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Abstract

The problem of generating solutions of the Einstein field equations
with an elastic energy-momentum tensor from the Schwarzschild vac-
uum solution by means of conformal transformations is analysed. Ap-
plying the formulation of relativistic elasticity, suitable conformal fac-
tors are obtained for static and non-static elastic spacetime configura-
tions and particular solutions are presented. This work shows that the
technique used here permits generating new elastic matter solutions
from a vacuum spacetime.
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1 Introduction

The relativistic theory of elasticity is important and interesting for many
astrophysical applications, e.g. for the study of deformations of massive
stellar objects [1],[2], as in the description and modeling of neutron stars,
whose solid crusts possess elastic properties [3]-[6]. The theory is also rel-
evant for the study of anisotropy in pressures, a phenomenon occurring in
many situations of equilibrium, which are of interest in astrophysics [7].
Different formulations of the relativistic theory of elasticity have been pro-
posed and presented in the literature, see for instance [3],[4],[8],[9].
Due to the above reasons, obtaining exact solutions of the Einstein field
equations (EFE) with elastic matter is a relevant and reasonable task.
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One approach in obtaining solutions of the EFE consists in generating new
solutions from existing ones through conformal transformations. This tech-
nique was applied in [10]-[14] to construct perfect fluid solutions, where Han-
sraj [13] built a perfect fluid solution conformal to the Schwarzschild vacuum
solution. Carot and Mas [15] and Tupper [16] obtained viscous fluid solu-
tions by performing conformal transformations of vacuum solutions. In the
context of relativistic elasticity, in [17] a new elastic solution was generated
from a known shear-free spherically symmetric elastic solution.
Since it was shown that it is possible to obtain perfect fluid solutions and vis-
cous fluid solutions from vacuum solutions and to construct new elastic fluids
from existing ones, this motivates to investigate if it is possible to generate
new elastic fluids from the Schwarzschild vacuum solution through confor-
mal transformations. The aim of this paper is therefore to study this new
problem of generating elastic solutions of the EFE from the Schwarzschild
vacuum solution. For the given purpose, the Einstein field equations with
an elastic energy-momentum tensor are derived for the conformal spacetime
metric and the compatibility of the conformal factor with the elastic space-
time configuration is investigated. This problem is analysed separately for
static and non-static conformal spacetime metrics. The reason for studying
this problem separately, instead of considering the static case as a particular
case of the non-static setting, is the following. In the static case it is possible
to obtain a general solution for the conformal factor solving an ordinary dif-
ferential equation, whereas in the non-static case, due to the complexity of
the partial differential equations, only a particular class of solutions for the
conformal factor is determined. Considering the subclass of static solutions
of this particular class of non-static solutions would lead to physically not
admissible solutions.
This paper is structured as follows. In Section 2, the problem of generating
elastic solutions of the EFE from the Schwarzschild vacuum solution is set
up and static conformal solutions are constructed in Subsection 2.1 and non-
static conformal solutions, in Subsection 2.2. The matching problem with
exterior spacetimes is also presented in those subsections. In Section 3 are
summarized the main conclusions of this work. The Appendix contains a
brief review of the relativistic theory of elasticity, based on the formulations
presented in [4], [8] and [18], [19].
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2 Vacuum solution and conformal elastic solutions

We will analyse if it is possible to generate an elastic fluid from the Schwarzschild
vacuum solution in spherical symmetry by means of conformal transforma-
tions. Let ḡab denote the vacuum Schwarzschild metric given by the line-
element

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (1)

where dΩ2 = dθ2 + sin2 θdφ2, and let gab represent the metric of an elastic
fluid in spherical symmetry. Then, the problem consists in determining a
function f2 such that

gab = f2ḡab (2)

is a solution of the Einstein field equations for elastic matter. We will
consider a static conformal metric with f = f(r) in Subsection 2.1 and a
non-static conformal metric with f = f(t, r) in Subsection 2.2.

