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ABSTRACT 

 

 

Hyperchloremia (high serum chloride level) is frequently observed in critically ill 

patients in the intensive care unit (ICU). Clinical evidence shows that hyperchloremia is 

associated with increased in-hospital mortality. Length of hospital stay (LOS) is often used as an 

indicator of hospital efficiency, a proxy of resource consumption and is especially important in 

organizing hospital services. Such data often have a highly right-skewed distribution for non-

zero values and possible excess zero counts. Our study aims to examine the association of serum 

chloride levels at different time points with hospital mortality and to model the length of hospital 

and ICU stays in conjunction with zero-inflated and overdispersed count data. This research will 

consider the use of several univariate and multivariate models to evaluate the effects of serum 

chloride as it pertains to patient mortality. This research resulted from application to more than 

1700 critically ill patients from a local hospital. 
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CHAPTER 1 

INTRODUCTION 

 

 

Modeling count variables is a common task in the medical and social sciences. The 

classical Poisson regression model for count data is often of limited use in these disciplines 

because empirical count data sets typically exhibit over-dispersion and/or an excess number of 

zeros. As Count data frequently occur in many fields, including public health, medicine and 

epidemiology, it is necessary to find models which will better account for these issues. A few 

common examples of count data in these fields are the number of deaths, number of cigarettes 

smoked, and number of disease cases. For such data the Poisson model is a commonly applied 

statistical model as a starting point. A key feature of the Poisson model is that the mean and the 

variance are approximately equal. 

Departures from a Poisson model can occur in a variety of ways; the main reasons are: 

(1) some covariates may be omitted and/or may not have a uniform effect on all subjects so that 

population heterogeneity has not been accounted for, and (2) an excess number of zero events 

occurred compared to the Poisson distribution (Lindsey 1995; Lindsey and Altham 1998) . For 

the excessive zeros situation, it could be assumed that a sample is collected from two different 

sub-populations; one population always produces zero, or no event, while the other behaves like 

a Poisson distribution. 
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1.1 Overdispersion in Count Data 

In medical research, data are often collected in the form of counts which are related to the 

number of times that an event of interest occurs. Because of their simplicity, one-parameter 

distributions for which the variance is directly determined by the mean are often used at least in 

the first method to model this data. However, the equal mean-variance relationship rarely 

happens with real-life data (Cox 1983; Dean 1992; Prentice 1986). In most cases, the observed 

variance is larger than the assumed variance, which is known as overdispersion. If the 

overdispersion is ignored, statistical inference results in an inaccurate conclusion by 

underestimating the variability of the data (Cox 1983). If this dispersion is not taken into 

account, then using these models may lead to biased estimates of the parameters and 

consequently incorrect inferences about the parameters. 

Several statistical methods have been proposed for analysis of count data with 

overdispersion. Many of them used negative binomial distribution to model the count data 

(Pounds and Zhang 2012; Auer and Doerge 2012; McCarthy and Smyth 2010). In this research 

study, we demonstrate the use of various models for overdispersed count data. These are 

Poisson, negative binomial, Quasi-Poisson, and Zero-inflated models. The real data in this 

research study deal with the hospital stays and ICU stays of patients in critially ill conditions. 

The models resulted in differing statistical inferences. The Poisson model, which is widely used 

in epidemiology research, underestimated the standard errors and overstated the significance of 

some covariates. The models were compared in terms of covariate estimates along with their 

statistical inferences. Akaike‘s Information Criterion (AIC) values were used to consider the 

relative model fitting for the models as a goodness-of-fit statistic. 
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1.2 Zero-Inflation in Count Data 

In psychological, social, and public health related research, it is common that the 

outcomes of interest are relatively infrequent behaviors and phenomena. Data with abundant 

zeros are especially frequent in research studies when counting the occurrence of certain 

behavioral events, such as number of school absences, number of cigarettes smoked, number of 

day of hospitalizations, or number of ICU days. These types of data are called count data and 

their values are usually nonnegative with a lower bound of zero and typically exhibit excessive 

zeros and overdispersion (i.e., greater variability than expected). Except for transforming the 

outcome to make it normal and using the general linear model, other alternative approaches can 

be taken in the context of a broader framework. For example, the Poisson distribution becomes 

increasingly positively skewed as the mean of the response. 

