are designed to be simple and cheap, without a

tracking machinery. It will rely on drift scanning, i.e. the earth’s rotation,

combined with manual changes of the pointing angle, to observe an extremely

large sky area of up to 15000 deg2. The pointing direction will be changed once

the corresponding stripe of the night sky is mapped with the required depth.

The width of a stripe corresponds to the beam width of HIRAX, �⇥ = ⇥BEAM.

The length of the stripe depends on the observation time per day, the time

per pointing tp, and on the pointing declination in celestial coordinates. We

assume 12 hours observation per day (observation fraction fobs = 0.5), i.e.

observation only during nighttime. For a pointing on the celestial equator, at

the same time every day, the stripe length � will be:

� =

8
><

>:

2⇡

✓
fobs + tp/days�1

365�1 (1 � fobs)

◆
tp < 1 a

2⇡ tp � 1 a,
(5.2)

which follows from basic geometry and celestial mechanics. Here 2⇡fobs is the

stripe length of one single day, and 2⇡(tp/days� 1)(1� fobs)/(365� 1) ensures

�(tp ⌘ 365 days) = 2⇡ for 0 < fobs  1. With the beam width ⇥ and the

declination of the pointing dec, the covered survey area of one pointing of tp

days is �⇥ cos(dec). For a given survey strategy, this can be used to determine

the appropriate date to manually rotate the dishes to a new pointing direction.

5.2.3 Survey optimization

We investigate the optimal survey strategy for curvature measurements with

HIRAX. This is generally dependent on the model of dark energy and on the

set of priors used. Figure 5.2 shows the normalized curvature constraint as a

function of survey area for four di↵erent dark energy scenarios using the simple

w0, wa parametrization and a fixed integration time of one year. The use of

informative priors, here the DETF Planck priors from Albrecht et al. (2006),

shifts the optimal survey area to significantly larger areas. Also allowing more

freedom for dark energy, in this case by marginalizing both w0 and wa, shifts

the optimal survey towards larger areas.
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Figure 5.2: Optimizing the survey area with respect to the
⌦k forecasts. The optimum greatly depends on the model and
priors used, but in most cases considered here it lies around

Sarea ⇠ 13000 [deg]2.

5.3 Curvature measurements in the presence

of dark energy

We now present two di↵erent methods for obtaining curvature constraints that

are independent of the assumed dark energy model, at least in principle. The

first (Sect. 5.3.1) is based on constructing combinations of observables that do

not depend on the low redshift, dark energy-dominated regime. The second

(Sect. 5.3.2) uses a non-parametric approach to modeling the DE equation of

state (EOS), marginalizing over its value in many redshift bins to produce

curvature constraints that are independent of any assumed functional form

for w(z). For comparison, we also compare with a simple, commonly used

2-parameter dark energy model in Sect. 5.3.3.

5.3.1 Avoiding the dark energy era

One way of obtaining model-independent curvature constraints is to try to

avoid the DE era entirely. We extend the approach described in Knox (2006)
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to derive a combination of distance measures that is linearized in the spatial

curvature, k ⌘ �⌦KH2
0 , and which is relatively independent of the dark energy

contribution to those distances.

In a FLRW universe with line element ds2 = �dt2 + a2dr2/(1 � kr2), the

comoving distance is given by � =
R r

0 dr0/(1 � kr02). The series expansion of

r(�, k) for small k is then r ⇡ � � �3k
6 + O(k2), regardless of the sign of k.

We identify the coordinate distance r = D̃A(�, k) = DA/a, where D̃A is the

comoving angular diameter distance, so that D̃A(�, k) ⇡ � � �3k/6 to first

order in k. The comoving distance is additive, i.e. �OL = �OM + �ML, where

�OL is the comoving distance from the observer to the last scattering surface

(LSS), �OM is the comoving distance from the observer to an intermediate

redshift zM, where we assume that dark energy can be neglected, and �ML is

the distance from zM to the LSS. Solving D̃OL = D̃A(�OL, k) ⇡ �OL � �3
OLk/6

for k gives, to first order,

k = 6

✓
D̃OM + �ML � D̃OL

(D̃OL)3 � (D̃OM)3

◆
, (5.3)

where D̃OM and D̃OL denote the comoving angular diameter distances from

the observer to zM and the LSS respectively. Both are directly observable, but

�ML is not. (Note that Eq. 5.3 di↵ers from the Knox (2006) result by a minus

sign.)

To obtain curvature constraints using this method, we use the Planck

Collaboration XIII (2016) measurement of D̃OL, and the HIRAX forecasts or

SDSS measurements (Sánchez et al., 2017) of D̃OM, plus simple error

propagation, to estimate the error on k. We can then approximate �ML by

neglecting curvature and DE for z > zM , to give

�ML ⇡ H0

Z z⇤

z
M

dz/
p

⌦M(1 + z)3 + ⌦rad(1 + z)4

=
�2

H0⌦M

r
⌦M

1 + z
+ ⌦rad

���
z⇤

z
M

⌘ �md
ML(zM), (5.4)

where ⌦rad is the fractional energy density in radiation, including photons

and neutrinos. The corresponding expression in Knox (2006) also neglected
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Figure 5.3: Bias on the recovered value of ⌦K using
the avoidance method, as a function of minimum redshift,
zM , for several input values of w. The red dashed line
shows the behavior of the original method from Knox (2006),
which neglected radiation, for w = �1.0. The dotted line
shows roughly the level of the ‘curvature floor’, or minimum
observable curvature (Vardanyan et al., 2009; Leonard et al.,

2016).

radiation, but this would bias ⌦K at around the 10�2 level, as shown in Fig. 5.3.

For models close to ⇤CDM, the relative di↵erence between �md
ML and the true

�ML (including DE and curvature) quickly drops below 10�2 for zM & 1.5. The

bias in ⌦K for a handful of di↵erent values of w are also shown in Fig. 5.3.

The implication is that curvature measurements made only at higher redshifts

are much less sensitive to the detailed DE behavior, although the choice of

minimum redshift will depend on the target precision on ⌦K. For example, to

ensure a bias below �⌦K ⇡ 10�2 and 10�3 for a reasonable spread of w values,

one would take zM & 1.3 and & 4 respectively.

5.3.2 Non-parametric dark energy marginalization

As shown above, trying to avoid the DE-dominated regime still results in a

mild model dependence, as the choice of zM and the expected bias in ⌦K both

depend on the DE EOS. There is also the issue that a large amount of low-

redshift data must be discarded. In this section we consider an alternative
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model-independent approach, based on a piecewise constant parametrization

of the EOS. For a su�ciently large number of bins, this allows us to closely

approximate essentially any arbitrary EOS. Marginalizing over the w values in

all bins then produces curvature constraints that are free of any assumptions

about the particular form of w(z), at least in principle.

We define a general piecewise EOS by setting w(z) ⌘ wi for zi < z < zi+1,

i = 1 . . . NDE
bins, and choose a binning that is equally spaced in scale factor in

this instance. The fractional dark energy density is then given by

⌦DE(z) = ⌦DE,0 (1 + z)3(1+w⌘)
⌘Y

i=2

(1 + zi)
3(wi�1

�wi) , (5.5)

where ⌘ is chosen such that z⌘  z < z⌘+1 for a given z.

To obtain curvature constraints using this method, we perform a Markov

Chain Monte Carlo (MCMC) analysis to simultaneously fit ⌦K, all of the {wi},

and several other cosmological parameters to simulated HIRAX and cosmic

variance-limited data. The errors on these data were obtained using a Fisher

matrix-based likelihood that will be described in Sect. 5.4. We also include

the Planck constraints on the distance to last scattering, DA(z⇤), to provide a

high-redshift anchor point. We use the emcee a�ne-invariant ensemble sampler

implemented by Foreman-Mackey et al. (2013) to run the MCMC, and then

marginalize over all wi values (and other cosmological parameters) to obtain

the marginal distribution for ⌦K.

Fig. 5.4 shows the correlations between ⌦K and the marginalized

parameters for an example MCMC run with 10 EOS bins. For a su�ciently

large number of bins, the correlation between ⌦K and any individual wi is

relatively mild, but remains non-negligible. The wi values themselves can be

very strongly correlated with one another, however.

5.3.3 Series expansion of dark energy

In order to better compare our results to the literature, we also derive curvature

constraints using the common EOS parametrization w(z) = w0+wa
z

(1+z) , which
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Figure 5.4: Parameter correlation matrix for HIRAX, for
a piecewise dark energy EOS with 10 bins. The correlation

matrix was estimated from the MCMC posteriors.

gives a dark energy density of

⌦DE(z) = ⌦DE,0 exp
��3waz/(1 + z)

�
(1 + z)3(1+w

0

+wa). (5.6)

This parametrization is quite restrictive in that it cannot reproduce the

curvature degeneracy in expansion rate data, and so constraints derived using

this model will be model dependent. As in the previous section, we perform

an MCMC analysis to find the posterior for ⌦K, marginalizing over all other

parameters including w0 and wa.

5.4 Forecasts for IM experiments

We now present forecasts for the precision of the model-independent curvature

tests that could be performed with forthcoming IM experiments, using HIRAX

as an example. To establish the maximum precision of this technique, we

also consider two ‘futuristic’ cosmic variance-limited (i.e. thermal noise-free)
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surveys, with the same array configuration as HIRAX, but redshift ranges

of z = 0.3 � 3 (CV1) and 2 � 5 (CV2). Such a survey could in principle be

accomplished by the future SKA phase 2 (see e.g. Santos et al. 2015). Note that

we do not extend CV1 all the way to z = 0 as it becomes sensitive only to non-

linear scales at low redshifts. For HIRAX we assume the following parameters:

frequency resolution, �⌫ = 0.4 MHz, total bandwidth �⌫ = 400 MHz, with

⌫min = 400 MHz (giving a redshift range of 0.8 to 2.5), system temperature

Tsys = 50 K, the total integration time is assumed to be tint = 1 yr (2 yr),

sky fraction fsky = 0.25 (0.5), dish diameter Ddish = 6 m and the number of

dishes Ndish = 1024. Unless stated otherwise we always refer to HIRAX with

tint = 1 yr and fsky = 0.25. The dishes are assumed closely packed, arranged

in a square grid with 1 m of space in between. The CV-limited surveys share

the same baseline distribution, but cover the redshift ranges from above and

have fsky = 1 with no thermal noise.

We begin by assuming that the example surveys will perform

measurements of the full anisotropic power spectrum, decomposing it in the

radial and transverse directions to obtain constraints on H(z) and DA(z)

respectively. Using the 21cm IM Fisher forecasting code from Bull et al.

(2015b) and the specifications of the respective surveys, we obtain covariance

matrices for {H(zj), DA(zj); j = 1...N} in a series of N redshift bins {zj} set

by the experiment frequency resolution. We impose a non-linear cuto↵ scale

at z = 0 of kNL,0 = 0.2 Mpc�1, which evolves with redshift according to the

results from Smith et al. (2003), kMAX = kNL,0(1 + z)2/(2+ns), where ns is the

spectral index of primordial scalar perturbations. In Section 5.4.2 we

examine the dependence of our results on kNL,0 and compare to the more

conservative choice of kNL,0 = 0.14 Mpc�1.

The form of each covariance matrix is

C(zj) =

 
�2
D

A

(zj) �D
A

,H(zj)

�D
A

,H(zj) �2
H(zj)

!
. (5.7)

In obtaining these, we have marginalized over redshift-space distortions (i.e.

the growth rate and bias in each bin), as well as the non-linear scale �NL. The

measurements are assumed to be uncorrelated between bins and, optimistically,
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Figure 5.5: Forecast fractional errors on H (solid lines) and
DA (dashed lines) for HIRAX and the two CV-limited surveys.
We assumed a constant frequency binning with 20 MHz width.
The DA constraints are slightly worse due to (angular) beam

smoothing.

we have neglected foreground contamination. Instrumental noise, including

a realistic baseline distribution, is included in the Fisher matrix calculation

however. The errors on DA and H are shown in Figure 5.5.

These covariance matrices, plus the fiducial cosmology, provide the input

data of the next step, which is to perform an MCMC analysis to extract the

curvature, using each of the model-independent methods described above. The

cosmological parameters that we sample are ⇥ = {⌦K, wi, ⌦M, H0}, where i =

1...NDE
bins. For simplicity we set the mock data equal to the fiducial functions:

Dj ⌘ DA(zj, ⇥fid) and Hj ⌘ H(zj, ⇥fid), where ⇥fid is the fiducial set of

cosmological parameters, i.e. we do not add noise to the fiducial data vector.

Using the definitions µj = (Dj, Hj) and ⇠j = (DA(zj, ⇥), H(zj, ⇥)) and

omitting additive constants, we can write the log-likelihood function for the

MCMC analysis as

log L = �1

2

NX

j=1

(⇠j � µj)
TC�1(zj)(⇠j � µj). (5.8)
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We use only flat priors, with ranges: wi 2 [�3, 2], ⌦K + ⌦M 2 [0, 1],

⌦M 2 [0, 1], ⌦K 2 [�0.5, 0.5], h 2 [0.1, 1]. We also include CMB angular

diameter distance data from Planck as additional data points in the MCMC

analysis. The standard deviation of the sound horizon at recombination r⇤, of

the acoustic peak scale ⇥⇤, and of the mean redshift of the last scattering

surface z⇤ are taken from Planck Collaboration XIII (2016). With

⇥⇤ = (r⇤/DA,⇤)/(1 + z⇤), standard error propagation gives �(DA,⇤) = 0.044

Mpc at z⇤ = 1090.09. The contribution of neutrinos and radiation to the

mean energy density is assumed to be fixed at ⌦rad = 9.13 ⇥ 10�5, also from

the Planck results.

5.4.1 Convergence of the curvature constraints

The constraints on the cosmological parameters yielded by a given

experiment generally depend on the choice of dark energy model. In our case,

the constraints depend on the choice of the binning of w(z), and on the

number of bins NDE
bins. In Figure 5.6, we show the behavior of �(⌦K) as a

function of NDE
bins for a binning that is equally-spaced in scale factor, a. For a

given experiment the curvature constraints converge once the number of bins

is large enough, suggesting that the dependence on the particular form of the

DE equation of state model has been removed after this point. We find

convergence for NDE
bins & 8 for SDSS, 10 for HIRAX, and 16 for CV1 and CV2.

5.4.2 Results

Table 5.1 lists the 68% errors on ⌦K for di↵erent methods of marginalizing out

dark energy. While the entries for Planck and SDSS use actual data, we used

Fisher forecasts for the planned/hypothetical surveys HIRAX, CV1, and CV2,

as described above. The posteriors for HIRAX and CV1 for the w = const.

and piecewise constant models are shown in Figure 5.7, where we also compare

the full H and DA constraints to what would be measured using DA data only.

