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Abstract: We argue that the confined and deconfined phases in gauge theories are con-

nected by a partially deconfined phase (i.e. SU(M) in SU(N), where M < N , is deconfined),

which can be stable or unstable depending on the details of the theory. When this phase is

unstable, it is the gauge theory counterpart of the small black hole phase in the dual string

theory. Partial deconfinement is closely related to the Gross-Witten-Wadia transition, and

is likely to be relevant to the QCD phase transition.

The mechanism of partial deconfinement is related to a generic property of a class of

systems. As an instructive example, we demonstrate the similarity between the Yang-Mills

theory/string theory and a mathematical model of the collective behavior of ants [Beekman

et al., Proceedings of the National Academy of Sciences, 2001]. By identifying the D-brane,

open string and black hole with the ant, pheromone and ant trail, the dynamics of two

systems closely resemble with each other, and qualitatively the same phase structures

are obtained.
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1 Introduction

A longstanding problem in quantum field theory is understanding the details of the finite

temperature deconfinement transition in QCD, and gauge theories more broadly. For

QCD, this transition can be probed experimentally in heavy ion collisions, and can play

an important role in the physics of the early universe. A central difficulty in theoretically

studying the transition is the presence of strong interactions, rendering perturbation theory

futile and requiring numerical techniques.

Certain strongly coupled gauge theories can be described by weakly coupled gravity

via holographic duality [1–3]. According to the duality, the deconfinement transition in

the gauge theory is equivalent to the formation of a black hole. The duality allows us

to learn about the nature of the deconfinement transition from the perspective of gravity,

and at the same time, the microscopic quantum gravitational aspects of the formation and

evaporation of black hole are encoded in gauge theory.

The most well-studied example of holographic duality is the one between 4d N =

4 super Yang-Mills on the three sphere and type IIB superstring theory on AdS5×S5

spacetime [3, 4]. One can infer and study the microcanonical phase structure of the strongly
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Figure 1. [Left] The phase structure of 4D N = 4 SYM on S3. The orange and red dashed lines

denote the Hagedorn string phase and small black hole phase, respectively, which are well-defined

in the microcanonical theory. In the canonical treatment, the small black hole phase is the unstable

saddle which is responsible for strong hysteresis. The green line marks the transition temperature

in the canonical ensemble, Tc. Above Tc the large black hole phase is favored, while below Tc the

graviton gas phase is favored. [Center] A more common example of a first order transition, for

example, between ice and liquid water. Small perturbations can destabilize the metastable states.

At the critical temperature, there can be a mixture of two phases, in which ice and liquid water

coexist. [Right] Superheated ice (red point) and supercooled liquid water (blue point) are not

stable even in the microcanonical ensemble. There is an instability toward the mixture of the ice

and liquid water.

coupled region of super Yang-Mills from the weakly coupled gravity dual, which is depicted

in the left panel of figure 1. There are a large black hole phase (black solid line at large

energy region), a small black hole phase (red dashed line), a Hagedorn string phase (orange

dashed line), and a graviton gas phase (black solid line at low energy region) [4, 5].

The large black hole has a positive specific heat, i.e. energy increases with temperature,

as E ∼ N2T 4. On the other hand, the small black hole has a negative specific heat. When

the black hole is much smaller than the curvature scale of AdS5×S5, it is approximately the

same as the Schwarzschild black hole in ten spacetime dimensions, and E ∼ N2T−7. This

small black hole phase is interesting, in part because it provides a microscopic description

of black holes with negative specific heat, which is a proxy for evaporating black holes. In

terms of the canonical ensemble, the small black hole phase is described by an unstable

saddle, in the following sense. Let us write the canonical partition function at temperature

T as

Z(T ) =

∫
dE Ω(E) e−E/T =

∫
dE e−F (E,T )/T , (1.1)

where Ω(E) = eS(E) is the density of states, S(E) is the microcanonical entropy, and

F (E, T ) = E − TS is the free energy. The saddles of F for fixed T satisfy

0 =
∂F

∂E
= 1− T dS

dE
, (1.2)

where (dS/dE)−1 is, by definition, the temperature in the microcanonical ensemble. Hence,

the value of the energy E(T ) at the saddle, as a function of the temperature T , is the

energy in the microcanonical ensemble. The stable saddles (local minima) correspond
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to the graviton gas and large black hole, whereas the unstable saddle (local maximum)

corresponds to the small black hole. In the canonical ensemble (i.e. for fixed T ), if we drive

the system away from the minimum, it rolls back to the same minimum. The direction of

the change, which is determined by the sign of dS/dE, is shown by gray arrows in the left

panel of figure 1 above. In other words, the metastable phases (i.e. the large black hole phase

at T < Tc and the graviton gas phase at T > Tc) are stable against small perturbations.

This stability is unlike many standard examples of first order phase transitions, such as the

transition between ice and liquid water. For example, we can supercool liquid water below

its freezing temperature, but ice appears as soon as a tiny perturbation is added. In the case

of ice and liquid water, as shown in the center panel of figure 1, the mixture of two phases

can exist at T = Tc (the solid vertical line). The direction toward equilibration is shown

by gray arrows, and there is no unstable saddle.1 Even in the microcanonical ensemble,

as shown in the right panel of the figure, the supercooled and superheated phases are

unstable towards the mixture of ice and liquid water.2 Such instability is absent in the

microcanonical treatment of the black hole and super-Yang-Mills.

From the gravitational point of view, the phase structure in the left-panel of figure 1

is easy to understand [4, 5]. But by holographic duality, there is necessarily an alternative

description of the phase structure in terms of the dual gauge theory. While various features

of the phase structure have familiar counterparts in gauge theories, the counterpart to the

small black hole phase is unfamiliar, and begs a gauge theory description. Previously,

it has been proposed [6] that the mechanism which we call partial deconfinement can

naturally explain the gauge theory counterpart to the small black hole phase. Berenstein [7]

used a simple matrix model and combinatorial arguments to justify partial deconfinement.

His arguments suggest that partial deconfinement is a generic feature of gauge theories,

even without a gravity dual. In this paper, we leverage gauge theory calculations and

numerics to provide compelling evidence in support of partial deconfinement, and give

an intuitive explanation of the mechanism behind it. In particular, we will see that the

distribution of Polyakov line phases contains rich information about the partially deconfined

phase. Our results suggest that partial deconfinement is universal across a broad class of

supersymmetric and non-supersymmetric gauge theories, and approximately applies to

real-world QCD.