Thus, a typical way of analyzing count data includes specification of a Poisson 

distribution with a log link (the log of the expectation of a response variable is predicted by the 

linear combination of covariates, i.e., predictors) in a model known as Poisson regression. Equal 

mean and variance of the response variable is the main condition for using Poisson model. If the 

condition is not fulfilled, then generalized Poisson and negative binomial models are appropriate 

(Karlis and Xekalaki 2005; Yau and Wulu 2003; Famoye and McGwin 2002). Generalized 

Poisson regression and negative binomial regression models are, to some extent, capable of 

determining dispersion. When the zero data are exceeded, data such as length of stay (LOS) of 

these models will not be efficient. These methods cannot be used to explain and analyze 

overdispersion in LOS data, so one of the proper approaches to analyze them is zero-inflated 

regression models (Hilbe 2011). 
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Several other more rigorous approaches to analyzing count data include the zero-inflated 

Poisson (ZIP) models that have been proposed recently to cope with an overabundance of zeros 

(Greene 1994; King 1989; Lambert 1992; Mullahy 1986). These two types of models both 

include a binomial process (modeling zeros versus non-zeros) and a count process. The 

difference between the two models is how they deal with different types of zeros: although the 

count process of ZIP is a zero-truncated Poisson (i.e. the distribution of the response variable 

cannot have a value of zero), the count process of ZIP can produce zeros (Zuur and Smith 2009). 

One of the assumptions of using Poisson regression is that the mean and variance of a response 

variable are equal. In reality, it is often the case that the variance is much larger than the mean. 

Variations of negative binomial (NB) models can be used when overdispersion exists even in the 

non-zero part of the distribution. Although a Poisson distribution contains only a mean 

parameter, a negative binomial distribution has an additional dispersion parameter (k) to capture 

the amount of over-dispersion. Thus, the zero-inflated negative binomial (ZINB) model and 

zero-altered negative binomial (ZANB) model were introduced to deal with both zero-inflation 

and over-dispersion. 
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CHAPTER 2 

 

BACKGROUND 

 

 

A retrospective study of 1724 patients at Erlanger Hospital, Chattanooga, was conducted. 

The inclusion criteria for this study is critically ill patients at least 18 years of age who were 

admitted to a medical intensive care unit. This is a cohort study of patients admitted to the ICU 

on whom data were extracted via electronic medical records. 

 

2.1 Study Significance 

Chloride plays a pivotal role in many body functions including acid-base balance, 

muscular activity, osmosis, and immunomodulation (Berend 2012). Despite its physiological 

importance, chloride has captured little attention by the scientific community until recently 

(Yunos and Story 2010) when chloride-rich solutions were associated with hyperchloremic 

metabolic acidosis (Scheingraber and Sehmisch 1999; Robinson and Smyth 2009) and short-term 

mortality after non-cardiac surgery (Silva and Santana 2009; McCluskey and Wijeysundera 

2013). Hyperchloremia is frequently observed in critically ill patients in the ICU. The primary 

aim of our study is to determine whether there is independent association of serum chloride (CI) 

levels at two difference time points of ICU stay with hospital mortality in critically ill patients. 