One can clearly see how much the degeneracy depends on the choice of

the dark energy model. While measurements of DA alone are enough to

constrain ⌦K reasonably well for constant w(z) ⌘ w, this is not the case for
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Figure 5.6: Forecast 1� constraints on curvature for HIRAX
as a function of the number of DE equation of state bins that are
marginalized over, NDE

bins. The constraints converge for NDE
bins &

8.

the much more general piecewise constant model, which requires H(z)

measurements as well to reach an appreciable level of precision. Even for a

model with an arbitrarily large number of EOS bins, though, combining H(z)

and DA(z) breaks the curvature-dark energy degeneracy and allows for

constraints as good as �(⌦K) ⇡ 2 ⇥ 10�3 for the cosmic variance-limited

surveys. The 2 yr survey for HIRAX is a factor of
p

2 better than 1 yr in the

avoidance analysis. When the other methods are used the improvement is

somewhat weaker, tightening the constraints by about 30% in the piecewise

DE model. CV1 slightly outperforms the higher redshift CV2, even though it

covers higher redshifts that are less sensitive to dark energy. This is due to

the array setup we assumed being designed for BAO detection in the lower

redshift range, so its resolution is worse at higher redshift.

The avoidance method, on the other hand, can yield constraints at the

⇠ 10�4 level in the cosmic variance-limited case, with error-bars a factor of a

few smaller than the piecewise constant model for HIRAX. This improvement

in precision must be balanced against the potential bias that is introduced by

simply ignoring dark energy, as illustrated in Fig. 5.3. Making the expected
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Avoidance w ⌘ const w0wa Piecewise
Planck — �52+49

�55 — —
SDSS — +39+29

�70 — +76+65
�50

HIRAX 1 yr 0.0+2.0
�2.0 �2.0+3.3

�3.6 �1.3+6.2
�7.0 +9.35+13.9

�7.76

HIRAX 2 yr 0.0+1.4
�1.4 �2.0+2.8

�2.9 �2.0+5.3
�6.0 7.6+10.3

�6.6

CV1 0.0+0.07
�0.07 �0.9+1.4

�1.4 �0.9+1.4
�1.4 +0.4+1.7

�1.7

CV2 0.0+0.07
�0.07 �1.1+1.6

�1.6 �1.1+1.6
�1.6 �0.1+2.1

�1.9

Table 5.1: Measured (Planck/SDSS) and forecast
(HIRAX/CV) constraints on ⌦K at 68% confidence (in
units of 10�3), for di↵erent dark energy models and analysis
methods. For the piecewise constant model, 10 bins were
assumed for HIRAX with both 1 and 2 yr integration, 8 for
SDSS, and 16 for CV1 and CV2. Planck CMB distance
constraints are included in all of these results. For the
avoidance approach, a cuto↵ of zM = 2 was imposed; the
expected bias �⌦K was not included in the errors, but is large

(see Fig. 5.8).

bias smaller than the error-bars will require either the reintroduction of a

(possibly much simpler) dark energy model, or a higher redshift cuto↵ zM .

The e↵ect of changing the cuto↵ is shown in Fig. 5.8; we see that zM & 2 is

su�cient for the HIRAX measurement to not be dominated by the bias for

w = �1, while zM & 4.5 is needed for CV2.

Note that all of these results can depend on the choice of nonlinear cuto↵

scale, kMAX. If a more conservative value of kNL,0 = 0.14 Mpc�1 is chosen,

we find ⌦K = (9.6+14.1
�7.5 ) ⇥ 10�3 (68% CL) for HIRAX with the piecewise DE

model. This is consistent with the results for the more optimistic choice of

kNL,0 = 0.2 Mpc�1 that was used throughout this work.

5.5 Conclusions

In this work, we showed what constraints can be achieved on the curvature

when assuming a completely generic dark energy model. We started by Fisher

forecasting errors on DA and H for HIRAX and two cosmic variance-limited

surveys, then derived curvature constraints in two di↵erent ways that were

designed to largely avoid any dependence on the chosen dark energy model.
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In the first approach, an extension of the one presented in Knox (2006), we

made the assumption that dark energy could be neglected above some z > zM ,

far into the matter-dominated regime. This largely removes the dependence

of the curvature constraints on the DE EOS, at the cost of throwing away

information at lower redshift. It is able to produce quite tight constraints on

⌦K however, and while the method is biased, this can be reduced with an

appropriate choice of zM . For a target precision of �(⌦K) ⇠ 10�4, a redshift

cut of zM & 4 or more would be necessary.

In the second approach, we adopted a piecewise constant parametrization

of the dark energy EOS w(z) and used an MCMC method to sample from the

posterior of ⌦K, marginalized over the values of w(z) in each bin. This does

not require any low-z information to be discarded, is unbiased in principle, and

requires fewer assumptions than the first method. The constraints obtained

depend on the choice of binning, especially on the number of bins NDE
bins, but

converge once NDE
bins is high enough (⇠ 10 for HIRAX). Generally, this method

produces constraints that are an order of magnitude weaker than the avoidance

method, but this is reduced to only a factor of 2�3 when the bias of the latter

is factored in.

In conclusion, neither the avoidance nor non-parametric marginalization

method is able to reach the target precision of �(⌦K) ⇠ 10�4 set by eternal

inflation models, at least with the instrumental setup we assumed. Confirming

the results from Leonard et al. (2016), we conclude that future constraints of

that level would likely require strong assumptions on, or knowledge of, dark

energy. A possible exception is if the avoidance method is used at very high

redshift, zM & 5, where the bias should be significantly reduced.
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Figure 5.7: The (rescaled) posterior distributions of ⌦K for
HIRAX (left) and CV1 (right). The bottom row is for a dark
energy model with constant w, and the top row is for a model
with 10 bins (HIRAX) and 16 bins (CV1) in the piecewise
constant parametrization of the EOS. Solid lines correspond to
the full analysis, while the dotted lines use DA measurements

only.

Figure 5.8: Constraints on ⌦K as a function of cuto↵ redshift,
zM , for the avoidance method. The dashed gray line shows
�⌦K in a w = �1 model (c.f. Fig. 5.3). The horizontal bars
mark the 68% CL limits for HIRAX for all of the other methods
(black/gray), and for just the PWC method for CV1 and CV2

(red/blue).
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6 Simulated multi-tracer

analyses with HI intensity

mapping

This work was published in the journal Monthly Notices of the Royal

Astronomical Society (MNRAS) (Witzemann et al., 2019b) and also made

available online on the arXiv with number 1808.03093. I lead this project,

and was in charge of all results, data analysis, simulations and figures, as

well as the majority of text. Collaborator M. Santos provided guidance,

editorial work and defined the scope of this project. J. Fonseca contributed

parts of the introduction and advice. D. Alonso assisted the use of his code

for running simulations, foreground cleaning and calculating masked power

spectra. He also suggested the structure and presentation of the work,

provided derivations, text (entire section 6.3, subsections 6.2.1, 6.4.1 and

parts of other sections) and editorial work throughout.

In this chapter, we use full sky simulations, including the e↵ects of

foreground contamination and removal, to explore multi-tracer synergies

between a SKA-like 21cm intensity mapping survey and a LSST-like

photometric galaxy redshift survey. In particular, we study ratios of auto-

and cross-correlations between the two tracers as estimators of the ratio of

their biases, a quantity that should benefit considerably from the cosmic

variance cancellation of the multi-tracer approach. We show how well we

should be able to measure the bias ratio on very large scales (down to ` ⇠ 3),

which is crucial to measure primordial non-Gaussianity and general

relativistic e↵ects on large scale structure. We find that, in the absence of

foregrounds but with realistic noise levels of such surveys, the multi-tracer

estimators are able to improve on the sensitivity of a cosmic-variance

https://arxiv.org/abs/1808.03093


6.1. Introduction 65

contaminated measurement by a factor of 2 � 4. When foregrounds are

included, estimators using the 21cm auto-correlation become biased.

However, we show that cross-correlation estimators are immune to this e↵ect

and do not incur any significant penalty in terms of sensitivity from

discarding the auto-correlation data. However, the loss of long-wavelength

radial modes, caused by foreground removal in combination with the low

redshift resolution of photometric surveys, reduces the sensitivity of the

multi-tracer estimator. Even so, it is still better than the cosmic variance

contaminated scenario, even in the noise free case. Finally we explore various

alternative avenues to avoid this problem.

6.1 Introduction

Probing the physics of the primeval universe is one of the main drivers for

observational studies of the cosmos. The Gaussianity of the primordial

cosmological perturbations remains an open question, answering it will

provide great insight into the details of the dynamics of the very early

universe. The current state of the art are the Planck bounds derived from the

Cosmic Microwave Background (CMB), for local-type primordial

non-Gaussianity (PNG) they read fNL ' 0.8 ± 5.0 (Planck Collaboration

et al., 2016). Furthermore, local PNG introduces a scale dependence in the

bias between the Dark Matter (DM) halos and the astrophysical objects used

as tracers of the matter distribution (Dalal et al., 2008; Matarrese & Verde,

2008).

This scale dependence becomes relevant on large cosmological (horizon)

scales. At the same time, general-relativistic e↵ects become important on

such ultra-large scales (past the matter-radiation equality peak), opening the

possibility of testing the theory of gravity in this new regime and finding

possible hints of deviations to General Relativity (for a comprehensive review

on ”GR e↵ects” see e.g. Challinor & Lewis (2011); Bonvin & Durrer (2011);

Bonvin (2014)). The next generations of Large Scale Structure (LSS) surveys
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such as the Square Kilometer Array (SKA)1, Euclid2 and the Large Synoptic

Survey Telescope (LSST)3, promise to be able to target such e↵ects by

observing ever larger volumes of the universe. Several forecasts show that

they will improve on the Planck constraint on PNG (see, e.g. Giannantonio

et al., 2012; Camera et al., 2013, 2015; Alonso et al., 2015b; Raccanelli et al.,

2016). Despite the improvements, errors on local PNG from single tracers of

the matter distribution will still be unable to push �(fNL) below 1, which is

vital to distinguishing between single-field and multi-field inflation (see, e.g.

de Putter et al., 2017).

The crucial limitation on these surveys comes from cosmic variance,

which limits measurements on the largest scales. A decade ago Seljak (2009)

proposed a statistical method, often referred to as the multi-tracer technique,

to overcome cosmic variance (see also McDonald & Seljak 2009; Hamaus

et al. 2011; Abramo & Leonard 2013). The basic idea is that, by comparing

two tracers, we can measure the ratio of their biases without requiring to

measure the underlying dark matter distribution they trace. This avoids

cosmic variance, caused by the stochasticity in the particular realization of

the matter distribution we observe. This possibility also shifts the target

set-up of future surveys to probe these large scale e↵ects, since smaller

volumes thanks to lower noise (e.g. large integration times or higher number

densities) may be preferred over larger volumes that provide su�cient

samples of the modes of interest (as long as such smaller volumes include the

target scales).

Several authors have extensively used the technique to forecast how

combinations of future surveys and di↵erent DM tracers will impact on the

prospects of measuring fNL as well as other horizon-scale GR e↵ects (Yoo

et al., 2012; Ferramacho et al., 2014; Yamauchi et al., 2014; Alonso &

Ferreira, 2015; Fonseca et al., 2015; Fonseca et al., 2017; Abramo & Bertacca,

2017; Fonseca et al., 2018; Schmittfull & Seljak, 2018). While some

combinations do not break the �(fNL) < 1 threshold, others have the

potential to provide transformational constraints. Such a technique thus

1www.skatelescope.org
2www.euclid-ec.org
3www.lsst.org
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greatly extends the potential to probe the physics of inflation and General

Relativity with near-future experiments.

Despite the plethora of works studying the potential and applicability of

the multi-tracer technique, little has been done to test and assess the

performance of the technique within realistic observational settings for future

surveys (although the technique has been employed in some analysis of

current data (Blake et al., 2013; Ross et al., 2014; Maŕın et al., 2016), with an

emphasis on redshift-space distortions). Questions on what estimators to use

and whether they will be biased by contaminants still remain unanswered.

This chapter attempts to examine the potential of the multi-tracer technique

in a realistic analysis. We will focus on the combination of an HI intensity

mapping (IM) survey carried out by a SKA-like facility (Santos et al., 2015)

with a LSST-like photometric galaxy survey (LSST Science Collaboration

et al., 2009). This combination is a natural choice since both surveys will

observe the largest cosmological volumes in an overlapping region of the sky

in both the radio and optical/infra-red regimes. Moreover, such surveys will

be a↵ected by di↵erent sky systematics.

The detection of the notoriously faint HI 21cm signal is observationally

challenging. While the emission of individual sources is only likely to be

detectable at comparably low redshifts, a technique called intensity mapping

promises to probe the HI content of large volumes (Chang et al., 2008;

Switzer et al., 2013; Battye et al., 2004). This method removes the constraint

of resolving sources, and instead measures the integrated emission of all

objects within a wide angular pixel. While trading angular resolution for

larger survey volumes, intensity maps of the 21cm emission are also

contaminated by several sources of foreground radiation, which are often

many orders of magnitude brighter than the cosmological signal. Much

research has already been done on this topic (e.g. Di Matteo et al., 2002; Oh

& Mack, 2003; Santos et al., 2005; Jelić et al., 2010; Moore et al., 2013; Shaw

et al., 2015; Wolz et al., 2014) and the main contributors have been identified

as galactic synchrotron emission, free-free emission from galactic and

extra-galactic origin and point sources. A discussion of cleaning methods for

all of these foreground sources can be found in Alonso et al. (2014). While
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the residuals after foreground removal should be small, much of the

large-scale radial information is removed from the cosmological signal along

with the foregrounds.

On the other hand, optical galaxy surveys will be a↵ected by galactic dust

extinction and star contamination, as well as several observational systematics,

which can a↵ect the observed clustering on large scales (Ross et al., 2011).

Cross-correlations between HI intensity and galaxy number count maps are

free of systematic e↵ects relevant for only one of the surveys. This is expected

to be the case for most foreground residuals, but there could be non-negligible

e↵ects of foreground point sources due to thermal dust, which is discussed

in the context of intensity maps of carbon monoxide and ionized carbon fine

structure emission in Switzer (2017) and Pullen et al. (2018). Apart from

improving the reliability of measurements (e.g. Masui et al., 2013; Pourtsidou

et al., 2017), cross-correlations can also be used to constrain HI properties

(Pourtsidou et al., 2016) or to calibrate photometric redshift estimates (Schulz,

2010).

