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Abstract

We present a framework for evaluating the concrete security assurances of cryptographic
constructions given by the worst-case SIVPγ to average-case SISn,m,q,β reductions. As part
of this analysis, we present the tightness gaps for three worst-case SIVPγ to average-case
SISn,m,q,β reductions. We also analyze the hardness of worst-case SIVPγ instances.

We apply our methodology to two SIS-based signature schemes, and compute the se-
curity guarantees that these systems get from reductions to worst-case SIVPγ. We find
that most of the presented reductions do not apply to the chosen parameter sets for the
signature schemes. We propose modifications to the schemes to make the reductions appli-
cable, and find that the worst-case security assurances of the (modified) signature schemes
are, for both signature schemes, significantly lower than the amount of security previously
claimed.
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Chapter 1

Introduction

In recent years, there has been a surge of research with the aim of building a quantum
computer. Amongst many potential applications, quantum computers are known to be
able to solve the hard problems on which traditional cryptographic primitives are based,
such as factoring or the discrete log problem, in polynomial time [49]. Thus the invention
of a large-scale quantum computer would break public-key cryptography as we know it.
In order to keep (classical) computers secure, we need to design cryptographic primitives
that would be safe against an adversary equipped with quantum computers.

This looming quantum threat has prompted the National Institute of Standards and
Technology (NIST) to announce a Post-Quantum Cryptography Standardization contest,
with the goal of standardizing some quantum-safe encryption and signature schemes. The
candidates that made it to the second round were announced in January 2019. The round
two candidates include 17 encryption schemes that are based on supersingular elliptic curve
isogenies [28], error correcting codes [9, 13, 3, 11, 52, 5, 10, 2] and lattices [41, 34, 43, 14,
22, 26, 48, 24], and 9 signature schemes that are based on lattices [36, 44, 17], multivariate
polynomial equations [18, 16, 47, 23], and hash functions [51, 27].

Lattice-based cryptosystems are among the top contenders for both signature and en-
cryption quantum-safe standards. The security of lattice-based schemes is usually based
on one of the variants of either the Learning With Errors (LWE) problem, or the Short
Integer Solution (SIS) problem. One of the main arguments in favour of lattice-based
primitives is the existence of so-called worst-case to average-case security proofs for the
lattice primitives.

In theoretical computer science, hardness is usually measured in terms of worst-case
hardness, that is, the amount of effort required to solve the hardest instance of a particular
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problem. On the other hand, cryptographic applications require average-case hardness, as
we want a randomly selected instance of our problem to be hard to solve.

These two concepts are not necessarily equivalent: some problems can be hard in the
worst case, but easy to solve in the average case. As an example, consider the problem of
deciding whether a graph is three-colourable. The problem is NP-complete. However, the
average number of nodes in the depth-first search tree (over all graphs of all sizes) is only
197 [50], so the expected runtime is constant, on average.

To solve this disparity, some cryptographers like to base their cryptographic primitives
on problems that have a worst-case to average-case reduction. That is, they base their
primitive on a problem such that a randomly selected instance is provably as hard as
solving any instance of the other problem (in particular, the hardest one). Thus, if you
had an oracle that could efficiently solve the first problem on average (without necessarily
being able to solve all instances), then we could use it to efficiently solve the hardest
instance of the second problem. Such a reduction shows that solving the first problem on
average is at least as hard as solving the second problem in the worst-case (hence the name)
and thus allows us to make statements about the average-case hardness of a problem, based
on the worst-case hardness of a different one – which has often been studied more, and
thus is better understood.

Many lattice-based cryptographic primitives have worst-case to average-case proofs,
that links the average-case hardness of a cryptosystem to the worst-case hardness of a hard
lattice problem such as the approximate Shortest Independent Vector Problem (SIVPγ).
The existence of these proofs makes the lattice-based candidates favoured in the post-
quantum cryptographic community, as they offer evidence to support the difficulty of
breaking lattice-based cryptosystems.