This paper is organized as follows. In section 2, we introduce the notion of partial

deconfinement. In section 3, we show that the partial deconfinement phase in Yang-Mills

is well-captured by models of collective motion with positive feedback. For concreteness,

we consider a well-known model of ant trail formation. Intuition from the ant model leads

1More precisely, although the unstable saddle could exist very close to the ‘metastable’ state, a tiny

perturbation which does not depend on the volume of the system is sufficient to escape from the metastable

state by going beyond the unstable saddle. In Yang-Mills, the size of the perturbation necessary for going

beyond the unstable saddle increases with N . In this sense, the ‘metastable’ phase in Yang-Mills is actually

‘stable’ in the large-N limit.
2In the high energy theory/string theory community, the phrase ‘two-phase coexistence’ is sometimes

used sloppily, and has two different meanings: (i) the mixture of two phases, such as liquid and solid phases,

and (ii) existence of two (meta-)stable phases at the same temperature. In order to avoid the confusion, we

will not use this terminology.
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us to a unified perspective on the phase structures of various Yang-Mills theories with and

without first order transitions. In section 4, we provide quantitative analytic and numerical

evidence of the partial deconfinement phase in various models. In section 5, we conclude

with a discussion, including potential application to QCD. We collect various details of

our calculations and numerical simulations in the appendices.

2 Partial deconfinement

As mentioned in the introduction, 4d N = 4 SYM has a peculiar phase structure. Its pecu-

liarities can be understood by examining the kinds of degrees of freedom which characterize

various phases. In the water/ice example two phases can occupy different regions in space

at the freezing temperature, and such mixture of two phases connects the completely-liquid

and completely-solid phases. We can supercool or superheat the system, but however large

the volume of the full system, a perturbation localized in space can create a bubble of a

more stable state, which then spreads to fill the entire volume. In the 4d N = 4 SYM, it

is natural to assume two phases (confined and deconfined) can occupy different regions in

color degrees of freedom [6–8], namely SU(M) in SU(N), where M < N , is deconfined. Let

us call it partial deconfinement, as coined in ref. [7].

In the language of D-branes and open strings, M of N D-branes are connected by open

strings and form a bound state (black hole). It can be regarded as ‘the mixture of two

phases’ from the D-brane point of view. The difference from the example of water is that

the locations of D-branes is described by the internal degrees of freedom (color degrees of

freedom) in QFT, rather than the spatial coordinate. Note that the interaction between

D-branes can be highly nonlocal, in that all D-branes in the bound state interact with each

other via open strings. This is in a stark contrast with the case of water.

In some cases, partial deconfinement can lead to a negative specific heat because the

number of unlocked degrees of freedom changes [6, 9]. In the partially deconfined phase,

the number of unlocked degrees of freedom participating in the dynamics is proportional

to M2, rather than N2. (In terms of string theory, M D-branes are forming a bound state,

and open strings between them are excited.) When the energy E is increased, more strings

can be excited, and hence M increases with E. But then the energy per degree of freedom

(' temperature), which is proportional to E/M2, can increase or decrease, depending on

the details of how M depends on E. Thus negative specific heat can arise [9, 10]. This

is in sharp contrast to the completely deconfined phase, in which the number of degrees

freedom is fixed and hence the specific heat has to be positive.

Our general arguments so far do not establish exactly what theories have the neg-

ative specific heat. In ref. [6], the properties of 4d N = 4 SYM has been used to ex-

plain E/N2 ∼ T−7 at low energies, which agrees with the equation of state of the ten-

dimensional Schwarzschild black hole and hence is consistent with the AdS/CFT duality

(see appendix A).

As another set of examples, large-N pure Yang-Mills in 3d and 4d flat space with

large volume are known to have first order deconfinement transitions. Numerical simu-

lations demonstrate the existence of strong hysteresis which resembles the left panel of
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figure 1 [11, 12]. This can also be understood as a phase separation in the color degrees

of freedom due to the unstable saddle (partial deconfinement): although spatially local-

ized small bubble of a more stable state (the confined phase surrounded by the completely

deconfined phase, or vice versa) can spread once it is created, the creation of the bubble

itself can be suppressed at large N . The natural scale of the bubble is 1/ΛQCD, which

is N -independent, and hence the size of the perturbation needed for the creation of the

bubble increases with N . (Note that we are considering the ’t Hooft large-N limit, and

hence large N is taken before large volume. If the large volume is taken first, then a large

enough fluctuation which goes beyond the partially deconfined phase would be generated

somewhere. Note also that the same suppression can work for the spinodal decomposition

as well.) Hence, as long as we start with the confined or completely deconfined phase and

dial the temperature, we expect strong hysteresis.

Note that the partial deconfinement requires N ≥ 3. Therefore, the SU(2) YM should

not have the first order transition — and it is actually the case, as demonstrated by lattice

Monte Calro simulations.

In our language, the small black hole and Hagedorn string (the red and orange dashed

lines in the left panel of figure 1) are partially deconfined. Partial deconfinement implies

that the distribution of the Polyakov line phase should behave as3

ρ(θ) =
N −M
N

ρconfine(θ) +
M

N
ρdeconfine(θ) =

N −M
N

· 1

2π
+
M

N
ρdeconfine(θ), (2.1)

where ρdeconfine(θ) is the distribution at the endpoint of the fully deconfined phase, T = T2.

At least in the examples we study in this paper, the completely deconfined phase is gapped

(i. e. ρ(θ) = 0 at θ = ±π), and the partially deconfined phase is the non-uniform un-gapped

phase. We conjecture that this is true in general.

In the past it has been argued that the gapped phase in 4d N = 4 SYM should

be dual to the large black hole with positive specific heat [5, 13]. It is consistent with

our observation, because we are relating the partially deconfined phase to the negative

specific heat.

3 Intuition from black hole/ant trail correspondence

The first order transition with an unstable saddle can be made transparent by considering

a similar phase transition in the science of complex systems: the formation of the ant trail.

This is one of the basic problems in the science of the collective animal behavior, and a

concrete mathematical model is given and tested experimentally [14]. More broadly, this

is a common feature of systems with collective motion and positive feedback. A crucial

feature is that when many ants follow the same trail, the strength with which other ants

are drawn to follow to trail is enhanced. Likewise, D-branes forming a large bound state

have enhanced interactions which D-branes not in the bound state. By identifying ants

and D-branes in an appropriate manner, the formation of the ant trail can be identified

3We will show the heuristic derivation in section 4.
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with the formation of a black hole, and remarkably we can reproduce the essential features

of the black hole.

