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Abstract: 

The synthesis of pure brookite is generally much more difficult than that of pure anatase. The 

hydrothermal conversion, recently developed by Kozawa et al., is a facile method to synthesize 

brookite TiO2 from inverse spinel-type Mg2TiO4 under a mild hydrothermal condition e.g. in 1 

M HCl solution at 100°C. However, slight rutile TiO2 is usually co-existed under the reported 

conditions. The aim of this study is to prepare a high-purity brookite TiO2 powder by the 

hydrothermal conversion from Mg2TiO4. We investigated the conditions of Mg2TiO4 preparation 

and hydrothermal conversion, and it was found that the most important factor for the high-purity 

brookite synthesis, i.e. decreasing the co-existing rutile TiO2, was to prepare the Mg2TiO4 

precursor without MgTiO3. Using an MgO-rich composition and adding a second calcination 

step for the Mg2TiO4 preparation yielded a high-purity (99.3 wt %) brookite powder with a 

surface area of 27.7 m2/g. Under the current experimental conditions, addition of a surfactant or 

an alcohol for the hydrothermal treatment was not apparently effective for the high-purity 

brookite synthesis. 
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1. Introduction 

Titanium dioxide (TiO2) is a representative photocatalyst with several useful functions, 

such as antibacterial [1,2], deodorizing [3], antifouling [4], NOx removal [5], self-cleaning [6,7], 

and antifogging. TiO2 has three naturally occurring polymorphs, i.e., rutile, anatase and brookite. 

Rutile and anatase are widely used for practical applications since they are easily synthesized 

and cost-effective. In our previous study [8], we reported that the excessive oxidizing ability of 

anatase TiO2 caused some problems in the self-cleaning; it formed CaSO4 white precipitates on 

a window from atmospheric pollutants. Hence, in our recent study [9], we have focused on 

brookite TiO2 with a mild oxidizing ability, which is suitable for the self-cleaning. 

The synthesis of pure brookite is generally much more difficult than that of pure anatase. 

Several groups used TiCl4 as a precursor for the brookite synthesis [10-12]. However, TiCl4 is 

relatively difficult to handle, and in many cases, the resulting TiO2 became a mixture of brookite 

and rutile. Meanwhile, Tomita et al. [13] developed an excellent protocol to synthesize a 

single-phase brookite powder using a hydrothermal treatment of a water-soluble complex 

precursor, (NH4)6[Ti4(C2H2O3)4(C2H3O3)2(O2)4O2]·4H2O, but this protocol required many 

experimental steps. 

Recently, Kozawa et al. [14] have reported another protocol using a hydrothermal 

treatment of a simple double-oxide precursor, Mg2TiO4. The hydrothermal conversion of 

Mg2TiO4 to brookite proceeds under a mild hydrothermal condition, e.g. in 1 M HCl solution 

even at 100 °C. The advantages of the Kozawa method are to use stable and cost-effective 

ingredients and its easy experimental operations. It is practical to obtain brookite TiO2 powder, 

but its phase purity is not as prominent as the Tomita method [13]. In our recent work on the 

self-cleaning [9], we have synthesized brookite powders via the Kozawa method. Actually, the 

obtained TiO2 was a mixture of brookite and rutile, and the highest purity of brookite was 97.2 

wt % [9]. Such residual rutile TiO2 can be also seen in the original report by Kozawa et al. (Fig. 

1(b) [14]).  
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Here, we investigated a synthetic condition for high-purity brookite (>99%) by optimizing the 

Mg2TiO4 preparation and the hydrothermal conversion. The additive effects of a surfactant and 

an alcohol for the hydrothermal treatment are also reported. 

 

2. Experimental procedures 

2.1 Mg2TiO4 preparation 

The experimental conditions were similar to our previous report [9]. At first, Mg2TiO4 

powder was synthesized by a solid-state reaction between MgCO3 (basic) [or more precisely, 

Mg5(CO3)4(OH)2·4H2O] and anatase TiO2 powders (both 99.9% purity, Kojundo Chemical 

Laboratory). Prior to weighing, TG-DTA analysis (up to 1000 °C, DTA-50, Shimadzu) was 

conducted on the MgCO3 (basic) powder to determine the weight-loss during the heating. 

Taking into account the compositional calibration using the TG-DTA results, the MgCO3 (basic) 

and the anatase TiO2 powders were weighed to be stoichiometric ratio of MgO:TiO2=2:1: 

sample (a). The other was weighed so as to be 5 wt % excessive MgO rather than the 

stoichiometric Mg2TiO4 composition: sample (b).  

