

Seasonally variant low cloud adjustment over cool oceans

著者(英)	Yoichi KAMAE, Robin Chadwick, Duncan Ackerley,
	Mark Ringer, Tomoo Ogura
journal or	Climate dynamics
publication title	
volume	52
number	9-10
page range	5801-5817
year	2019-05
権利	(C) Springer-Verlag GmbH Germany, part of
	Springer Nature 2018
	The final publication is available at
	link.springer.com
URL	http://hdl.handle.net/2241/00157153

doi: 10.1007/s00382-018-4478-7

1	Seasonally variant low cloud adjustment over cool oceans
2	
3	Youichi Kamae ^{1*} , Robin Chadwick ² , Duncan Ackerley ³ , Mark Ringer ² , and Tomoo Ogura ⁴
4	
5	¹ Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
6	² Met Office Hadley Centre, Exeter, Devon, UK
7	³ Met Office, Exeter, Devon, UK
8	⁴ National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
9	
10	Submitted to Climate Dynamics
11	
12	
13	*Corresponding author: Youichi Kamae, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-
14	1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan (kamae.yoichi.fw@u.tsukuba.ac.jp), Tel.: +81-29-853-4755
15	Fax: +81-29-853-6709
16	

18 Abstract

19	The Earth's solar reflectance is reduced through rapid climate adjustments to increasing CO ₂ , via a decrease
20	in total cloud cover over ocean. Perturbations to marine boundary-layer clouds are essentially important for the
21	global radiative balance at the top of the atmosphere. However, the physical robustness of low cloud adjustments
22	to increasing CO ₂ has not been assessed systematically. Here we show that low cloud adjustment is distinct from
23	that in total cloud and is seasonally variant. Among multiple climate models, marine boundary-layer clouds over
24	the subtropics and extratropics (especially over the Northern Hemisphere) are consistently increased in the rapid
25	adjustment, while middle and high clouds are greatly reduced. The increase in low cloud cover is only found during
26	summer, associated with a summertime enhancement of lower tropospheric stability. We further examine
27	mechanisms behind the rapid adjustments of low cloud and inversion strength of the boundary layer, using land
28	surface temperature prescribing experiments in an atmospheric general circulation model (AGCM). Summertime
29	increases in low cloud and enhanced inversion strength over the ocean simulated in this AGCM are attributed to
30	(1) CO ₂ -induced land warming; and (2) reduced radiative cooling in the lower troposphere due to increased CO ₂ .
31	The seasonality in the cloud adjustment implies an importance of seasonal variations in background cloud and
32	atmospheric circulation related to the Hadley and monsoon circulations for radiative forcing, feedback and climate
33	sensitivity.

34 Keywords: Cloud adjustment, instantaneous radiative forcing, inversion strength, low cloud

36 **1. Introduction**

37	Cloud responses to external forcing (e.g. greenhouse gases and aerosols) imposed on the Earth's climate
38	system are very important for perturbing the radiative balance at the top of the atmosphere (TOA) and surface air
39	temperature (SAT). Clouds are the major source of uncertainty in estimating climate sensitivity, determined as
40	global-mean SAT increase in response to doubling of atmospheric CO2 concentration (e.g. Cess et al. 1989;
41	Boucher et al. 2014; Bretherton 2015; Kamae et al. 2016a; Ceppi et al. 2017). By using numerical model
42	simulations, uncertainty in cloud response to CO2 increases can be divided into two processes: fast cloud
43	adjustment to increasing CO2; and slow cloud response mediated by global-mean SAT increase (Gregory and Webb
44	2008; Andrews et al. 2012; Kamae et al. 2015; Sherwood et al. 2015). There are large uncertainties across different
45	climate models for both processes (e.g. Vial et al. 2013; Webb et al. 2013; Zelinka et al. 2013). Previous studies
46	found that cloud adjustment and cloud feedback are anticorrelated among climate models, which is important for
47	the resultant uncertainty spread in climate sensitivity (Shiogama et al. 2012; Webb et al. 2013; Ringer et al. 2014).
48	Chung and Soden (2018) demonstrated that marine boundary-layer cloud is the key for the adjustment-feedback
49	compensation among multiple models that participated in the Coupled Model Intercomparison Project phase 5
50	(CMIP5; Taylor et al. 2012). However, physical mechanisms responsible for the compensation of cloud adjustment
51	and feedback are still unclear and further work is required to reduce the uncertainty.
52	Previous studies demonstrated that the key processes responsible for tropospheric cloud adjustments are:

- 53 the land-sea warming contrast related to the land response to increased CO_2 (Dong et al. 2009; Wyant et al. 2012;
- 54 Kamae and Watanabe 2013; Chadwick et al. 2014); tropospheric warming and resultant drying (Kamae and

55	Watanabe 2012; Kamae et al. 2015); and enhanced stability in lower troposphere due to tropospheric warming
56	(Webb et al. 2013; Ogura et al. 2014; Qu et al. 2015a). CO ₂ -induced land warming found in atmospheric general
57	circulation model (AGCM) simulations with prescribed sea surface conditions (temperature and sea ice) changes
58	the large-scale atmospheric circulation and induces tropospheric warming (Chadwick et al. 2014; He and Soden
59	2015, 2016; Shaw and Voigt 2015, 2016), which are important for cloud adjustments over land and ocean (Colman
60	and McAvaney 2011; Kamae and Watanabe 2012, 2013; Kamae et al. 2015). The land surface and atmosphere
61	above are also greatly influenced by the plant physiological response to imposed CO2 forcing (reduced
62	evapotranspiration due to stomatal closure; e.g. Boucher et al. 2009; Doutriaux-Boucher et al. 2009; Abe et al.
63	2015), leading to reduced cloud cover over land (Andrews et al. 2012).
64	In addition to the land-mediated cloud responses, perturbations to the atmospheric radiative heating profile
65	due to increased CO ₂ is also critically important for the cloud adjustment (see Fig. S1). Longwave radiative heating
66	(i.e. reduced radiative cooling of the troposphere; Sugi and Yoshimura 2004; Collins et al. 2006; Colman and
67	McAvaney 2011; Kamae and Watanabe 2013; Ogura et al. 2014; Merlis 2015) due to instantaneous radiative
68	forcing of CO ₂ (Hansen et al. 2002) results in a shoaling of the planetary boundary layer (e.g. Watanabe et al. 2012;
69	Wyant et al. 2012; Bretherton et al. 2013; Kamae and Watanabe 2013; Zelinka et al. 2013) and reduction of total
70	cloud amount over the ocean, then increases effective radiative forcing of CO ₂ via the tropospheric adjustment
71	(Kamae and Watanabe 2012; Bretherton et al. 2013; Zelinka et al. 2013; Kamae et al. 2015). However, modeled
72	low-cloud adjustment still shows a large spread among different modeling studies (Wyant et al. 2012; Bretherton

73 et al. 2014; Kamae et al. 2015; Blossey et al. 2016; Xu et al. 2018), suggesting uncertainty in the relative

74

importance of the physical processes discussed above.