Consider a colony of N ants, where we take N to be parametrically large. To sim-

plify matters, we assume there is only one source of food, which is concentrated at some

particular location. As ants walk away from the nest, some will find the food source and

bring pieces back to the nest, leaving a pheromone trail along the way to direct other ants

to the food source. Let Ntrail be the number of ants rallying on a single trail between

the nest and the food source. The strength with which ants not on the trail are drawn

to the trail is proportional to the amount of secreted pheromones pNtrail, where p is the

pheromone contribution from each ant on the trail. Hence, the interaction between ants

not on the trail, and the pheromones along the trail, is enhanced as Ntrail becomes larger.

This is similar to the case of gauge theory: if NBH D-branes form a bound state and one

of the remaining N −NBH D-branes comes close by,4 there are NBH different open strings

which try to capture that D-brane.5,6 At higher temperatures, each open string mode can

be more highly excited and thus can contribute more to the dynamics. Therefore, higher

temperatures correspond to larger values of the pheromone parameter. Hence the basic

correspondence is

Ntrail ←→ NBH, (3.1)

p ←→ T. (3.2)

The phenomenological equation introduced in ref. [14] is7

dNtrail

dt
= (ants coming into the trail) − (ants leaving the trail)

= (α+ pNtrail)(N −Ntrail)−
sNtrail

s+Ntrail
. (3.3)

Here α describes the probability that each ant accidentally find the food source, and s

determines the rate that ants leave the trail. The parameters p, α and s depend on the

species, geography around the colony, weather and so on. The size of the stationary ant

trail can be obtained by solving the equation dNtrail
dt = 0.

In the original treatment [14], p, α and s are fixed and Ntrail has been calculated

as the function of N . For our purposes, in order to make contact with black holes and

gauge theory, we fix α, s and N , and calculate Ntrail as the function of p. As discussed

in appendix B, the natural large-N limit of the ant model is α ∼ N0, p ∼ N0, s ∼ N1.

In figure 2, we show the plot of x ≡ Ntrail
N versus p for α = 1, s̃ ≡ s

N = 0.1, 1.0, 5.0, and

N = 105. (See appendix B for the analytic argument and ‘physical’ intuition.) The saddles

(the solutions of dNtrail
dt = 0) appear when the inflow and outflow of the ants (the first and

4Below we use NBH instead of M , because it is identified with the number of D-branes forming the

black hole.
5This mechanism is also known as the moduli trapping [15] and is applied to the inflationary cosmology.
6This can also be interpreted as the entropic force associated with the enhancement of the degrees of

freedom from N2
BH to (NBH +1)2. The entropic force exists for any gauge theory, regardless of the existence

of the dual gravity description.
7In the original notation in ref. [14], Ntrail and p are x and β, respectively.
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Figure 2. x ≡ Ntrail

N versus p in the ant trail model (3.3). α = 1, s̃ ≡ s
N = 0.1 (left), 1.0 (center)

and 5.0 (right), N = 105.

second terms of (3.3)) balance. There are two cases, with and without the unstable saddle

(dashed line):

• If the inflow/outflow wins when Ntrail is varied slightly upwards/downwards from the

saddle, the saddle is unstable (dashed line in the left panel of figure 2). It happens

at s̃ < 1.

• If the inflow/outflow wins when Ntrail is varied slightly downwards/upwards from the

saddle, the saddle is stable (solid line). At s̃ > 1, only the stable saddle exists.

• The boundary of these two behaviors can be seen at s̃ = 1 (the center panel of

figure 2). The curve x = x(p) has infinite slope at p = 1 in the large-N limit.

The crucial feature responsible for the emergence of the unstable saddle is the positive

feedback: near the unstable saddle, if Ntrail increases/decreases a little bit, then more ants

join/leave the trail and Ntrail increases/decreases even more. The value of Ntrail at the

unstable saddle decreases as p is increased — negative specific heat, by interpreting larger

Ntrail corresponds to larger energy — because with larger value of p strong enough total

pheromone can be obtained with smaller value of Ntrail.

Essentially the same mechanism exists in gauge theory. In terms of strings and D-

branes: as NBH grows, external D-branes are attracted more strongly (inflow); on the

other hand, as NBH grows, it costs more energy, and hence the Boltzmann factor pushes

NBH down (outflow); the saddle appears when these two effects balance. Again, whether

the saddle is stable or unstable depends on the details of the dynamics. In figure 3 and

figure 4, we show three possibilities:

• If the inflow/outflow wins when NBH is varied slightly upwards/downwards from

the saddle, the saddle is unstable (the dashed line in the left panels of figure 3 and

figure 4). In order for this to happen, the strings have to bind D-branes tighter,

so the strong coupling dynamics is needed. Indeed, this is the case for the strongly

coupled region of 4d N = 4 SYM.

• If the inflow/outflow always balances, no particular value of NBH is favored (the

vertical solid line in the center panels of figure 3 and figure 4). This is the case for

the weakly coupled region of 4d N = 4 SYM.

– 7 –
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Figure 3. Cartoon pictures of T vs NBH in gauge theory. The blue and red lines are confined

and completely deconfined phases, where NBH ∼ O(N0) and NBH = N , respectively. Orange lines

indicate the partially deconfined phase.

Figure 4. Cartoon pictures of the Polyakov loop P as a function of temperature. The blue, orange

and red lines represent the confined, partially deconfined and completely deconfined phases. Similar

curves are obtained by using E/N2 as the vertical axis as well.

• If the inflow/outflow wins when NBH is varied slightly downwards/upwards from the

saddle, the saddle is stable. In the right panels of figure 3 and figure 4, only stable

saddles exist. In 4d N = 4 SYM, there is no counterpart of the right panels.

The unstable saddle exhibits the negative specific heat because at higher temperature

each open string mode can be excited more (each ant contributes to more pheromone) and

strong enough attraction (strong enough pheromone) resisting the emission of D-branes

(outflow of the ants) can be achieved with smaller value of NBH.

Despite the similarity in the dynamics and qualitative aspects of the phase structures,

there is a difference as well: Ntrail/N can be one only at p = ∞, namely the ‘complete

deconfinement’ is missing in the ant theory. In appendix B.1, we show a similar model

(Ant-Man model) which does capture the complete deconfinement.

Because it is not easy to see the value of NBH manifestly in gauge theory, we need

more evidence to justify the picture shown in figure 3. Later in this paper, we will provide

the evidence. Meanwhile, let’s focus on figure 4 first, because is rather well-established. 4d

N = 4 SYM on S3 has the same pattern as figure 4, when the coupling constant λ = g2
YMN

is varied: as the coupling constant becomes smaller, the hysteresis becomes weaker (T2−T1

becomes smaller) and phase structure becomes like the center of figure 4 (T1 = T2) [5, 16].

