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Recently, it was reported that a thermocell can convert
temperature into electric energy by using the difference in
the thermal coefficient (α ≡ dV/dT) of the redox potential
(V) between the cathode and anode materials. Here, we
systematically investigatedα of NaxCo1−zMnz[Fe(CN)6]y

(Co1−zMnz-PBA) against Mn concentration (z). The z-
dependence ofα is interpreted in terms of the 3d-electron
configuration entropy (∆S3d) of the redox site. Utilization
of S3d is a strategy effective for the design of high-|α| ma-
terial for energy harvesting thermocell.

A new energy harvesting technology, that converts waste heat
near room temperature and/or human body heat to electric en-
ergy at low cost and high efficiency, is required for a ”smart”
society. Recently, several researchers2–6 reported that a ther-
mocell that uses the difference in the thermal coefficient (α =
dV/dT) of the redox potential (V) between the anode (αanode)
and cathode (αcathode) materials can convert the cell temper-
ature (Tcell) into the electric energy. The thermocell can pro-
duce electric energy in the thermal cycle between low (TL)
and high (TH) temperatures, making in sharp contract with the
semiconductor-based thermoelectric device.1 In the warming
process, the redox potentials of the anode and cathode change
by αanode∆T and αcathode∆T, respectively. Then, we expect
a thermally induced change in the cell voltage (Vcell) as large
as (αcathode− αanode)∆T. In other words, electric energy is
thermally stored in the thermocell. The stored electric energy
can be extracted by the discharge process atTH. Similarly,
during the cooling process, the redox potentials of the anode
and cathode change by -αanode∆T and -αcathode∆T, respec-
tively. The stored electric energy can be extracted by the dis-
charge process atTL . For example, Shibataet al.5 fabricated
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a thermocell, consisting of two types of cobalt Prussian blue
analogues (Co-PBAs) with differentα values. The thermocell
produces electric energy with high thermal efficiency (η = 1
%) betweenTL (= 295 K) andTH (= 323 K). This type of ther-
mocell expands the application region of the battery materials
from energy storage to energy conversion. To realize a new
energy harvesting device, exploration of high-|α| is indispens-
able.

Prussian blue analogues (PBAs) with chemical formula of
NaxM[Fe(CN)6]y (M = Fe, Co, Mn and Ni) are promising
cathode materials of sodium-ion secondary batteries.7–14 The
compounds consist of three-dimensional (3D) jungle-gym-
type host framework with guest Na+ ions and H2O molecules,
which are accommodated in the nanopores of the framework.
Most of the PBAs have face-centered cubic (Fm3m; Z = 4)
or trigonal (R3m; Z = 3) structures.15 Importantly, PBAs are
also promising materials for the energy harvesting thermo-
cell, because theirα values distribute from - 0.3 mVK−1 in
NaxMn[Fe(CN)6]0.83 (NMF83) to approximately 1.4 mVK−1

in NaxCo[Fe(CN)6]0.9 (NCF90).6 Nevertheless, the origin of
the wide distribution ofα is still unclear. From an thermo-
dynamically point of view,α is equivalent to1

e∆S, wheree
and∆Sare the elementary charge (> 0) and the differences in
entropy (S) of the system before and after Na+ insertion. Fur-
thermore,∆Scan be divided into the components due to elec-
trode solid material (∆Ssolid) and electrolyte (∆Selectrolyte).16,17

In this paper, we investigated α of
NaxCo1−zMnz[Fe(CN)6]y (Co1−zMnz-PBA) against Mn
concentration (z). We found thatα(z) ≈ α(0) [α(0) and
α(z) are the temperature coefficients of redox potential of
NCF90 and Co1−zMnz-PBA, respectively] in the Co/Mn
redox region (z ≤ 0.7) while α(z) ≪ α(0) in the Fe redox
region (z≥ 0.7). We semi-quantitatively explain the redox
site dependence ofα(z) in terms of variation (∆S3d) of the
3d-electron configuration entropy (S3d) between the divalent
and trivalent states.

Films of Co1−zMnz-PBA were fabricated by the electro-
chemical deposition on an indium tin oxide (ITO) trans-
parent electrodes under potentiostatic conditions at - 0.45
V vs. a standard Ag/AgCl electrode.18,20 The electrolytes
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Table 1: Chemical formula and concentrations (mmol/L) of the solutes
z chemical formula CoCl2 MnCl2 K3[Fe(CN)6] NaCl Co(NO3)2 NaNO3