75 One of the key limitations in our understanding of the cloud adjustment to imposed CO₂ forcing is due to 76 the difficulty in decomposing the adjustment into individual processes including atmospheric radiation, land 77 warming, and the plant physiological response. Shine et al. (2003) conducted a set of prescribed land temperature 78 experiments in an intermediate complexity GCM to estimate radiative forcing and climate sensitivity. In contrast 79 to fixed sea surface temperature (SST) simulations in AGCMs, such prescribed land temperature experiments are 80 useful to evaluate the effective radiative forcing independently from land surface warming. However, this method 81 has not been widely applied to the CMIP ensembles due to the technical difficulty in prescribing land surface 82 temperatures. Recently, Ackerley and Dommenget (2016) proposed a new method for decomposing the effects of 83 instantaneous radiative forcing, increases in SST, increases in land surface temperature, and the plant physiological response from conventional AGCM simulations. Under this framework, Ackerley et al. (2018) conducted a suite 84 85 of AGCM simulations and made their output available for facilitating wider studies including those focusing on atmospheric circulations and rainfall patterns (Chadwick et al. 2018). In our study, we aim to examine the physical 86 87 processes that control robust and uncertain parts of the cloud adjustment to increasing CO2 by using the prescribed land surface temperature simulations described in Ackerley et al. (2018). Results from these simulations clearly 88 89 show seasonal difference in the cloud and tropospheric temperature responses to seasonally-uniform CO₂ increases, 90 which is very important for the seasonal migration of the Intertropical Convergence Zone (ITCZ) and monsoons 91 (Kamae et al. 2014, 2016b; Shaw and Voigt 2015; Chen and Bordoni 2016; Chadwick et al. 2018). Seasonal

92	variations found here improve process-based understanding of cloud adjustments. Section 2 describes the data and
93	methods including multiple model simulations and prescribed land surface temperature experiments in an AGCM.
94	Section 3 compares cloud adjustments among different models, vertical levels and seasons. Section 4 provides
95	results of a decomposition of low cloud adjustment using a set of AGCM simulations. In Section 5, we discuss
96	possible reasons for the seasonal variation in cloud adjustment to a seasonally-uniform increase in CO2
97	concentration. Section 6 is a summary with discussion.
98	
99	2. Data and methods
100	2.1. CMIP5 model simulations
101	To examine the robustness of cloud adjustments, we use the results of multiple model simulations conducted
102	under CMIP5 (Taylor et al. 2012). We use results from sstClim and sstClim4xCO2 runs conducted in 15 AGCMs
103	(Table S1). The rapid adjustments of lower tropospheric stability and low cloud fraction over ocean found in these
104	

105 by abruptly increased CO₂ concentration (e.g. Kamae and Watanabe 2013; Kamae et al. 2015; Qu et al. 2015a). In

106 sstClim, AGCMs were driven by climatological SSTs and sea-ice concentrations derived from pre-industrial

107 control simulations in each model. Boundary conditions for sstClim4xCO2 are identical to sstClim except for

- 108 atmospheric CO₂ concentration (280 and 1120 ppmv in sstClim and sstClim4xCO2, respectively). In this study,
- 109 we examine differences (Δ hereafter) of climatology (averaged over 30 years) between the two simulations.
- 110 Seasonal variations in cloud adjustment at different vertical levels are investigated by monthly-mean cloud fraction

111	at each model layer (note that the number of model layers are different across models; see Table S1). The CMIP5
112	data portal did not archive diagnostics of low, middle and high cloud fraction. In this study, we approximate low,
113	middle and high cloud fraction (C_l , C_m and C_h respectively) as the maximum cloud fraction between the surface
114	and 780 hPa, 780 and 440 hPa, and 440 and 50 hPa, respectively. Although previous studies assessed C_1 by
115	maximum cloud fraction between the surface and 680 hPa (Noda and Satoh 2014; Zhou et al. 2016), we selected
116	the boundary of 780 hPa to emphasize the response of marine boundary-layer cloud over cool oceans (e.g. Norris
117	1998; Luo et al. 2016). Note that ΔC_1 is not sensitive to choices of upper boundary criterion (e.g. 680 hPa or 800
118	hPa) because the near-surface (below 850 hPa level) response dominates the low cloud adjustment (see sect. 3.1).

2.2. AMIP simulations with prescribed land surface temperature

121	In addition to CMIP5 model ensemble, we use the results of prescribed land surface temperature simulations
122	conducted in an AGCM, ACCESS1.0 (Bi et al. 2013; Frauen et al. 2014). Details of model configuration and
123	experimental setup are found in Ackerley and Dommenget (2016) and Ackerley et al. (2018). Simulated data are
124	available from Ackerley (2017). Here we briefly describe the experimental framework and decomposition methods.
125	ACCESS is configured similarly to the Hadley Centre Global Environmental Model version 2 (HadGEM2: Martin
126	et al. 2011). The version of ACCESS1.0 used here has a horizontal resolution of 3.75° longitude and 2.5° latitude
127	and 38 vertical levels. The timestep of the model integration is 30 minutes. The AGCM includes physics
128	parameterizations (precipitation, cloud, convection, radiative transfer, boundary layer and aerosols) and is coupled

9 with a land surface parameterization (Cox et al. 1999; Essery et al. 2001). Soil moisture and temperature are

130 simulated over four vertical layers (0.1, 0.25, 0.65 and 2 m depth).

131	To examine physical mechanisms responsible for rapid adjustment, we use AGCM runs with free-varying
132	land condition (free runs) and prescribed land surface temperature experiments (PL runs). All the simulations are
133	driven by observed SST and sea ice fraction from 1979 to 2008. In this study, the climatology of the last 25 years
134	out of the 30-yr integration is examined. Free runs with CO ₂ concentrations of 346 and 1384 ppmv are referred as
135	A and A4x, respectively. Here prescribed SST is not identical to that used in CMIP5 sstClim run (model
136	climatology; sect. 2.1), but the SST difference doesn't substantially affect results of this study (not shown). In
137	A4xrad, the radiation code uses CO ₂ concentration of 1384 ppmv but the vegetation uses 346 ppmv in order to
138	isolate the effect of the plant physiological response (Boucher et al. 2009; Doutriaux-Boucher et al. 2009).
139	Instantaneous values of the surface temperature, soil temperature and moisture (on each soil level) in these runs
140	are stored every three hours. In the PL runs, the stored land conditions are read in by the model every three hours
141	and updated (by interpolation) every hour. In A4xrad _{PL} run, for example, land surface conditions are replaced by
142	those simulated in A run but only the radiation code refers to a CO ₂ concentration of 1384 ppmv. If we compare
143	the results of A4xrad _{PL} and A _{PL} runs, the difference indicates the effect of atmospheric radiative heating rate due
144	to CO ₂ quadrupling without any effects of perturbations in land conditions (RAD_ATM; Table 1). Similarly, the
145	effect of the plant physiological response (PLANT), the effect of land warming due to atmospheric radiative
146	perturbation (RAD_LAND), and a residual (RES) are calculated by comparing free and PL runs (Table 1; see also
147	Fig. S1). Note that interpolated land surface conditions are updated every hour instead of every 30 minutes (the

- 148 timestep of model integrations). Therefore, the results of PL runs are not strictly identical to free runs (see Ackerley
- 149 et al. 2018 for detail). We checked the residual term due to this difference, but it does not affect our results
- 150 substantially (see Figs. S2, S3 and Supplementary Discussion).
- 151
- 152 **3.** Seasonality in cloud adjustment in CMIP5 models