– 8 –
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There are plenty of other examples which exhibit this pattern shown in figure 4, including:

• The real-world QCD has the rapid cross-over which resembles the right panel. By

dialing the mass of the quark to sufficiently large values, the first order transition

like the left panel can be realized.

• We can also consider QCD at finite baryon chemical potential. It is widely believed

that the first order transition shows up at sufficiently large baryon chemical poten-

tial.8

• The bosonic version of the plane wave matrix model, which we will study in detail

in section 4.4.

• In certain super Yang-Mills theories, the ‘deconfinement’ along the spatial circle is

related to the black hole/black string topology change. In this case the existence of

the unstable saddle (non-uniform black string) can be shown from the gravity side.

We will discuss the detail in section 4.5.

Based on these examples and the arguments in this section pertaining to collective mo-

tion with positive feedback, we propose that the partial deconfinement is a generic feature

of gauge theory. In section 4, we provide quantitative evidence based on the distribution

of the Polyakov line phases.

4 Quantitative tests with Polyakov line phases

In this section we show the evidence of the partial deconfinement in various settings, both

at weak coupling and strong coupling, based on the distribution of the Polyakov line phases.

The relation (2.1) plays the central role. We find the universal behavior regardless of the

choice of the theory.

Firstly we give a heuristic derivation of (2.1). In the picture of the partial deconfine-

ment, T = T2 is the lowest possible temperature in the SU(N) theory with the coupling

constant g2
YM at which all the D-branes can form a single bound state [6]. Namely, if the

temperature is below T2, some D-branes are emitted from the bound state. Next let us

consider a bound state consisting of NBH of N D-branes, which describes the partially

deconfined phase. We assume that the dynamics of the bound state can be described by

SU(NBH) theory, neglecting N−NBH D-branes outside the bound state. Then, the temper-

ature of the bound state is identified with the lowest possible temperature in the SU(NBH)

theory with the coupling constant g2
YM for which NBH D-branes can form a single bound

state [6]. Hence NBH of the N Polyakov line phases are distributed as ρdeconfine(θ), while

the rest follow ρconfine(θ) = 1
2π .

An implicit assumption here is that ρdeconfine(θ) does not depend on the effective ’t

Hooft coupling g2
YMM . This assumption is satisfied for the examples we consider below: in

4d theories at weak coupling, the assumption can be confirmed by explicit calculations; in

8Usually the chiral transition, which can be different from deconfinement in general, is considered. See

section 5 regarding this point.
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theories in less than four spacetime dimensions the ’t Hooft coupling is dimensionful and

hence it simply sets the unit of the energy scale. (In case this assumption is not correct,

we need to take into account the coupling dependence of ρdeconfine(θ).)

In all the cases we will study below, the transition between the partially and com-

pletely deconfined phases is the Gross-Witten-Wadia transition [17–19]. We conjecture

that more broadly, the partial-to-full deconfinement transition is universally described by

Gross-Witten-Wadia.

4.1 4d N = 4 SYM on S3

We begin with 4d N = 4 SYM on S3. In the weak coupling limit, the phase distribution

along the vertical orange line (i.e. ‘Hagedorn string’ [20]) has been obtained analytically.

The result is [5, 16]

ρ(θ) =
1

2π

(
1 +

2

κ
cos θ

)
, (4.1)

where κ = 2 and κ =∞ correspond to the intersection of the orange line with the red and

blue lines. If the orange line were not exactly vertical, these intersections would occur at

the temperatures T = T2 and T = T1. One obtains a phase distribution of the same form

as (4.1) for the unstable saddle which appears at finite coupling, as long as the coupling is

sufficiently small.9 We can rewrite ρ(θ) as

1

2π

(
1 +

2

κ
cos θ

)
=

(
1− 2

κ

)
· 1

2π
+

2

κ
· 1

2π
(1 + cos θ) (4.2)

and by identifying
M

N
=

2

κ
, (4.3)

we obtain (2.1), where ρdeconfinement(θ) is the ρ(θ) at κ = 2:

ρdeconfinement(θ) =
1

2π
(1 + cos θ) . (4.4)

The transition at κ = 2 is the so-called Gross-Witten-Wadia transition.

Therefore it is consistent with the partial deconfinement: the Hagedorn string can

be identified with the partially deconfined phase. This identification, combined with the

interpretation of black hole as long string [5, 16, 21–24], naturally suggests that the un-

stable saddle (10d Schwarzschild black hole) at strong coupling is also in the partially

deconfined phase.

As discussed in ref. [6], the partial deconfinement can explain the equation of state of

the small black hole, E ∼ N2T−7, and also other nontrivial features shown in the left panel

of figure 1. To make the paper self contained, we explain more details in appendix A.

9In ref. [5], the partition function in the free limit is expressed by using un =
∫
dθρ(θ)einθ, as Z =∫

dundūne
−N2 ∑

n≥1 cn|un|2 . At the critical temperature, cn > 0 for n ≥ 2, c1 = 0, and hence un = 0 for

n ≥ 2 and u1 can take any value between 0 and 1, which leads to (4.1). At weak but finite coupling, the

values of cn change, and higher order terms such as |un|4 can appear. Still, cn > 0 holds for n ≥ 2, and

hence un = 0 for n ≥ 2 regardless of the detail. Therefore, (4.1) also holds along the unstable saddle.
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4.2 Other 4d theories on S3

As discussed in ref. [5], 4d theories on the small three sphere can also behave like the

right panel of figure 4, depending on the details of the theories. The transitions are of the

second order and third order at T = T1 and T = T2, respectively. Again, the latter is the

Gross-Witten-Wadia transition. The Polyakov line phase distribution becomes as follows:

ρ(θ) =


1

2π (T ≤ T1)
1

2π

(
1 + 2

κ cos θ
)

(T1 < T < T2)

2
πκ cos θ2

√
κ
2 − sin2 θ

2 (T ≥ T2, |θ| < 2 arcsin
√
κ/2)

(4.5)

For T ≥ T2, ρ(θ) = 0 at 2 arcsin
√
κ/2 ≤ |θ| ≤ π. The parameter κ is 2 at T = T2

and ∞ at T = T1. At T ≤ T1, the system is confined. If we interpret the transition at

T = T2 as separating the partially and completely deconfined phases, it is consistent with

the relation (2.1), just as in section 4.1.