0.00 Na1.60Co[Fe(CN)6]0.902.9H2O — 0.00 0.80 — 0.50 5000
0.36 Na1.64Co0.64Mn0.36[Fe(CN)6]0.912.0H2O 0.43 0.23 1.00 5000 — —
0.56 Na1.60Co0.44Mn0.56[Fe(CN)6]0.903.2H2O 0.38 0.38 1.00 5000 — —
0.78 Na1.68Co0.22Mn0.78[Fe(CN)6]0.923.2H2O 0.25 0.75 1.00 5000 — —
0.89 Na1.56Co0.11Mn0.89[Fe(CN)6]0.893.1H2O 0.13 1.13 1.00 5000 — —
1.00 Na1.72Mn[Fe(CN)6]0.932.3H2O 0.00 1.50 1.00 5000 — —

were aqueous solutions containing K3[FeIII (CN)6], CoII Cl2
[CoII (NO3)2], MnII Cl2, and NaCl (NaNO3). In this process,
the reduction reaction of [Fe3+(CN)6] + e− → [Fe2+(CN)6]
triggers the deposition of PBA. Therefore, Fe, Mn, and Co in
the as-grown films are divalent. The chemical composition of
the film can be finely controlled by the concentration of the so-
lutes (Table 1). For example, thez value can be controlled by
the concentrations ratio between Co2+ and Mn2+. Chemical
compositions of the films were determined using the induc-
tively coupled plasma (ICP) method and are listed in Table 1.
The obtained film was transparent (Fig. S1) with a thickness
of ≈ 1 µm . In the whole region ofz, the crystal structure of the
as-grown film was hexagonal (Fig. S2). The lattice constants,
a andc, monotonously increase withz (Fig. S3), reflecting the
larger ionic radius (rMn2+ = 0.830Å) of Mn2+ as compared
with that (rCo2+ = 0.745Å ) of Co2+.

The electrochemical measurements were carried out with
a potentiostat (HokutoDENKO HJ1001SD8) in an Ar-filled
glove box using a beaker-type cell. The cathode, anode, and
electrolyte were the film, Na metal, and propylene carbonate
(PC) containing 1 mol/L NaClO4, respectively. The charge
and discharge rate were about 1 C. The cut-off voltage was
from 2.8 to 4.0 V. Thex value in Co1−zMnz-PBA was evalu-
ated from the total current under the assumption thatx = 0.0
in the charged state.

Figure 1 shows discharge curves of the Co1−zMnz-PBA
films; (a) z = 0.0, (b) 0.56, (c) 0.89, and (d) 1.00. In whole
the region ofz, the discharge curves show two-plateau feature.
At z = 0.0 [(a)], the high- and low-V plateaus are observed
around 3.8 and 3.3 V, respectively. The high-V plateau is as-
cribed to the redox reaction of Fe2+/Fe3+, while the low-V
plateau is ascribed to the redox reaction of Co2+/Co3+.21 At z
= 1.0 [(d)], the high- and low-V plateaus are observed around
3.6 and 3.4 V, respectively. The high-V plateau is ascribed to
the redox reaction of Mn2+/Mn3+, while the low-V plateau is
ascribed to the redox reaction of Fe2+/Fe3+.21 We note that
the redox site at the low-V plateau switches from Co (z = 0.0)
to Fe (z= 1.0).

At the boundary between the high- and low-V plateaus, the
electronic configuration of the low- and high-z samples are
Co3+ (Mn3+) - Fe2+ and Mn2+ (Co2+) - Fe3+, respectively.
We note that ionic radii of Co2+ (rCo2+ = 0.745Å) and Mn2+

Fig. 1: Discharge curves of the Co1−zMnz-PBA films; (a)z = 0.0,
(b) 0.56, (c) 0.89, and (d) 1.00. The discharge rate was about 1 C.
Arrows represent thex value of the films used in the test cell (see
text).

(rMn2+ = 0.830 Å) are much larger than those of the other
ions. Then, we may expect discontinuous increase of the lat-
tice constant at the switching of the redox site from Co (Mn)
to Fe. We investigated the crystal structure of thex-controlled
Co1−zMnz-PBA at the boundary bwetwwn the high- and low-
V plateaus. In the whole region ofz, the crystal structure was
face-centered cubic (Fig. 4S). As expected, the lattice constant
(a) shows discontinuously jumps atz≈ 0.7 from a = 10.09
Å to 10.41Å (Fig. 5S). Here, let us evaluate the variation
(∆a) of a by the change of the ionic radii. The change of the
ionic radii of Co, Mn and Fe are∆rCo = 0.20Å, ∆rMn = 0.185
Å and ∆rFe = - 0.06Å, respectively. Then,∆a [= 0.3∆rCo +
0.7∆rMn + ∆rFe] becomes 0.38̊A, which is close to the experi-
mental value (= 0.32̊A). In addition, the color of the film at the
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Table 2: Chemical composition of NaxCo1−zMnz[Fe(CN)6]y

that is used as anode and cathode of the test cell.αcathodeand
αanode are the temperature coefficients of redox potential of
cathode and anode, respectively.