However, it is important to consider the limitations of worst-case to average-case re-
ductions in the context of a cryptosystem. Worst-case to average-case proofs exhibit a
polynomial time reduction between the worst-case and average-case problems. While this
gives great insight into the asymptotic hardness of the average-case problem, concrete secu-
rity guarantees depend on the polynomial itself, as well as on the hardness of the worst-case
problem instance. We call the size of the polynomial (for a reduction that preserves the
success probability) the tightness gap. Increasing the tightness gap implies decreasing the
hardness guarantees that the average-case problem gets from the reduction by a propor-
tional amount, thus leaving a gap between the hardness of the worst-case problem and the
hardness guarantees it gives to the average-case problem.

Two papers by Chatterjee et al. [20, 19] studied the security implications for protocols
with large tightness gaps in their security proofs. In particular, in [19] the authors studied
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the tightness of the SIVPγ to LWE worst-case to average-case reduction, finding a very
large tightness gap and showing that the worst-case to average-case reduction gives no
security guarantees for the parameters that have been proposed for implementing the LWE
cryptosystems.

The remainder of this thesis is organized as follows. Chapter 2 presents some basic
notions related to lattices, and introduces lattice problems of interest in cryptography.
In Chapter 3, we present a tightness analysis of the SIVPγ to SIS worst-case to average-
case reductions due to Micciancio and Regev [39], Gentry, Peikert, Vaikuntanathan [25],
and Micciancio and Peikert [38]. Algorithms for solving lattice problems, including SVP,
SIVPγ and SIS are discussed in Chapter 4. In Chapter 5, we examine the security proof
of a SIS-based signature scheme invented by Lyubashevsky, and determine the security
guarantees that it gets from the worst-case to average-case reductions. In Chapter 6, we
examine the tightness of the security proof of the signature scheme Dilithium [36], whose
security (partially) depends on the SIS problem. We conclude by determining the concrete
security guarantees that the worst-case to average-case reductions give Dilithium. Finally,
Chapter 7 makes concluding remarks and offers directions for future research.
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Chapter 2

Lattice Preliminaries

In this work, we will be using ‖x‖ = (
∑

i x
2
i )

1/2
to denote the `2-norm of the vector x. If

the norms `p for p 6= 2 are used, we will refer to them explicitly as ‖ · ‖p. The infinity norm
of x = (x1, x2, . . . , xn) is defined by ‖x‖∞ = max{|xi| : 1 ≤ i ≤ n}. Given a set of vectors
X = {x1, . . . , xk}, we say the norm of X is ‖X‖ = max1≤i≤k ‖xi‖.

2.1 Lattices

Let B = {b1, . . . , bn} be a set of independent vectors in Rn. We define the (full-rank)
lattice with basis B as

L(B) =

{
n∑
i=1

aibi : ai ∈ Z

}
;

that is, L(B) is the set of all integer linear combinations of the basis B1. If we’re discussing
general lattices, which may not be linked to a specific basis, we may refer to a lattice by a
different name such as Λ.

For i ∈ [1, n], we define λi = λi(Λ) to be the smallest t such that there exists a set X
of i linearly independent vectors in L(B) with ‖X‖ = t. In particular, λ1 is the length of
a shortest nonzero vector in L(B).

1It is also possible to define lattices that are not full rank, by considering a set of independent vectors
{b1, . . . , bn} in Rm, with n < m. In that case, we call n and m the rank and dimension of the lattice,
respectively.
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We also define the fundamental parallelepiped

P(B) = {Bx : x ∈ [0, 1)n},

and the determinant det(B) as the volume of P(B).

Given a lattice Λ, there is an important related lattice known as the dual lattice.

Definition 2.1 (Dual Lattice). Let Λ be a lattice. We define the dual lattice

Λ∗ = {x ∈ Rn : 〈x, z〉 ∈ Z ∀z ∈ Λ}.

If B is a basis for the lattice Λ, then (BT )−1 is a basis for the dual lattice.