Optimal choice of intravenous fluids in specific clinical scenarios has been a subject of 

much debate and there are few formal recommendations on the ideal initial fluid choice in the 

majority of critically ill patients. Normal saline (0.9% NaCl) is the most commonly used 
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intravenous fluid. However, infusion of the large volumes (> 2 liters) of 0.9% saline induces 

hyperchloremia, metabolic acidosis, hyperkalemia, and a negative protein balance. This fluid 

contains 50% more chloride than is typically present, making the moniker ‘Normal Saline’ a 

misnomer. The high chloride content is largely responsible for the acidic nature of 0.9% saline as 

it reduces the strong anion difference resulting in a reduction in pH and the associated systemic 

effects of this pH shift. Chloride, the most abundant extracellular anion, plays a key role in 

balancing extracellular cations and extracellular tonicity, and excess chloride is known to 

contribute to edema. 

Increasing evidence suggests that hyperchloremia results in a reduction of the glomerular 

filtration rate (GFR), likely through afferent arteriolar dilatation caused by increased chloride 

delivery to the tubules. Clinically, hyperchloremia induced reduction in GFR is independently 

associated with increased risk for acute kidney injury (AKI). 

From perioperative literature, it is evident fluids other than 0.9% saline may provide 

better choices for most patients. Perioperative infusion of 0.9% saline is associated with 

increased hospital length of stay and need for blood products in patients following abdominal 

and cardiovascular surgery. In contrast to perioperative literature, there is only scant evidence for 

fluid choice in patients in the medical ICU. Initial studies suggest that hyperchloremia is 

associated with increased mortality in patients with sepsis; however, this relationship requires 

further validation. Additionally, studies examining the prognostic value of hyperchloremia in 

critically ill, non-septic patients are lacking. 
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2.2 Description of the Variables 

Of the 1724 patients, variables collected include demographic data (age, race, gender), 

admission and subsequent levels of serum Cl, length of hospital and ICU stay, mortality, and 

other laboratory data. Patients for whom all data was not present were excluded from this study. 

All patient data was used in a de-identified form whereby each patient was assigned a unique 

identification number. 

The data regarding mortality takes the values of “death” or “no death” which represents a 

binary response variable. This study aims to look at the effect of serum chloride levels at time of 

admission, 72 hours after admission and the change in these levels in association with outcome 

of mortality. The associated potential explanatory variables include patient age, gender, race and 

APACHE (Acute Physiologic Assessment and Chronic Health Evaluation) score. 
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CHAPTER 3 

 

REVIEW OF CURRENT LITERATURE 

 

 

This section presents the background of the current models and the theory that has 

accumulated in regard to logistic regression and count data modeling. The framework for each 

model is presented along with the relationships between models to examine the potential benefits 

and problems in model selection. 

 

3.1 Generalized Linear Models (GLM) 

The GLM extends ordinary regression models to include non-normal response 

distributions. Three components specify a generalized linear model: 

1. A random component identifies the response variable Y and its probability distribution. 

2. A systematic component specifies explanatory variables used in a linear predictor 

function. 

3. A link function specifies the function E(Y) that the model associates with the systematic 

component. 

 

3.2 Components of Generalized Linear Models 

The random component of a GLM can be expresses by a response variable Y which has 

independent observations from a distribution of the natural exponential type. The probability 

density function has the form, 
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where ϕ is a known or unknown constant or an estimated parameter. This represents the equation 

in canonical form with natural or canonical parameter θ which may vary based on the values of 

the explanatory variables (Lindsey 1995). 

The systematic component relates the explanatory variables as a combination of linear 

predictors. 

This linear combination of explanatory variables is then called the linear predictor and 

can be denoted as, 

 

The link function is the connection between the random and the systematic components. 

It denotes how the expected value of the response variable relates to the linear predictor of 

explanatory variables. The model links µ to η = g(µ) where the link is a monotonic differentiable 

function. The link function that converts the mean to the natural parameter is called the canonical 

link (Lindsey 1995). 

For the normal distribution ϕ = σ, for the Poisson distribution ϕ = 1 and for the binomial 

distribution ϕ = 1/n, where n is the binomial index. For over-dispersed count data, ϕ can be 

considered as an over-dispersion parameter to be estimated from the data (Famoye and McGwin 

2002). 
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CHAPTER 4 

 

METHOD 

 

 

Each statistical analysis includes first a univariate analysis to assess the relationship 

between each independent variable with the outcome variable followed by a multivariate analysis 

of the data. An alpha level of significance of 0.1 was used to assess covariates for each model. 