153 We first examine the robustness of cloud adjustments and its seasonal variation across CMIP5 models. 154 Figure 1a-c shows the 15-model ensemble mean of annual-mean cloud adjustment over the ocean. As 155 demonstrated in previous studies (Kamae and Watanabe 2012; Zelinka et al. 2013; Vial et al. 2013; Kamae et al. 156 2015), global-mean total cloud amount tends to decrease (with weak increase over several regions including the 157 North Pacific; Fig. 1a), leading to an enhancement of effective radiative forcing of CO₂ via reduction of shortwave 158 reflection due to clouds. Kamae and Watanabe (2013) concluded that this anomalous shortwave component of 159 cloud radiative effect is due to low cloud reduction from simulations based on an AGCM. However, if we 160 decompose the multi-model cloud adjustment into different vertical levels (sect. 2.1), it is clearly found that the 161 annual-mean cloud reduction dominates in the middle and upper troposphere rather than the lower troposphere (Fig. 1b, c). The model-simulated cloud fraction below the 780 hPa level is increased over subtropical low cloud 162 163 regions, including California and the Canary Islands, and the extratropical Northern Hemisphere. The 27 °C SST 164 isotherm is shown in these panels as an approximation of the boundary between tropical deep convective region 165 and subtropical atmospheric subsidence regions (Zhang 1993; Sud et al. 1999). In contrast to the anomalous low 166 cloud cover over the subtropics, such cloud adjustments are not consistently found in the total cloud amount in the

subtropics (Fig. 1a), suggesting greater contributions from middle and high clouds than low cloud. The increase

- 168 in low-cloud cover in annual-mean field is clearly found over cool SST (< 27 °C) regions over the Northern
- 169 Hemisphere but is not apparent over the Southern Hemisphere (Fig. 1c).
- 170 In the fixed-SST increased-CO₂ simulations, changes in boundary-layer inversion strength is a major factor 171 for the low cloud response (Klein and Hartmann 1993; Qu et al. 2015b; Myers and Norris 2016; Kawai et al. 2017). 172 Figure 2 shows anomalies in SAT, air temperature at the 700 hPa level (T_{700}), and estimated inversion strength 173 (EIS; Wood and Bretherton 2006) in response to quadrupling CO₂. Here a given EIS response (Δ EIS) can be 174 approximated by a linear combination of Δ SAT and ΔT_{700} (see Qu et al. 2014, 2015a for detail). In the fixed-SST 175 simulations, ΔT_{700} dominates Δ EIS because of little Δ SAT (Fig. 2). In response to increasing CO₂, the lower 176 troposphere warms up through radiative heating due to instantaneous CO₂ radiative forcing (e.g. Sugi and 177 Yoshimura 2004; Collins et al. 2006; Kamae and Watanabe 2013) and the effect of land warming (e.g. Chadwick 178 et al. 2014; Kamae et al. 2014), resulting in positive ΔEIS over ocean (Webb et al. 2013; Qu et al. 2015a). This 179 enhanced inversion is especially dominant over the extratropical North Pacific and subtropical low-cloud regions 180(off the coasts of California and the Canary Islands; Fig. 2c) but relatively weak over warm oceans (see SST 181 contours in Fig. 1c), consistent with ΔC_1 (Fig. 1c). Table 2 summarizes area-averaged ΔC and ΔEIS . In contrast to 182 strong and robust reductions of C_h and C_m (and resultant C_t), annual-mean C_l shows increases (no changes) over 183 the low-cloud regions (cool ocean) with large inter-model spreads (see Figs. S4, S5 and S6). 184 The weak annual-mean ΔC_1 can be understood as a result of seasonal compensation. Figure 1d-i show
- 185 wintertime and summertime cloud adjustment. Here winter (summer) is determined by November-to-March mean

186	and May-to-September mean over the Northern (Southern) and Southern (Northern) Hemispheres, respectively.
187	While $\Delta C_h + \Delta C_m$ is largely consistent between the two seasons (reduction over extratropics; Fig. 1e, h), CMIP5
188	models consistently show clear seasonality in the low cloud adjustment: general decrease in winter but greater
189	increases over the subtropics and extratropics in summer (Figs. 1f, i, S6). The large increase in the summertime
190	Northern Hemisphere is also found in the total cloud adjustment (Fig. 1g), contributing to the increase in C_t in
191	some regions in the annual-mean field (Fig. 1a). The effect of ΔC_1 on ΔC_t suggests an important contribution to
192	radiative balance at TOA (i.e. effective radiative forcing). Table 3 summarizes seasonal variation in the response
193	of the shortwave cloud radiative effect (SWcld) to quadrupling CO2 in CMIP5 models. Here, SWcld is simply
194	calculated by taking the difference between all-sky radiation and clear-sky radiation at TOA that includes the cloud
195	masking effect (Soden et al. 2004, 2008). Note that the cloud masking effect on the shortwave component of cloud
196	adjustment is much smaller than that on the longwave component (Wyant et al. 2012; Kamae et al. 2015). Positive
197	Δ SWcld is consistently simulated in 15 models in all seasons. Over cool oceans, summertime Δ SWcld is weaker
198	than that in winter, consistent with summertime increment of C_1 (and seasonal variation of ΔC_1) over the subtropics
199	and extratropics (Fig. 1i). However, the effects of seasonally-variant ΔC_l on ΔC_t and ΔSW cld are relatively limited
200	compared to those of ΔC_h and ΔC_m (Tables 2, 3, Fig. 1).
201	Figure 3 compares zonal-mean Δ EIS and ΔC_1 averaged over cool oceans (SST < 27 °C). In contrast to small
202	or negative ΔC_1 during winter, summertime positive ΔC_1 is consistently found in 15 CMIP5 models (Table 2, Figs.

- 1i, 3b, S6). The seasonal variation (summertime enhancement) is also consistently found in Δ EIS (Table 2, Figs.
- 204 2f, i, 3a) and ΔT_{700} (Fig. 2e, h), and is larger over the Northern Hemisphere than the Southern Hemisphere. Possible

205	reasons for the seasonal variations in temperature and ΔEIS and their interhemispheric differences are discussed
206	in the next section. Seasonal variation (summer minus winter) in ΔEIS and ΔC_1 shown in Fig. 4 is closely related
207	each other: neutral or partly negative over the tropics (20°S-20°N) but positive and large over subtropics and
208	extratropics especially over the North Pacific and low cloud regions off the coasts of California and the Canary
209	Islands. This spatial coherence (correlation coefficient is 0.56) indicates that the seasonal variation in ΔC_1 is largely
210	controlled by that in lower tropospheric warming (and resultant ΔEIS).

- 211
- 212 4. Decomposition of cloud adjustment

213 In the previous section, we demonstrated that low cloud adjustment over cool oceans exhibits a seasonal reversal and is consistently found among CMIP5 models. The summertime increase in C₁ is likely to be related to 214 215 summertime enhancement of lower tropospheric warming and resultant positive ΔEIS . From Fig. 2, larger land 216 surface warming during summer than winter is a possible reason for the seasonal variations in lower tropospheric 217 temperature and C₁. To examine physical mechanisms in detail, we further use outputs from prescribed land surface 218 temperature experiments conducted in ACCESS1.0 (sect. 2.2). Before we decompose the cloud adjustment, we 219 compare adjustments of temperature, EIS and cloud fraction in this model with results from the CMIP5 ensemble. 220 Figure 5 shows annual-mean cloud adjustment and temperature response. Table 4 summarizes annual-mean 221 responses averaged over cool oceans. As found in CMIP5 models (Figs. 1, 2), the land surface and lower 222 troposphere warm up in response to increasing CO₂, resulting in a general increase in EIS (Table 4) especially over 223 the subtropics and extratropics (Fig. 5a–c). The enhanced EIS is consistent with increased C_1 over cool oceans, in