The relationship between a lattice and its dual is at the core of many results about
lattices, including properties of Gaussian distributions on lattices and the smoothing pa-
rameter (see Definition 2.4), which are fundamental to many worst-case to average-case
reductions.

2.2 Gaussians and Statistical Distributions

The statistical distance is a measure of distance between two probability distributions X
and Y that can be used to analyze probabilistic algorithms.

Definition 2.2 (Statistical Distance). If X, Y are discrete random variables over a count-
able set A, the statistical distance is defined as

∆(X, Y ) =
1

2

∑
a∈A

|Pr(X = a)− Pr(Y = a)|.

Similarly, if X, Y are continuous random variables over Rn with probability density func-
tions TX and TY respectively, the statistical distance is defined as

∆(X, Y ) =
1

2

∫
r∈Rn
|TX(r)− TY (r)|dr.

Two useful properties of the statistical distance are the fact that applying a (possibly
randomized) function f cannot increase the statistical distance, that is

∆(f(X), f(Y )) ≤ ∆(X, Y )
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and that if X1, . . . , Xk and Y1, . . . , Yk are lists of independent random variables, then

∆((X1, . . . , Xk), (Y1, . . . , Yk)) ≤
k∑
i=1

∆(Xi, Yi).

The Gaussian family of distributions is very important in lattice theory. We first
introduce the Gaussian function ρs,c : Rn → R of width s centered at c, which is defined
as

ρs,c(x) = e−π‖(x−c)/s‖
2

.

If c or s are not specified, we assume that c is the origin and s = 1 (in which case ρ1,c is
a probability distribution). We can extend this definition to any countable set A in the
expected way:

ρs,c(A) =
∑
x∈A

ρs,c(x).

Since
∫
x∈Rn ρs,c(x)dx = sn, we can define the Gaussian probability distribution by its

probability density function

Ds,c(x) =
ρs,c(x)∫

x∈Rn ρs,c(x)dx
=
ρs,c(x)

sn
.

We can use these functions to define the discrete Gaussian distribution over a lattice.

Definition 2.3 (Discrete Gaussian). Let Λ be a lattice. Then the discrete Gaussian prob-
ability distribution over Λ is

DΛ,s,c(x) =
Ds,c(x)

Ds,c(Λ)
=
ρs,c(x)

ρs,c(Λ)
.

An important property of the discrete Gaussian is that if x is distributed according to
Ds,c conditioned on x ∈ Λ, then the conditional distribution of x is DΛ,s,c.

It is possible to verify this property directly. However, it is easier to show it by realizing
that we will only use approximations of Ds,c in practice2, and establishing the result for
such approximations instead. Note that for all other proofs, we will assume that we can

2This is generally done by picking a fine (finite) grid and selecting points from the grid with probability
approximately equal to Ds,c
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sample Ds,c exactly, as it leads to simpler arguments. These arguments can be made
sufficiently accurate by picking a fine enough grid.

We will now show that if x is distributed according to Ds,c conditioned on x ∈ Λ, then
the conditional distribution of x is DΛ,s,c for a fine enough grid approximation of Ds,c. Note
that if α is the volume of one cell in our grid, then the probability of obtaining a grid point
x in a Ds,c sample is very close to αDs,c(x) (we can think of our grid approximation to Ds,c

as rounding any point x to the nearest grid point, and evaluating Ds,c at that grid point
instead of at x). On the other hand, the probability of x ∈ Λ is very close to αDs,c(Λ).
Thus, the probability that x is distributed according to Ds,c, conditioned on x ∈ Λ is

Pr(x ∈ Ds,c|x ∈ Λ) =
Pr(x ∈ Ds,c ∧ x ∈ Λ)

Pr(x ∈ Λ)
≈ αDs,c(x)

αDs,c(Λ)
=
Ds,c(x)

Ds,c(Λ)
= DΛ,s,c

so x is distributed according to DΛ,s,c by definition. We can make this argument as precise
as needed by picking a fine enough grid.