 

4.1  Logistic Regression Model 

For this portion of the study, the statistical testing was completed by using a GLM with 

logistic regression modeling. Because the response variable is binary, or dichotomous, a logit 

transformation of the response variable will make a correlation between the predictor and 

response variable linear. This test will be used to test for an association of the mortality with the 

predictors. The hypothesis will be tested as follows: 

H0 = No association between mortality and predictor 

Ha = Association between mortality and predictor 

Let π be the probability of an event occurring. This means that the odds ratio, OR, is 

given by: 

 

When the logarithm of the odds ratio is taken, the result is the Log-Odds function, 
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where β0 is the intercept and β1, β2, β3… represent predictors.  By exponentiating the Log-Odds 

function, the result is the logistic function, 

 

Odds ratio were used in these models to measure the association between an exposure 

and an outcome. Odds ratios look at the odds of a certain outcome with exposure to a predictor 

versus the odds of the outcome in an absence of the predictor. In these models, the risk factor of 

serum chloride is tested to determine if mortality is affected by exposure. 

The initial testing looked at the initial serum chloride levels, levels after 72 hours and the 

change in levels as predictors for mortality. Secondary testing looked at individual covariates to 

determine if any single covariate had a statistically significant effect using the alpha level of 

significance (type I error) of 0.1. Upon determination of significant covariates, a new model 

using each of the serum chloride levels along with the covariates was constructed. All models 

were then exponentiated to show the estimated mortality risk change per 5 unit change of serum 

chloride levels. 

 

4.2  Count Data Models 

For the next portion of this study, the response variables representing length of stay in the 

hospital and length of ICU stay were examined. As these response variables represent count data, 

a generalized linear model using a Poisson link function was initially constructed. The histogram 

in Figure 1 shows the count data distribution for length of hospital stay and ICU stay. 
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Figure 1 Count Data Length of Hospital Stay and ICU Stay 

 

The testing was completed in a similar manor to the mortality testing in that individual 

serum chloride levels, then potential covariates, and finally a combined model at each level were 

tested. The hypothesis will be tested as follows: 

H0 = No association between length of hospital stay/ICU stay and predictor 

Ha = Association between length of hospital stay/ICU stay and predictor 

 

4.3  Overdispersion and Zero Inflation Models 

For count data, Poisson and negative binomial models have been the basic building 

blocks. The Poisson density function is described as follows. If y follows a Poisson distribution, 

then: 
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Using the GLM with Poisson link, the assumption is that the mean is approximately equal 

to the variance. However, a model that displays a greater variability than may be expected for 

that model indicates overdispersion. 

The basic testing was completed to first get an initial check of results. Because there can 

be under or overdispersion associated with count data, a simulation of the sample data was used 

to verify if the variance and the mean were equal. A set of 500 simulations using 1000 samples 

each, taken from the data, were plotted to check the distribution of the mean versus the variance. 

There are methods which can be used to correct for overdispersion in count data. Such 

methods include the quasi-Poisson, negative binomial, and Zero-inflated Poisson/Zero-Inflated 

negative binomial (ZIP/ZINB) models for correction of overdispersion. Each of these models 

allows for a relaxing of the restrictive nature of the Poisson model with respect to variance. In 

these models, the variance is a function of the mean, linear for quasi-Poisson and quadratic for 

negative binomial, thus large and small counts are weighted differently. Parameters are estimated 

using the optimization method of iteratively reweighted least-squares. ZIP models are composed 

of a mixture of two distributions, one of which is Poisson in nature. 

Let Y be a random variable where E(Y) = µ with Var(Y) = θµ and θ representing a 

dispersion factor. If θ = 1, we have the standard Poisson mean and variance relationship. 