224	contrast to large decreases in C_h and C_m (Table 4, Fig. 5e, f). The C_l increase simulated in ACCESS1.0 is generally
225	larger than CMIP5 multi-model mean (Tables 2, 4). Among CMIP5 models, both the strength and spatial pattern
226	of ΔC_1 exhibit large inter-model spreads (Table 3, Fig. 3b; see Fig. S5). However, increased C_1 in the North Pacific
227	(and other regions with large low-cloud fractions) and their seasonal variations found in CMIP5 models (Figs. 1,
228	3) are consistently simulated in ACCESS1.0 (Fig. 5; detailed below). Thus, we examine the physical mechanisms
229	responsible for the seasonal variation of C_1 adjustment by using the sensitivity simulations conducted in this model.
230	Figures 6 and 7 show decompositions of C_1 , C_m and C_h adjustment to quadrupling CO ₂ based on
231	ACCESS1.0 sensitivity simulations detailed in sect. 2.2. The increase in annual-mean C_1 (Fig. 5f) is almost entirely
232	explained by the sum of two comparable contributions: RAD_ATM and RAD_LAND effects (Fig. 6a, c; see Table
233	1). The effect of RAD_ATM results in a general increase in C_1 over cool oceans in both hemispheres, while the
234	RAD_LAND effect is more dominant over the Northern Hemisphere than the Southern Hemisphere. It should also
235	be noted that effects of RES on ΔC_1 and $\Delta C_h + \Delta C_m$ are not negligible (sect. 2.2; Figs. S2, S3; see Supplementary
236	Discussion). The characteristics of effects of RAD_ATM and RAD_LAND are consistent with Δ EIS shown in Fig.
237	8. In response to increasing CO ₂ , the perturbation in longwave radiative heating rate due to instantaneous radiative
238	forcing warms the lower-to-upper troposphere (Kamae and Watanabe 2013; Ogura et al. 2014) with its peak at the
239	700-850 hPa level (Sugi and Yoshimura 2004; Collins et al. 2006). The radiative heating results in enhanced lower
240	tropospheric stability over most of the oceans (Fig. 8a). Possible reasons for spatial pattern of the lower-
241	tropospheric warming are discussed in sect. 5. The effect of RAD_LAND, in contrast, is strongest over the
242	subtropics and extratropics (especially over the North Pacific; Fig. 8c) with its peak at middle and upper

243	troposphere (not shown). The stronger effect of RAD_ATM than RAD_LAND over the subtropics and extratropics
244	is consistent with relative strength of their effects on C_1 (Fig. 6a, c). The enhanced stability over the subtropics and
245	extratropics (Figs. 2c, 5c) can be understood as a result of a combined effect of RAD_ATM and RAD_LAND. The
246	effect of PLANT negatively contributes to the responses of EIS and C_1 (Figs. 6b, 8b), which resulted from changes
247	in land surface heat and moisture budgets. The stomatal closure from higher CO ₂ concentration causes a decrease
248	in evapotranspiration, an increase in the sensible heat flux, and surface warming over tropical land (e.g. Dong et
249	al. 2009; Andrews and Ringer 2014; DeAngelis et al. 2016). The land surface warming in addition to the decreased
250	evapotranspiration partly affects EIS (Dong et al. 2009) and C_1 over ocean; however, the total contributions of
251	PLANT are minor compared to RAD_ATM and RAD_LAND (Table 4, Fig. S2a, c; see Supplementary Discussion).
252	Which effect dominates the seasonal variation in cloud adjustment? To answer this question, we examine
253	wintertime and summertime temperature and C1 adjustment. As shown in Fig. 9, both RAD_ATM and
254	RAD_LAND effects act to warm the lower troposphere both in winter and summer (Fig. 9a, d, g, j). However,
255	wintertime warming is generally weaker than that during summer, resulting in seasonal variations in Δ EIS and ΔC_1
256	(Fig. 9b, c, e, f, h, i, k, l). Both RAD_ATM and RAD_LAND effects result in positive ΔC_t due to large positive
257	ΔC_1 during summer, in contrast to small positive ΔC_1 during winter (Table 4). Note that the sign and magnitude of
258	$\Delta C_{\rm t}, \Delta C_{\rm h} + \Delta C_{\rm m}$, and $\Delta C_{\rm l}$ simulated in ACCESS1.0 (e.g. wintertime positive $\Delta C_{\rm l}$ over the Southern Hemisphere
259	middle latitude; Fig. S7f) are partly different from CMIP5 multi-model mean (Tables 2, 3, 4, Figs. 1, 2, 5d-f) but
260	seasonal contrasts (summer minus winter) in Δ SAT, ΔT_{700} , Δ EIS, and ΔC_1 are generally consistent with the model
261	ensemble mean (see Figs. S7, S8). Figure 10 compares seasonal-mean zonal-mean adjustments due to the effects

262	of RAD_ATM and RAD_LAND. Both effects result in strong warming in summer over the subtropics and
263	extratropics with its peak over 50°S–40°S and 40°N–50°N (Fig. 10a, c). Seasonal ΔC_1 is rather noisy compared to
264	Δ EIS, but seasonal contrasts are similarly found (Fig. 10b, d) and are consistent with the total adjustment simulated
265	in CMIP5 models (Fig. 3). Seasonal contrasts in ΔC_1 and ΔEIS due to the RAD_LAND effect are consistently
266	larger over the Northern Hemisphere than the Southern Hemisphere (Fig. 10c, d). Such interhemispheric
267	differences can also be found in CMIP5 ensemble (Fig. 3), suggesting that the stronger low cloud adjustments over
268	the Northern Hemisphere than the Southern Hemisphere are attributed to the land effect.
269	
270	5. Possible reasons for the seasonal variation
271	The low-cloud adjustment consistently dominates during summer among the CMIP5 models. Sensitivity
272	tests using ACCESS1.0 indicate that the seasonally-variant low-cloud adjustment can be attributed to seasonality
273	in the response of inversion strength to increasing CO ₂ , which itself is a response to both through atmospheric
274	radiative perturbation and radiative land warming. A remaining question addressed here is: what is the physical
275	reason for the seasonal difference in lower tropospheric warming despite seasonally-uniform CO2 increments?
276	One possible factor is a dynamic contribution: the effect of atmospheric circulation response to increasing CO ₂ .
277	Bony et al. (2013) suggested that CO ₂ forcing may slow the tropical atmospheric circulation including Hadley and
278	Walker circulations because CO ₂ -induced longwave heating (weakened radiative cooling; e.g. Sugi and Yoshimura
279	2004; Collins et al. 2006) especially over dry subsiding regions possibly change the tropical overturning circulation

280 strength. Merlis (2015) further showed that clear-sky CO2 forcing reduces tropical atmospheric circulation