annode cathode
z y x z y x αcathode- αanode(mVK−1)
0 0.90 0.81 0.36 0.91 0.94 - 0.38
0 0.90 0.91 0.56 0.90 1.09 - 0.32
0 0.90 0.96 0.78 0.92 1.07 - 0.89
0 0.90 0.97 0.89 0.89 1.00 - 1.50
0 0,90 0.91 1.00 0.93 1.15 - 1.75

middle point of the low-V plateau significantly changes from
deep purple atz= 0.56 to reddish brown at 0.78 (Fig. S1). The
deep purple color is ascribed to the electronic transition from
Fe2+ to Co3+.19 Then, the switching of the redox site causes
the significant color change as observed, because the Co state
changes from trivalent to divalent. A similar switching of the
redox site was reported by Kuriharaet al.20 in the isomor-
phic lithium compound (LixCo1−zMnz[Fe(CN)6]y), in which
the redox site at the low-V plateau changes from Co/Mn (z≤
0.7) to Fe (z≥ 0.7).

Recently, Fukuzumiet al.6 reported thatα = 1.4 mV/K in
the low-V plateau of NaxCo[Fe(CN)6]0.9 (NCF90). There-
fore, we regarded the NCF90 (z = 0.0) film as a standard of
α. We fabricated a low-Vcell cell whose anode, cathode and
electrolyte were the NCF90 film, Co1−zMnz-PBA films, and
PC containing 1 mol/L NaClO4, respectively. The areas of the
electrodes are≈ 1.0 cm2. To avoid the potential fluctuation ef-
fect which is significant in the as-grown (fully-reduced) state,
x of the NCF90 and Co1−zMnz-PBA films were controlled to
the middle point of the low-V plateau (arrows in Fig. 1) using a
beaker-type cell. The chemical composition of the anode and
cathode of the thermocell are summarized in Table 2. In the
high-V plateau, the redox potential was too unstable agasint
time to determine reliableα. We carefully measuredVcell of
the NCF90/Co1−zMnz-PBA cell (test cell) againstTcell. Tcell

was monitored with a Pt resistance thermometer in the elec-
trolyte and was slowly increased/decreased at a rate of≈ ±
0.3 K/min.

Figure 2 showsVcell of the test cell againstTcell; (a)z= 0.36,
(b) 0.56, (c) 0.89, and (d) 1.00. Red and blue marks mean that
the data obtained in the heating and cooling runs, respectively.
We observed no thermal hysteresis ofVcell, indicating that the
data are free from temperature gradient nor sample deteriora-
tion effects.∆α [= α(z) - α(0)] was evaluated by least-squares
fittings. In the small-z region [(a) and (b)],|∆α| is small (≤
0.32 mVK−1) indicating thatα(z) ≈ α(0) (= 1.4 mVK−1). In
the large-z region [(c) and (d)],|∆α| is large (≥ 1.50 mVK−1)
indicating thatα(z) ≪ α(0). Figure 3(a) shows thus deter-
minedα(z) [= ∆α + α(0)] againstz. In the low-z region (z≤

Fig. 2: Cell voltage (Vcell) of the NCF90/Co1−zMnz-PBA cell against
the cell temperature (Tcell); (a) z = 0.36, (b) 0.56, (c) 0.89, and (d)
1.00. Both the anode and cathode were thex-controlled films to the
middle point of the low-V plateau. Red and blue marks mean that the
data obtained in the healing and cooling runs, respectively.

0.7), α(z) is almost the same asα(0) (= 1.4 mVK−1). In the
large-z region (z≥ 0.7),α(z) steeply decreases and finally be-
comes negative (= - 0.1 - - 0.4 mVK−1) abovez = 0.89. The
negativeα(z) in the large-z region is consistent with the nega-
tive value in NaxMn[Fe(CN)6]0.83 (NMF83).6 Thus, we con-
firmed that the magnitude ofα(z) has strong correlation with
the redox site.α(z) is large in the Co/Mn redox region (≤ 0.7)
while α(z) is small in the Fe redox region (≥ 0.7).

Figure 3(b) showsVcell (= Vz - V0, whereV0 andVz is the
redox potential of NCF90 and Co1−zMnz-PBA, respectively)
of the test cell at 290 K. In the small-z region (z≤ 0.7),Vcell is
nearly zero indicating thatVz ≈V0. At z≈ 0.7,Vz discontinu-
ously jumps fromVcell = 20 mV atz= 0.56 to 125 mV at 0.78.
With further increase inz, α steeply increase to fromVcell =
125 mV atz = 0.78 to 213 mV atz = 1.00. This discontinu-
ous jump ofVz atz= 0.7 is probably ascribed to the redox site
switching from Co/Mn (z≤ 0.7) to Fe (z≥ 0.7).