2.1 Static conformal metric

In this case, performing a conformal transformation of the Schwarzschild
metric (1) with conformal factor f2(r), the aim is to investigate if

gab = f2(r)ḡab, (3)

with line-element

ds2 = f2(r)

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
, (4)

is a solution of the Einstein field equations for elastic matter.
In order to fit the spacetime (M, g) into the framework of relativistic elastic-
ity and to describe the spacetime configuration, we will use the formulation
presented in the Appendix.
Let xa, a = 0, 1, 2, 3, be the spacetime coordinates: (x0, x1, x2, x3) = (t, r, θ, φ),
and let yA, A = 1, 2, 3, denote the material coordinates (y1, y2, y3) = (r̃, θ̃, φ̃)
in the material space X . Here, we assume that the material metric γAB in
X is flat, its line-element being

dΣ2 = dr̃2 + r̃2dθ̃2 + r̃2 sin2 θ̃dφ̃2. (5)
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Spherical symmetry implies that we can choose the following coordinates:
r̃ = r̃(r), θ̃ = θ, φ̃ = φ, leading to

dΣ2 = dr̃2 + r̃2dθ2 + r̃2 sin2 θdφ2. (6)

Calculating the pulled-back material metric, one obtains

kab = gackcb = gacγCBy
C
c y

B
b (7)

= f−2

(
1− 2M

r

)
r̃′2δa1δ

1
b + f−2r−2r̃2

(
δa2δ

2
b + δa3δ

3
b

)
, (8)

yCc being the relativistic deformation gradient defined in (104). The pulled-
back material metric has the eigenvalues

η = f−2

(
1− 2M

r

)
r̃′2, ζ = f−2r−2r̃2, (9)

where ζ has algebraic multiplicity two. Since the eigenvalues of the pulled-
back material metric are positive, one must consider r > 2M .
The invariants of Ka

b = −uaub + kab, where the velocity field of the matter

is given by ua =
(
f−1

(
1− 2M

r

)−1/2
, 0, 0, 0

)
, can be expressed in terms of

the eigenvalues η and ζ as

I1 =
1

2
(η + 2ζ − 3) , (10)

I2 = −1

2

(
ζ2 + η + 2ζ + 2ζη

)
+ 3, (11)

I3 =
1

2

(
ηζ2 − 1

)
, (12)

(cf. (109) and (110) with η = n2
1 and ζ = n2

2 = n2
3). The components of the

energy-momentum tensor for elastic matter (114) read

T 0
0 = −ρ, (13)

T 1
1 = −ρ+

∂ρ

∂I3
ηζ2 − ∂ρ

∂I2
(1 + 2ζ)η +

∂ρ

∂I1
η (14)

T 2
2 = T 3

3 = −ρ+
∂ρ

∂I3
ηζ2 −

[
(1 + η + 2ζ)

∂ρ

∂I2
− ∂ρ

∂I1

]
ζ +

∂ρ

∂I2
ζ2, (15)

where the energy density is given by

ρ = εv(I1, I2, I3) = ε0ζ
√
ηv(I1, I2, I3). (16)
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From (10)-(12) it follows that

∂ρ

∂η
=

1

2

∂ρ

∂I1
− 1

2
(1 + 2ζ)

∂ρ

∂I2
+

1

2
ζ2 ∂ρ

∂I3
, (17)

∂ρ

∂ζ
=

∂ρ

∂I1
− (1 + η + ζ)

∂ρ

∂I2
+ ηζ

∂ρ

∂I3
. (18)

These expressions allow to write the components of the energy-momentum
tensor in the following way (using a process presented in [18], [19])

T 0
0 = −εv, (19)

T 1
1 = 2ηε

∂v

∂η
, (20)

T 2
2 = T 3

3 = ζε
∂v

∂ζ
. (21)

The Einstein field equations for the spherically symmetric elastic configura-
tion with the spacetime metric (4) are then:
G0

0 = T 0
0:

2f ′′fr(−2M + r) + f ′2r(2M − r) + 2f ′f(−3M + 2r)

f4r2
= −εv (22)

G1
1 = T 1

1:

3f ′2r(−2M + r) + 2f ′f(−3M + 2r)

f4r2
= 2ηε

∂v

∂η
, (23)

G2
2 = T 2

2:

f ′2(2M − r) + 2f ′′f(−2M + r) + 2f ′f

f4r
= ζε

∂v

∂ζ
, (24)

where here and in the following text a prime stands for a derivative with
respect to r.
The energy density, the radial pressure and tangential pressure are, respec-
tively, expressed by