- 281 intensity via reduction of radiative cooling. Such changes in large-scale atmospheric circulation possibly result in
- tropospheric temperature changes through vertical advection and adiabatic compression.
- 283 Figure 11 shows the response of vertical temperature advection and adiabatic compression to quadrupling 284 CO_2 via RAD_ATM effect. Changes in vertical pressure velocity at the 700 hPa level ($\Delta \omega_{700}$) are generally opposite 285 to the climatological ω_{700} (Fig. 11a, c), indicating the weakening of atmospheric circulation. Over convective 286 regions, positive $\Delta \omega_{700}$ (anomalous subsidence) are consistently found over the both hemispheres. The anomalous 287 subsidence results in warming (warm advection) because potential temperature is larger at higher altitude than 288 lower altitude. Inversely, a cooling effect dominates over climatological subsidence regions including off the coasts 289 of California and the Canary Islands, as a result of anomalous ascending motion (Fig. 11b, d). These spatial patterns 290 and zonal-mean heating rate (Fig. 11e) are not similar to those in lower-tropospheric warming and ΔEIS resulted 291 from the RAD_ATM effect (Figs. 9, 10).
- 292 Another possible factor is seasonality in CO₂ instantaneous radiative forcing. Huang et al. (2016) revealed that instantaneous radiative forcing of spatially uniform increment of CO2 is not spatially uniform because of 293 294 spatial patterns of (1) surface temperature, (2) upper-level (10 hPa) atmospheric temperature, and (3) column water 295 vapor content. Similarly, instantaneous radiative forcing could be seasonally non-uniform. To test this point, we 296 examine instantaneous radiative forcing of CO2 provided by five climate models: CanAM4, HadGEM2-A, IPSL-297 CM5A-LR, MIROC3, and MIROC5. Although this diagnostic is not available for ACCESS1.0, spatial patterns 298 and seasonal variation in this model are likely to be very similar to those in HadGEM2-A, due to the almost 299 identical model formulation (see sect. 2.2). Figure 12 compares the simulated radiative (shortwave and longwave)

300	heating at the 700 hPa level due to instantaneous CO ₂ forcing between the two seasons. Instantaneous radiative
301	forcing is stronger over lower latitudes than higher latitudes because higher SAT results in stronger forcing (Huang
302	et al. 2016). In addition, instantaneous radiative forcing over ITCZ is weaker than surrounding subtropical regions
303	because of more water vapor content (Merlis 2015). These two factors also determine the seasonal variation in
304	instantaneous radiative forcing. The climate models examined here consistently show stronger radiative heating
305	over the subtropics and extratropics (except for the eastern tropical Pacific in MIROC5 model) during summer
306	than winter (Fig. 12). Note that instantaneous radiative forcing simulated in MIROC3 is distinct from other models
307	due to difference in the radiative calculation as reported in Ogura et al. (2014). Except for the wet convective
308	regions (SST > 27 $^{\circ}$ C), the summertime heating rate over cool oceans is stronger than winter, consistent with
309	stronger ΔT_{700} and ΔEIS (Fig. 9). The stronger heating rate is consistent with higher SAT during summer than
310	winter. In the fixed-SST simulations, SAT should be higher during summer than winter due to higher SST and
311	seasonal variation in incoming solar radiation. As a result, seasonal variations in SAT, instantaneous radiative
312	forcing, ΔT_{700} , ΔEIS , and ΔC_1 (stronger instantaneous radiative forcing during summer results in larger increase in
313	C_1 than winter) should be consistent among different climate models (Figs. 1, 2, 12, S6). Note that near-surface
314	instantaneous radiative forcing is also perturbed due to increased CO2 (figure not shown), but prescribed SST
315	damps the near-surface temperature response to radiation (Fig. 1g-i), resulting in the dominant contribution of the
316	radiative heating at the 700 hPa level (Fig. 12) to Δ EIS (Figs. 8–10).

318 6. Summary and discussions

319	Multiple climate models consistently simulate increased low cloud over the subtropics and extratropics in
320	the Northern Hemisphere in the rapid adjustment to increasing CO ₂ in contrast to largest decreases in middle and
321	high clouds. In response to CO ₂ forcing, reduced radiative cooling in the lower troposphere together with land
322	surface warming induces lower tropospheric warming, resulting in enhanced inversion strength of the boundary
323	layer and increased low cloud over cool oceans. The enhanced inversion strength and low cloud increase are
324	consistently amplified during summer in the both hemispheres. By examining a set of prescribed land surface
325	temperature experiments in an AGCM, the effects of atmospheric radiative heating, radiative land warming, the
326	plant physiological response, and residual term of the low cloud adjustment are evaluated. The effects of
327	atmospheric radiative heating and radiative land warming are comparably important for the low cloud adjustment
328	over cool oceans. During summer, higher climatological SAT results in stronger instantaneous radiative forcing of
329	CO ₂ than winter despite a seasonally-constant increment of CO ₂ concentration. As a result, radiative warming of
330	the lower troposphere and land surface are amplified during summer, resulting in a stronger enhancement of
331	inversion strength and low-cloud increase over ocean than in winter. The present study relates seasonal variations
332	in climatological SAT, EIS adjustment, and low-cloud adjustment.
333	The results of the present study, especially seasonal variation in low-cloud adjustment over wide oceanic
334	area, have implications for climate sensitivity. In most previous studies on cloud adjustment and climate sensitivity,
335	the response of cloud cover was examined in the annual mean. This averaging procedure doesn't matter for the
336	tropics, in which the seasonal cycle doesn't dominate. Over the subtropics and extratropics, in contrast, incoming
337	solar radiation exhibits large seasonal variation (seasonal-mean insolation is 424 W m ⁻² in May-to-September and

338	243 W m ⁻² in November-to-March in EQ-90°N average). Over these regions, large seasonal variations can also
339	be found in climatological SAT, atmospheric circulation, and cloud cover. The seasonal reversal of climatological
340	atmospheric circulation and associated variations in precipitation and cloud cover are very important when we try
341	to understand physical mechanisms responsible for their responses to external forcing. For example, their response
342	to climate warming over tropical-to-subtropical land regions are substantially controlled by climatological
343	monsoon circulations (Kamae et al. 2016b). The results of the present study imply that we need to examine the
344	seasonal dependence of cloud feedbacks (e.g. Colman 2003; Taylor et al. 2011) over the subtropics and extratropics
345	to external forcing as well as cloud adjustment. Chung and Soden (2018) identified that inter-model spreads of
346	cloud adjustment and feedback are significantly anticorrelated through marine boundary-layer clouds. It should
347	also be noted that rapid adjustments of cloud optical depth in addition to cloud fraction were also suggested as
348	important factors for the total spread of cloud adjustment among climate models (Zelinka et al. 2013). Further
349	investigations focused on seasonal variations in cloud adjustment and feedback, their relationship, and underlying
350	physical mechanisms may improve our understanding of uncertainty and possible constraints on climate sensitivity.
351	
352	Acknowledgements
353	We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which
354	is responsible for CMIP, and we thank the climate modeling groups (listed in Table S1 in the online supplement)
355	for producing and making available their model output. For CMIP5, the US Department of Energy's Program for