4.3 4d pure Yang-Mills on flat space

Deconfinement transition in 4d pure Yang-Mills on flat space has been studied extensively

on lattice. With a lattice regularization, the need for the renormalization makes the deter-

mination of the phase distribution tricky, namely the ‘bare’ phases observed in the simu-

lation is not necessarily physical; see e.g. [25]. In refs. [26, 27], 4d pure SU(N) Yang-Mills

theory (from N = 3 to N = 6) has been studied numerically on lattice, and the renormal-

ization has been performed for the Polyakov loop expectation value 〈P 〉 =
∫
dθeiθρ(θ), so

that the zero-point energy is zero. At T = T2, the value is close to 1
2 , which is consistent

with the GWW-ansatz described above. (Regarding this obaservation, see refs. [28, 29] for

the argument closely related to ours.)

4.4 Matrix quantum mechanics

Matrix quantum mechanics (i.e. (0+1)-dimensional Yang-Mills) is ultraviolet finite, and

is an ideal test bed for numerically studying the Polyakov loop expectation value on the

lattice, without a subtlety of the renormalization.

From unstable to stable with plane wave deformation. Let us consider the bosonic

analogue of the D0-brane matrix model [30–33], whose Lagrangian is given by

L = NTr

1

2

9∑
I=1

DtX
2
I +

1

4

9∑
I,J=1

[XI , XJ ]2

 . (4.6)

Here XI (I = 1, 2, , · · · , 9) are N ×N Hermitian matrices and DtXI = ∂tXI − i[At, XI ] is

the covariant derivative of XI . This model does not exhibit a first order transition; rather,

like the right panel of figure 4, the model possesses a phase transition at T1 (between the

blue and orange lines) and another at T2 (between the orange and red lines). The Polyakov

line phases can be numerically well-fit by (4.5) [34].

– 11 –
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Figure 5. The distribution of Polyakov line phases. [Left] µ = 3.0, where the partially deconfine-

ment phase is stable. We have plotted the distribution at N = 32, the number of lattice points

L = 18, and temperature T = 1.15, which is in the middle of the partially deconfined phase. The

fit is ρ(θ) = 1
2π

(
1 + 2

κ cos θ
)

with κ = 2.87. [Right] µ = 5.0, where the partially deconfinement

phase is unstable and the transition is of first order. We have plotted the distribution at N = 128,

L = 16, T = 1.54, which is very close to T2. The fit is ρ(θ) = 2
πκ cos θ2

√
κ
2 − sin2 θ

2 with κ = 1.88.

Next let us consider the bosonic version of the plane wave matrix model [35],

L = NTr

(
1

2

9∑
I=1

(DtXI)
2 +

1

4

9∑
I,J=1

[XI , XJ ]2

−µ
2

2

3∑
i=1

X2
i −

µ2

8

9∑
a=4

X2
a − i

3∑
i,j,k=1

µεijkXiXjXk

)
. (4.7)

At µ = 0, this is just the model (4.6) we have discussed above. As µ is turned on, the

phase transition temperatures T1 and T2 gradually approach to each other, and eventually

coincide, resembling the middle panel of figure 4. If µ is tuned even larger, the hysteresis

sets in. There, the partial deconfinement phase turns to the unstable saddle. Intuitively,

the reason that the first order transition emerges at large µ is that the eigenvalues of

matrices (the location of D-branes) are pushed toward the origin, the off-diagonal matrix

elements (open strings) can be excited more easily, and the interaction between the D-

branes becomes stronger.

At small µ region, we can numerically show that the GWW ansatz (4.5) works, just

in the same way as µ = 0; see the left panel of figure 5. At µ ∼ 5 the first order transition

sets in. By using the lattice regularization explained in appendix C, with SU(128) gauge

group and 16 lattice sites, the hysteresis can be seen around T = 1.55. As expected, in the

deconfinement phase ρ(θ) is consistent with the last row of (4.5), and toward the endpoint

(T = T2) the value of κ approaches 2 and the gap closes; see the right panel of figure 5.

D0-brane quantum mechanics. Now we consider the full, supersymmetric D0-brane

matrix model [30–33].10 With the plane wave deformation (µ > 0) [35], this theory is

10This part is based on forthcoming work with the Monte Carlo String/M-theory Collaboration. The

detail will appear in near future, as a part of a separate publication.
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expected to have a first order confinement/deconfinement transition (see e.g. ref. [36]). At

µ = 0, there are two possibilities: (i) the first order transition survives all the way down

to µ = 0, or (ii) it disappears at finite µ.

In the case of (i), the transition temperature should be zero at µ = 0, and the con-

finement phase should disappear, as in the flat space limit of 4d N = 4 SYM. Then it is

natural to expect the Hagedorn growth exactly at T = 0, as depicted in the center panel

of figure 4, with T1 = T2 = 0. On the other hand, in ref. [37] it has been argued that

the Polyakov line phases should be almost uniformly distributed and behave like (4.1).

Then the option (ii), namely the right panel of figure 4 with T1 = 0 and T2 > 0, is the

natural candidate.11

To explore the above possibilities, we can use the simulation data obtained from the

previous [38, 39] and ongoing projects by the Monte Carlo String/M-theory Collabora-

tion. Unfortunately, this data only covers a moderately high temperature region for which

〈|P |〉 & 0.7, and hence we cannot judge which possibility is correct. However, we did

confirm that the GWW-ansatz holds for the high temperature phase (T ≥ T2).

4.5 2d maximal SYM and black hole/black string topology change

With the Euclidean signature, the deconfinement transition is the breakdown of the center

symmetry along the temporal circle. Mathematically, it is the same as the center symmetry

along the spatial circle, when (one or more of) the spatial dimensions are compactified.12

The ‘spatial deconfinement’ — the breakdown of the center symmetry along the spatial

circle — can also be explained by the framework of the partial deconfinement.

Consider 2d maximal SYM on spatial circle. It is dual to a system of D1-branes in

type IIB string theory [33], which is equivalent to a system of D0-branes in type IIA string

theory via T-duality. In the D0-brane picture, there can exist a string-like distribution of

D0-branes — called a “black string” — wrapping around the spatial circle. There can also

be black holes, which correspond to a localized distribution of D0 branes. The distribution

of D0-branes is described by the phase distribution of the spatial Polyakov loop. Thus, we

can relate the phase structure of SYM and the black hole/black string system [40].

There can be ‘confined’, ‘partially deconfined’ and ‘completely deconfined’ phases,

which correspond to the uniform black string, non-uniform black string and black hole,

respectively.13 When the non-uniform black string turns into a black hole, the Polyakov

line phase distribution ρ(θ) develops a gap. This is consistent with the partial deconfine-

ment picture.