We explore the multi-tracer technique in the presence of foregrounds in

the HI intensity maps using realistic simulations of the observational process.

For this purpose we construct estimators of the bias ratios and assess their

performance and error. For simplicity we neglect the presence of PNG on the

tracer biases, making the bias ratios scale independent, which is expected to

have a negligible impact on the estimator errors. We will focus on IM

foregrounds, which are likely to be the main contaminant, and neglect the

e↵ects of possible systematics in the optical data. Crucially, we wish to

determine how sensitive the cancellation of cosmic variance is to IM

foreground cleaning and to the observational specifications of each

experiment.

This chapter is organized as follows: in section 6.2 we discuss possible

multi-tracer estimators that can be used to extract the bias ratio of the two

tracers and in particular focus on estimators that can be free from foreground

or systematic contamination. In section 6.3 we describe the simulations done

for both experiments (SKA1-MID and LSST) and the foreground cleaning

method. In section 6.4 we discuss the results, addressing the performance and
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error sources of the estimators and possible biases. In particular, we discuss

the limitations of the current approach and show possible avenues to improve

on this technique. We conclude in section 6.5.

6.2 Multi-tracer estimators

6.2.1 Signal modeling

Our basic observable is the projected fluctuation of a given tracer of the matter

distribution on the sky �(n̂). Under the assumption that, on su�ciently large

scales, �(n̂) is linearly related to the matter overdensity �M(t,x), the relation

between both quantities can be modeled as:

�(n̂) =

Z 1

0

dz b(z) �(z) �M(t(z), �(z)n̂), (6.1)

where � is the comoving radial distance, and b(z) and �(z) are the bias and

selection functions associated with this tracer. For simplicity we have

neglected the contributions from redshift-space distortions, magnification and

other relativistic e↵ects (Challinor & Lewis, 2011; Bonvin & Durrer, 2011;

Bruni et al., 2012; Jeong et al., 2012; Yoo et al., 2012; Hall et al., 2013; Yoo

& Desjacques, 2013). This simplifying approximation should not have any

significant impact on the final results presented here, since RSDs are

suppressed by the broad redshift kernels used and all other terms are highly

sub-dominant (Yoo & Seljak, 2015; Alonso et al., 2015a; Alonso & Ferreira,

2015; Fonseca et al., 2015).

Given two tracers a and b, the angular cross-power spectrum is defined as

the two-point function of their harmonic coe�cients, and can be related to the

matter power spectrum P (k, z) as (Di Dio et al., 2014):

Cab
` ⌘ h�a

`m�b⇤
`mi =

2

⇡

Z 1

0

dk k2W a
` (k)W b

` (k), (6.2)

W a
` (k) =

Z
dz ba(z)�a(z)j`(k�(z))

p
P (k, z), (6.3)
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Under Limber’s approximation (Limber, 1954; Loverde & Afshordi, 2008), this

expression can be simplified to

Cab
` =

Z
d�

ba�a bb�b H2(�)

�2
P

✓
z(�), k =

` + 1/2

�

◆
, (6.4)

where H is the expansion rate.

In this analysis we have used two di↵erent types of tracers: the overdensity

of galaxy number counts, which we will label as �g, and the temperature

fluctuations in the 21cm line emission caused by neutral hydrogen (HI), �H.

In the case of galaxy clustering, we approximate the linear galaxy bias as

bg = 1 + 0.84z (LSST Science Collaboration et al., 2009), which is an estimate

of the results from (Weinberg et al., 2004). On the other hand, as described

in Section 6.3.2, the presence of spectrally smooth radio foregrounds makes

it infeasible to measure the average 21cm brightness temperature T̄21, and

it is therefore completely degenerate with the linear bias function associated

with this tracer: bH(z) = T̄21(z) bHI(z), where bHI is the linear clustering bias

associated with the cosmic overdensity of neutral hydrogen 4. We model both

quantities after Bull et al. (2015b).

Finally, the observed fluctuations �a are inevitably contaminated by

noise. In the case of galaxy clustering, this is associated with shot-noise due

to the discrete nature of the sources used to reconstruct the true underlying

distribution. In this case, the noise power spectrum is simply given by the

inverse number density of tracer sources in units of Sr�1,

N gg
` =

1

n̄
. (6.5)

For 21cm, the combination of instrumental noise and beam smoothing, caused

by the telescope’s finite size, e↵ectively erases all modes below the telescope

resolution. For an angular Gaussian beam, the harmonic coe�cients of the

4Note that although this is the case in our analysis, there do exist ways to extract the
average HI brightness temperature, for example using cross-correlations, or HI galaxy surveys
(Wolz et al., 2017).
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beam, multiplying the signal in harmonic space, can be simply modeled as

B` = exp

✓
�`(` + 1)✓2

FWHM

16 log 2

◆
, (6.6)

where ✓FWHM if the beam full-width at half-maximum (FWHM) at a given

frequency. The instrumental noise can then be modeled as an additive

Gaussian random field with flat power spectrum. For single-dish

observations, this is simply given by (Bull et al., 2015b)

NHH
` =

T 2
sys4⇡fsky

Ndish�⌫ttot
. (6.7)

Here Tsys is the system temperature, fsky is the total observed sky fraction,

Ndish is the number of dishes in the instrument, ttot is the total integration

time and �⌫ is the frequency bandwidth for the particular sky map under

consideration.

It is worth noting that we assume no cross-noise term between galaxies and

HI. This is expected to be present if the HI-emitting star-forming galaxies form

a significant fraction of the galaxy sample, however we assume this shot-noise

contribution to be subdominant. We also neglect any correlated 1/f -like noise

component for intensity mapping. We refer the reader to Harper et al. (2018)

for a more detailed discussion of correlated noise in the context of foreground

contamination and removal.

6.2.2 The Surveys

Our forecasts focus on the combination of 21cm intensity maps, constructed

from the SKA data, with optical observations of the galaxy distribution as

could be achieved by LSST. We describe the models used for both data-sets

here.

We assume the first phase of SKA (in particular SKA-1 MID (Santos

et al., 2015)) to consist of 197 dishes, which will use a total of ttot = 10.000 h

integration time to produce intensity maps covering ⇠ 60% of the sky. We

assume a combination of single-dish surveys carried out with band 1 and

band 2 receivers, and we use a frequency range of ⌫ 2 (390, 1300) MHz,
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Figure 6.1: Sky mask used in our analysis, shown in
Mollweide’s projection and equatorial coordinates. The masked
area is shown in gray. The footprint corresponds to the sky
observable from the LSST and SKA with the regions of highest
galactic emission (both in synchrotron and dust) removed. The

total unmasked area is 16900 deg2 (fsky = 0.41.)

corresponding to a redshift interval 0.1  z  2.65. Since we work with

individual redshift bins at a time, our results are always valid for the receiver

type that covers the relevant redshift range. We will assume single-dish

observations, which are limited in angular resolution by a beam that we

model as Gaussian with a FWHM given by ✓FWHM = 1.22 �/Ddish, where � is

the observed wavelength and Ddish is the dish diameter. We assume a

diameter Ddish = 14.5m5, which corresponds to an angular resolution of

` . 90 in multipoles and a beam full width half maximum (FWHM) of ⇠ 2

degrees at redshift z = 1. Finally, we add white noise as described in the

previous section, with a smoothly-varying system temperature Tsys following

the values given in Square Kilometre Array Cosmology Science Working

Group et al. (2018). Further particulars regarding the specific simulated

intensity maps used in this analysis are described in Section 6.3.1

For LSST, we use the redshift distribution modeled in Alonso et al.

5SKA-1 MID will consist of a combination of 15 and 13.5m dishes, and we use 14.5 as an
approximation to the mean dish diameter. This choice should not a↵ect the final results of
this study.
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(2015a), which yields an integrated number density of 43 galaxies per

arcmin2, in agreement with LSST Science Collaboration et al. (2009). As

described in Section 6.3.1, we do not make a precise modeling of the

photometric redshift accuracy that LSST will achieve, and instead work with

redshift bins wide enough (�z = 0.1) to simulate the loss of small radial

scales. We do this in order to facilitate the interpretation of the

auto-correlation and cross-correlation estimators presented in the next

section. A more realistic treatment would either account for the di↵erence in

radial window function between the 21cm and optical bins, or re-weight the

21cm frequency channels contributing to each bin to mimic the photo-z

window function as closely as possible.

We assume almost complete overlap between SKA and LSST, given their

common observable sky. After accounting for contamination from galactic

synchrotron (radio) and dust (optical), the final common footprint, displayed

in Fig. 6.1, covers 41% of the sky.

6.2.3 The Estimators

Under the assumption that the bias functions vary slowly over the support of

the selection functions, and in the limit where the selection functions for both

tracers are the same (�g = �H ⌘ �), the three di↵erent auto and cross-power

spectra described in Section 6.2.1 can be written as:

Cgg
` = b2

g C` + N gg
` ,

CHg = bgT̄21bHI B` C`, (6.8)

CHH
` = T̄ 2

21b
2
HI B

2
` C` + NHH

` ,

where C` is the angular power spectrum of the matter overdensity projected

along the line of sight with �. At smaller scales both bg and bHI are generally

thought to be scale dependent and an additional cross-shot-noise term would

have to be included in CHg, (Wolz et al., 2017; Anderson et al., 2018;

Villaescusa-Navarro et al., 2018). The focus on large scales motivates our

neglect of these e↵ects throughout this work.
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On a realization-by-realization basis, the measured values of these

quantities will be subject to sample variance, due to the stochastic nature of

both the underlying matter fluctuations and the instrumental and shot noise.

For signal-dominated modes, the realization-dependent fluctuations will

coincide for the three power spectra, and therefore it is possible to constrain

certain parameters beyond the limit imposed by sample variance if only a

single tracer was available (Seljak, 2009). One obvious example of this is the

ratio of the tracer bias functions, which in an ideal noiseless case could be

measured exactly by taking ratios of the power spectra above. In this work

we will focus on the quantity

✏ ⌘ bHIT̄21

bg
, (6.9)

for which we propose two di↵erent estimators:

✏̂A,` ⌘
vuut ĈHH

` � NHH
`

B2
`

⇣
Ĉgg

` � N gg
`

⌘ , (6.10)

✏̂X,` ⌘ ĈHg
`

B`

h
Ĉgg

` � N gg
`

i , (6.11)

where all hatted quantities (e.g. ĈHH
` ) are measurements in a given realization.

In addition to this, we will also consider a third estimator making use of both

the auto and cross-correlation, which combines ✏A, X in an inverse-variance-

weighted manner:

✏opt =

P
i,j C

�1
ij ✏jP

ij C
�1
ij

, (6.12)

where C is the covariance matrix of the two previous estimators computed from

simulations.

These three estimators can be understood as di↵erent limits of a more

general maximum-likelihood estimator combining the three cross-correlations

simultaneously, which allow us to explore the impact of foreground

contamination in the 21cm maps.
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Figure 6.2: Galaxy (left) and HI map at 1050 MHz (z ' 0.35)
with a redshift bin width of �z = 0.1. We choose a low-redshift
bin in order to make the tight correlation between both maps more
visually apparent. Both maps trace the same DM background, and
show the pure cosmological signal, before inclusion of foregrounds, beam
smoothing or noise. Note that the HI maps were generated in much
thinner bins of �⌫ = 1 MHz. Noise, beam and foreground simulation
was done in these thin bins, and those maps were later merged to match

the thicker bins of the galaxy maps.

6.3 Simulated Forecasts

6.3.1 The Simulations

We produce synthetic signal simulations of both the galaxy distribution and

21cm maps using the publicly available code CoLoRe6. CoLoRe e�ciently

generates intensity maps for any arbitrary line-emitting species and source

catalogs tracing the same dark matter distribution (with their respective

biases bHI(z) and bgal(z)). CoLoRe first generates a Gaussian realization of the

linearized density field at z = 0 along with the corresponding linear radial

velocity field. It then linearly evolves density and velocity to the redshift of

each grid point in the simulation and produces a 3D cube of the physical

matter density in the lightcone using a log-normal transformation (described

in e.g. Coles & Jones (1991))7 For the galaxy sample the density field is

biased and then Poisson-sampled using the galaxy number density N(z). For

21cm, the density field is used to generate a biased HI density, which we then

6
https://github.com/damonge/CoLoRe

7Note that CoLoRe is also able to produce physical density fields through other more
accurate methods (e.g. 1st and 2nd-order Lagrangian perturbation theory, but we chose the
log-normal for simplicity and performance reasons). This choice should be irrelevant given
that our analysis focuses on relatively large scales.

https://github.com/damonge/CoLoRe
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interpolate into spherical shells that we output as sky maps. For simplicity,

we switch o↵ the e↵ect of redshift-space distortions, and therefore the

redshift of each source is calculated without accounting for the local velocity

field. We simulate a cubic box with 20483 Cartesian grid points and a length

large enough to encompass the comoving volume to redshift z = 2.7. This

yields a grid resolution of �x ' 4 h�1Mpc. The initial Gaussian density field

is smoothed with a Gaussian kernel of size RG = 5 h�1Mpc to avoid grid

artifacts as well as the non-linear distortions induced by the log-normal

transformation. This scale is significantly smaller than those we focus on, or

than the SKA beam, and therefore the impact of this smoothing on our

results is negligible.

We generate 21cm intensity maps with a frequency resolution of �⌫ = 1

MHz. To each of these maps we first add the simulated foreground maps,

smooth them using the SKA Gaussian beam and add the instrumental noise

as described above. To study the case of ideal noise-free cosmic-variance

cancellation we also simulate equivalent maps of the galaxy overdensity

without shot noise. We simulate these as an alternative intensity mapping

species with unit mean temperature and a bias given by the galaxy bias. The

foregrounds are simulated using ForGet, part of the publicly available CRIME

package8 (Alonso et al., 2014). We consider 4 unpolarized foreground sources,

including galactic synchrotron, galactic and extragalactic free-free emission

and extragalactic point sources.

From these outputs we produce maps of the 21cm temperature fluctuations

and of the galaxy overdensity on thin radial bins with an equivalent frequency

width �⌫ = 1 MHz. After the foreground cleaning stage, described in section

6.3.2, the resulting 21cm maps are merged to thicker bins with a width of

�z = 0.1, and the same is done to estimate the galaxy overdensity in bins of

the same width.