These powders were planetary ball-milled (acceleration: 4 G, Pulversette 6, Fritsch) with 

ZrO2 balls in ethanol (EtOH) for 2 h. The mixed slurries were vacuum dried, and the dried 

powders were placed in an oven at 80 °C for 1 h. The mixed powders were calcined at 1250 °C 

for 2 h in air. As for the powder sample (b), after calcination at 1250 °C for 2 h, it was 

pulverized in an agate mortar, and then it was re-calcined at 1270 °C for 2 h in air: sample (c). 

 

2.2. Hydrothermal treatment and phase analysis 

Table 1 summarizes typical compositions for the hydrothermal treatment. Note that to 

emphasize the effects of hydrothermal conditions, 2 g loading (instead of 1 g [9]) of Mg2TiO4 

was mainly tested; i.e., if the hydrothermal conversion was not sufficient, the brookite yield 

became much smaller. The synthesized Mg2TiO4 powder, namely sample (a), (b) or (c), and HCl 

aq. solution were put into an autoclave with a polytetrafluoloethylene inner container, and the 

hydrothermal conversion was conducted at 150 °C for 24 h in a static condition. Each resulting 

product was collected using a membrane filter, washed with distilled water, and dried at 80 °C. 
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Since a surfactant may act as a structure-directing agent to preferentially yield brookite 

during the hydrothermal treatment, laurylamine hydrochloride (LAHC) was added to the above 

sample (a) or (c) so that the weight ratio of Mg2TiO4:LAHC was 4:1. These powders and HCl 

aq. were put into an autoclave, and the hydrothermal conversion was also conducted at 150 °C 

for 24 h.  

Also, since an alcohol addition to hydrothermal conversion may shorten the reaction time 

(via a solvothermal effect) with reducing the nucleation and growth of rutile TiO2, EtOH was 

added to HCl aq. so that the volume ratio of HCl aq.:EtOH was 2:1. Sample (a) or (c) and the 

mixture of HCl aq./EtOH were put into an autoclave, and the solvothermal treatment was 

conducted at 150 °C for 8 h. 

The constituent phases of the samples were analyzed by X-ray diffraction (XRD, 

Multiflex, Cu-Kα, 40 kV and 40 mA, Rigaku) at a scanning rate of 4 °/min. The microstructure 

of the brookite TiO2 powders was observed by scanning electron microscopy (SEM, SU-70, 

Hitachi High-Technologies). Specific surface area of the brookite powder was determined by 

BET method using a nitrogen gas sorption analyzer (Autosorb-3-AG, Quantachrome). 

 

3. Results and discussion 

Figure 1 shows XRD patterns of the powders before the hydrothermal treatment. Main 

peaks of the sample (a) were identified to Mg2TiO4. Sample (b) was quite similar to sample (a). 

However, there were several peaks corresponding to MgTiO3 at 2θ~33°, 41°, and 49.5°. 

Therefore, strictly speaking, the samples (a) and (b) were Mg2TiO4/MgTiO3 mixtures. Although 

excess MgO was added to the sample (b), MgTiO3 could not be fully removed. Meanwhile, the 

sample (c), which was re-calcined at 1270 °C of sample (b), did not contain the MgTiO3 peaks. 

Hence, sample (c) consisted of single-phase Mg2TiO4, at least under the standard XRD 

resolution. Excess MgO may exist as amorphous Mg(OH)2 and MgCO3 (by reactions with 

atmospheric H2O and CO2). Also Mg2TiO4 with inverse spinel structure may accommodate 

some excess MgO, although a report MgO-TiO2 phase diagram depicts Mg2TiO4 as a line 

compound (without a solid solution) [15]. From this result, in order to prepare single-phase 

Mg2TiO4, it is effective to add excess amount of MgO and to add a second calcination step.  

Figures 2 and 3 show XRD patterns of the powders after the hydrothermal treatment of 
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the samples (a) and (b), and the sample (c), respectively. The weight fractions of brookite and 

rutile TiO2 can be estimated from the following empirical equation proposed by Zhang and 

Banfield [16, 17]: 

𝑊𝑊B = 2.721𝐴𝐴B
𝐴𝐴R+2.721𝐴𝐴B

 (1) 

where WB represents the weight fraction of brookite, and AB and AR represent the integrated 

intensities of the peaks of brookite 121 and rutile 110, respectively. Table 1 summarizes the 

weight fractions estimated using the Eq. 1. Because the sample (d) was synthesized using the 

same conditions in our previous report [9], the XRD pattern and the brookite fraction of sample 

(d) (97.2 wt %) are used as the benchmarks in Figs. 2, 3 and Table 1. 