ρ = εv, p1 = 2ηε
∂v

∂η
, p2 = ζε

∂v

∂ζ
. (25)
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Dividing (23) and (24) through by (22) and setting E ≡ ln η and Z ≡ ln ζ
one obtains

∂ ln v

∂E
= −1

2

3f ′2r(−2M + r) + 2ff ′(−3M + 2r)

2f ′′fr(−2M + r) + f ′2r(2M − r) + 2f ′f(−3M + 2r)
(26)

∂ ln v

∂Z
= −

r
[
f ′2(2M − r) + 2f ′′f(−2M + r) + 2f ′f

]
2f ′′fr(−2M + r) + f ′2r(2M − r) + 2f ′f(−3M + 2r)

. (27)

Let F = ln v, then F = F (E,Z), where E and Z are obtained from (9):

E = −2 ln f + ln

(
1− 2M

r

)
+ 2 ln(r̃′) (28)

Z = −2 ln f − 2 ln r + 2 ln r̃. (29)

Taking into account that ∂F
∂E and ∂F

∂Z are functions of r, one must guaran-

tee that the condition ∂2F
∂E∂Z = ∂2F

∂Z∂E is fulfilled in order for a constitutive
equation to exist. This condition implies

k

(
−f
′

f
+

M

r(r − 2M)
+
r̃′′

r̃′

)
=

(
−f
′

f
+
r̃′

r̃
− 1

r

)
, (30)

were k ∈ R+. Solving this ordinary differential equation gives

f(r) = ār
2−k

2(k−1) (2M − r)
k

2(k−1) r̃
1

1−k (r̃′)
k

k−1 , (31)

where ā ∈ R, k ∈ R+\{1} and f(r) must be a positive function, which is at
least C2.
Therefore, in order to obtain static elastic solutions of the EFE which are
conformal to the Schwarzschild vacuum solution, the conformal factor must
be of the form

f2(r) = ā2r
2−k
k−1 (2M − r)

k
k−1 r̃

2
1−k (r̃′)

2k
k−1 , (32)

where ā ∈ R, k ∈ R+\{1}.
Next we will present two solutions, where the conformal factor has a partic-
ular form of (32), and analyse their physical plausibility. In the first example
we will consider an elastic fluid having both radial and tangential pressure,
whereas in the second example an elastic fluid with zero radial pressure and
non-zero tangential pressure is considered.
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2.1.1 Example: k = 2, p1 6= 0, p2 6= 0

Setting k = 2 in (32), one obtains f2(r) = ā2 (r̃′)4

r̃2
(r − 2M)2. One can look

for functions r̃(r) such that (r̃′)4

r̃2
= c, where c ∈ R+. This condition leads to

r̃(r) =

√
c

4
(c1 − r)2, (33)

c1 being an arbitrary constant. The conformal factor simplifies then and
can be written as

f2(r) = a(r − 2M)2, (34)

with a ∈ R+. The elastic fluid metric, g = f2(r)ḡ, is in this case given by
the following line-element

ds2 = a(r − 2M)2

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
. (35)

The energy density, radial pressure and tangential pressure are respectively

ρ =
3

ar2(r − 2M)2
, (36)

p1 =
7r − 6M

ar2(r − 2M)3
, (37)

p2 =
1

ar(r − 2M)3
. (38)

The energy density satisfies ρ ≥ 0 and the weak energy condition is satisfied
for r > 3M (the dominant energy condition is not fulfilled in this case, since
ρ− p1 < 0 for r > 2M).

2.1.2 Example: k = 2
5 , p1 = 0, p2 6= 0

Considering an elastic fluid with zero radial pressure, p1 = 0, and non-zero
tangential pressure, then equating (23) to zero leads to the following solution
for f(r):

f(r) =
ᾱ

r(r − 2M)
1
3

, (39)

where ᾱ ∈ R+. This is a particular form of (31), where k = 2
5 and r̃(r) must

satisfy
r̃′(r)2

r̃(r)5
=

ā3

ᾱ3r
, (40)

8



which can be solved numerically (see Figure 1).