Finally, in order to study the statistical properties of our estimators, we

generate Nsim = 200 simulations of the dark matter background, using di↵erent

seeds for the Gaussian density field. Each simulation is populated with the HI

and galaxy distributions, using di↵erent seeds for the noise realization and

8
https://github.com/damonge/CRIME

https://github.com/damonge/CRIME
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foreground maps. All simulations assume a ⇤CDM cosmological model with

parameters (⌦M , ⌦b, ns, �8, h) = (0.3, 0.05, 0.96, 0.8, 0.7).

Figure 6.2 shows simulated maps of the galaxy overdensity (left) and the HI

temperature (right) using this procedure at a redshift z ' 0.35. Both maps are

very strongly correlated, and display similar structures. This tight correlation

is the basis for the cosmic-variance cancellation implicit in multi-tracer studies.

6.3.2 Foreground Removal

Foreground removal methods for 21cm intensity mapping (Chapman et al.,

2013; Wolz et al., 2014; Shaw et al., 2014, 2015; Alonso et al., 2015a; Zuo

et al., 2018) try to separate the cosmological and foreground signals by

making use of their di↵erent spectral properties: while foregrounds are

expected to have a smooth dependence with frequency, which should also be

highly correlated across the sky, the cosmological signal follows the

large-scale structure, and therefore contains power across a large range of

Fourier scales (both in frequency and angles).

Let d be a vector containing our measurements of the brightness

temperature along a fixed line of sight. In general it will contain

contributions from foregrounds f , cosmological signal c and instrument noise

n:

d = f + c + n = f + s, (6.13)

where we have grouped all noise-like components into s ⌘ c + n. Most

foreground removal methods recover an estimate of s by linearly filtering the

data:

sc = W · d, (6.14)

using a filter W that minimizes the presence of foreground residuals on s. For

instance, principal component analysis (PCA) corresponds to a filter

W = 1 � UPC, where UPC is the matrix of principal eigenvectors of the data

covariance matrix. As another example, a linear fit to a set of smooth

functions of frequency, stored in the columns of a matrix A, would correspond

to a choice of filter

W = 1 � A
�
ATSA

��1
ATS�1, (6.15)



78 Chapter 6. Simulated multi-tracer analyses

where S is the covariance of s.

After filtering, the cleaned signal

sc = Ws + Wf (6.16)

will contain both a version of the original signal where typically the longer-

wavelength radial modes have been down-weighted (Ws), as well as foreground

residuals (Wf), unless a perfect knowledge of the foreground spectral behavior

can be achieved. This has two main consequences when it comes to using sc

for cosmology:

• Unless foregrounds have been perfectly removed (which is never the

case), the auto-correlation of the 21cm data will be contaminated by

foreground residuals that must be marginalized over (unless we can

convince ourselves that their amplitude lies below the noise level at the

relevant length scales).

• Even when cross-correlating with other tracers of the large-scale

structure, the loss of radial modes implied by the filter W must be

taken into account and corrected for in the model for the

cross-correlation.

The first e↵ect is inherent to 21cm auto-correlations, and can only be overcome

if the residual contamination is su�ciently small, or if a su�ciently accurate

foreground model can be built to marginalize over their contribution. However,

since we always know the filter W used by the foreground cleaning pipeline, the

second e↵ect can be modeled and taken into account. In general, the action

of W will be to remove power from the largest radial scales, thus reducing

the overall amplitude of any projected clustering statistic. Characterizing this

reduction exactly requires a full model of the 3D power spectrum, however we

will take a simpler approximate method here, similar to the procedure used

in e.g. Masui et al. (2013); Switzer et al. (2013). We model the impact of W

on the angular power spectrum as a scale-dependent, multiplicative transfer

function T`. I.e.:

C̃HH
` = T 2

` CHH
` , C̃Hg

` = T` C
Hg
` . (6.17)
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Here C̃` and C` denote power spectra computed after foreground removal and

in the absence of foregrounds respectively, and C̃HH
` does not include the

contribution from foreground residuals (i.e. it is only the auto-correlation of

the first term in Eq. 6.16). We estimate the transfer function from our

simulations as:

T` =
hCH̃H

` i � N H̃H
`

hCHH
` i � NHH

`

, (6.18)

where CHH
` is the auto-correlation of a foreground-free simulation, CH̃H

` is the

cross-correlation between a foreground-cleaned and a foreground-free

simulation (we have subtracted the noise bias from both power spectra), and

h i denotes averaging over all simulations.

After accounting for this loss of modes, the estimators ✏A, X in Equations

6.10 and 6.11 above become

✏A,` ⌘
vuut ĈHH

` � NHH
`

(T`B`)2
⇣
Ĉgg

` � N gg
`

⌘ , (6.19)

✏X,` ⌘ ĈHg
`

T` B`

h
Ĉgg

` � N gg
`

i , (6.20)

6.4 Results

6.4.1 Theoretical expectation

Before we set o↵ to use our simulations to study the feasibility of multi-tracer

methods for intensity mapping, it is instructive to produce a theoretical

estimate of the expected performance of our estimators, in order to better

understand the simulated results, as well as the main sources of cosmic

variance cancellation.
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From the expressions for ✏A and ✏X in Eqs. 6.10 and 6.11, we can write, for

one particular realization:

✏̂A,` = ✏A,`

s
1 + �ĈHH

` /(CHH
` � NHH

` )

1 + �Ĉgg
` /(Cgg

` � N gg
` )

, (6.21)

✏̂X,` = ✏X,`
1 + �ĈgH

` /CgH
`

1 + �Ĉgg
` /(Cgg

` � N gg
` )

, (6.22)

where, as before, all hatted quantities (e.g. ✏̂X,`) are measurements of the

equivalent non-hatted observables in a given realization, and �ĈXY
` is the

fluctuation around the mean CXY
` in a given realization. Linearizing with

respect to these fluctuations, we obtain:

✏̂A,` � ✏A,`

✏A,`

⇡ 1

2

 
�ĈHH

`

CHH
` � NHH

`

� �Ĉgg
`

Cgg
` � N gg

`

!
, (6.23)

✏̂X,` � ✏X,`

✏X,`

⇡ �ĈgH
`

CgH
`

� �Ĉgg
`

Cgg
` � N gg

`

. (6.24)

To first order, the inverse-squared signal-to-noise ratio can be found by

taking the expectation value of the square of the above quantities, obtaining:

✓
S

N

◆�1

A,`

=
1

2

"
CovHH,HH

`

(CHH
` � NHH

` )2
+

Covgg,gg
`

(Cgg
` � N gg

` )2
�

2
CovHH,gg

`

(CHH
` � NHH

` )(Cgg
` � N gg

` )

#1/2

(6.25)

✓
S

N

◆�1

X,`

=

"
CovgH,gH

`

(CgH
` )2

+
Covgg,gg

`

(Cgg
` � N gg

` )2
�

2
CovgH,gg

`

CgH
` (Cgg

` � N gg
` )

#1/2

, (6.26)

where CovWX,Y Z
` ⌘ h�ĈWX

` �ĈY Z
` i. For Gaussian fields, a simplified estimate

of the covariance matrix (that does not account for e.g. survey geometry) is
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(Knox, 1995):

CovWX,Y Z
` =

CWY
` CXZ

` + CWZ
` CXY

`

(2` + 1)fsky�`
, (6.27)

where fsky is the survey sky fraction and �` is the width of the C` bandpowers

used in the analysis.

Substituting this result into the equations above we obtain a final expression

for the theoretical signal-to-noise ratio:

✓
S

N

◆�1

A,`

=
1p
2n`


(CHH

` )2

(CHH
` � NHH

` )2
+

(Cgg
` )2

(Cgg
` � N gg

` )2
�

2(CgH
` )2

(CHH
` � NHH

` )(Cgg
` � N gg

` )

#1/2

, (6.28)

✓
S

N

◆�1

X,`

=
1p
n`

"
1 +

CHH
` Cgg

`

(CgH
` )2

� 2Cgg
` (Cgg

` � 2N gg
` )

(Cgg
` � N gg

` )2

#1/2

, (6.29)

where n` ⌘ (2` + 1)fsky�` is the number of available modes in a given

bandpower.

Inspecting Eqs. 6.28 and 6.29, the idea of cosmic variance cancellation

becomes apparent: for perfectly correlated tracers (CgH
` ⌘pCHH

` Cgg
` ), and in

the absence of noise (N gg
` , NHH

` ! 0), the negative terms in these equations,

originating from the covariance between numerator and denominator in the

estimators, exactly cancel the positive terms, and we obtain (S/N)�1 ! 0.

This cosmic variance cancellation would not be possible if the observables

entering the estimators were not strongly correlated, as would be the case

if, for instance, the 21cm maps and galaxy catalog covered non-overlapping

regions of the sky. In this case, CovHH,gg
` = 0, and the signal-to-noise ratio for

a cosmic-variance limited version of ✏A,` would read:

✓
S

N

◆�1

CV,`

=
1p
2n`


(CHH

` )2

(CHH
` � NHH

` )2
+

(Cgg
` )2

(Cgg
` � N gg

` )2

�1/2

. (6.30)

We will make use of these theoretical estimates (Eqs. 6.28, 6.29 and 6.30) in

the next section to validate the results of our simulated results in the absence

of foregrounds.
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6.4.2 Foreground-free results

In order to quantify the full power of the cosmic variance cancellation in the

estimators described in Section 6.2.3, we first explore the results from

simulations without foregrounds or foreground removal, while including noise,

masking and beam smoothing. In this case, all the radial modes are present

in the HI data (i.e. the transfer function is T` = 1), and can be used to

constrain the bias ratio. The upper panel of Figure 6.3 shows the

signal-to-noise ratio of all estimators as a function of multipole ` for the

redshift bin centered around z = 0.8. For concreteness, the quantity plotted

is ✓
S

N

◆

`

=
✏true
`

�`

, (6.31)

where

✏true
A,` ⌘

s
hCHH

` i
hCgg

` i

�����
FG�free

, ✏true
X,` ⌘ hCHg

` i
hCgg

` i

�����
FG�free

, (6.32)

and

�2
` = h✏2

`i � h✏`i2. (6.33)

Here, angle brackets denote averaging over all simulations. Note that we define

✏true
` as the value of the estimator found in foreground-free simulations, and not

as the bias ratio given in Eq. 6.9. This is due to the fact that the bias functions

and the background 21cm temperature vary slightly within the redshift bin,

giving rise to a non-negligible scale dependence of the estimators that would be

interpreted as a bias when compared with averages of ✏ over redshift, even for

foreground-free simulations. For comparison, the figure also shows results for

an additional estimator ✏CV+ , defined as a version of ✏A in which the auto-power

spectra of 21cm and galaxies are computed from simulations with di↵erent

seeds. The aim of this estimator is to show the results that would be obtained

in the absence of cosmic-variance cancellation (e.g. as would be the case when

trying to constrain fNL from a single tracer). Note that we calculate ✏CV+

in di↵erent scenarios, also including instrumental noise, therefore it is not

necessarily limited by cosmic-variance.

The signal-to-noise ratio (SNR) of all estimators is shown in the top panel

of Figure 6.3, which shows how it should be possible to significantly increase
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Figure 6.3: The signal-to-noise ratio for all estimators in the
no foregrounds case (top) and no foregrounds, no noise and
no beam case (bottom). Results from the simulations (solid
lines) give slightly lower signal-to-noise than the theoretical
predictions (dotted-dashed lines) in the upper panel from
section 6.4.1. Naturally, ✏opt (yellow) has the smallest variance,
while ✏A and ✏X perform similarly (blue and red, respectively).
All of them beat the cosmic variance estimator ✏CV+ (cyan), in
the foreground-free case including noise and beam by a factor
of 2-4, and in the noiseless case by a factor of 3-8. It is worth
noting that little or no sensitivity is lost by discarding all 21cm
auto-correlation information and using only cross-correlations

(red vs. orange lines).
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the sensitivity within the multipole range ` . 100 by a factor of up to ⇠ 4

with respect to the CV-dominated case. This is true for both ✏A and ✏X,

which achieve very similar sensitivities. The tight correlation between both

estimators implies that the improvement associated with combining both into

✏opt is mild, and that very little information is lost by using only

cross-correlation information and discarding the 21cm auto-correlations. For

comparison, we show the theoretical predictions derived in the previous

section as dashed lines. The theory lines follow the same trends as the

simulated results, although they predict a SNR that is ⇠ 1.3 times higher

than the simulations, owing to the approximations that go into their

derivation. In all cases, no significant cosmic variance cancellation can be

achieved beyond the scale of the SKA beam (` ⇠ 100), and the overall SNR

drops significantly.

The impact of noise on cosmic-variance cancellation can be further explored

in a more idealized scenario, by making use of noiseless maps (i.e. simulations

containing no 21cm instrumental noise or galaxy shot noise, as described in

Section 6.3.1). The results, in terms of S/N , are shown in the lower panel of

Fig. 6.3. Even in this idealized situation it is not possible to achieve exact

cosmic variance cancellation (S/N �! 1), and the relative improvement with

respect to the CV-dominated case asymptotes at a factor of ⇠ 4 � 5. This is

caused by two factors: the redshift evolution of the bias functions within the

relatively thick redshift bins, and the non-linear lognormal transformation used

by CoLoRe to guarantee positive-definite density fields. Both e↵ects produce

slight di↵erences in the galaxy and HI maps that prevent exact cosmic variance

cancellation. We can only expect the impact of both e↵ects to increase in

a more realistic situation, in the presence of uncertain and scale-dependent

bias relationships. As expected, the absence of noise allows this level of CV

cancellation to be sustained beyond ` ⇠ 100, in comparison with the results

described above.

Although the results presented here are encouraging in terms of the large

relative improvement with respect to the CV limit, their validity must be

verified when foregrounds are included.
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6.4.3 Foreground removal

To remove the foregrounds from our simulations, we use the Principal

Component Analysis method (PCA), as described in Alonso et al. (2015a).

In short, the method is based on de-projecting the principal eigenmodes of

the frequency-frequency covariance matrix estimated from the data, under

the assumption that those modes are the ones most contaminated by

foregrounds. The level of conservativeness in the foreground removal stage

can be parametrized by the number of de-projected modes, which we will

refer to as the number of foreground degrees of freedom NFG.

