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Based on the density functional theory with the generalized approximation, we investigated 

the geometric and electronic structure of two-dimensional covalent networks consisting of 

triptycene and phenyl groups, which are alternately arranged in a hexagonal manner. 

Calculated total energies of the networks are a few tens meV per atom higher than that of 

an isolated benzene, indicating that the networks are energetically stable. All networks 

were semiconductors with a moderate band gap at the Γ point, value of which inversely 

proportional to the length of polyphenyl connecting the triptycene. According to a kagome 

topology of� π electrons distributed on the sp2 hydrocarobons, the characteristic kagome 

energy bands consisting of a flat dispersion band and a Dirac cone emerge in valence and 

conduction states of which structure is sensitive to the mutual orientation of phenyl groups 

with respect to the polymer chain. 
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1. Introduction 

Electronic structure of nanoscale materials is characterized by their size, dimensionality, 

network topologies, and boundary conditions. Nanoscale carbon materials, such as 

aromatic hydrocarbons1), fullerenes2), and carbon nanotubes3), are representative examples 

of such nanoscale materials. Aromatic hydrocarbons having primarily armchair (cis) edges 

possess basically symmetric electronic structure with respect to the Fermi level and a 

moderate energy gap between the highest occupied and the lowest unoccupied states. This 

gap is inversely proportional to the molecular size1). In contrast, introducing an imbalance 

between the numbers of two sublattices in hexagonal networks creates the non-bonding 

states at the Fermi level, the number of which is the identical to that of the sublattice 

imbalance, leading to the spin polarization.4-9) Polymerization of the hydrocarbons causes 

further variation in the resultant two-dimensional networks.10,11) Their electronic properties 

depend on the constituent molecule and on the interconnect geometries. For example, the 

networks consisting of phenalenyl and phenyl groups possess Dirac cones arising from the 

hexagonally arranged phenalenyl and kagome bands owing to the phenyl interconnects 

which form the kagome lattice, even though the ! electrons are extended throughout the 

networks. Besides the networks comprising solely hexagonal rings, topological defects 

such as pentagonal and heptagonal rings causes unusual electronic structure being different 

from that of the conventional hexagonal networks.12,13) 

 

Hybrid networks of sp2 and sp3 C atoms show further variations in their geometric and 

electronic structures which do not appear in sp2 C materials. Lacking ! electrons, sp3 C 

atoms act as spacers for ! electron networks while giving structural flexibility, allowing 

the materials to form two- and three-dimensional structures. Iptycene is an example of such 

sp2 -sp3 hybrid carbon molecule, which possesses a Y-shaped ridged structure consisting of 

three acene panels connected via bridgehead sp3 C atoms with fourfold coordination 

situated at the molecular axis.14,15) Because of the substantial wave function overlap among 

three acene panels, the electronic structure of the iptycene is slightly modulated from that 

of the constituent acene units, even though the acene panels are separated by sp3 C atoms. 

By analogy with the covalent organic frameworks consisting of conventional 2D 

hydrocarbons, iptycene also can form covalent networks under the polymerization between 



  Template for JJAP Regular Papers (Feb. 2017) 

3 

adjacent acene units. Indeed, triptycene16-18), consisting of two sp3 C atoms and three 

benzene panels, possess polymeric networks.19-24) In such networks, because the sp2 moiety 

of the triptycene polymer is arranged in the kagome topology, the electronic structure near 

the Fermi level exhibits unusual feature that are absent in the sp2 C network materials. 

Indeed, our previous calculations indicated that networks comprising sp3 C atoms and 

oligoacene are semiconductors with the peculiar kagome bands in their valence and 

conductions states.25,26)  

 

In this work, following the synthesis of the triptycene polymers containing phenyl groups, 

we aim to investigate the energetics and electronic structure of the triptycene polymers in 

terms of the phenyl conformations and length, using the density functional theory (DFT) 

with the generalized gradient approximation (GGA). Our calculation showed that the 

triptycene polymers are energetically stable with the similar total energy to that of an 

isolated benzene. The polymers are semiconductors with the direct band gap between 

dispersive valence band and the flat conduction band at Γ point with the band gap of about 

2 eV which is inversely proportional to phenyl length. The polymers possess peculiar 

electronic band structures in both valence and conduction states, originated from the 

kagome topology of the sp2 hydrocarbon networks. 