Figure 1: r̃(r) for ā = ᾱ = 1 with initial condition r̃(0.1) = 0.1.

In this case, the spacetime metric g is defined by the following line-element

ds2 =
α

r2(r − 2M)
2
3

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
,

(41)
where α ∈ R+.
The energy density and tangential pressure are, respectively, given by

ρ =
8(r − 3M)

9α(r − 2M)1/3
, (42)

p2 =
4(4r2 − 21Mr + 27M2)

9αr(r − 2M)1/3
. (43)

The energy density satisfies ρ ≥ 0 for r > 3M and the dominant energy
condition (ρ ≥ 0, ρ± p2 ≥ 0) is fulfilled for certain ranges of r > 3M .

2.1.3 Junction of static spacetimes

In [19] it is shown that shear free, static elastic solutions with line element

ds2 = −a2(r)dt2 + Y 2(r)(dr2 + dΩ2), (44)
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can be matched to the Schwarzschild vacuum solution across a spherically
symmetric static surface. Here we will show that the static conformal elastic
solutions (4) can be matched to the solutions given by metric (44).
Consider the junction of the interior metric

ds2
− = f2(r)

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
, (45)

with the exterior metric

ds2
+ = −a2(R)dt2 + Y 2(R)(dR2 + dΩ2), (46)

across a spherically symmetric surface Σ of constant radius, where

Σ− = {r = rΣ}, Σ+ = {R = RΣ}. (47)

The signs − and + are used to denote, respectively, interior and exterior
quantities. The normal vectors to the surface are

na− =

√
1− 2M

r

f
∂r, n

a+ =
1

Y
∂R. (48)

The tangent space to Σ can be written as

TΣ± = 〈e±1 = ∂t, e
±
2 = ∂θ, e

±
3 = ∂φ〉. (49)

The first fundamental forms q±αβ = e±aα e±bβ g±ab, α, β = 1, 2, 3, at Σ for both
spacetimes are

dσ2
− = −f2(r)

(
1− 2M

r

)
dt2 + f2(r)r2dΩ2, (50)

dσ2
+ = −a2(R)dt2 + Y 2(R)dΩ2, (51)

where all quantities must be evaluated on Σ. The first matching condition
q+
αβ = q−αβ leads to

a2(R)
Σ
= f2(r)

(
1− 2M

r

)
, (52)

Y 2(R)
Σ
= r2f2(r), (53)
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where
Σ
= means that the equality holds only on the boundary Σ. The

non-zero, independent components of the second fundamental forms H±αβ =

−n±a e±bα ∇±b e
±a
β at Σ are

H−tt = −aa
′

Y
, H−θθ = Y ′, (54)

H+
tt = −f

′r2 − 2f ′rM + fM

r2

√
1− 2M

r
, H+

θθ = r(f + f ′r)

√
1− 2M

r
,

(55)

where all quantities must be evaluated on Σ. The equality of the second
fundamental forms H+

αβ = H−αβ imply

aa′

Y

Σ
=
f ′r2 − 2f ′rM + fM

r2

√
1− 2M

r
, (56)

Y ′
Σ
= r(f + f ′r)

√
1− 2M

r
. (57)

Since

p+
1 = 2

a′

a

Y ′

Y 3
+
Y ′2

Y 4
− 1

Y 2
, (58)

using (52), (53), (56), (57) to evaluate p+
1 on Σ, a straightforward calculation

gives

p+
1

Σ
=

3f ′2(r2 − 2rM) + 2ff ′(2r − 3M)

r2f4
, (59)

from where on concludes (c.f. (23)) that

p+
1

Σ
= p−1 . (60)

Calculating the mass m−, one obtains

m− =
fr

2
− (r − 2M)(f ′r + f)2

2f
. (61)

The mass of the exterior solution is given by

m+ =
Y

2

(
1− Y ′2

Y 2

)
. (62)

Evaluating m+ at Σ using (53) and (57) leads to

m+ Σ
= m−. (63)
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2.2 Non-static conformal metric

In the non-static case, the aim is to determine f2(t, r) such that the metric
gab = f2(t, r)ḡab with line-element

ds2 = f2(t, r)