In order to estimate the number of foreground degrees of freedom that must

be de-projected in our simulations, we ran the foreground removal algorithm on

all of them for di↵erent values of NFG. For each value, we use, as a diagnostic

for foreground contamination, the relative systematic deviation in the angular

power spectrum as a function of frequency and angular scale, defined as

⇣`(⌫) =

⌧
Cclean

` (⌫)

C free
` (⌫)

� 1

�
. (6.34)

Here C free
` and Cclean

` are the power spectra for foreground-free simulations

and for simulations in which NFG foreground modes have been subtracted

respectively. The optimal NFG was then determined as the minimum value that

achieves an acceptable degree of foreground removal over a large fraction of the

`�⌫ plane. This quantity is shown in Fig. 6.4 for the cases NFG = 7 and NFG =

9. Green colors represent a higher power spectrum with respect to the true

one, and are a sign of foreground contamination, while purple areas represent

lower power spectrum amplitudes and denote a loss of signal-dominated modes

caused by over-fitting. As mentioned in Section 6.3.2, the latter e↵ect can be

corrected analytically once the foreground removal transformation has been

established (e.g. through the transfer function T`), and therefore we seek to

minimize foreground contamination. In view of the results shown in this figure,

we chose to use NFG = 9 as our fiducial value. The transfer function associated

with this choice of NFG, as defined in Section 6.3.2, is shown in Figure 6.5 for

all di↵erent redshift bins as a function of scale.
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Figure 6.4: We demonstrate the e↵ectiveness of foreground
cleaning with 7 (top) and 9 degrees of freedom (bottom).
The relative di↵erence ⇣ is defined in Eq. 6.34. For our
purposes (measuring large scales), cleaning with 7 degrees of
freedom is clearly not su�cient as it leaves visible residuals
on scales up to ` . 100. Therefore the choice of NFG = 9 is
adopted throughout this work unless otherwise stated. The
horizontal lines indicate the frequency binning used in this
analysis, corresponding to a fixed width in redshift of �z = 0.1.
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Figure 6.5: The foreground removal transfer function T`(z)
for 9  `  21 (blue) and 54  `  66 (orange). The
transfer function shows only a mild scale dependence, but
drops significantly at the edges of the redshift range, where
foreground removal is less e�cient (see (Alonso et al., 2015a)).

6.4.4 Results in the presence of foregrounds

As described in Section 6.3.2, the e↵ect of foregrounds is two-fold:

1. Foreground contamination in the auto-correlation will lead to a bias in

✏A that can be statistically significant;

2. Foreground removal will erase some of the long-wavelength modes in

the signal. This reduces the number of common modes between the

foreground-cleaned intensity maps and the galaxy distribution, thereby

degrading the performance of the multi-tracer technique.

We first quantify these two e↵ects and then elaborate on their root causes and

possible ways around them.

Sensitivity and bias

The impact of the loss of long-wavelength modes in the method’s sensitivity

can be studied through the signal-to-noise ratio defined in Section 6.4.2. The

results are shown in Fig. 6.6 as solid lines for ✏A, ✏X and ✏opt as a function

of scale for a redshift bin at z = 1. The figure also shows the results for the

cosmic-variance dominated estimator ✏CV+ described in Section 6.4.2 as a solid

cyan line. When comparing with the CV limit in the presence of foregrounds
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Figure 6.6: The signal-to-noise ratio for all estimators in the
full analysis plus ✏opt and ✏CV+ in the foreground-free case,
as references. The inclusion of foregrounds in the analysis
introduces a significant degradation in sensitivity, and only a
slight improvement (a factor ⇠ 1.5) over the foreground-free

cosmic-variance limit (dashed cyan line) is possible.
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Figure 6.7: The signal-to-noise (bottom) and bias-to-noise
ratio (top) as a function of redshift, for ✏A (blue), ✏X (red)
and ✏opt (yellow) in the full analysis. The bias for ✏opt and
✏A increases for low and high redshifts, because foreground
cleaning is less e↵ective there (see also figures 6.4 and 6.5). The
bias in ✏X is compatible with 1� fluctuations, thanks to lack
of foreground residuals in the HI � galaxy cross-correlation.
Foreground cleaning still introduces a random error in all
estimators, which is highest at the upper and lower ends of

the frequency range, similar for all estimators.
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Figure 6.8: Upper panel: Distribution of �(✏) = ✏ � ✏true

for ✏A (blue) and ✏X (red) in the full analysis on the range
0  `  81. The systematic error in ✏A is due to the e↵ects of
foreground cleaning combined with the low radial resolution of
the galaxy maps. Lower panel: The signal-to-noise ratio of ✏X
for the full analysis (solid line), without foregrounds (dashed
line) and without foregrounds or noise (dotted line). At large
scales up to ` . 80 foregrounds are the dominant source of

uncertainty for ✏X.



6.4. Results 91

we observe that all estimators are able to improve upon ✏CV+ , although now

only by a factor of ⇠ 2. However, when comparing with the full constraining

power in the absence of foregrounds, shown as a dashed orange line for ✏opt

and as a dashed cyan line for ✏CV+ in the same figure, we observe a significant

loss in S/N and that the impact of foregrounds prevents the estimators from

producing a significant improvement in sensitivity with respect to an analysis

without CV-cancellation (as would be the case of a single-tracer galaxy survey).

We explore this e↵ect in more detail below.

To explore the first e↵ect described at the beginning of this section (the

foreground bias), we start by defining the “bias-to-noise” ratio for a given

estimator as ✓
B

N

◆

`

⌘ h✏`i � ✏true
`

�`

, (6.35)

where ✏true
` and �` are defined in Section 6.4.2. We compute this quantity for

all redshift bins and multipoles, and then estimate a scale-averaged B/N as a

quadrature sum of the `-dependent ratio

✓
B

N

◆
(z) =

vuut
`
maxX

`=0

✓
B

N

◆2

`

(z), (6.36)

where the sum is taken over the range of relevant multipoles, depending on

redshift. This quantity is shown in the upper panel of Fig. 6.7 as a function of

redshift for the three estimators considered here. While the bias of the cross-

correlation-based estimator ✏X is compatible with ⇠ 1� fluctuations, the use of

auto-correlations through either ✏A or ✏opt produces noticeable biases of up to

10�, caused by foreground contamination. The lower panel of the same figure

shows the integrated S/N ratio (estimated as a quadrature sum over power

spectrum multipoles), and reinforces our conclusion that all estimators achieve

similar sensitivities, and therefore we do not incur in any significant loss by

dropping all auto-correlation information and using only cross-correlations for

which foregrounds do not induce any bias. For the results in both panels of

this figure `max = 81.

Finally, we summarize the main findings of this section in Fig. 6.8. The

upper panel shows the distribution of ✏A � ✏true and ✏X � ✏true across all
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Figure 6.9: Radial HI power spectrum, averaged over 200
simulations, showing the auto-correlation of foreground free-
maps (solid line) and the cross-correlation of foreground-free
and foreground-cleaned maps (dotted line). Note that we use
a non-standard dimensionless radial coordinate ⌫/⌫21 (see Eq.
6.37), and therefore the wave number kk is also dimensionless.
The loss of long-wavelength radial modes is apparent in the
drop of the dotted line for kk . 100. The gray shaded area
indicates the smoothing scale due to the redshift bin width
of �z = 0.1, associated with the LSST photo-z uncertainty.
Unfortunately this is where foreground cleaning works best
and the solid and dotted lines agree, limiting the scale overlap

between both types of observations.

simulations and ` values for a bin at z ⇠ 0.8. The distributions are close to

Gaussian, and the ✏A shows a clear foreground bias. The lower panel shows

the degradation in sensitivity caused by instrumental noise (dotted line to

dashed line) and by the partial removal of signal due to foregrounds (dashed

line to solid line).

The e↵ects of foregrounds

We have carried out a number of tests to further understand the e↵ects of

foregrounds on multi-tracer analyses, and to explore di↵erent avenues to
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Figure 6.10: The signal-to-noise ratio for ✏X (red) and ✏A
(blue) with noise and foregrounds, comparing results obtained
from cleaning with 9 (solid lines) and 7 foreground degrees
of freedom (dashed lines). The contribution of foreground
residuals to the estimator noise outweighs the potential
improvement in sensitivity due to the milder subtraction of
long-wavelength modes, and the NFG = 7 case yields a poorer

results than our fiducial choice of NFG = 9.
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mitigate these e↵ects.

As we have seen, the cross-correlation estimator ✏X is immune to foreground

bias and its use does not incur in any significant penalty in terms of sensitivity.

Therefore, the main impact of foregrounds in 21cm observations is the loss of

long radial wavelength modes present in the galaxy distribution. To quantify

this e↵ect we have studied the radial 1D power spectrum P1D(kk), defined as the

variance of the line-of-sight Fourier coe�cients of our 21cm maps. In practice

we estimate this observable, as outlined in Villaescusa-Navarro et al. (2017),

by computing the Fourier transform for a given pixel across all frequencies:

�T (kk, n̂) =

Z
d⌫

⌫21

p
2⇡

exp


i
⌫kk

⌫21

�
�T (⌫, n̂). (6.37)

Note that we use ⌫/⌫21, as a radial coordinate, where ⌫21 = 1420 MHz is

the frequency of the 21cm line, and therefore the radial wavenumber kk is

dimensionless9. The 1D power spectrum is then computed as the covariance

between two fields �T1 and �T2:

P1D(kk) =
�⌫

⌫212⇡

⌦
Re
⇥
�T1(kk)�T ⇤

2 (kk)
⇤↵

, (6.38)

where the average is taken across all unmasked pixels and all simulations.

Figure 6.9 shows two 1D power spectra, computed from the

auto-correlation of the foreground-free simulations (solid line) and from the

cross-correlation of the foreground-clean and foreground-free simulations

(dotted line). Although both power spectra match on small scales (k & 200),

the loss of long-wavelength radial modes becomes apparent on larger scales,

where the amplitude of the cross-correlation becomes significantly smaller

than the foreground-free power spectrum. On the other hand, the radial

smearing e↵ect of photometric redshifts will erase all structure on scales

smaller than the photo-z error �z. Since ⌫/⌫21 = (1 + z)�1, we can associate

�z with a threshold wavenumber kph ⌘ ⇡(1 + z)2/�z. At z ⇠ 1 and assuming

�z = 0.03 (1 + z), we obtain kph ⇠ 200, which coincides with the scale at

which the mode loss to foregrounds becomes noticeable. The bin width

9In practice the Fourier transform is computed as a discrete Fourier transform (Frigo &
Johnson, 2005).
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�z = 0.1 would correspond to a scale kk ⇠ 125, and so e↵ectively all the

modes within the shaded region of Fig. 6.9 are erased in the data, due to the

top-hat smoothing. The range of radial scales over which a significant overlap

between 21cm observations and an LSST-like galaxy sample can be found

becomes significantly reduced, which has a negative impact on the cosmic

variance cancellation of the estimators studied here.

To circumvent this problem we have explored a few alternative avenues:

• Foreground degrees of freedom. To reduce the number of modes

lost to foreground removal it is worth exploring the possibility of

subtracting a smaller number of degrees of freedom at that stage. As

discussed in Section 6.4.3, this will produce significant foreground

residuals that will bias the auto-correlation but, since ✏X is immune to

this bias, its sensitivity might benefit significantly from the presence of

additional signal modes. However, although the foreground residuals

will not contribute to the bias of ✏X, they will also provide a

contribution to its variance, and therefore there will be a balance

between the preservation of long-wavelength modes and the

contribution of foreground residuals to the noise.

Figure 6.10 shows the S/N ratio of ✏A (blue) and ✏X (red) for the

fiducial case, in which NFG = 9 foreground degrees are subtracted (solid

lines) and for an alternative scenario with NFG = 7 (dashed lines). No

significant improvement is obtained in both cases, and in fact we

observe a reduction in sensitivity on large scales. Therefore, at least for

this setup, the contribution of foreground residuals to the estimator

variance outweighs the impact of the additional signal degrees of

freedom allowed by a more lenient removal stage. More e�cient

foreground removal methods preserving more information from the

signal while at the same time removing all residuals on large scales

could potentially improve this result.

• Thinner redshift bins. The large photo-z uncertainties that can

realistically be achieved by an experiment like LSST will make the use

of redshift bins smaller than �z ⇠ 0.1 pointless. This is due to the
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Figure 6.11: Lower panel: Similarly to fig. 6.6, but working in thin bins of
�⌫ = 1 MHz for both the galaxy and HI maps. We show the signal-to-noise ratio
for all estimators in the full analysis, and ✏opt in the foreground free case. The
latter is worse due to the smaller information content in the much thinner bin,
but notably all solid lines actually outperform the respective results obtained
from thick bins. This is due to the much bigger overlap of radial modes in the
galaxy and HI power spectra when precise galaxy redshifts are assumed. Note
that the full constraining power in this case would be realized by combining the
information from the much larger number of redshift bins. Upper panel: same
as fig. 6.8, but also for the thin frequency bin. While the shape and size of the
distributions of ✏X (red) and ✏A (blue) hardly change, the bias in ✏A becomes
negligible, due to the larger relative number of overlapping radial modes between

the 21cm and galaxy data.
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strong correlations between narrower bins induced by the photo-z

scatter. Nonetheless, it is worth exploring the possible cosmic-variance

cancellation gains if a better redshift precision were available. To do so,

we have repeated our analysis making use of redshift bins with width

�z = 0.02.

The results of this exercise are shown in Fig. 6.11 for a bin centered

around z ⇠ 0.8. The the lower panel corresponds to the signal-to-noise

as a function of scale, and shows an improvement of a factor ⇠ 2 with

respect to the cosmic-variance-limited case for all estimators. Although

this is comparable with the results shown for individual bins with �z =

0.1, the number of uncorrelated bins available in this case is 5 times

larger, and therefore the total signal-to-noise increases significantly. The

upper panel of the same figure shows the distributions of ✏A and ✏X for the

same redshift bin across all simulations and values of `. The significant

bias in ✏A observed in Fig. 6.8 is now gone, owing to the relative increase

in radial modes on which the 21cm signal dominates over foreground

residuals.

As we emphasized above, although higher redshift resolution improves

the performance of multi-tracer methods for 21cm intensity mapping,

photometric redshift surveys are unlikely to achieve the required

redshift accuracy. On the other hand, although spectroscopic surveys

can easily reach that level of radial resolution, they can only do so for a

substantially smaller number of objects, and the larger shot noise will

inevitably a↵ect the performance of the multi-tracer technique. The

most promising option is perhaps intensity mapping of other emission

lines (e.g. the CO line (Padmanabhan, 2018)), as long as the

instrumental noise can be reduced su�ciently.

• Matching scales. Finally, another possibility would be to subject the

galaxy overdensity data to the same linear transformation that

down-weights the long wavelength modes in the 21cm maps. If this can

be done with su�cient accuracy, the resulting auto and cross-power

spectra should manifest the same fluctuations around the mean on a
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realization-by-realization basis, and a higher degree of CV cancellation

could be expected from the estimators used here, based on ratios of

those quantities.