However, if θ > 1, overdispersion of the model will be present for Poisson. There are cases 

where the variance is proportional by some weighted value to the mean. This can be noted by 

observing the bootstrap simulations. 

There are alternatives to using a strict Poisson relationship to account for the 

overdispersion. Both Quasi-Poisson and negative binomial regressions provide options when 

compensating for overdispersion. The Quasi-Poisson model is only characterized by mean and 
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variance and do not always have a distributional form. Therefore, theoretical approaches such as 

AIC (Akaike Information Criteria) or BIC (Bayesian Information Criteria) is not applicable and 

cannot be effectively directly compared to other models under this criterium. 

The density for the negative binomial is defined as follows: 

 

where Γ(·) denotes the Gamma function. 

The negative binomial model depends on a parameterization such that E(Y) = µ and 

Var(Y) = µ + κµ2 with κ > 0. The overdispersion depends on the multiplicative factor 1 + µ. So, 

for the Quasi-Poisson, the variance is linearly related to the mean and for the negative binomial, 

the variance is quadratic in the mean. Thus, the weighting in the Quasi-Poisson model is directly 

proportional to the mean. In the negative binomial model, smaller mean values get smaller 

weights and larger mean values increase but level off to 1/κ. The Quasi-Poisson model depends 

only on the overdispersion parameter θ and does not have a direct density function. 

The ZIP model is proposed when data shows variations caused by the occurence of extras 

zeroes either structurally or occurring from sampling. The ZIP may be viewed as a combination 

of two generating processes, the first of which is a degenerate component centering mass at zero 

and the second a Poisson governing process which handles count. The ZIP distribution can be 

given as: 
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If the data shows extra zeroes and unobserved heterogeneity, the ZINB model is 

recommended. The ZIBN model is given as: 

 

 

with probability πi and κ as overall dispersion parameter, 

The count data characteristics for all models are given in the following table. 

 

Table 1  

Count Data Model Characteristics 

 

 

As an alternative to conventional models, assumption adequacy averaging could be 

applied (Pounds and Zhang 2012; Auer and Doerge 2012; McCarthy and Smyth 2010). By using 

the law of total probability to proportion the data based on a preset threshold, the data within the 

threshold could be modeled using a method such as the negative binomial. The data outside the 

threshold would then be modeled separately. Determining the proper proportion for each model 

may yield a combined model which shows better fit qualities. 
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To compare all models, the p-values for each model were considered. For the Poisson and 

negative binomial models the AIC were also stated and considered. All models were 

exponentiated and examined based on a 5 unit change of serum chloride levels. 
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CHAPTER 5 

 

RESULTS 

 

 

The statistical analysis was performed using R software and includes examination of 

three response variables: mortality, length of hospital stay and length of ICU stay. The R 

software package is a language and environment for statistical computing and graphics and is 

widely used for statistical modeling. 

 

5.1  Mortality Model 

For the mortality study, the model was developed first by examining the serum chloride 

levels at admission, after 72 hours and the difference in levels. From these models, it appears that 

the initial serum chloride levels alone do not show statistical significance in relation to mortality. 

However, the levels at 72 hours and the difference in levels from admission to 72 hours show 

evidence of statistical significance on mortality as shown in Table 2. 

 

Table 2  

Univariate Model for Mortality 
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The covariates under investigation included age, gender, race and APACHE score. For 

the age covariate, the group was segmented into those subjects less than 65 years of age and 

those 65 years or older. 

To determine which covariates should be added to the univariate model, based on a 

significance level of 0.1, each covariate was assessed for significance on mortality.  The age 

covariate showed statistical significance in terms of mortality, so the covariate was added to the 

models for each of the serum chloride levels. 