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
(64)

is a solution of the EFE for elastic matter. In order to obtain a convenient
expression for the conformal factor, here we follow a process analogous to
one used in [17].
It is a known result, see for instance [14], [20], [21], that given two confor-
mally related spacetime metrics g = f2ḡ, the corresponding Einstein tensors
can be related as follows

Gab = Ḡab − 2 ∇̄b∇̄a ln f + 2 ∇̄a ln f ∇̄b ln f

+ ḡab (2 ḡlm ∇̄m∇̄l ln f + ḡlm ∇̄l ln f ∇̄m ln f), (65)

with ∇̄a ln f = ∇a ln f = ∂a ln f . In the present case, since Ḡab = 0 for the
Schwarzschild vacuum metric ḡ defined in (1), (65) can be written as

Gab = −2σab + ḡab(2∆2σ + ∆1σ), (66)

where

σab = ∇̄b∇̄a ln f − ∇̄a ln f ∇̄b ln f, (67)

∆2σ = ḡlm∇̄m∇̄l ln f,
∆1σ = ḡlm∇̄l ln f ∇̄m ln f.

Then, the Einstein field equations Gab = Tab and (66) imply

T ab = Gab =
1

f2
[−2ḡamσmb + ḡab(2∆2σ + ∆1σ)] . (68)

For the here considered metrics ḡ and g defined in (64), it follows from (68)
that σ10 = 0, which is equivalent to the condition

Mfḟ + r(2M − r)(ḟ ′f − 2f ′ḟ) = 0, (69)

where r 6= 2M , f is a positive function and a dot represents a derivative
with respect to t. Solving this equation, assuming that f is in a separated
form a product of functions of t and r, gives

f(t, r) = f1(t)f2(r), where ḟ1 =
c1

f1
and f ′2 =

Mf2

r(2M − r)
, (70)
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c1 being a constant. One concludes that a conformal factor of the form

f2(t, r) =
ar(2bt+ c)

2M − r
, (71)

where a ∈ R+ and b, c ∈ R, is a candidate to generate elastic fluid solutions
from the Schwarzschild vacuum solution.
The corresponding conformal metric (64) reads

ds2 =
ar(2bt+ c)

2M − r

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
. (72)

It remains to analyse the compatibility of this class of solutions with an
energy-momentum tensor corresponding to elastic matter and with the cor-
responding elastic spacetime configuration. For that purpose, we will es-
tablish the EFE in the relativistic elastic context, using again the approach
presented in the Appendix.
Given the spacetime metric (72), the velocity field of the matter is defined

by ua =

(
1√

−a(2bt+c)
, 0, 0, 0

)
.

We assume that the line element of the material metric has the following
form

dΣ2 = q2(r)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
. (73)

Then, the pulled-back material metric reads

kab =
q2

f2

[(
1− 2M

r

)
δa1δ

1
b + δa2δ

2
b + δa3δ

3
b

]
, (74)

which has eigenvalues

η =
q2

f2

(
1− 2M

r

)
and ζ =

q2

f2
, (75)

where ζ has algebraic multiplicity two and f2 = ar(2bt+c)
2M−r . Since the eigen-

values must be positive, it follows from (71) and from (75) that

r > 2M ∧ 2bt+ c < 0. (76)

The EFE for elastic matter Gab = T ab, corresponding to the metric (72)
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with T ab defined in (114), imply

ρ = εv =
3M2(2bt+ c)2 − 3b2r4

ar4(2bt+ c)3
, (77)

p1 = 2ηε
∂v

∂η
=
M(4r − 9M)(2bt+ c)2 − 3b2r4

ar4(2bt+ c)3
, (78)

p2 = ζε
∂v

∂ζ
=
M(3M − 2r)(2bt+ c)2 − 3b2r4

ar4(2bt+ c)3
, (79)

where ρ is the energy density, p1 the radial and p2 the tangential pressure.
Note that the last expressions depending on the eigenvalues are obtained
from (114) in an analogous way as explained in Subsection 2.1 (or in [17],
[18], [19]).
The weak energy condition is satisfied for certain ranges of r, however ρ −
p2 < 0, so that the dominant energy condition is not satisfied.
As in the static case, dividing (78) and (79) by (77) and setting E ≡ ln η
and Z ≡ ln ζ gives