 

2. Calculation Method and Structural Model 

All calculations were conducted using the DFT27,28) as implemented in the program 

package STATE.29) We used GGA with the Perdew-Burke-Ernzerhof functional to 

describe the exchange-correlation potential energy among interacting electrons.30) Ultrasoft 

pseudopotentials generated by the Vanderbilt scheme were adopted for describing the 

interaction between electrons and ions.31) Valence wave function and deficit charge density 

were expanded in terms of plane-wave basis sets with cutoff energies of 25 and 225 Ry, 

respectively, which give sufficient convergence in the total energy and electronic structures 

of covalent networks consisting of both sp2 and sp3 C atoms.32,33) Molecular dynamics 

simulations were conducted using velocity scaling method to keep the temperature 

constant during the simulation to insure the thermal stability of the triptycene polymers. 

Integrations over the hexagonal Brillouin zones were excused by using equidistant 2×2×1 

k-mesh. Lattice parameters and internal atomic structures were fully optimized until the 
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force acting on each atom was less than 5mRy/Å. To simulate an isolated two-dimensional 

covalent network, the network was separated from its periodic images by 10Å or 20Å 

vacuum spacing, depending on the thickness of the networks. For the network consisting 

only of triptycene, the vacuum spacing of 10Å was adopted, while the networks containing 

phenyl groups, 20Å-vacuum spacing adopted.   

 

Figure 1 shows an optimized structure of triptycene polymers. In this work, we consider 

three representative polymers in which hexagonally arranged triptycenes are connected 

directly [Fig. 1(a)], via a phenyl [Fig. 1(b)], and via a biphenyl [Fig. 1(c)] with three 

adjacent triptycenes. The model considered here qualitatively simulates the 

experimentally synthesized polymers and may provide the fundamental properties in 

terms of the length of phenyl interconnects, although the covalent network between 

adjacent triptycene is not exactly the same as the experimental one. With the choice of the 

structural models, the polymers are hybrid covalent networks of sp3 and sp2 C atoms, 

which are arranged hexagonal manner as vertexes of the network and are arranged the 

kagome topology as the connecting units, respectively. Therefore, the ! electron systems 

satisfied the kagome network topology with an internal degree of freedom connected with 

its adjacent units via next nearest electron transfer around the sp3 C atoms. 

 

3. Results and discussion 

Optimized lateral lattice parameters of polymerized triptycene are 15.38 Å  for the 

network without phenyl group (tp-tp) and 22.17 and 28.75 Å for the networks containing 

phenyl (tp-ph-tp) and biphenyl (tp-bp-tp), respectively. Under the optimum lattice 

parameters, the optimized bond lengths of the polymers are summarized in Table I. The 

optimized bond length of the bridgehead sp3 C atoms is 1.52 Å which is the same as that 

of the isolated triptycene molecule. Furthermore, the bond length associated with the sp2 C 

are about 1.40 Å and found to be insensitive to polymerization for all polymers. Thus, the 

polymerization does not substantial structural modification in triptycene unit. By focusing 

on the bond connecting triptycene units with the other triptycene or phenyl groups, we 

found that the bond d9 indicate the single bond nature because of the slightly long bond 

length of 1.48 Å. In addition, the bond connecting two phenyl units in the structure 

tp-bp-tp is also longer than the bond forming benzene rings in phenyl and triptycene, 
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indicating its single bond nature. As for the bond in benzene rings in phenyl groups, the 

optimized bond lengths are also about 1.4 Å, as the case of the conventional sp2 C 

materials. 