 

The multivariate model, using p-values, shows that for serum chloride levels at 

admission, 72 hours and the difference in levels from admission to 72 hours is statistically 

significant in reference to mortality. Generally, the odds ratio represents the change in response 

based on a 1 unit change in predictor. The odds ratio in these models is based on a 5 unit change 

in serum chloride as the units represented are extremely small. Based on the odds ratio, shown in 

Table 3, both the change in serum chloride level and the age greater than 65 years demonstrates 

an increased risk of mortality. 
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Table 3  

Multivariate Model for Mortality 

 

 

5.2  Length of Stay Model 

The length of hospital stay was next considered as a response variable. Because the 

response is represented by count data, a GLM using a Poisson link function was considered. The 

Poisson link assumes that the mean and the variance are close to equal. To test this assumption, a 

bootstrap simulation using the hospital length of stay data was completed. A sample size of 

1000, with replacement, was taken 500 times to check the mean versus the variance. Figure 2 

shows the simulation data to compare the mean and variance and strongly shows the relationship 

is not an equal mean and variance and demonstrates overdispersion. 
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Figure 2 Bootstrap Samples for Hospital Length of Stay 

 

 

Due to the apparent overdispersion of the model, the model with Poisson link was 

compared with models using the Quasi-Poisson link and the negative binomial model. For the 

Poisson and the negative binomial models, the p-values, odds ratio, and AIC were compared. It 

should be noted that the Quasi-Poisson model does not produce a comparable AIC value and 

therefore only p-values and odds ratio are shown in Table 3. The univariate model considered the 

serum chloride levels at admission, 72 hours, and the difference in levels. 

All univariate models produced p-values indicating statistical significance associating the 

length of hospital stay with serum chloride levels. Comparing the Poisson and negative binomial 

models, the AIC for the negative binomial model was much lower indicating a possible better 

model quality and selection. 
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The covariates tested in the mortality model were again used individually with a 

significance level of 0.1 with length of hospital stay as response.  Both APACHE score and age 

showed statistically significant p-values and were added as covariates for the full model.  As 

shown in Table 4, the Poisson model showed p-values which were significant for all covariates. 

 

 

Table 4  

Univariate Model Length of Stay 

 

 

This model also shows a higher AIC value than the negative binomial model. The Odds 

Ratios for the full models of serum chloride at 72 hours and the difference from admission 

indicate that there is an increased risk for longer hospital stays with a 5 unit increase in serum 

chloride levels. 

 

 

 

 

 

 



22 
 

Table 5 

Multivariate Model Length of Stay 

 

 

The ZIP and ZIBN models were used to test the serum chloride levels as predictors for 

the length of hospital stay in days. The following table shows the coefficients, p-values and 

standard errors associated with each model. As these models have two components, the count 

and zero-inflation portions, it is evident that the zero-inflation in this data is not statistically 

significant. This was expected since the original data set did not show a large percentage of zero 

counts. However, this model was reviewed to ensure that all possible outcomes were tested. 
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Table 6  

ZIP and ZIBN Models for Length of Stay 

 

 

5.3  ICU Stay Model 

The final response variable of interest is the ICU stay length. The univariate model tests 

serum chloride levels at admission, 72 hours after admission and the difference in levels. 

Similarly to length of hospital stay, ICU stay represents count data and the GLM model with 

Poisson link was considered as an initial choice.A bootstrap simulation was completed to check 

the mean versus variance relationship. The results are shown in Figure 3 and demonstrate 

overdispersion in the model. 
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Figure 3 Bootstrap Samples for ICU Length of Stay 

 

 

Similarly to the length of stay model, the ICU stay simulation shows overdispersion of 

the data. The covariates were tested using univariate models with the significance level of 0.1 

and the results are shown in Table 7. 

 

Table 7  

Univariate Model ICU Stay 
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The covariates of APACHE score, age and gender showed statistical significance in 

relation to length of ICU stay. 