∂ ln v

∂E
=

1

2

(4rM − 9M2)(2bt+ c)2 − 3b2r4

3M2(2bt+ c)2 − 3b2r4
(80)

∂ ln v

∂Z
=

(3M2 − 2rM)(2bt+ c)2 − 3b2r4

3M2(2bt+ c)2 − 3b2r4
. (81)

Let F = ln v, then F = F (E,Z), where E and Z are obtained from (75):

E = 2 ln q + ln

(
1− 2M

r

)
− ln f2 (82)

Z = 2 ln q − ln f2. (83)

In order for a constitutive equation v = v(η, ζ), or equivalently v = v(E,Z),
to exist, we need to ensure that

∂2 ln v

∂Z∂E
=
∂2 ln v

∂E∂Z
. (84)

We will see that this condition defines a function q(r) for the material met-
ric and imposes no further restriction on the conformal factor f2. From
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expressions (82), (83) and applying the inverse function theorem, one gets

∂t

∂E
=

(
−q
′

q
+

M

r2 − 2Mr

)
r(2M − r)(2bt+ c)

2Mb
(85)

∂t

∂Z
=

(
q′

q
− 2M

r(2M − r)

)
r(2M − r)(2bt+ c)

2Mb
(86)

∂r

∂E
= −r(2M − r)

2M
(87)

∂r

∂Z
=
r(2M − r)

2M
. (88)

Since ∂E = ∂t
∂E ∂t+

∂r
∂E ∂r, ∂Z = ∂t

∂Z ∂t+
∂r
∂Z ∂r, one obtains from (84) together

with (85)-(88)
q′

q
=

4(3M − r)
3r(2M − r)

, (89)

yielding

q(r) =
c1r

2

[(r − 2M)2]1/3
, (90)

where c1 is an integration constant. This expression is not influenced by the
constants a, b, c of the conformal factor.
One concludes that it is possible to generate elastic non-static solutions
of the Einstein field equations, which are conformal to the Schwarzschild
vacuum solution. The solutions are given by (72), with a > 0 ∧ r >
2M ∧ 2bt+ c < 0, and satisfy the weak energy condition for certain ranges
of r. The corresponding material metric is given by (73) with q(r) defined
in (90).
Note that the conformal factor (71) is a particular solution of the partial
differential equation (69). Setting b = 0 in (72) would lead to a particular
class of static solutions. These are, however, not physically admissible, since
the energy density would be negative, as one concludes from (77) with b = 0
and taking into account (76). The so obtained static solutions would coincide
for q(r) = 1 with a subclass of solutions of Section 2.1 for r̃(r) = r and k = 1

2 .
Next, a particular non-static solution is presented.

2.2.1 Example: a = 1, b = −1/2, c = 0

Setting a = 1, b = −1/2, c = 0 in (72), the metric g conformal to the
Schwarzschild vacuum metric, which is a solution of the EFE for elastic
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matter, is given by

ds2 =
tr

r − 2M

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
, (91)

and r > 2M . The line-element of g can be simplified to

ds2 = −tdt2 + t

(
1− 2M

r

)−2

dr2 + tr2

(
1− 2M

r

)−1

dΩ2. (92)

The velocity field of the matter is given by ua =
(
t−1/2, 0, 0, 0

)
. The line

element of the material metric is

dΣ2 = q2(r)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (93)

with q(r) defined in (90), and the pulled-back material metric reads

kab =
q2

t

(
1− 2M

r

)[(
1− 2M

r

)
δa1δ

1
b + δa2δ

2
b + δa3δ

3
b

]
. (94)

The energy density, radial pressure and tangential pressure are, respectively,

ρ =
3r4 − 12M2t2

4t3r4
, (95)

p1 =
3r4 + 36M2t2 − 16Mt2r

4t3r4
, (96)

p2 =
3r4 − 12M2t2 + 8Mt2r

4t3r4
. (97)

The weak energy condition is satisfied for certain ranges of r, however ρ −
p2 < 0, so that the dominant energy condition is not satisfied.