 

Figure 2 shows the total energy per C atom of triptycene polymers as a function of the 

lattice constant, with respect to the energy of an isolated benzene. The total energy 

monotonically decreases with increasing the lattice parameter or the phenyl unit length. 

The calculated total energies are 63, 52, and 48 meV/atom for the networks of tp-tp, 

tp-ph-tp, and tp-bp-tp, respectively, with respect to the energy of the benzene, indicating 

that all networks are energetically stable. The decrease of the total energy is ascribed to the 

substantial decrease of the kinetic energy of the polymer with the increase of the phenyl 

length, although the Coulomb repulsive interaction between H atoms attached to triptycene 

and phenyl increase the total energy with increasing the phenyl length.  

 

The dynamical stability of the triptycene polymers was also investigated by ab-initio 

molecular dynamics simulations conducted at a constant temperature up to 1500K for 

simulation times of 0.2 ps. Under the elevated temperature, all structures retained their 

initial network topologies for the above simulation times. Therefore, the polymers are also 

dynamically stable at the ambient conditions. 

 

Figure 3 shows the electronic structure of polymeric triptycene with the structures of tp-tp, 

tp-ph-tp, and tp-bp-tp. All polymers were semiconductors with the direct band gap at the Γ 

point, width of which depends on the phenyl length. In addition, the polymers possess 

peculiar band structures in both valence and conduction stats: The most of the electron 

states show the kagome band feature consisting of three branches where two of three have 

substantial dispersion forming a Dirac cone at the K point while the remaining state 

exhibited a flat band nature throughout the Brillouin zone. According to the kagome band 

structure, the band edge exhibit unusual feature: the lowest branch of the conduction band 

and the third highest branch of the valence band exhibit perfect flat band nature, indicating 

the possibility of the strong adsorption between these two states. In addition, despite the ! 

electron network is segmented in each panel consisting of benzene rings and terminated by 
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sp3 C atoms situated at the network vertexes, each branch of the electronic energy bands 

possesses substantial bandwidth except the branches associated with the kagome flat band. 

The calculated bandwidth is about 0.5 eV or larger depending on the branches and phenyl 

length. This indicates that ! electrons in the triptycene polymers are extended throughout 

the covalent framework with the spatially dependent electron hopping among the sp2 C 

atomic sites, even though they are segmented by sp3 C atoms. Indeed, the squared wave 

function of the flat band state extended throughout the network with ! electron nature. 

 

To provide further insight into the electronic band structure of the triptycene polymers, we 

analyze the band gap [Fig. 4(a)], band width of the highest and the lowest three branches of 

the kagome bands [Fig. 4(b)], and the eigen value of the highest occupied and the lowest 

unoccupied flat bands [Fig. 4(c)]. The band gap monotonically decreases with increasing 

the phenyl length: The band gap of the tp-bp-tp polymer is narrower than that of the tp-tp 

polymer by 0.5 eV [Fig. 4(a)]. The gradual decrease of the band gap is caused by the 

decrease of the bandwidth of the highest three occupied and the lowest three unoccupied 

states. Indeed, the bandwidth of these states decreases with the insertion of biphenyl into 

the pristine triptycene polymer or the tp-tp polymer by 0.5 eV, corresponding with the 

decrease of the band gap. The bandwidth decrease of these states also causes the upward 

shifts and the downward shifts of the kagome flat band states. Note that the bandwidth of 

the next highest branches of the valence band is insensitive to the length of phenyl groups 

inserted into triptycene vertexes. Thus, the decrease of the bandwidth of the highest and 

lowest branches is ascribed to the wave function nature with respect to the phenyl length. 