At low temperatures, the dual gravity description is weakly coupled, and a detailed

analysis can be done with numerical relativity. There are two stable phases — black hole

11Ref. [36] also discussed the possibility that the first order transition disappears at small but finite µ.
12The temporal circle has a periodic boundary condition for bosons and an anti-periodic boundary con-

dition for fermions. Below, for the spatial circle, we impose periodic boundary conditions for both bosons

and fermions.
13Visually the ant trail would look like black string, but actual correspondence is a little bit counter-

intuitive. Thick, stable ant trail is black hole while the thin trail is non-uniform black string. The disap-

pearance of the ant trail is the formation of the uniform black string.
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and uniform black string — separated by the first order phase transition, and they are

connected by the unstable saddle — nonuniform black string — [40–44]. The instabil-

ity toward the deconfined phase is the gauge theory analogue of the Gregory-Laflamme

instability [45]. Also, as mentioned above, the gap at θ = ±π appears exactly at the bor-

der between the black hole and non-uniform black string phases. These can naturally be

explained by the partial deconfinement.

At high temperatures, we can use the one-dimensional bosonic matrix model (4.6) to

describe the thermal properties of the system. In this regime, all three phases appear as

stable saddles, and the phase distribution [34] is consistent with the partial deconfinement,

as we have already seen in section 4.4.

5 Conclusion and discussions

In this paper, we have argued that the confined and deconfined phases in gauge theories

are connected by a partially deconfined phase, which can be stable or unstable depending

on the details of the theory. When this phase is unstable, it is the gauge theory counterpart

of the small black hole phase in the dual string theory. Furthermore, we have argued that

partial deconfinement is closely related to the Gross-Witten-Wadia (GWW) transition.

In order to understand the mechanism behind the partial deconfinement intuitively, we

have advocated the similarity between the dynamics of gauge theories and the collective

behaviors of ants. The quantitative evidence is obtained by comparing the distribution of

Polyakov line phases with (2.1).

A natural, immediate question is whether the partial deconfinement can be seen in the

experiments, especially in QCD. There are a few subtleties in the application of the notion

of the partial deconfinement to real-world QCD. Firstly, N = 3 may not be so large. Also

the existence of the matter in the fundamental representation, which explicitly breaks the

center symmetry, may modify the nature of the transition. Let us still consider possible

implications, keeping these subtleties in mind.

• The QCD phase transition at zero chemical potential appears to be a rapid

crossover [46], which resembles the right panel of figure 4. By changing the quark

mass, the first order transition (the left panel of figure 4) can also be realized. Hence

it is natural to expect that the crossover region contains counterparts of partially and

completely deconfined phases. The partial deconfinement would lead to a new kind

of spectrum which has not been considered so far, and hence would be phenomeno-

logically relevant.

• It is widely believed that, at finite chemical potential, the transition becomes first or-

der. (See e.g. [47] for a review.) If this is true, it is natural to expect that the partially

deconfined unstable phase — the gauge theory counterpart of the Schwarzschild black

hole — exists. It would be a useful setting for ‘experimental realization’ of evaporat-

ing black hole! Note that the stringy correction should be large and hence it would

not be very close to the black hole in weakly coupled gravity. Nonetheless, it would

be interesting if some universal features could be seen.
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• A few remarks regarding the nature of the phase transition at finite chemical potential

is in order here.14

Usually it is argued that the chiral transition (characterized by the growth of chiral

condensate from ' 0 to a large value), which can be different from deconfinement

(characterized by the growth of the Polyakov loop) in general, becomes first order.

Whether these two transitions are correlated as µ = 0 case is not clear because the

lattice QCD simulation is difficult due to the sign problem.

Whether two transitions coincide or not, the unstable phase can exist as long as there

is a hysteresis. At a possible first order chiral transition, if the Polyakov loop jumps

as well — whether zero to nonzero, or nonzero to nonzero — the argument for the

small black hole phase presented in section 3 would apply without change.15 Note

that, in the case of 4d N = 4 super Yang-Mills, the small black hole phase connected

the completely deconfined and Hagedorn string phases, both correspond to P > 0.

• Given that we might be able to see the ‘evaporating black hole’ experimentally, it

is interesting to study possible experimental signals associated with the first order

phase transition. The nature of the phase transitions discussed so far looks rather

universal. Hence it would be useful to consider ‘applied AdS/CFT’ based on 4d SYM

on S3 (see e.g. ref. [48]).

There are several other issues which are important from the quantum gravity point

of view:

− Analyses of the gravitational dual of 4d maximal SYM suggests the existence of a first

order transition corresponding to the localization of the black hole along S5, even in

the microcanonical treatment [49, 50]. This cannot be explained by the gauge theory

argument in this paper. We emphasize that the color degrees of freedom would play a

crucial roles in this case as well. One possibility is that a GWW-like transition in the

microcanonical treatment describes the transition between the positive and negative

specific heat parameter regions of the AdS5 black hole which are not localized along

S5, and the transition associated with the localization along S5 exists separately. It

may well be the case that the localization along S5 (i.e. breaking of the R-symmetry)

corresponds to the GWW transition. That the previous weak-coupling analyses did

not capture this transition would mean that the stringy corrections resolve it.

− When refs. [9, 10] discussed the negative specific heat in the context of gauge/gravity

duality, the D0-brane matrix model has been considered as a concrete example. In-

stead of the confinement, the Higgs mechanism associated with the emission of the

eigenvalues due to the flat direction in the moduli has been used for the reduction

of the unlocked degrees of freedom. For the flat direction to exist, supersymmetry is

crucial, and hence the generalization of the argument to nonsupersymmetric systems,

14We would like to thank K. Fukushima for useful comments regarding these points.
15A subtlety here is that the Polyakov loop may not be a good quantity to characterize the partial

deconfinement, because of the existence of the fundamental fermion.

– 15 –



J
H
E
P
0
3
(
2
0
1
9
)
1
4
5

like our universe, was not clear. The partial deconfinement is almost the same (i.e.

some degrees of freedom are confined rather than Higgsed) but supersymmetry is

not required.

− The numerical tests explained in section 4 did not directly consider the unstable sad-

dle. In principle, we could directly see the unstable saddle of the path integral (1.1),

by counting the number of Monte Carlo samples for each value of E and determin-

ing F (E, T ) in (1.1). Of course, a näıve simulation samples only the configurations

around the minima, but we might be able to circumvent this problem by restricting

the energy to a narrow band.16,17 Whether such a sampling procedure works with

reasonable computational resources is not clear at this moment, but it is certainly

worth trying. It is also important to derive the negative specific heat analytically,

away from the weak coupling region. See ref. [54] for a recent attempt.