2.2.2 Junction of non-static spacetimes

The non-static elastic solutions conformal to the Schwarzschild metric given
by

ds2 = f2(t, r)

[
−
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

]
, (98)

with conformal factor defined in (71), can be matched to the exterior Vaidya
solution given by

ds2 = −
(

1− 2m(T )

R

)
dT 2 − 2dTdR+R2dΩ2. (99)
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The matching conditions for the exterior Vaidya solution with interior gen-
eral spherically symmetric spacetimes were derived e.g. in [22], [23]. In the
present case, considering the parametrization {T = T (λ), R = R(λ)} for the
boundary Σ+ and {t = λ, r = r(λ)} for the boundary Σ−, one obtains the
following matching conditions

R
Σ
= fr, (100)

Ṫ
Σ
=

f2
[(

1− 2M
r

)
− ṙ
]

ḟ r +
(
1− 2M

r

)
(f ′r + f)

, (101)

m(T )
Σ
=
fr

2

[
1 +

(ḟ r)2

f2
(
1− 2M

r

) − (f ′r + f)2

f2

(
1− 2M

r

)]
, (102)

ṙ
Σ
= −

(
1− 2M

r

)
p1

ρ
, (103)

where ρ and p1 are defined, respectively, in (77) and (78) and a dot denotes
differentiation with respect to λ. The expression on the right-hand side
of (102) is equal to the mass of the interior solution. Notice that for a

parametrization {t = λ, r = rΣ} for the boundary Σ− one obtains p1
Σ
= 0 in

(103).

3 Conclusions

In this paper we have investigated the problem of generating solutions of
the EFE for elastic matter by applying conformal transformations to the
Schwarzschild vacuum metric. This problem has been studied separately for
static conformal spacetime metrics, where the conformal factor depends only
on the radial coordinate, and for non-static conformal spacetime metrics,
where the conformal factor depends also on the time coordinate. In the static
configuration, two examples have been obtained: the first one represents an
elastic fluid having both radial and tangential pressure and the second one
corresponds to a fluid with vanishing radial pressure and non-zero tangential
pressure. The dominant energy condition is fulfilled for the second example
and the weak energy condition for the first example for certain ranges of the
radial coordinate. In the non-static configuration, due to the complexity
of the EFE, it is only possible to build up a class of particular solutions,
which satisfy the weak energy condition for certain ranges of the radial
coordinate. The static elastic conformal spacetimes can be joined to other
elastic solutions, for which the matching with the Schwarzschild exterior
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solution is possible. The non-static elastic conformal spacetimes can be
matched to the Vaidya exterior solution. One concludes that the approach
used here allows generating elastic matter solutions from a vacuum solution.
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Appendix

Here we present a brief introduction to the relativistic theory of elasticity.
The aim is to obtain the energy-momentum tensor modeling elastic matter,
in order to determine the EFE in the relativistic elastic context. The reader
is referred to the references [4], [8] and [18], [19] for more detailed aspects.
Let (M, g) be a spacetime, where M is a four-dimensional manifold with
Lorentz metric g of signature (−,+,+,+). Coordinates in M will be de-
noted by xa, a = 0, 1, 2, 3. Suppose that the spacetime is filled with a con-
tinuous material. The material space X is a three-dimensional manifold,
whose points represent the particles of the material. The material space is
endowed with a Riemannian metric γ, the material metric, which measures
the distance between particles in the locally relaxed state of the material.
Material coordinates in X will be denoted by yA, A = 1, 2, 3. The space-
time configuration of the material is described by the configuration mapping
ψ : M −→ X through the fields yA = yA(xa), A = 1, 2, 3. The differential
map ψ∗ : TpM→ Tψ(p)X gives rise to a rank 3 matrix with entries

yAb =
∂yA

∂xa
, A = 1, 2, 3, a = 0, 1, 2, 3, (104)

which is called the relativistic deformation gradient. The velocity field of
the matter ua, a future oriented, timelike unit vector field, which spans the
one-dimensional Kernel of the relativistic deformation gradient, is defined
by the conditions:

uayAa = 0, uaua = −1, u0 > 0. (105)