We investigated the effective masses of the valence and conduction bands. For the 

conduction band edge, the effective masses for the dispersive band are 1.8, 2.3, and 2.4me 

for triptycene polymers with tp-tp, tp-ph-tp, and tp-bp-tp structures, respectively. In 

contrast, as for the flat band at the conduction band edge, we found that their effective 

electron mass is 30,000me or heavier, indicating that the kagome flat band provide the 

heavy electron system. For the valence band edge, the hole effective masses are 2.0, 1.7, 

and 1.4me for triptycene polymers with tp-tp, tp-ph-tp, and tp-bp-tp strictures, respectively. 

 

Because of the steric hindrance of the H atoms in biphenyl, phenyl units prefer to rotate 
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with respect to their polymeric axis to decrease Coulomb repulsive interaction between 

adjacent phenyl units. Therefore, the phenyl unit in the polymers can rotate with their 

polymer axes. Figure 5 shows the total energy of the polymers containing phenyl and 

biphenyl as a function of the rotational angle with respect to the polymer axes. As the case 

of the isolated polyphenyl molecule, the inserted phenyl group prefers the tilted 

conformation with the tilt angle of 35 degree than the networks with flat conformation. On 

the other hand, the angle of 90 degree is the lest stable, indicating that the ! electrons on 

the network itinerates throughout the covalent networks. Thus, the preferential angle is 

determined by competition between itineracy of ! electrons and the Coulomb repulsive 

interaction between H atoms attached to phenyl units.  

 

Since the phenyl inserted into triptycene polymer prefers the tilted conformations, we 

investigate the electronic structure of triptycene polymer containing phenyl with tilted 

conformations (Fig. 6). The rotation of phenyl causes the upward and downward shifts of 

the three lowest unoccupied and the three highest occupied states, respectively [Fig. 6(a)]. 

According to the downward shift of the highest three occupied states, the electronic 

structure near the valence band edge is substantially modulated. At the rotation angle of 50 

degree, the highest three occupied states loose their kagome band nature, instead the next 

highest three states exhibit the kagome band nature [Fig. 6(b)]. At the rotation angle of 90 

degree, the highest two occupied states loose their band dispersion, indicating that ! 

electron transfer is terminated by the phenyl rotation [Fig. 6(c)]. Indeed, the wave function 

of the highest occupied state at the Γ point is localized on the triptycene unit.  

 

For the triptychene polymer containing biphenyl interconnects, the electronic structure 

exhibits different characteristics by the phenyl rotation (Fig. 7). The kagome band nature 

of the most of valence and conduction states disappears: The phenyl rotation makes a finite 

energy gap in the Dirac cone at the K point with the angle of 50 degree or larger [Fig. 7(b)]. 

At the angle of 90 degree, the most of valence and conduction states exhibits flat band 

nature indicating that the ! electron system is localized on the particular moiety of the 

network [Fig. 7(c)]. Indeed, wave function of the highest occupied state at the Γ point is 

absent on one of two triptycene in the network, indicating their highly localized nature. 
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Since the rotation of phenyl modulates the ! electron transfer between the adjacent sp2 C 

region, we make qualitative discussion of the modulation of the kagome band with respect 

to the !  electron transfer, using the simple tight-binding model. We consider the 

structural model that linear chains consisting three states form the kagome lattice with the 

inter- and intra-chain electron transfer of t and t’, respectively, to simulate the triptycene 

polymer containing phenyl. By changing the intra-electron transfer t corresponding with 

the phenyl rotation, the flat band state shifts downward from the dispersive band to the 

other one, as in the case of the electron states of the polymer with the phenyl rotation of 50 

degree or larger [Fig. 8(a)]. Therefore, the substantial energy shift of the flat band in the 

polymer is ascribed to the modulation of electron transfer between inter- and intra-phenyl 

units. For the triptycene polymer containing biphenyl, we consider the structural model 

shown in Fig. 8(b): Linear atomic chains consisting 4 atomic sites are arrange in the 

kagome network in which two different intra-chain transfer, t’ and t’’, are taken into 

account under the fixed inter-chain transfer t=0.5. By changing the ratio of t’ and t’’, the 

dispersive zero gap band has a finite energy gap at the K point and loses its kagome band 

nature.  Therefore, this concludes that the delicate balance among the electron transfer 

within sp2 C moiety and between adjacent sp2 panel separated by sp3 C atoms causes the 

peculiar electronic structure of the triptycene polymers. 