Note that in a more optimal analysis, where the full data from the

21cm maps and the galaxy overdensity are used, including all the

signal-dominated radial and angular modes (instead of just the power

spectrum ratios of matching redshift bins), this is unlikely to provide

any advantage over preserving all of the modes in the latter probe. A

likelihood evaluation of the full data would automatically produce the

cancellation of cosmic variance on all common modes, and would use

the additional galaxy long-wavelength modes to increase the final

constraints further.

Thus, to summarize: although multi-tracer methods applied to 21cm data

in cross-correlation with photometric redshift surveys do improve the

constraining power beyond the cosmic variance limit, this improvement is

strongly hampered by the loss of long-wavelength modes, common to both

data-sets, due to the presence of foreground contamination and low z

resolution. Multi-tracer analyses using 21cm observations are therefore more

likely to achieve a better performance when combined with other intensity

mapping data or spectroscopic surveys, assuming the noise amplitude of the

latter (instrumental or shot-noise) can be reduced su�ciently.

6.5 Discussion

21cm intensity mapping and photometric redshift surveys are two promising

techniques to study the three-dimensional distribution of matter in the universe

on large scales. A number of cosmological observables, such as the level of

primordial non-Gaussianity, benefit from the combined analysis of multiple

proxies of the same density inhomogeneities in what is known as the “multi-

tracer” technique. In this chapter we have explored the feasibility of multi-

tracer analyses that exploit the combination of the two aforementioned probes,

for the particular case of 21cm observations to be carried out by an SKA-

like instrument and an LSST-like galaxy sample. For concreteness, we have
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Case ✏A ✏X ✏CV+ ✏opt

No noise, no FG 1291 1292 192 1306
No FG 495 502 154 509
No noise 299 298 155 312
Full analysis 178 183 120 192

Table 6.1: Signal-to-noise from combining all redshift bins
for all estimators and all modeling scenarios of this work.
Here using 9 degrees of freedom for the foreground cleaning
and a redshift bin width of �z = 0.1. While ✏A uses
the HI and galaxy auto-correlations, ✏X uses the HI-g cross-
correlation and g-g auto-correlation and ✏opt is the inverse
variance-weighted sum of both (eqs. 6.10 - 6.12). The estimator
✏CV+ on the other hand uses auto-correlations with di↵erent
DM realizations for the galaxy and HI populations and shows
the constraints achievable in the absence of multi-tracer cosmic

variance cancellation.

focused our analysis on two estimators of the bias ratio for both samples, ✏A

and ✏X, described in Section 6.2.3. Since these estimators make use of the

21cm auto-correlation and its cross-correlation with galaxies respectively, they

allow us to explore both the bias induced on ✏A by the presence of foreground

residuals, and the potential loss of information associated with dropping auto-

correlation information (✏X). For completeness, we also consider an optimal

inverse-variance combination of both estimators, ✏opt, that uses all the data

available.

In the absence of foregrounds, we show that both ✏A and ✏X are able to

achieve similar sensitivities, with little improvement when using ✏opt due to

the tight correlation between both estimators. When compared with the

cosmic-variance contaminated measurement of the same bias ratio, we show

that these estimators are able to improve the signal-to-noise by a factor of

⇠ 4-5, even when compared to the cosmic-variance-contaminated, noise-free

case, showcasing the tremendous potential gains of the multi-tracer

technique.

The impact of the presence of foregrounds in the 21cm data is twofold. On

the one hand, residuals after foreground removal produce an o↵set in the HI

auto-correlation which biases both ✏A and ✏X at high significance. We show
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however, that ✏X is immune to this bias, while preserving the same statistical

power as the two other estimators. On the other hand, foreground removal

is based on the separation of foregrounds and cosmological signal through

their di↵erent spectral behavior, e↵ectively down-weighting the radial long-

wavelength modes where foregrounds dominate. Since photometric redshifts

e↵ectively erase all structure along the line of sight on all but the largest scales,

the overlap between SKA and LSST in the kk-k? plane reduces significantly,

partially spoiling the cosmic variance cancellation. We show that, in this case,

the sensitivity of all estimators drops by more than a factor of ⇠ 2, and that the

improvement in signal-to-noise ratio with respect to a cosmic-variance-limited

measurement made in the same circumstances is now only a factor ⇠ 2. This

drops to a smaller ⇠ 50% improvement when we compare either estimator

with the cosmic-variance-limited measurement without foregrounds. These

results are summarized in Table 6.1, which shows the cumulative signal-to-

noise (quadrature-summed over all multipoles and redshift bins) for the three

estimators as well as the CV limit in di↵erent scenarios regarding the presence

of noise and foregrounds.

We have also explored two possible ways to overcome this problem. First,

a less aggressive foreground removal that leaves a larger fraction of

foreground residuals in the maps, would also leave a larger number of

long-wavelength modes untouched, increasing the scale overlap between LSST

and SKA. In practice, however, we have seen that the contribution of the

foreground residuals to the estimator uncertainties in fact decrease the total

SNR when a smaller number of foreground degrees of freedom are subtracted.

Another way to increase the scale overlap between both experiments would

be to reduce the size of the redshift bins used in the analysis. Although this

is not a real possibility for photometric surveys, since structures can never be

resolved on scales smaller than the photo-z uncertainty, this case allows us to

explore other possible synergies with either spectroscopic surveys or intensity

mapping observations of other emission lines. Our results show that in this

case the gain in sensitivity associated with the multi-tracer technique is likely

restored, with the added advantage that the foreground bias is also reduced

due to the larger fraction of signal-dominated modes. An analysis pairing HI
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intensity maps with a spectroscopic survey would work with maps in thin

redshift slices and therefore need to take into account cross-correlations

between adjacent redshift bins as well as redshift space distortions. A large

area survey would most likely su↵er from high shot noise degrading the

results, but the potential of a low-volume survey with a large number density

of galaxies could be interesting. Another promising way forward for these

types of analyses may be the combination of intensity mapping observations

for di↵erent emission lines, even though two emission line surveys might

su↵er from foreground residual cross-correlations.

In a follow up work we plan to study these new avenues in more detail, first

by considering constraints on fNL directly, and including estimators that can

deal naturally with the mismatch in the modes that are removing in di↵erent

surveys does allowing a more perfect cancellation. We will also consider other

foreground cleaning methods that might be less aggressive on cleaning this

large scales and new tracers with higher redshift resolution.
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7 Prospects for cosmic

magnification measurements

using HI intensity mapping

This project (Witzemann et al., 2019a) was submitted to the journal Monthly

Notices of the Royal Astronomical Society (MNRAS) and is available on the

arXiv with number 1907.00755. As the leading author, I was in charge of all

results, calculations and figures, as well as most text. A. Pourtsidou provided

the scientific rationale and guidance, checked results, and also provided text and

editorial work. M. Santos edited the text and contributed important suggestions

to guide and improve this work.

In this chapter, we investigate the prospects of measuring the cosmic

magnification e↵ect by cross-correlating neutral hydrogen intensity mapping

(HI IM) maps with background optical galaxies. We forecast the

signal-to-noise ratio for HI IM data from SKA1-MID and HIRAX, combined

with LSST photometric galaxy samples. We find that, thanks to their

di↵erent resolutions, SKA1-MID and HIRAX are highly complementary in

such an analysis. We predict that SKA1-MID can achieve a detection with a

signal-to-noise ratio of ⇠ 10 on a multipole range of ` . 200, while HIRAX

can reach a signal-to-noise ratio of ⇠ 30 on 200 < ` < 2000. We conclude

that measurements of the cosmic magnification signal will be possible on a

wide redshift range with foreground HI intensity maps up to z . 2, while

optimal results are obtained when 0.6 . z . 1.3.

https://arxiv.org/abs/1907.00755
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7.1 Introduction

Traveling through the Universe, the path of light is deflected by the mass

distribution it encounters. Images of distant light sources are distorted by the

intervening matter along the line of sight (LOS), an e↵ect well described by

General Relativity. As a result, distortions of shapes, magnifications and even

duplicate images are observed and are generally classified as weak or strong

gravitational lensing.

Weak gravitational lensing or cosmic shear is a coherent distortion of the

shapes of galaxies, and has been routinely detected using optical galaxy

surveys, with the first detections reported almost two decades ago (see, for

example, Bacon et al. (2000); Kaiser et al. (2000); van Waerbeke et al.

(2000); Wittman et al. (2000)). Ongoing and forthcoming large scale

structure surveys like CFHTLens (Heymans et al., 2012), DES (Abbott et al.,

2016), Euclid (Amendola et al., 2018), and LSST (Abate et al., 2012), will

give precise cosmic shear measurements and use them to constrain the

properties of dark energy. The accuracy and robustness of weak lensing

measurements depends on the control of various systematic e↵ects such as

intrinsic alignments, point spread function, seeing and extinction, as well as

photometric redshift calibration (Mandelbaum, 2018). In addition, Stage IV

lensing surveys with Euclid and LSST will need accurate theoretical

modeling of nonlinear clustering and baryonic e↵ects down to very small

scales to achieve their goals. Further improvements will come from the use of

galaxy-galaxy lensing cross-correlations (van Uitert et al., 2018).

In addition to the distortion of galaxy shapes, there is another form of

lensing, cosmic magnification, which can be measured even when the sizes

and shapes of sources are inaccessible. This makes it particularly attractive

as it is free from many systematics such as the point spread function and

intrinsic alignments (see, for example, Zhang & Pen (2006), which discussed

the possibility of using radio galaxy surveys to detect this e↵ect).

Magnification occurs when intervening structure between an observer and a

source acts to magnify or demagnify the object, i.e. sometimes allowing the

observer to see objects otherwise too faint (Bartelmann & Schneider, 2001).

However, the apparent observed area can also be increased, which leads to an
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apparent decrease in number counts if the total number is conserved. Only

slightly altering the observed structures, this e↵ect is notoriously di�cult to

measure (see e.g. the discussion in Hildebrandt et al. (2009)). Several

promising techniques exist, but there have been only a few, and controversial,

detections (see discussion and references in Scranton et al. (2005)). The first

time this signal was measured with high significance was the 8� detection

achieved in Scranton et al. (2005) using the Sloan Digital Sky Survey and the

galaxy-quasar cross-correlation. A more recent analysis with DES galaxies is

presented in Garcia-Fernandez et al. (2018).

Measurements of cosmic magnification probe the galaxy halo occupation

distribution, dark matter halo ellipticities and the extent of galaxy dust halos

(Scranton et al., 2005; Menard et al., 2010) – they are complementary to

shear-shear measurements, and they can be used to break parameter

degeneracies (Van Waerbeke et al., 2010). Similar to cosmic shear, cosmic

magnification provides constraints on the galaxy-matter correlation, but

without the requirement of measuring shapes, it su↵ers from less systematic

errors and can be extended to sources at much higher redshifts (Scranton

et al., 2005). In addition to probing the matter distribution directly,

magnification also plays an important role in geometrical methods to measure

dark energy parameters independently of the matter power spectrum (Jain &

Taylor, 2003; Bernstein & Jain, 2004; Taylor et al., 2007). These methods use

galaxy-lensing correlations and therefore depend on estimates of the galaxy

density. This is directly a↵ected by magnification, which can therefore

introduce systematic errors unless corrected for (Scranton et al., 2005; Hui

et al., 2007; Ziour & Hui, 2008; Bonvin & Durrer, 2011).

A straightforward approach to measure magnification uses the angular

cross-correlation between foreground and background galaxy counts (see e.g.

Hildebrandt et al., 2009), where galaxy-magnification or

magnification-magnification cross-correlations would be major contributors to

a non-zero signal.

Following a similar line of thought, we propose to use HI intensity maps

acting as foreground lenses, magnifying a background distribution of galaxies.

A motivation for using HI is that intensity maps have no lensing corrections
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at first order due to flux conservation (Hall et al., 2013), which removes

magnification-magnification correlations between foreground and background.

This potentially decreases the signal, but also helps interpretation by

removing additional terms in the signal calculation. In addition, the excellent

redshift resolution of the foreground HI maps allows to combine

measurements using di↵erent slices of the HI distribution. Using HI intensity

maps also mitigates the danger of overlapping foreground and background

sources, which results to a clustering (not lensing) signal. Furthermore, radio

and optical observations are subject to di↵erent systematic e↵ects, which are

expected to drop out in cross-correlation. In the following, we derive

forecasts for a potential detection of the magnification signal, using noise

properties for the planned radio telescopes SKA1-MID (Square Kilometre

Array Cosmology Science Working Group et al., 2018) and HIRAX

(Newburgh et al., 2016b), as well as LSST.

The plan of this chapter is as follows: In section 7.2 we give an

introduction to cosmic magnification statistics and introduce the possibility

of using HI intensity maps as foreground lenses. In section 7.3 we calculate

the instrumental (thermal) noise of SKA1-MID and HIRAX, as well as the

shot noise from the LSST sample, and investigate the signal and noise

properties for the cosmic magnification measurement. In section 7.4 we

optimize the signal-to-noise ratio for our proposed method and derive the

cumulative signal-to-noise ratio for SKA1-MID and HIRAX. We summarize

our findings and conclude in section 7.5.

7.2 Cosmic magnification statistics

In this section we describe the power spectrum formalism for measuring the

cosmic magnification signal from background galaxies. We start with the

standard approach, which assumes a galaxy sample as the foreground sample,

and then introduce the possibility of using HI intensity maps instead.
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7.2.1 Galaxies as the foreground sample

Galaxies are biased tracers of the underlying dark matter distribution, which is

thought to contain most of the mass distributed along the LOS to a light source.

Magnification will increase the flux from a galaxy, making it appear brighter

than it actually is. Therefore galaxies normally too faint to be detected can

still be seen if the magnification caused by the matter along the LOS is strong

enough. However, the apparent area of a source is also increased, resulting in

a decrease of the observed number density of galaxies. We can write (Zhang

& Pen, 2006)

�L
g = �g + (5sg � 2) + O(2) , (7.1)

with �L
g and �g the lensed and unlensed intrinsic galaxy over-densities,

respectively, and  the lensing convergence. For a survey with limiting

magnitude m? the number count slope sg is given by (Duncan et al., 2014)

sg =
d log10ng(< m?)

dm?
, (7.2)

with the cumulative number of detected galaxies per redshift interval and unit

solid angle, ng. The cross-correlation of well separated foreground (at position

✓f and redshift zf) and background (✓b and zb) galaxy samples is free from the

intrinsic galaxy over-density correlation term h�g(✓f , zf)�g(✓b, zb)i, therefore

h�L
g (✓f , zf)�

L
g (✓b, zb)i = h(5sb

g � 2)b�g(✓f , zf)i
+ h(5sf

g � 2)(5sb
g � 2)fbi , (7.3)

where the superscript L denotes lensed quantities. The right hand side of

equation 7.3 contains the magnification-galaxy (µ � g) correlation (first term)

and the magnification-magnification (µ � µ) correlation (second term). The

latter is subdominant for foregrounds at comparably low redshifts and therefore

usually neglected. If both foreground and background galaxies are at high

redshifts, however, it can become large (Ziour & Hui, 2008).
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7.2.2 HI intensity maps as the foreground sample

In this work, we focus on the magnification e↵ect of HI intensity maps in the

foreground, acting on the clustering statistics of background galaxies.