The pulled-back material metric

kab = (ψ∗γ)ab = yAa y
B
b γAB (106)
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is used to construct the strain tensor sab = 1
2(hab − kab) = 1

2(gab − Kab),
where hab = gab + uaub and Kab = −uaub + kab. The material is said to be
locally relaxed if the strain tensor vanishes. In the locally relaxed state, the
operator Ka

b = kab−uaub becomes the identity operator. Since Ka
bu
b = ua,

one of its eigenvalue is 1 and the other three positive eigenvalues are the
eigenvalues of kab. One can use the orthonormal tetrad {u, e1, e2, e3}, where
e1, e2, e3 are the spatial eigenvectors of kab and u is the velocity field of the
matter, which enables to write the metric gab as

gab = −uaub + e1ae1b + e2ae2b + e3ae3b (107)

and the pulled-back material metric kab as

kab = n2
1e1ae1b + n2

2e2ae2b + n2
3e3ae3b, (108)

where n2
1, n

2
2, n

2
3 are the eigenvalues of kab.

Assuming that the internal energy v of an elastic deformation, accumulated
in an infinitesimal portion of the material, is invariant with respect to its
spacetime orientation, v depends on three invariants of the strain tensor.
Since the strain tensor is a linear function ofK and the identity operator, any
three invariants I1, I2, I3 of K can be chosen, so that v = v(I1, I2, I3), which
is the constitutive function of the material. Following [24] the invariants can
be established as

I1 =
1

2
(TrK − 4) , I2 =

1

4

[
TrK2 − (TrK)2

]
+ 3, I3 =

1

2
(detK − 1) , (109)

where

TrK = 1 + n2
1 + n2

2 + n2
3,TrK2 = 1 + n4

1 + n4
2 + n4

3,

detK = n2
1 n

2
2 n

2
3. (110)

The energy density ρ is defined by

ρ = ε v(I1, I2, I3) = ε0
√

detK v(I1, I2, I3), (111)

where ε0 is the particle number density as measured in the material space,
or rather, with respect to the volume form associated with kab = (ψ∗γ)ab,
and ε is that with respect to hab (see e.g. [8],[24]). Since the invariants can
be written in terms of the eigenvalues of K using (110), the constitutive
function can be viewed as a function of the eigenvalues, v = v(n2

1, n
2
2, n

2
3).

The energy-momentum tensor for elastic matter, when decomposed with
respect to the matter velocity u, takes the form

Tab = ρuaub + pab = ρuaub + phab + πab, (112)
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where pab = phab + πab is the pressure tensor, p being the isotropic pressure
and πab the tracefree anisotropic pressure tensor. The pressure tensor pab
can be expressed as

pab = p1e1ae1b + p2e2ae2b + p3e3ae3b (113)

and the principal pressures p1, p2, p3 satisfy p1 + p2 + p3 = 3p.
Following [24] (see also [18],[19]) the energy-momentum tensor for elastic
matter can also be written as

T ab = −ρ δab +
∂ρ

∂I3
detK hab −

(
TrK

∂ρ

∂I2
− ∂ρ

∂I1

)
kab +

∂ρ

∂I2
kac k

c
b. (114)

This tensor is obtained from the Lagrangian L =
√
−gρ, which is a function

of xa, yA and yAa . The corresponding Euler-Lagrange equations are given

by
∂L
∂yA

− ∂a
(
∂L
∂yAa

)
= 0, where ∂L

∂yAa
is sometimes called relativistic Piola-

Kirchhoff momentum tensor. Using Noether’s theorem one constructs the
canonical energy-momentum tensor

T̃ ab =
1√
−g

∂L
∂yAa

yAb − δabL, (115)

which satisfies the energy-momentum conservation law ∇aT̃ ab = 0, and the
symmetric energy-momentum tensor is the negative of the canonical energy-
momentum tensor (see for instance [25]): Tab = −T̃ab. Note that (112) can
be obtained from (115) (see [25]), where phab + πab = 2 ∂ρ

∂GAB y
A
a y

B
b − ρhab,

with GAB = yAa y
B
b g

ab.
The interaction of the elastic material with the gravitational field is then
described by the Einstein field equations Gab = T ab, using units such that
8πG = c = 1.
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