 

4. Conclusion 

Using DFT with GGA, we studied the geometric and electronic structures of triptycene 

polymers consisting of triptycene and phenyl groups, in terms of the phenyl group length 

inserted between triptycene units. Our calculation showed that triptycene polymers are 

energetically stable with the similar total energy to that of benzene. The polymers are 

semiconductors with the direct band gap between dispersive valence band and the flat 

conduction band at the Γ point with the band gap of about 2.5 eV, which is inversely 

proportional to phenyl length. The polymers possess peculiar electronic band structures in 

both valence and conduction states, originated from the kagome topology of the sp2 

hydrocarbon in the polymer. The wave function distribution of the flat band states indicates 

that the state extended throughout the hydrocarbon network, even though the sp2 C 
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moieties are separated by the sp3 C atoms at the molecular axis of triptychene. This 

indicates that the triptychene polymers could be regarded as the two-dimensional sp2 

kagome networks with internal degree of freedom. We also demonstrated that the 

electronic structure of the polymers is further modulated by rotating the phenyl groups 

inserted between triptycene units, changing the electron transfer within and between sp2 C 

moieties. 
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Figure Captions 

Fig. 1. (Black and white) Geometric structure of polymerized triptycene with (a) 

tp-tp, (b) tp-ph-tp, and (c) tp-bp-tp structures. Black and white balls indicate C 

and H atoms, respectively. 

 

 

Fig. 2. (Color Online) Total energy of the two-dimensional covalent networks consisting of 

triptycne and phenyl group as a function of the lattice constant. The energy is measured 

from that of the benzene. 

 

Fig. 3. (Color Online) Electronic structure of the polymerized triptycene with (a) tp-tp, (b) 

tp-ph-tp, (c) tp-bp-tp structures. The vacuum level energy is set to zero. Arrows indicate 

the top of the valence bands.  

 

 

Fig. 4. (Color Online) (a) The band gap of the polymerized triptycene, (b) the bandwidth of 

the kagome band near the Fermi level, and (c) the kagome flat band levels near the Fermi 

level as a function of the lattice constant. Triangles and rhombuses in 4(b) and 4(c) 

correspond with the energies of the valence and conduction bands, respectively. 

 

Fig. 5. (Color Online) Total energy of the tp-ph-tp polymer and tp-bp-tp polymer as a 

function of the rotation angle of phenyl groups. Triangles and rhombuses denote the 

energies of the tp-ph-tp and tp-bp-tp polymers, respectively.  

 

Fig. 6. (Color Online) Electronic structures of the triptycene polymer containing phenyl 

with its rotation angle of (a) 30, (b) 50, and (c) 90 degrees. Arrows indicate the top of the 

valence bands. 

 

Fig. 7. (Color Online) Electronic structures of the triptycene polymer containing biphenyl 

with its rotation angle of (a) 30, (b) 50, and (c) 90 degrees. Arrows indicate the top of the 

valence bands. 
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Fig. 8. (Color Online) Band structures of kagome networks of atomic chains consisting  

(a) three atomic sites and (b) four atomic sites, simulating the triptycene polymers 

containing phenyl and biphenyl, respectively. 
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Table I.  The bond length of fully optimized two-dimensional covalent networks of 
triptycene and phenyl groups. The bond labels are defined in Fig. 1(b).  
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Fig.1.  (Black and white) 
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Fig. 2. (Color Online) 
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Fig. 3. (Color Online) 
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Fig. 4. (Color Online) 
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Fig. 5. (Color Online) 
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Fig. 6. (Color Online) 
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Fig. 7. (Color Online) 
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