In the XRD pattern of sample (e), synthesized from the MgO-rich Mg2TiO4 precursor 

(sample (b)), the rutile 110 peak appears larger than the sample (d). The brookite fraction (92.8 

wt %) of the sample (e) was smaller than that of the sample (d). In the XRD pattern of sample 

(f), synthesized with LAHC surfactant, the rutile 110 peak appears a little broader and lower 

height than the sample (d). The brookite fraction (95.0 wt %) of the sample (f) was smaller than 

that of the sample (d). In the XRD pattern of sample (g), synthesized with EtOH (for 8 h), the 

rutile 110 peak seems clearly higher than the sample (d). The brookite fraction (92.8 wt %) of 

the sample (g) was smaller than that of sample (d). 

In the XRD pattern of sample (h), synthesized from the sample (c), the rutile 110 peak 

was the smallest. The brookite fraction of the sample (h) was 99.3 wt %, which was the highest 

purity brookite powder we had ever synthesized. As for sample (j) synthesized with LAHC 

surfactant, and sample (k) synthesized with EtOH, these powders had smaller brookite fractions, 

similarly to the samples (f) and (g). However, by comparison between same hydrothermal 

conditions, the use of the sample (c) as a precursor became larger brookite fraction than that of 

the sample (a). Throughout this study, the purity of Mg2TiO4 is a dominant factor to synthesize 

purer brookite powder. 

Figure 4 shows a SEM micrograph of the brookite powder, sample (h), with the surface 

area of 27.7 m2/g. Similarly to the previous work [9], the brookite powder retained macroscopic 

shape of micrometer-sized Mg2TiO4 particles, but was actually composed of a large number of 
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minute particles (ca. 50-100 nm). Facetted growth with dipyramidal idiomorphs of brookite 

TiO2 was observed. 

 

4. Conclusions 

To prepare a high-purity brookite TiO2 powder by the hydrothermal conversion from 

Mg2TiO4, improved conditions of the Mg2TiO4 preparation and the hydrothermal conversion 

were investigated. The most important factor for the high-purity brookite synthesis is to prepare 

the Mg2TiO4 precursor without MgTiO3. It is effective to use an MgO-rich composition and to 

add a second calcination step for the Mg2TiO4 preparation, which yielded a high-purity (99.3 

wt %) brookite TiO2. 
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Tables 
 
Table 1 Hydrothermal conditions and final weight fractions of brookite and rutile. 
Samples Precursor 

powder 
Surfactant 
(LAHC) 

Alcohol 
(EtOH) 

HCl aq. Hydrothermal 
duration (h) 

Brookite 
(wt %) 

Rutile 
(wt %) 

(d) 1 g (a)    1M 30 mL 24 97.2 2.8 
(e) 2 g (b)   2M 30 mL 24 92.8 7.2 
(f) 2 g (a)  0.5 g  2M 30 mL 24 95.0 5.0 
(g) 0.5 g (a)  10 mL 2M 20 mL 8 92.8 7.2 
(h) 2 g (c)   2M 30 mL 24 99.3 0.7 
(j) 1 g (c) 0.25 g  2M 30 mL 24 95.9 4.1 
(k) 0.5 g (c)  10 mL 2M 20 mL 8 96.6 3.4 

(a) Stoichiometric Mg2TiO4, (b) 5% MgO-rich Mg2TiO4, and (c) re-calcination at 1270 °C for 2 h of sample (b). 
(d) Best conditions in Ref. 9. 
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Figures 

 

Fig. 1  XRD patterns of the samples before the hydrothermal treatment: (a) stoichiometric 

Mg2TiO4, (b) 5% MgO-rich Mg2TiO4 and (c) re-calcination at 1270 °C for 2 h of sample (b). 

 

Fig. 2  XRD patterns of the samples after the hydrothermal treatment using sample (a) or (b): 

(d) at 150 °C for 24 h, (e) at 150 °C for 24 h, (f) at 150 °C for 24 h with LAHC, and (g) at 150 

°C for 8 h with EtOH. 
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Fig. 3  XRD patterns of the samples after the hydrothermal treatment using sample (c): (h) at 

150 °C for 24 h, (j) at 150 °C for 24 h with LAHC, and (k) at 150 °C for 8h with EtOH. 

 

 

Fig. 4  SEM micrograph of the brookite powder, sample (h), with the surface area of 27.7 
m2/g.  