Intensity maps themselves are not lensed at linear order due to surface

brightness conservation (Hall et al., 2013). This means that sHI = 2/5 and

�T L
21 = �T21 = T̄21�HI = T̄21bHI� , (7.4)

where T̄21 is the mean brightness temperature of neutral hydrogen, bHI is the

hydrogen bias and � the dark matter over-density. Considering galaxies as the

background sample, we now have

h�L
HI(✓f , zf)�

L
g (✓b, zb)i = h(5sb

g � 2)bbHI�(✓f , zf)i , (7.5)

where the magnification-magnification term is absent since sHI = 2/5. The

above relation holds at all redshifts, given that the foreground and background

samples are well separated. This can be guaranteed via the excellent redshift

information provided by the intensity mapping survey.

The observable magnification signal can be expressed using the angular

power spectrum (Zhang & Pen, 2006; Ziour & Hui, 2008)

CHI�µ
` (zf , zb) =

3

2

H2
0

c2
⌦m,0 ⇥

Z 1

0

dz
bHIT̄21(z)W (z, zf)g(z, zb)

r2(z)
(1 + z) ⇥

Pm((` + 1/2)/r(z), z) , (7.6)

where r(z) is the comoving distance to redshift z and we have applied the

Limber approximation, valid for ` � 10 (Limber, 1954; Loverde & Afshordi,

2008). The redshift distribution of the foreground HI intensity maps is given

by a top hat over the foreground redshift bin W (z, zf) and g(z, zb) is the lensing

kernel:

g(z, zb) =
r(z)

Ng(zb)

Z zmax

b

zmin

b

dz0 r(z
0) � r(z)

r(z0)
(5sg(z

0) � 2)ng(z
0) , (7.7)
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Figure 7.1: Di↵erent fitting functions for the cumulative
galaxy number count were considered. The normalized ‘true’
function here is taken from Alonso et al. (2015b) (solid black
line). The best fitting function (red dotted-dashed line) is given

in Equation (7.11).

where the number of galaxies per square degree in the background bin is

Ng(zb) ⌘
Z zmax

b

zmin

b

ng(z)dz , (7.8)

and zmin
b , zmax

b denote the minimum and maximum redshift for the background

galaxy sample. An interesting feature of the geometrical weight r(z0)�r(z)
r(z0) is

that, in a flat universe, it takes the form of a parabola with a maximum at

r(z0) = r/2. Thus, structures half-way between the source and the observer

are the most e�cient to generate lensing distortions (Kilbinger, 2015) (and

very low redshift foregrounds are less favored).

For increased computational speed, we use a fitting function to approximate

the cumulative galaxy count for LSST, ng, provided in the publicly available

code from Alonso et al. (2015b). This code in turn uses the Schechter function

(Schechter, 1976) for the r’-band luminosity from Gabasch et al. (2006), with

the faint end slope ↵ = �1.33, the characteristic magnitude M⇤
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Figure 7.2: We illustrate the behavior of the number count
slope sg and galaxy count ng with respect to the magnitude
threshold m⇤, here with foreground redshift 0 < z < 0.47,
which corresponds to band 2 of SKA1-MID, described in detail
in section 7.3. The red (blue) shaded areas indicate the
foreground (background) redshift range. The upper panel
displays the galaxy number density ng (normalized to integrate
to one inside the background bin), and the contribution of
the number count slope sg. The bottom panel shows the
product ng(5sg � 2), which is the only term inside the integral
Equation (7.7) to potentially be negative. This demagnification
leads to cancellation in the integration and thus to a smaller
lensing signal. An appropriate magnitude cuto↵ enforces 5sg >
2 in the background redshift bin and thus boosts the signal.
However, this comes at the cost of increasing the galaxy shot

noise.
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Figure 7.3: The HI-magnification cross-correlation power
spectrum for a foreground redshift from z = 0 to 0.47,
corresponding to band 2 of SKA1-MID. Lower magnitude cuts

increase the magnification signal.

M⇤(z) = M0 + a ln(1 + z) (7.9)

and the density �⇤

�⇤(z) = (�0 + �1z + �2z
2)[10�3Mpc�3]. (7.10)

Here M0 = �21.49, a = �1.25, �0 = 2.59, �1 = �0.136, �2 = �0.081. We

adapt the fit from LSST Science Collaboration et al. (2009) to approximate ng

as follows,

ng(z) / z↵ exp
��� z

z⇤

���
, (7.11)

where we optimize the parameters ↵, � and z⇤ to fit ng from Alonso et al.

(2015b) as functions of magnitude cuto↵ m⇤ by interpolation. Fig. 7.1

compares this fit with the true ng and with several other fitting functions.

The overall amplitude is irrelevant in Equation (7.7), as ng is normalized to

integrate to one, but it is required to calculate the shot noise – see section 7.3

for details.

The number count slope sg (Fig. 7.2) rises quicker for a lower magnitude
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cuto↵, therefore the magnitude threshold can be chosen to avoid a sign change

of 5sg � 2 in the background redshift bin. The amplitude of the magnification

signal is proportional to a redshift integral of 5sg � 2 (Equations (7.2) and

(7.6)). An appropriate magnitude cuto↵ thus boosts the signal by avoiding

cancellations inside the integral for the lensing kernel g. Fig. 7.2 demonstrates

this in a situation where a lower magnitude threshold is beneficial to optimize

the magnification signal, which is shown in Fig. 7.3. Decreasing m⇤ comes

at the cost of a smaller number of observed galaxies and therefore increased

shot noise. We optimize to achieve a maximal signal to noise ratio. We will

further discuss this in section 7.3.2, and we also note that a number count

slope weighting was suggested in (Menard & Bartelmann, 2002) and used in

the SDSS data analysis of Scranton et al. (2005).

We use CAMB with HALOFIT (Lewis et al., 2000; Smith et al., 2003;

Takahashi et al., 2012) to estimate the nonlinear matter power spectrum,

Pm(k, z), assuming a flat ⇤CDM cosmology with h = 0.678, ⌦ch
2 = 0.119,

⌦bh
2 = 0.022, ns = 0.968.

The error in the measurement of the cross-correlation power spectrum is

�CHI�µ
` =

s
2((CHI�µ

` )2 + (Cgg
` + Cshot)(CHI�HI

` + N`))

(2` + 1)�`fsky
, (7.12)

where Cshot is the galaxy shot noise power spectrum, N` is the thermal noise

of the intensity mapping instrument, �` is the binning in multipole space, and

fsky is the fraction of sky area overlap of the HI and optical surveys. For the

foreground HI IM sample we use a top-hat window function W (z) = 1/�z

inside the bin of width �z and zero elsewhere. We can then write the HI and

galaxies auto-correlation power spectra as

CHI�HI
` =

H0

c

Z
dzE(z)

✓
bHIT̄21(z)W (z)

r

◆2

Pm

✓
` + 1/2

r
, z

◆
, (7.13)

and

Cg�g
` =

H0

cN2
g

Z
dzE(z)

✓
bg(z)ng(z)

r

◆2

Pm

✓
` + 1/2

r
, z

◆
, (7.14)
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where we have written the Hubble rate as H(z) = H0E(z), and the HI bias

bHI is given by fits to the results from Alonso et al. (2015b):

bHI(z) = 0.67 + 0.18z + 0.05z2 . (7.15)

The galaxy bias bg naturally depends on redshift as well as magnitude cuto↵,

as brighter objects are rarer and thus more biased, an e↵ect which is ignored

when a simple linear and deterministic fitting function is used, for example

b̃g(z) = 1 + 0.84z. (7.16)

To enforce a behavior similar to that of the magnification bias at higher

redshifts and more stringent magnitude cuts, we use a piecewise di↵erentiable

galaxy bias:

bg(z) = max

✓
b̃g,

1

2
(5sg � 2)

◆
. (7.17)

This choice makes sure that the ratio (5sg � 2)/bg converges, as described in

(Hui et al., 2007), and the resulting ratio is shown in Fig. 7.4 for di↵erent

magnitude cuto↵ values. We note that this choice has a comparably weak

e↵ect on our results, as the signal remains unaltered and, as it will be shown,

errors are mostly shot noise dominated.

The mean observed HI brightness temperature is calculated using the fit

provided in Santos et al. (2017), which is based on the results from Santos

et al. (2015):

T̄21 = 0.0559 + 0.2324z � 0.024z2 mK . (7.18)

7.3 Error calculations

7.3.1 HI intensity maps

We consider the experiments HIRAX and SKA1-MID to map the distribution

of HI, used as the foreground sample. Together with the shot noise from

LSST, their instrumental noise contributes to the total error budget given by

Equation (7.12).
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Figure 7.4: The ratio of number count slope and galaxy bias
(5sg � 2)/bg for di↵erent magnitude cuto↵ values. The ratio
is set to 2 for higher redshifts via the choice of galaxy bias,
see Equation (7.17). The maximum magnitude detectable with
LSST is assumed to be 27. Imposing a lower magnitude cuto↵
increases the shot noise, but also the number count slope, which

increases the magnification signal.

HIRAX is a planned radio interferometer of 6 m diameter dishes, sharing

the site in the Karoo in South Africa with MeerKAT and SKA1-MID. We

assume the full planned array of 1024 and the reduced set of 512 dishes,

arranged in a dense square grid with 1 m space between individual antennas.

HIRAX aims to perform a large sky intensity mapping survey with 15, 000

deg2 area, and the integration time is taken to be two full years

(corresponding to 4 years observation). We assume a constant system

temperature of 50 K on its entire frequency coverage ranging from 400 to 800

MHz (Newburgh et al., 2016b).

At the same time, SKA1 is assumed to have only one year worth of

integration time but a larger survey area of 16,900 deg2. This corresponds to

the maximum possible survey overlap with LSST, after taking into account

the total survey area of SKA1-MID (Santos et al., 2015) and contamination

from galactic synchrotron radiation and dust. SKA1-MID will consist of

di↵erent dish types: the (already operating) 64 MeerKAT dishes with 13.5 m,

and 133 SKA1-MID dishes of 15 m diameter. For simplicity, we assume all
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dishes to be identical, taking an average dish diameter

D̃dish = (64 ⇥ 13.5 + 133 ⇥ 15)/(64 + 133) m and using a Gaussian beam

pattern. We consider two observational bands: band 1 ranging from 350 to

1050 MHz, and band 2 from 950 to 1750 MHz (Square Kilometre Array

Cosmology Science Working Group et al., 2018). The system temperature is

assumed to be 30 K for band 1 and 20 K for band 2. This is conservative on

low redshifts. For high-redshift foreground bins, the system temperature

increases beyond that, but at the same time the galaxy shot noise becomes

the dominant source of error and magnification detections quickly become

extremely di�cult for foreground samples with z & 2. This justifies our

assumption of constant system temperature for both SKA1-MID and

HIRAX. For both experiments, we use equally spaced redshift bins of width

�z = 0.5, with the exception of band 2 with �z = 0.47. A more realistic

treatment would have to take into account the frequency dependence of the

noise temperatures of both experiments, and the di↵erent dish and receiver

types of SKA1. However, we expect this to have a negligible e↵ect on our

results.

Following Battye et al. (2013) and Bull et al. (2015b) for the intensity

mapping noise calculations, we calculate the single dish noise for SKA1-MID

as

NSD
` = �2

pix⌦pixW
�1
` . (7.19)

Here, we use the solid angle per pixel ⌦pix = 4⇡fsky/Npix, the number of pixels

Npix, the beam (⇥FWHM) smoothing function W` = exp
��`2⇥2

FWHM/(8 ln 2)
�
,

the pixel noise �pix = Tsys

p
Npix/(ttot�⌫Ndish) and the frequency resolution

(channel width) �⌫ .

For HIRAX, we calculate the interferometer noise

N INT
` =

(�2Tsys)2

2A2
ed⌫n(u)tp

, (7.20)

with the frequency bin width d⌫, the time per pointing tp = ttot/Np, the

e↵ective collecting area of one dish Ae = (Ddish/2)2⇡, and using the relation

u = `/(2⇡) for the baseline density n(u).

For all experiments we assume full survey overlap with LSST.
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7.3.2 Photometric galaxy counts

We normalize the LSST sample to be a total of ⇠ 6.3⇥109 galaxies at m⇤ = 271.

The galaxy shot noise for LSST is calculated as Cshot = 4⇡/NLSST
g (z), where

we use a fitting function to calculate the number of detected galaxies in the

considered redshift bin, NLSST
g (Eqs. (7.8) and (7.11)). We consider all possible

LSST redshift bins to have their upper edge at the same zLSST
max = 3.9, and

the lower bin edge at a separation from the upper edge of the foreground bin,

zfg
i +0.1. The choice of a separation of �z = 0.1 is conservative, ruling out any

cross-correlations from possible overlaps, caused for example by the uncertainty

in the photometric redshift measurements of LSST. We calculate the number

count slope for LSST using an adjusted version of the code provided in Alonso

et al. (2015b) to extend to more stringent luminosity cuto↵s m⇤. We then

interpolate (5sg � 2)ng on a fine grid (z and m⇤) to speed up the numerical

calculations.

In order to illustrate the di↵erent error contributions and consolidate our

findings, Fig. 7.5 shows all summands contributing to the HI-magnification

cross correlation error:

(�CHI�µ
` )2 =

2

(2` + 1)�`fsky

✓
(CHI�µ

` )2 + Cg�g
` CHI�HI

`

+CshotCHI�HI
` + N`C

g�g
` + CshotN`

◆
. (7.21)

The amplitude of the di↵erent contributions here depends on the choice of

experiments and redshift binning.