Last but not least, the correspondence between the ant trail and black hole is not per-

fect. The biggest difference is that Ntrail can reach N only at p =∞, and as a consequence,

a GWW-like transition is missing. It would be interesting if there is a more precise ana-

logue of black holes which exhibits the GWW transition. See an improved model discussed

in appendix B.1 (the Ant-Man model) for an attempt along this direction.
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A Small black hole from gauge theory

In this appendix, we review the heuristic explanation of the black hole equation of state

from the dual 4d super Yang-Mills. We closely follow ref. [6]. The most basic assumption

of the partial deconfinement introduced in ref. [6] is that, regardless of the value of NBH,

the property of the small black hole (unstable saddle) is the same as the one at T = T2

and NBH = N . Let XBH be the NBH×NBH sub-matrix of the scalar X, which corresponds

to the partially deconfined SU(NBH). As NBH changes, the ’t Hooft coupling effectively

changes as g2
YMNBH = (g2

YMN) · (NBH/N) = λ · (NBH/N) ≡ λBH.

When λBH � 1, the NBH × NBH block is weakly coupled, and hence we simply see

the Hagedorn growth. On the other hand, when λBH � 1, the NBH × NBH block is

strongly coupled. Then the potential term 1
g2YM

Tr[XBHI , XBHJ ]2 = NBH
λBH

Tr[XBHI , XBHJ ]2

is more important than the kinetic term of the action. By using YBH ≡ XBH/λ
1/4
BH, the

potential becomes independent of the coupling constant. As mentioned in section 4, we

identify the temperature T to be the lowest possible temperature in the SU(NBH) theory

at which all NBH D-branes can form the bound state. Given that there is no particular

λBH dependence in terms of YBH, it is natural to suppose that the eigenvalues of YBH at

T are independent of λBH, and hence the eigenvalues of XBH scale as λ
1/4
BH. Intuitively,

the eigenvalue of XBH corresponds to the radius of the black hole, which sets a natural

inverse energy scale. So it is natural to expect T ∼ λ
−1/4
BH ∼ (NBH/N)−1/4.18 Also, from

the dimensional analysis and ’t Hooft counting, the energy and entropy should scale as

E ∼ N2
BHT ∼ N2(NBH/N)7/4 ∼ N2T−7 and S ∼ N2

BH ∼ N2(NBH/N)2 ∼ N2T−8. (The

’t Hooft counting alone cannot fix the dependence on the ’t Hooft coupling. Here we

implicitly assumed that it is independent of the coupling in the strongly coupled region.

This is equivalent to assuming that the Newton constant is independent of λ in the dual

frame (RS3 and RAdS fixed), which can be confirmed analytically in the supersymmetry-

preserving setups.)

Next let us consider the M-theory parameter region of the ABJM theory [56].19 We

take the Chern-Simons level k to be O(1), and send N to infinity. The potential term of

the action is schematically ∼ N
λ TrX6 (λ = N

k ), where X stands for the scalar fields in the

bifundamental representation. The λ dependence disappears if we use Y ≡ λ−1/6X, and

hence the natural scaling of the eigenvalues is λ
1/6
BH. This motivates T ∼ (NBH/N)−1/6.

Note that this is the scaling of the Planck scale in the dual frame. The Newton constant

is GN,11 ∼
√
λ/N2 ∼ N−3/2, which can be checked by supersymmetric localization [57].

Hence the entropy is S ∼ N3/2
BH ∼ N3/2T−9 ∼ 1

GN,11T 9 , and the energy is E ∼ 1
GN,11T 8 . This

is the correct behavior in the eleven dimensional supergravity.

18Intuitively, at higher temperatures more open strings are excited, D-branes are more tightly bound,

and the radius of the black hole becomes smaller. This is the same as the scaling of `s in the dual frame

(RS3 and RAdS fixed).
19Whether the same argument holds in the type IIA string theory limit (typically N/k fixed) is a subtle

issue, because the moduli (C4/Zk)N/(permutation), and the dual gravity geometry AdS4×S7/Zk, explicitly

depend on k ∼ N . If we apply the same power counting näıvely, we obtain E ∼ 1
GN,10T

−8 , which is not the

equation of state of the ten dimensional black hole.
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B The large N limit of the ant equation

In ref. [14], the number of the ants in the colony N is varied while other parameters α, s

and p are fixed. In order to see the resemblance between the ant model and the holographic

description of a black hole, it is convenient to fix N to be a large value. Like in string

theory and quantum field theory, we expect mathematical simplifications to arise in the

natural large-N (many-ant) limit. Furthermore, in the large-N limit, the phase transition

appears in the mathematically precise sense.

Let us divide the left and right hand sides of (3.3) by N . By using x ≡ Ntrail/N ,

α̃ ≡ α/N and s̃ ≡ s/N , we obtain

dx

dt
= (α̃+ px)(1− x)− s̃x

s̃+ x
. (B.1)

We treat this x as an order N0 quantity. The ‘ant equation’ dx
dt = 0 becomes

f(x) ≡ px3 + (α̃− p+ ps̃)x2 + (α̃s̃− ps̃− α̃+ s̃)x− α̃s̃ = 0. (B.2)

By definition,

0 ≤ x ≤ 1 (B.3)

is required. Also, by ‘physical’ reasoning, we should impose

p, α̃, s̃ ≥ 0. (B.4)

Here p is the strength of the pheromone secreted by each ant. It is natural to regard p to

be of order N0, as per ref. [14]. The value of p can change depending on the environment

around the nest. For example, if the air is dry, the pheromone can evaporate quickly and

hence p is smaller.

The parameter s controls the rate that ants leave the trail; maybe they get bored,

maybe they get tired. It is natural to assume that the number of such ants is proportional

to N and hence s̃ is of order one. This scaling of s differs from the treatment in ref. [14].

Finally, the parameter α is the probability that each ant spontaneously find the food

source without help from the pheromones. Then α should be almost independent of N ,

and hence, it is natural to take α̃ ∼ 1/N as per ref. [14].

For fixed α̃ and s̃, we solve (B.2) for various values of p and plot x as a function of p.

Two limiting situations, p→ 0 and p→∞, are easy:

• When p → 0, α̃x2 + (α̃s̃− α̃+ s̃)x − α̃s̃ = 0, and hence x ' α̃, namely x is almost

zero. In words: if there is no pheromone, there is no trail.

At finite p, the solution close to zero can be written as x = α̃
1−p + O(α̃2). The

deviation from zero becomes large when 1 − p becomes of order of α̃.

• When p → ∞, px3 + (−p+ ps̃)x2 − ps̃x has to be of order one, and hence x3 +

(−1 + s̃)x2 − s̃x has to be almost zero. Then x→ 1. (x→ 0 may appear to be fine

as well, but it requires x ' − α̃
p < 0 and hence is ‘unphysical’. Yet another solution
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x ' −s̃ is also ‘unphysical’.) Namely, if the pheromone is extremely strong, all ants

join the trail.