Now, let us consider the effect of the 3d-electron configura-
tion entropy (S3d) on α. From a thermodynamically point of
view, α is equivalent to1

e∆S. Then, the contribution ofS3d on
α is expressed as1e∆S3d = 1

e(Sdi
3d - Stri

3d), whereSdi
3d andStri

3d are
the configuration entropy in the divalent and trivalent states,
respectively.S3d is expressed askBlnW, whereW (= Nspin ×
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Fig. 3: (a) Thermal coefficient [α(z)] of redox potential in
Co1−zMnz-PBA againstz. (b) Vcell (= Vz - V0, whereV0 andVz is
the redox potential of NCF90 and Co1−zMnz-PBA, respectively) of
the NCF90/Co1−zMnz-PBA cell againstz at 290 K. Both the anode
and cathode were thex-controlled films to the middle point of the
low-V plateau. The straight lines are merely guides to the eyes.

Norbital, whereNspin andNorbital are spin and orbital degrees of
freedom, respectively) is the number of degenerated electronic
configuration. In Table 3, we summarizeSdi

3d andStri
3d of Co,

Mn, and Fe, together with the numerical evaluation of1
e∆S3d.

Nspin is expressed as 2S+ 1, whereS is the total spin quantum
number.Norbital = 3 in thee2

gt
5
2g ande0

gt
5
2g configurations, be-

cause we can select three orbitals for thet2g hole.Norbital = 2 in
thee1

gt
3
2g configuration, because we can select two orbitals for

theeg electron.Norbital = 1 in thee0
gt

6
2g ande2

gt
3
2g configurations,

because there is no degenerated configuration. In PBAs, the
oxidization process of Co2+ causes spin state transition from
high-spin (Co2+) to low-spin (Co3+) states. The redox pro-
cess of Co2+/Co3+ contributes toα(z) by 0.21 mVK−1 while
that of Fe2+/Fe3+ contributes toα(z) by - 0.15 mVK−1. Thus,
∆S3d semi-quantitatively explains whyα (= 1.40 mVK−1) in
Co-PBA is larger than that (= - 0.35 mVK−1) in Mn-PBA. In
other words, the highα value of NCF90 is ascribed to the spin
state transition of the Co ion accompanied by the redox reac-
tion. The observed difference (= 1.75 mVK−1) in α between
Co-PBA and Mn-PBA, however, is larger than the difference
(= 0.36 mVK−1) evaluated based on∆S3d. This implies that
another effects,e.g., variation of the vibrational mode around
the redox site, contribute to∆Ssolid.

Finally, let us briefly comment on how to enhance the ther-
mal efficiency (η). The electronic energy extracted from the
thermocell is expressed asQ × Vcell, whereQ is the extracted
charge. Then,η increases with increase inVcell and/or Q.
Above discussion onS3d gives us a strategy how to increase
Vcell [= ∆α(TH - TL)]. Looking at Table 2, one may notice that
∆α becomes large if Co2+/Co3+ and Fe2+/Fe3+ redox materi-
als are used as cathode and anode, respectively. Actually, the
high-η value (= 1%) reported in the thermocell consists of two
types of Co-PBAs5 can be reinterpreted in terms of the∆S3d

Table 3: 3d-electron configuration entropy (S3d)
ion electron configuration S3d

1
e∆S3d

Co2+ e2
gt5

2g kBln(4×3) —
Co3+ e0

gt6
2g kBln(1×1) —

— — — 0.21 mVK−1

Mn2+ e2
gt3

2g kBln(6×1) —
Mn3+ e1

gt3
2g kBln(5×2) —

— — — - 0.04 mVK−1

Fe2+ e0
gt6

2g kBln(1×1) —
Fe3+ e0

gt5
2g kBln(2×3) —

— — — - 0.15 mVK−1

scenario. On the other hand, Shibataet al.22 reported that
the magnitude ofQ is quantitatively reproduced by the slopes
of the discharge curves. This indicates thatQ is expected be
larger in the material whose discharge curve is flatter.

In conclusion, we systematically investigatedα(z) in
Co1−zMnz-PBA againstz. We found thatα(z) ≈ α(0) in the
Co/Mn redox region (z≤ 0.7) whileα(z) ≪ α(0) in the Fe re-
dox region (z≥ 0.7). We semi-quantitatively explain the redox
site dependence onα(z) in terms of the 3d-electron configura-
tion entropy (S3d). Utilization of S3d is a strategy effective for
the design of high-|α| material for energy harvesting thermo-
cell.
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