To ease comparison we used the same single redshift bin for HIRAX and

SKA1-MID in Fig. 7.5, from z = 0.85 to 1.35. For HIRAX a magnitude

cuto↵ of m⇤ = 24.4 maximizes the signal-to-noise ratio; for SKA1-MID it

is 24.3. This optimization will be discussed further in section 7.4. In this

case shot noise dominates the error throughout, but it becomes comparable to

cosmic variance (mostly Cg�g
` CHI�HI

` ) on large scales for SKA1-MID. Note that

1This is slightly more conservative than the number quoted in LSST Science Collaboration
et al. (2009), i.e. almost 1010 galaxies for m⇤ = 27.5.
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SKA1 B1 - - -
z range 0.34-0.84 0.84-1.34 1.34-1.84 1.84-2.34
m⇤ 23.6 23.1 26.3 27.0
SNtot 8.7 6.3 1.1 0.4

HIRAX - - SKA1 B2
z range 0.78-1.28 1.28-1.78 1.78-2.28 0.0-0.47
m⇤ 23.0 26.1 27.0 22.1
SNtot 28.5 9.4 3.8 5.8

Table 7.1: Optimized magnitude cuto↵s, m⇤, as well as
cumulative signal to noise values for all experiments and
redshift bins. Individual redshift bins of HIRAX are better
than SKA1-MID also due to the higher number of ` bins that

contribute.

small scales are practically inaccessible for SKA1-MID due to its poor angular

resolution, restricting it to much larger scales than HIRAX.

The multipole resolution is set by the maximum scale accessible by the

SKA, i.e. the survey area Sarea when in single dish mode. We estimate `SKA
min =

2⇡/
p

Sarea ⇠ 3, but choose a more conservative value of `SKA
min = 10 for the

Limber approximation to hold (Loverde & Afshordi, 2008). For the HIRAX

interferometer it is set by the field of view (fov) which depends on frequency.

For the sake of simplicity we ignore this dependence and assume a mean fov =

35.5 deg2 (Newburgh et al., 2016b), giving `HIRAX
min = 2⇡/

p
fov ⇠ 60. From the

signal to noise ratio CHI�µ
` /�CHI�µ

` we calculate the cumulative (total) signal

to noise as

SNtot =

vuut
X̀

¯̀=`
min

(CHI�µ
¯̀ /�CHI�µ

¯̀ )2, (7.22)

where the sum runs over the relevant ` values, with the minimum `, and the

binning �`, set by `min. We note, however, that the cumulative signal to noise

ratio SNtot is binning independent.
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7.4 Results and Discussion

We maximize the signal to noise ratio with respect to the galaxy magnitude

threshold m⇤ for each HI survey and redshift bin. We consider an optimization

range of m⇤ 2 [19, 27] and plot SN(m⇤)tot for a few examples in Fig. 7.6.

The optimal values we found (using the python package scipy optimize) are

shown in Table 7.1. Generally, for low-redshift foreground bins, also a low m⇤

is preferred, which increases the number count slope at the acceptable cost

of increasing the (negligible) shot-noise at these redshifts. For high-redshift

foreground bins, however, shot-noise increases and m⇤ needs to be higher to

account for this.

Fig. 7.6 shows the optimized signal to noise as a function of multipole for

all considered experiment and redshift combinations. Maps in each

foreground redshift bin are correlated with one single redshift bin of LSST,

separated from the foreground by �z = 0.1 and ranging up to z = 3.9. Low

redshift foreground bins benefit from a wider background sample containing a

larger number of galaxies. Therefore, they often perform better than high

redshift bins, especially in the case for HIRAX. The sensitivity of HIRAX is

best at comparably small scales, where the power spectrum drops ⇠ `2 (see

e.g. Fig. 7.3). The shot noise, however, becomes the dominant error on

smaller scales. The 512 dish design for HIRAX performs surprisingly well, as

even in this case the interferometer noise remains subdominant.

Figure 7.7 shows the cumulative signal to noise which reaches levels of

⇠ 30 for individual redshift bins. The performance of SKA1-MID and HIRAX

is similar for single ` bins, but HIRAX covers a larger multipole range. Both

experiments yield best results at intermediate redshifts of 0.6 < z < 1.3. As

they are sensitive to di↵erent angular scales, most of their constraining power

can be combined.

7.5 Conclusions

In this chapter we proposed the use of HI intensity maps from large sky surveys

with forthcoming radio arrays in cross-correlation with background optical
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galaxy samples from Stage IV photometric surveys, in order to detect the

cosmic magnification signal.

We then derived predictions for the signal-to-noise ratio of the

magnification signal from the foreground HI maps acting on background

galaxies. We considered the survey combinations HIRAX with LSST and

SKA1-MID with LSST. The signal-to-noise was optimized by changing the

galaxy magnitude threshold m⇤ for LSST, since a lower magnitude cuto↵

boosts the magnification signal. Due to their di↵erent resolutions and mode

operations, the information provided by the HIRAX interferometer is

complimentary to the data gathered by SKA1-MID in autocorrelation (single

dish) mode. A detection seems likely with forecasted cumulative signal to

noise ratios in the range of ⇠ 30, but a more detailed analysis with

appropriate simulations will be needed to fully assess all relevant sources of

errors, e.g. foreground contamination residuals and cleaning e↵ects.

Foreground residuals are not expected to be significant in the

cross-correlation between HI intensity maps and galaxies. The loss of

long-wavelength radial modes in the HI data is also not expected to have a

significant deteriorating e↵ect on this observable. However, it would be useful

to properly account and quantify both of these e↵ects by extending the

cross-correlation simulations studies performed in Witzemann et al. (2019b);

Cunnington et al. (2019a,b) – we leave this for future work. We also note

that the choice of redshift binning could be reconsidered to make the analysis

more realistic for a foreground cleaned HI survey. Furthermore, using

realistic simulated LSST catalogs we can implement and test the performance

of scale-dependent optimal weighting functions (Yang & Zhang, 2011).

To conclude, our derived forecasts for the signal-to-noise for this detection

suggest that it will certainly be possible once the data is available, and that

it will be complementary to measurements using optical foreground samples

with completely di↵erent systematics.
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8 Conclusions

The bulk of the work conducted for this thesis was done in the context of

three individual research projects, presented in chapters 5 to 7. Using mock

data of planned instruments, each project provides forecasts for a specific

analysis method. Mapping the intensity of 21cm radiation of neutral

hydrogen in the universe is arguably the most promising and groundbreaking

new window to cosmology, accessible with next generation radio telescopes.

We first introduced to general cosmology, forecasting, and to radio cosmology

and its observational probes. To give a more specific introduction to the

content of the main body of this thesis, we then continued with a focus on

21cm intensity mapping and the necessary removal of foregrounds.

In chapter 5, we demonstrated that BAO measurements by an instrument

like HIRAX constrain the Hubble rate and the angular diameter distance as

functions of redshift. Especially when combined with the BAO measurement of

the distance to the CMB, this allows to put tight constraints on curvature, even

in a scenario with an entirely general non-parametric model of dark energy.

To do this, we used Bayesian statistics for a computationally intense MCMC

analysis with many parameters. We also present forecasts for two types of

perfect telescopes using HIRAX’ baseline distribution and dish diameter, and

show that even in that case the curvature constraints might be insu�cient

for ruling out certain theories of inflation. In order to further improve the

constraints, it is necessary to assume an informative set of priors or make

assumptions on the equation of state of dark energy, motivated by a physical

understanding.

Chapter 6 presents an in-depth study of the so called multi-tracer technique

in a realistically simulated scenario including foregrounds of the 21cm intensity

maps. We simulated 200 HI and 200 galaxy maps, each pair tracing the same

underlying dark matter distribution. For each HI map, we then simulated four

di↵erent sources of foreground radiation, noise, and convolved the maps with
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a Gaussian beam pattern. We constructed di↵erent estimators of the ratio of

the HI and galaxy bias, bHI/bg, using the galaxy-galaxy auto-correlation Cgg
` ,

the HI-HI auto-correlation CHH
` and the galaxy-HI cross-correlation CgH

` . We

found that estimators using HI auto-correlations su↵er from systematic errors,

both due to foreground residuals and the loss of small-scale angular modes

from the uncertainty in photometric redshifts. Other estimators are vastly

free from systematic errors, but in all cases, the foreground removal introduces

the dominant statistical error on the ratio of biases. We confirm that this is

caused by the loss of long radial modes associated with foreground cleaning,

combined with the lack of small radial modes from the photometric redshift

determination. Therefore the combination of photometric galaxy maps with

foreground cleaned intensity maps sees a small overlap of radial modes, making

cancellation of cosmic variance di�cult, albeit possible. Our results improve

on the cosmic variance limit by a factor of ⇠ 2.5. To conclude, we discuss other

possible survey combinations which could yield better results, and the potential

of future work to derive constraints on the non-Gaussianity parameters from

the bias ratio.

In chapter 7, we also combined HI intensity with galaxy maps, but for an

entirely di↵erent purpose. We assumed a foreground of HI maps acting as

a magnifying lens on the clustering of background galaxies. Non-zero cross-

correlations between maps well separated in redshift can be used to detect the

so-called cosmic magnification signal. We demonstrate that this faint signal

can possibly be detected using a combination of HI maps from SKA1 and

HIRAX and galaxy maps from LSST.

This work also raises new questions. In chapter 6 we saw that the

combination of intensity maps and photometric galaxy surveys is not ideal

due to the small overlap of modes in Fourier space. Other combinations, like

HI IM - spectroscopic galaxy or intensity mapping of di↵erent emission lines,

will not su↵er from these restrictions. Their comparably small survey volume

or foreground residual cross-correlations will degrade their constraining

power, but a detailed study could quantify their potential. Chapter 7

presents a rough estimate of the signal to noise ratio of a detection of the

magnification signal between HI intensity maps and background galaxies. A
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future work could use more realistic modeling and take into account more

error sources, foreground contamination in particular. Parameter constraint

forecasts from the magnification signal would also be interesting.

We have examined in-depth three examples of novel opportunities using

21cm intensity and galaxy clustering maps, obtained from next generation

radio and optical surveys. In all three cases, our results are promising, which

is mainly thanks to the incredible performance expected of the next generation

instruments. Detections of new e↵ects seem very likely, extensions of standard

cosmology can e�ciently be tested and even fundamental limits in cosmology

can potentially be breached. The first large-volume data-sets will become

available soon, revolutionizing precision in cosmology, maybe even calling for

a new standard model.
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Jelić V., Zaroubi S., Labropoulos P., Bernardi G., de Bruyn A. G., Koopmans

L. V. E., 2010, MNRAS, 409, 1647

Jeong D., Schmidt F., Hirata C. M., 2012, Phys. Rev. D, 85, 023504

Jonas J., MeerKAT Team 2016, in Proceedings of MeerKAT Science: On

the Pathway to the SKA. 25-27 May, 2016 Stellenbosch, South Africa

(MeerKAT2016).

Kaiser N., 1987, MNRAS, 227, 1

Kaiser N., Wilson G., Luppino G. A., 2000

Kass R. E., Carlin B. P., Gelman A., Neal R. M., 1998, The American

Statistician, 52, 93

Kazin E. A., et al., 2014, MNRAS, 441, 3524

Kendall M. G., Stuart A., Ord J. K., eds, 1987, Kendall’s Advanced Theory

of Statistics. Oxford University Press, Inc., New York, NY, USA

Kilbinger M., 2015, Rept. Prog. Phys., 78, 086901

Kleban M., Schillo M., 2012, JCAP, 2012, 029

Knox L., 1995, Phys. Rev. D, 52, 4307

Knox L., 2006, Phys. Rev. D, 73, 023503

Koda J., et al., 2014, MNRAS, 445, 4267

Kovetz E. D., et al., 2017, arXiv e-prints, p. arXiv:1709.09066

Kunz M., Nesseris S., Sawicki I., 2016, Phys. Rev. D, 94, 023510

LSST Science Collaboration et al., 2009, arXiv e-prints, p. arXiv:0912.0201

Laureijs R., et al., 2011, arXiv e-prints, p. arXiv:1110.3193

Leonard C. D., Bull P., Allison R., 2016, Phys. Rev., D94, 023502

Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511

http://dx.doi.org/10.1111/j.1365-2966.2010.17407.x
https://ui.adsabs.harvard.edu/#abs/2010MNRAS.409.1647J
http://dx.doi.org/10.1103/PhysRevD.85.023504
http://dx.doi.org/10.1093/mnras/227.1.1
http://adsabs.harvard.edu/abs/1987MNRAS.227....1K
http://dx.doi.org/10.1093/mnras/stu778
http://adsabs.harvard.edu/abs/2014MNRAS.441.3524K
http://dx.doi.org/10.1088/0034-4885/78/8/086901
http://dx.doi.org/10.1103/PhysRevD.52.4307
http://adsabs.harvard.edu/abs/1995PhRvD..52.4307K
http://dx.doi.org/10.1103/PhysRevD.73.023503
http://adsabs.harvard.edu/abs/2006PhRvD..73b3503K
http://dx.doi.org/10.1093/mnras/stu1610
http://adsabs.harvard.edu/abs/2014MNRAS.445.4267K
https://ui.adsabs.harvard.edu/abs/2017arXiv170909066K
http://dx.doi.org/10.1103/PhysRevD.94.023510
https://ui.adsabs.harvard.edu/abs/2016PhRvD..94b3510K
https://ui.adsabs.harvard.edu/#abs/2009arXiv0912.0201L
https://ui.adsabs.harvard.edu/abs/2011arXiv1110.3193L
http://dx.doi.org/10.1103/PhysRevD.94.023502
http://dx.doi.org/10.1103/PhysRevD.66.103511
https://ui.adsabs.harvard.edu/abs/2002PhRvD..66j3511L


134 BIBLIOGRAPHY

Lewis A., Challinor A., 2007, Phys. Rev. D, 76, 083005

Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473

Limber D. N., 1954, ApJ, 119, 655

Linder E. V., 2003, Phys. Rev. Lett., 90, 091301

Liu A., Tegmark M., 2011, Phys. Rev. D, 83, 103006

Liu A., Tegmark M., Zaldarriaga M., 2009a, MNRAS, 394, 1575

Liu A., Tegmark M., Bowman J., Hewitt J., Zaldarriaga M., 2009b, MNRAS,

398, 401

Lonsdale C. J., et al., 2009, IEEE Proceedings, 97, 1497

Loverde M., Afshordi N., 2008, Phys. Rev. D, 78, 123506

Mandelbaum R., 2018, Ann. Rev. Astron. Astrophys., 56, 393
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Weinberg D. H., Davé R., Katz N., Hernquist L., 2004, The Astrophysical

Journal, 601, 1

Widrow L. M., Pym B., Dubinski J., 2008, ApJ, 679, 1239

Wilman R. J., et al., 2008, MNRAS, 388, 1335
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