356 Climate Model Diagnosis and Intercomparison provided coordinating support, and led the development of the

357	software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work				
358	was supported by JSPS KAKENHI Grant Numbers 17K14388 and 17K05657, and the Integrated Research				
359	Program for Advancing Climate Models (TOUGOU program) from the Ministry of Education, Culture, Sports,				
360	Science and Technology (MEXT), Japan. We would like to acknowledge M. Watanabe and H. Shiogama for helpful				
361	discussions.				
362					
363	References				
364 365 366	Abe M, Shiogama H, Yokohata T, Emori S, Nozawa T (2015) Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO ₂ forcing. Clim Dyn 45:2181–2192				
367 368 369	Ackerley D (2017) AMIP ACCESS 1.0 prescribed land experiment collection v1.0: PLAMIP. NCI National Research Data Collection, https://researchdata.ands.org.au/prescribed-land-amip-experiments-collection/940117, https://doi.org/10.4225/41/59521137d6c42, accessed: 15-03-2018.				
370 371	Ackerley D, Dommenget D (2016) Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface 5 temperatures. Geosci Model Dev 9:2077–2098				
372 373	Ackerley D, Chadwick R, Dommenget E, Petrelli P (2018) An ensemble of AMIP simulations with prescribed land surface temperatures. Geosci Model Dev Discuss. doi:10.5194/gmd-2018-77				
374 375	Andrews T, Ringer MA (2014) Cloud feedbacks, rapid adjustments, and the forcing-response relationship in a transient CO ₂ reversibility scenario. J Clim 27:1799–1818				
376 377	Andrews T, Gregory JM, Forster PM, Webb MJ (2012) Cloud adjustment and its role in CO ₂ radiative forcing and climate sensitivity: A review. Surv Geophys 33:619–635				
378 379	Bi D, Dix M, Marsland SJ, et al. (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Ocean J 63:41–64				
380 381 382	Blossey PN, Bretherton CS, Cheng A, Endo S, Heus T, Lock AP, van der Dussen JJ (2016) CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO ₂ quadrupling and a CMIP3 composite forcing change. J Adv Model Earth Syst 8:1714–1726				
383 384	Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32:237–249				

- Bretherton CS (2015) Insights into low-latitude cloud feedbacks from high-resolution models. Phil Trans R Soc A
 373:3354–3360
- Bretherton CS, Blossey PN, Jones CR (2013) Mechanisms of marine low cloud sensitivity to idealized climate
 perturbations: A single-LES exploration extending the CGILS cases. J Adv Model Earth Syst 5:316–337
- Bretherton CS, Blossey PN, Stan C (2014) Cloud feedbacks on greenhouse warming in the superparameterized
 climate model SP-CCSM4. J Adv Model Earth Syst 6:1185–1204
- Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on
 tropical circulation and regional precipitation. Nat Geosci 6:447–451
- Boucher O, Randall D, Artaxo P, et al (2014) Clouds and aerosols. In: Stocker TF, editor. Climate change 2013:
 the physical science basis. Contribution of working group I to the Fifth Assessment Report of the
 Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, p. 571–658
- Ceppi P, Brient F, Zelinka MD, Hartmann DL (2017) Cloud feedback mechanisms and their representation in
 global climate models. WIREs Clim Change 8:e465. doi:10.1002/wcc.465
- Cess RD, Potter GL, Blanchet J (1989) Interpretation of cloud-climate feedback as produced by 14 atmospheric
 general circulation models. Science 245:513–516
- Chadwick R, Good P, Andrews T, Martin G (2014) Surface warming patterns drive tropical rainfall pattern
 responses to CO₂ forcing on all timescales. Geophys Res Lett 41:610–615
- 402 Chadwick R, Ackerley D, Ogura T, and Dommenget D (2018) Separating the influences of land warming, the
- direct CO₂ effect, the plant physiological effect and SST warming on regional precipitation and circulation
 changes. J Geophys Res Atmos (submitted)
- Chen J, Bordoni S (2016) Early summer response of the East Asian Summer Monsoon to atmospheric CO₂ forcing
 and subsequent sea surface warming. J Clim 29:5431–5446
- 407 Chung E-S, Soden BJ (2018) On the compensation between cloud feedback and cloud adjustment in climate
 408 models. Clim Dyn 50:1267–1276
- Collins WD, Ramaswamy V, Schwarzkopf MD et al (2006) Radiative forcing by well-mixed greenhouse gases:
 estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) fourth assessment
 report (AR4). J Geophys Res 111:D14317. doi:10.1029/2005JD006713
- 412 Colman R (2003) Seasonal contributions to climate feedbacks. Clim Dyn 20:825–841
- 413 Colman RA, McAvaney BJ (2011) On tropospheric adjustment to forcing and climate feedbacks. Clim Dyn
 414 36:1649–1658
- 415 Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics
 416 on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203
- 417 DeAngelis AM, Qu X, Hall A (2016) Importance of vegetation processes for model spread in the fast precipitation
- 418 response to CO₂ forcing. Geophys Res Lett 43:12550–12559

- Dong B, Gregory JM, Sutton RT (2009) Understanding land-sea warming contrast in response to increasing
 greenhouse gases. Part I: transient adjustment. J Clim 22:3079–3097
- 421 Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure
 422 increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703.
 423 doi:10.1029/2008GL036273
- 424Essery R, Best MJ, Cox PM (2001) Hadley Centre Technical Note 30: MOSES2.2 technical documentation, Tech.425rep.,UnitedKingdomMetOffice,
- 426 https://digital.nmla.metoffice.gov.uk/file/sdb%3AdigitalFile%7Cd5dbe569-5ef7-41c8-b55b-3b63dff5afbe/
- Frauen C, Dommenget D, Tyrrell N, Rezny M, Wales S (2014) Analysis of the nonlinearity of El Niño Southern
 Oscillation teleconnections. J Clim 27:6225–6244
- Gregory JM, Webb MJ (2008) Tropospheric adjustment induces a cloud component in CO₂ forcing. J Clim 21:58–
 71
- Hansen J et al (2002) Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J Geophys Res
 107:4347. doi:10.1029/2001JD001143
- He J, Soden BJ (2015) Anthropogenic weakening of the tropical circulation: the relative roles of direct CO₂ forcing
 and sea surface temperature change. J Clim 28:8728–8742
- He J, Soden BJ (2016) A re-examination of the projected subtropical precipitation decline. Nat Clim Change 7:53–
 57
- Huang Y, Tan X, Xia Y (2016) Inhomogeneous radiative forcing of homogeneous greenhouse gases. J Geophys
 Res Atmos 121:2780–2789
- Kamae Y, Watanabe M (2012) On the robustness of tropospheric adjustment in CMIP5 models. Geophys Res Lett
 39:L23808. doi:10.1029/2012GL054275
- Kamae Y, Watanabe M (2013) Tropospheric adjustment to increasing CO₂: its timescale and the role of land–sea
 contrast. Clim Dyn 41:3007–3024
- Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014) Summertime land–sea thermal contrast and atmospheric
 circulation over East Asia in a warming climate–Part II: Importance of CO₂-induced continental warming.
 Clim Dyn 43:2569–2583
- Kamae Y, Watanabe M, Ogura T, Yoshimori M, Shiogama H (2015) Rapid adjustments of cloud and hydrological
 cycle to increasing CO₂: a review. Curr Clim Change Rep 1:103–113
- Kamae Y, Ogura T, Shiogama H, Watanabe M (2016a) Recent progress toward reducing the uncertainty in tropical
 low cloud feedback and climate sensitivity: a review. Geosci Lett 3:17. doi:10.1186/s40562-016-0053-4
- Kamae Y, Ogura T, Watanabe M, Xie S-P, Ueda H (2016b) Robust cloud feedback over tropical land in a warming
 climate. J Geophys Res Atmos 121:2593–2609

- Kawai H, Koshiro T, Webb MJ (2017) Interpretation of factors controlling low cloud cover and low cloud feedback
 using a unified predictive index. J Clim 30:9119–9131
- 454 Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606
- Luo T, Wang Z, Zhang D, Chen B (2016) Marine boundary layer structure as observed by A-train satellites. Atmos
 Chem Phys 16:5891–5903
- The HadGEM2 Development Team: Martin GM, Bellouin N, Collins WJ, et al. (2011) The HadGEM2 family of