 

APACHE score shows statistical significance regarding length of ICU stay for Poisson 

and Quasi-Poisson models. It should be noted that the negative binomial model does not show 

this effect and the AIC for the negative binomial model is smaller than the Poisson model. Serum 

chloride levels at 72 hours and the difference between initial and 72 hours is significant for all 

models. Odds ratios for the Poisson and Quasi-Poisson are also consistent and show an increased 

risk of ICU stay length as serum chloride increases. 

 

Table 8  

Multivariate Model ICU Stay 
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Similarly to the data from length of stay modeled by the ZIP and ZIBN, the length of ICU 

stay models using ZIP and ZIBN exhibit no significance in terms of the zero-inflation portions of 

the models. This is most likely due to the low proportion of zero counts in this data set. Again, it 

is important to examine the zero-inflation models to eliminate the possible of zero counts 

adversely affecting model fit. 

 

Table 9  

ZIP and ZIBN Models for ICU Stay 
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CHAPTER 6 

 

CONCLUSION AND DISCUSSION 

 

 

Examining the effect of Hyperchloremia on mortality, it can be shown that increased 

levels of serum chloride at admission and after 72 hours increase the risk of mortality. As this 

data was a smaller set than may be available in the future, more tests will be needed to verify 

these results. Some of the data provided here had some key variables missing and these may be 

used in future work with larger data sets. 

Overall, Hyperchloremia is associated with increased in-hospital mortality in critically ill 

patients. We found an independent association between higher CI72 and in-hospital mortality in 

critically ill patients. Most mortality CI72 was associated with hospital mortality in those patients 

who were already hyperchloremic on ICU admission. 

The data also showed increases in length of hospital stay and ICU stay with high 

admission serum chloride levels and high levels after 72 hours. It was found that the ZIP and 

ZINB regression models both have some problems in assessing LOS and ICU stay in critically ill 

patients, especially in the presence of excess zeros and overdispersion in count data. The 

strengths of our study are the large sample size (>1700), the careful selection of a representative 

sample of patients with critical ill admitted to the ICU, and the multivariate adjustment for 

clinical confounders directly linked to hyperchloremia and hospital mortality such as AKI, and 

comprehensive critical illness severity scores. 
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None of the studies that have previously revealed the association between serum chloride 

levels and hospital mortality accounted for confounding. Our study is unique in the multivariate 

design and patient population. 
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CHAPTER 7 

 

FUTURE STUDY 

 

 

To better understand the potential issues involving medical count data and to investigate 

modeling where multiple factors and covariates are present, the following section presents 

alternative methods for handling count data. 

 

7.1  Modeling Excess Overdispersion: The Hurdle Poisson Model 

The data provided thus far for studying the effects of serum chloride on hospital and ICU 

length of stay have not accounted for factors such as regional or geographic location. A future 

study may be needed to identify patients by region to better understand the full effects on 

patients. To incorporate these regional differences, studies using the Hurdle model may be 

employed.  As length of hospital stay is usually characterized as right-skewed for the non-zero 

values and possibly zero-inflated or zero-deflated, the Hurdle model was developed to account 

for these and other issues regarding count data. The Hurdle model accommodates other count 

data issues such as spatial random effects and other fixed-effects covariates. 

The Hurdle model is based on a mixture of zero mass and non-zero count observations 

following either Poisson or negative binomial distributions. The Hurdle model considers the 

zeros to be completely separate from the non-zeros. 

Let Yij denote the length of stay in days, i = 1, 2, ...n and j denote patient region, j = 1, 2, 

...J. The model is given as follows: 
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where πij = P (Yij = 0) is the probability of a patient belonging to the zero component and p(yij ; 

θij) is the probability distribution for count data. The parameter vector is θij and p(0; θij) is the 

evaluation at zero. 

The probability distribution for the Hurdle Poisson is: 

 

 

The probability density function for the Hurdle negative binomial model is: 

 

 

where (1 + µij /r) measures overdispersion and as r → , the negative binomial converges to the 

Poisson distribution. 
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