Let us write x = 1− ε there. Then, ε ' s̃
p(s̃+1) .

The deviation from ‘confinement’ x ∼ α̃ sets in at p ' 1. If there is another solution

to the ant equation there, we should see an S-shape curve (i.e. the first order transition).

At p = 1, the ant equation is x3 − (1 − s̃)x2 ' 0. Hence, if s̃ < 1, there are two solutions

near x = 0 (analogous to ‘confined’ and ‘partially deconfined’ phases) and the other near

x = 1− s̃ (analogous to a ‘completely deconfined’ phase).

Let us study the shape of the S-curve more precisely. It is described by

px3 − p(1− s̃)x2 + (1− p)s̃x ' 0. (B.5)

The ‘partially’ and ‘completely’ deconfined phases are

x '
1− s̃±

√
(1− s̃)2 − 4(1−p)s̃

p

2
. (B.6)

The bending point is where
√

(1− s̃)2 − 4(1−p)s̃
p becomes zero, namely

p =
4s̃

(1− s̃)2 + 4s̃
. (B.7)

As s̃ approaches zero, the bending point gets closer to 0 and the hysteresis be-

comes stronger. This behavior is ‘physically’ almost trivial: if no ant leaves the trail,

no pheromone is needed to keep the existing trail. The small s̃ region is similar to the

strong coupling region of 4d SYM.

As s̃ approaches 1, the hysteresis becomes weaker, and the unstable saddle becomes

closer to the vertical straight line near x = 0. This resembles the Hagedorn string.

For s̃ > 1, the ‘partially deconfined’ phase becomes stable. This is analogous to the

cross-over in real-world QCD. Right above p = 1, one of (B.6) describes this phase. By

writing p = 1 + q, we obtain

x ' qs̃

s̃− 1
. (B.8)

As q → 0, we have that x is continuous, but dx
dq is not. Thus the transition from ‘confine-

ment’ to ‘partial deconfinement’ is of second order in this case, just like the case of large-N

Yang-Mills. Note that the large-N limit, which is analogous to the thermodynamic limit

in statistical physics, is necessary for the phase transition to take place; see figure 6.

Although the transition from ‘confinement’ to ‘partial deconfinement’ is nicely captured

by the ant model, the transition to the ‘complete deconfinement’ is not very precisely

captured. At s̃ → 0, the value of x at the bending point is 1/2, which is different from

the value we expect in SYM, 1. At s̃ = 1, the analogue of the Hagedorn growth does

not continue up to x = 1. As we have already seen, the large-p asymptotic behavior is

x ' 1− s̃
p(s̃+1) . Hence the ‘complete deconfinement’ is achieved only at p =∞. The same

applies to s̃ > 1 as well. Hence the GWW transition, which separates the partially and
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Figure 6. x vs p with s̃ = 1 (left) and s̃ = 5 (right), α̃ = 10−2, 10−3, 10−4 and 10−5. We can see

the emergence of the singularity at p = 1 as α̃ approaches zero, or equivalently, in the large-N limit.

completely deconfined phases, is not captured by the ant model. It would be intereting if

we can find other complex systems which mimic black holes more precisely. Below, we give

a toy model which captures the complete deconfinement.

B.1 Modified ant model (Ant-Man model)

Here we consider a modified ant model — ‘Ant-Man model’ — which gives the ants some

human characteristics. We assume they think like us humans: when everybody is on the

trail, they are scared to leave. If such human-ish ants existed, the ant trail model would

be modified as
dx

dt
= (α̃+ px)(1− x)− s̃x

s̃+ x
· (1− x2). (B.9)

Here the factor 1− x2 multiplies to the outflow factor, so that no ant leaves the trail when

all ants are on the trail (x = 1). Taking into account the constraint 0 ≤ x ≤ 1, the phase

structures become those in figure 7. They are closer to Yang-Mills (figure 3), except that

new unstable trail (x = 1, shown by the dotted line) appears. This unwanted unstable trail

is actually harmless; it can be eliminated by a small change such as (1−x2)→ (1 + ε−x2)

with infinitesimally small positive ε (i.e. a little bit of courage to leave the trail).

We emphasize that we have written down this model just to mimic Yang-Mills more

closely. There is no theoretical or experimental justification of the existence of Ant-Men.

Still, such models would be useful for obtaining the intuition into the nature of Yang-Mills

and string theory.

C Monte Carlo simulation of the matrix model

The simulation we have used for the study of the bosonic matrix model is based on the

simulation code for the BMN matrix model written by M. H. for the Monte Carlo String/M-

theory collaboration. We have just removed fermions from the code.20

20The code is available upon request to M. H.

– 20 –



J
H
E
P
0
3
(
2
0
1
9
)
1
4
5

Figure 7. x ≡ Ntrail

N versus p in the modified ant model (B.9), with α = 1, s̃ ≡ s
N = 0.1 (left), 1.0

(middle) and 5.0 (right), N = 105.

The lattice action is

SLattice =
N

2a

∑
t,M

Tr (DXM (t))2 − Na

4

∑
t,M,N

Tr[XM (t), XN (t)]2

+aN
∑
t

Tr

µ2

2

3∑
i=1

Xi(t)
2 +

µ2

8

9∑
a=4

Xa(t)
2 + i

3∑
i,j,k=1

µεijkXi(t)Xj(t)Xk(t)


−
∑
i<j

2 log

∣∣∣∣sin(αi − αj2

)∣∣∣∣ , (C.1)

where U = diag(eiα1/Nt , eiα2/Nt · · · , eiαN/Nt), −π ≤ αi < π, and

DX(t) ≡ 1

2
U2X(t± 2a)

(
U †
)2

+ 2UX(t± a)U † − 3

2
X(t) = aDtX(t) +O(a3). (C.2)

We simulate this action by using the Hybrid Monte Carlo algorithm.

The Polyakov loop is defined by

P =
1

N

N∑
j=1

eiαj . (C.3)

The phases are α1, α2, · · · , αN . We need to take into account the ambiguity of the global

U(1) factor, with which all α’s are shifted by a constant. We fix it by requiring P = |P |.
We have studied µ = 1, 2, 3 and 4 with matrix size N = 32, lattice size L = 18. In this

region, we obtained the data consistent with the existence of stable partially deconfined

phase, although a first order transition may emerge at larger N . We have also studied

µ = 5 with N = 128 and L = 16. There, we have observed a clear hysteresis around

T = 1.55; namely, two different phases are observed with hot start (lower the temperature

gradually) and cold start (raise the temperature gradually).
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