458 Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757

- Merlis TM (2015) Direct weakening of tropical circulations from masked CO₂ radiative forcing. Proc Natl Acad
 Sci USA 112:13167–13171
- 461 Myers TA, Norris JR (2016) Reducing the uncertainty in subtropical cloud feedback. Geophys Res Lett 43: 2144–
 462 2148
- 463 Noda AT, Satoh M (2014) Intermodel variances of subtropical stratocumulus environments simulated in CMIP5
 464 models. Geophys Res Lett 41:7754–7761
- 465 Norris JR (1998) Low cloud type over the ocean from surface observations. Part I: relationship to surface
 466 meteorology and the vertical distribution of temperature and moisture. J Clim 11:369–382
- 467 Ogura T, Webb MJ, Watanabe M, Lambert FH, Tsushima Y, Sekiguchi M (2014) Importance of instantaneous
 468 radiative forcing for rapid tropospheric adjustment. Clim Dyn 43:1409–1421
- Qu X, Hall A, Klein SA, Caldwell PM (2014) On the spread of changes in marine low cloud cover in climate
 model simulations of the 21st century. Clim Dyn 42:2603–2626
- Qu X, Hall A, Klein SA, Caldwell PM (2015a) The strength of the tropical inversion and its response to climate
 change in 18 CMIP5 models. Clim Dyn 45:375–396
- Qu X, Hall A, Klein SA, DeAngelis AM (2015b) Positive tropical marine low-cloud cover feedback inferred from
 cloud-controlling factors. Geophys Res Lett 42:7767–7775
- Ringer MA, Andrews T, Webb MJ (2014) Global-mean radiative feedbacks and forcing in atmosphere-only and
 fully-coupled climate change experiments. Geophys Res Lett 41:4035–4042
- Shaw TA, Voigt A (2015) Tug of war on summertime circulation between radiative forcing and sea surface
 warming. Nat Geosci 8:560–566
- Shaw TA, Voigt A (2016) Land dominates the regional response to CO₂ direct radiative forcing. Geophys Res Lett
 430 43:11383–11391
- Sherwood SC, Bony S, Boucher O, Bretherton C, Forster PM, Gregory JM, Stevens B (2015) Adjustments in the
 forcing-feedback framework for understanding climate change. Bull Am Meteorol Soc 96:217–228
- Shine KP, Cook J, Highwood EJ, Joshi MM (2003) An alternative to radiative forcing for estimating the relative
 importance of climate change mechanisms. Geophys Res Lett 30:2047. doi:10.1029/2003GL018141

- 485 Shiogama H, Watanabe M, Yoshimori M, et al (2012) Perturbed physics ensemble using the MIROC5 coupled
- 486 atmosphere-ocean GCM without flux corrections: experimental design and results. Clim Dyn 39:3041–3056
- 487 Soden BJ, Broccoli AJ, Hemler RS (2004) On the use of cloud forcing to estimate cloud feedback. J Clim 17:3661–
 488 3665
- Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using
 radiative kernels. J Clim 21:3504–3520
- Sud YC, Walker GF, Lau KM (1999) Mechanisms regulating sea-surface temperatures and deep convection in the
 tropics. Geophys Res Lett 26:1019–1022
- Sugi M, Yoshimura J (2004) A mechanism of tropical precipitation change due to CO₂ increase. J Clim 17:238–
 243
- Taylor PC, Ellingson RG, Cai M (2011) Seasonal variations of climate feedbacks in the NCAR CCSM3. J Clim
 24:3433–3444
- Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol
 Soc 93:485–498
- Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity
 estimates. Clim Dyn 41:3339–3362
- Watanabe M, Shiogama H, Yoshimori M, Ogura T, Yokohata T, Okamoto H, Emori S, Kimoto M (2012) Fast and
 slow timescales in the tropical lowcloud response to increasing CO₂ in two climate models. Clim Dyn
 39:1627–1641
- Webb MJ, Lambert FH, Gregory JM (2013) Origins of differences in climate sensitivity, forcing and feedback in
 climate models. Clim Dyn 40:677–707
- Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric
 stability. J Clim 19:6425–6432
- Wyant MC, Bretherton CS, Blossey PN, Khairoutdinov M (2012) Fast cloud adjustment to increasing CO₂ in a
 superparameterized climate model. J Adv Model Earth Syst 4:M05001. doi:10.1029/2011MS000092
- Xu KM, Li Z, Cheng A, Hu Y (2018) Changes in clouds and atmospheric circulation associated with rapid
 adjustment induced by increased atmospheric CO₂: a multiscale modeling framework study. Clim Dyn.
 doi:10.1007/s00382-018-4401-2
- 513 Zhang C (1993) Large-scale variability of atmospheric deep convection in relation to sea surface temperature in
 514 the tropics. J Clim 6:1898–1913
- Zelinka M, Klein S, Taylor K, Andrews T, Webb M, Gregory J, Forster P (2013) Contributions of different cloud
 types to feedbacks and rapid adjustments in CMIP5. J Clim 26:5007–5027
- 517 Zhou C, Zelinka MD, Klein SA (2016) Impact of decadal cloud variations on the Earth's energy budget. Nat Geosci
 518 9:871–874

521 Table captions

Table 1. Decomposition of climate response to quadrupling CO₂ using ACCESS1.0. Simulation names in the
 second column refer Run I.D. in Ackerley et al. (2018). Model configuration, experimental setup, and their
 results are detailed in Ackerley and Dommenget (2016) and Ackerley et al. (2018)

527	Table 2. Responses of cloud fraction and EIS to quadrupling CO ₂ . Values indicate 15-model ensemble means and				
528	its 95% confidence intervals. Cal & Can column indicates area-averaged anomaly over low cloud regions off				
529	the coasts of California and the Canary Islands (Fig. 1c). SST < 27°C column indicate anomaly over cool				
530	ocean (SST < 27°C) between 70°S and 70°N. Winter and summer columns indicated seasonal-mean anomalie				
531	determined by May-to-September and November-to-March in the two hemispheres (see Figs. 1 and 2)				
532					
533	Table 3. Similar to Table 2, but for shortwave cloud radiative effect at the top of the atmosphere (SWcld; W m ⁻²).				
534	Global column indicated global-mean anomaly including land and ocean				
535					
536	Table 4. Decomposed cloud, EIS and SWcld response to quadrupling CO_2 averaged over cool oceans (SST <				
537	27°C) using ACCESS1.0				

539 Figure captions

541	Fig. 1 Seasonality in the cloud adjustment to quadrupling CO ₂ simulated in 15 CMIP5 models. (a-c) Annual mean
542	anomaly in cloud fraction over ocean (%). (d-f) Wintertime (November-to-March in the Northern
543	Hemisphere and May-to-September in the Southern Hemisphere, respectively) and (g-i) summertime (May-
544	to-September in the Northern Hemisphere and November-to-March in the Southern Hemisphere,
545	respectively) anomalies. (a, d, g) Anomalies in total cloud fraction (ΔC_t), (b, e, h), sum of high cloud (ΔC_h)
546	and middle cloud (ΔC_m), and (c, f, i) low cloud (ΔC_l). Stipples indicate the area where at least 12 out of 15
547	models agree on sign of the anomaly. Contours in (c, f, i) indicate climatological sea surface temperature
548	(SST) of 27 °C. Boxes in (c, f, i) indicate low cloud regions off the coasts of California and the Canary
549	Islands examined in Table 2
550	
551	Fig. 2 Similar to Fig. 1, but for (a, d, g) surface air temperature (Δ SAT; K), (b, e, h) air temperature at the 700 hPa
552	level (ΔT_{700} ; K), and (c, f, i) estimated inversion strength (Δ EIS; K), respectively
553	
554	Fig. 3 (a) Zonal-mean ΔEIS (K) over cool oceans (SST < 27 °C). Red and blue lines indicate summertime and
))) 55(wintertime averages, respectively. Shading represents 95% confidential interval. (b) ΔC_1 (%) over cool oceans
556	(551 < 27 C)
557	
550	Fig. 4 Similar to Figs. Of and 1f, but for summating minus wintertime gramply
338	Fig. 4 Similar to Figs. 21 and 11, but for summertime minus wintertime anomaly
559	
560	Fig. 5 Appuglimeen total response to quadrupling CO, simulated in ACCESS10 (a) ASAT (K) (b) AT ₁ , (K)
561	Fig. 5 Annual-mean total response to quadruphing CO ₂ simulated in ACCESST.0. (a) Δ SAT (K), (b) Δ T (00 (K),
562	(c) $\Delta E_1S(\mathbf{K})$, (d) $\Delta C_1(70)$, (e) $\Delta C_1^{+}\Delta C_m(70)$, and (f) $\Delta C_1(70)$. Contours in (f) indicate eminatological SST
502	0127 C
563	
564	Fig. 6 Decomposed annual-mean low cloud response simulated in ACCESS1.0. (a) Effect of atmospheric radiation
565	(RAD_ATM) on ΔC_1 (%). (b) Effects of plant physiological response (PLANT), (c) radiative land
566	warming (RAD_LAND), and (d) residual (RES)

567	
568	Fig. 7 Similar to Fig. 6, but for $\Delta C_{\rm h} + \Delta C_{\rm m}$ (%)
569	
570	Fig. 8 Similar to Fig. 7, but for Δ EIS (K)
571	
572	Fig. 9 Wintertime and summertime response to quadrupling CO2 simulated in ACCESS1.0. (a-f) Effects of
573	RAD_ATM and (g–l) RAD_LAND on (a, d, g, j) ΔT_{700} (K), (b, e, h, k) ΔEIS (K), and (c, f, i, l) ΔC_1 (%).
574	Left (a-c, g-i) and right panels (d-f, j-l) show wintertime and summertime anomalies
575	
576	Fig. 10 Similar to Fig. 3, but for effects of (a, b) RAD_ATM and (c, d) RAD_LAND to (a, c) Δ EIS (K) and (b, d)
577	ΔC_1 (%) simulated in ACCESS1.0
578	
579	Fig. 11 Effect of RAD_ATM to vertical motion and temperature advection. (a) Wintertime and (c) summertime
580	anomaly in pressure velocity (ω ; hPa day ⁻¹) at the 700 hPa level ($\Delta \omega_{700}$). Solid and dashed contours represent
581	climatological ω_{700} of 10 hPa day ⁻¹ (downward) and -10 hPa day ⁻¹ (upward), respectively. (b) Wintertime and
582	(d) summertime vertical temperature advection and adiabatic compression (K day ⁻¹) at the 700 hPa level. (e)
583	Zonal-mean vertical temperature advection and adiabatic compression (K day ⁻¹) at the 700 hPa level (blue:
584	winter, red: summer) averaged over cool oceans (SST $< 27 ^{\circ}\text{C}$)
585	
586	Fig. 12 Comparison of instantaneous radiative heating due to quadrupling CO ₂ among five climate models. (a–e)
587	Wintertime radiative heating (K day ⁻¹) at the 700 hPa level and (f-j) summertime minus wintertime radiative
588	heating simulated in (a, f) CanAM4, (b, g) HadGEM2-A, (c, h) IPSL-CM5A-LR, (d, i) MIROC3, and (e, j)
589	MIROC5. (k-o) Zonal-mean radiative heating (K day ⁻¹) averaged over cool oceans (SST < 27 °C)

Table 1.

Name	Definition	Explanation		
TOTAL	A4x - A	Total effect of 4xCO ₂		
RAD_ATM	$A4xrad_{PL} - A_{PL}$	Effect of atmospheric radiation		
RAD_LAND APL4xrad - APL		Effect of radiative land warming		
D DI ANT	Adv Adverd	Effect of plant physiological response		
r_rlanı	A4XpL – A4XraupL	except soil moisture and soil temperature		
	A A	Effect of plant physiological response via		
P_LAND	$A_{PL4x} - A_{PL4xrad}$	soil moisture and soil temperature		
DIANT		Total effect of plant physiological		
PLANI	$P_PLANI + P_LAND$	response		
DEC	TOTAL – (RAD_ATM +	Pasidual		
KE3	RAD_LAND + PLANT)	Kesiduai		

594	Table	2.

	Cal & Can		SST < 27°C			
	Annual	Winter	Summer	Annual	Winter	Summer
ΔC_t (%)	-0.63 ± 0.40	-0.84 ± 0.36	-0.27 ± 0.50	-0.58 ± 0.34	-0.94 ± 0.33	-0.18 ± 0.41
$\Delta C_{h}+\Delta C_{m}$ (%)	-1.19 ± 0.25	-0.79 ± 0.23	-1.59 ± 0.32	-0.91 ± 0.21	-0.74 ± 0.21	-1.07 ± 0.24
ΔC_l (%)	0.21 ± 0.26	-0.46 ± 0.31	1.03 ± 0.35	-0.00 ± 0.22	-0.61 ± 0.27	0.71 ± 0.25
$\Delta \text{EIS}(\mathbf{K})$	0.41 ± 0.10	0.08 ± 0.08	0.77 ± 0.13	0.28 ± 0.05	0.12 ± 0.05	0.46 ± 0.05

Table 3.

	Global			SST < 27°C		
	Annual	Winter	Summer	Annual	Winter	Summer
$\Delta SW cld (W m^{-2})$	1.09 ± 0.49	1.07 ± 0.35	1.09 ± 0.66	1.17 ± 0.51	1.25 ± 0.39	1.07 ± 0.70

Table 4.

		Annual	Winter	Summer
	TOTAL	-0.02	-0.53	0.71
	RAD_ATM	-0.11	-0.52	0.37
ΔC_t (%)	RAD_LAND	0.15	-0.01	0.35
	PLANT	-0.13	-0.06	-0.14
	RES	0.07	0.06	0.12
	TOTAL	1.05	0.43	1.89
	RAD_ATM	0.68	0.17	1.26
ΔC_l (%)	RAD_LAND	0.41	0.08	0.75
	PLANT	-0.21	-0.01	-0.38
	RES	0.18	0.19	0.26
	TOTAL	0.32	0.16	0.53
	RAD_ATM	0.25	0.15	0.38
$\Delta EIS(K)$	RAD_LAND	0.11	0.05	0.18
	PLANT	-0.02	0.03	-0.07
	RES	0.01	-0.03	0.07
	TOTAL	0.55	0.75	0.17
	RAD_ATM	0.66	0.73	0.49
$\Delta SWeld (W m^{-2})$	RAD_LAND	-0.26	-0.04	-0.57
	PLANT	0.20	0.12	0.30
	RES	-0.05	-0.06	-0.05

606 Fig. 1

Fig. 2

614 Fig. 3

- **Fig. 4**

Fig. 5

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 K

636 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 %

637

638 Fig. 9

Fig. 10

646 Fig. 11

650 Fig. 12