These distributions are also used to define the lattice property known as the smoothing
parameter. Intuitively, it is the smallest width for which the Gaussian on the lattice is
ε-close to the uniform distribution, although the formal definition depends on the dual
lattice.

Definition 2.4 (Smoothing Parameter). Let Λ be an n-dimensional lattice and ε > 0
be a positive real. We define the smoothing parameter ηε(Λ) as the smallest s such that
ρ1/s(Λ

∗ \ {0}) ≤ ε.

The name smoothing parameter comes from the fact that if you take a random lattice
point x ∈ Λ and perturb it by a Gaussian of width ηε, the resulting distribution is (ε/2)-
close to uniform.

2.3 Computational Problems on Lattices

There are many computational problems on lattices, many of which are used to define
cryptographic primitives or prove their security. We will introduce the computational
problems that are used in the worst-case to average-case reductions, as well as those used
to prove the security of the Dilithium and Lyubashevsky’s signature schemes.

One of the most important problems on lattices is the Shortest Vector Problem (SVP),
which seeks to find a shortest nonzero vector in a lattice.
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Definition 2.5 (Shortest Vector Problem (SVP)). Given an n-dimensional lattice basis
B, the SVP problem asks to find an x ∈ L(B) with ‖x‖ = λ1(B).

This problem can be defined using any norm. The most commonly used norms are the
`2 and `∞ norms. We can also define an approximation variant of SVP.

Definition 2.6 (Approximate-SVP). Let γ ≥ 1. To solve the SVPγ problem, one must
find an x ∈ L(B) with 0 < ‖x‖ ≤ γλ1(B).

To measure the quality of a lattice vector v found by some algorithm, a natural choice
would be to measure the SVPγ approximation factor achieved, ‖v‖/λ1(L(B)). In practice,
since λ1(L(B)) is not known for a randomly chosen lattice L(B), the Hermite factor, which
depends on the volume of the lattice, is used instead.

Definition 2.7 (Hermite Shortest Vector Problem (HSVP)). Given an n-dimensional lat-
tice basis B, the HSVPδ problem asks to find an x ∈ L(B) such that 0 < ‖x‖ ≤ δ n

√
volL(B).

For a problem that asks us to find a vector of length at most d, we often refer to

δ = d
n
√
vol(L(B))

as the Hermite factor and δ0 =

(
d

n
√
vol(L(B))

)1/n

as the root Hermite factor

corresponding to this problem.

The root Hermite factor is a measure of the quality of a lattice vector that is independent
of the dimension of the lattice. As such, it is often used to compare the quality of short
vectors in lattices of different dimensions.

There is a reduction from SVPδ2 to HSVPδ, presented in [33].

The next two problems seek sets of short vectors instead of a single short one.

Definition 2.8 (Shortest Independent Vector Problem (SIVP)). Given an n-dimensional
lattice basis B, the SIVP problem asks to find a set of n linearly independent vectors
S ⊂ L(B) such that ‖S‖ = λn. Similarly to the SVP problem, there is also an approximate
version, SIVPγ, for which we need ‖S‖ ≤ γλn.

The following problem is a generalization of SIVPγ, in which the function λn(L(B)) is
replaced by an arbitrary function of the lattice.

Definition 2.9 (Generalized Independent Vector Problem (GIVPφ
γ)). Given an n-dimensional

lattice basis B and two functions γ, φ that can depend on the lattice L(B), the GIVPφ
γ

problem asks to find a set of n linearly independent vectors S ⊂ L(B) such that ‖S‖ ≤
γ(B)φ(B).
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There are also many ‘distance’ problems which seek to find lattice vectors close to
a given target. We present the ones that we will use in the worst-case to average-case
reductions, although many others exist.

Definition 2.10 (Closest Vector Problem (CVPL,d)). The closest vector problem (CVPL,d)
asks, on input of a lattice basis B and a point x ∈ Rn within distance d of L(B), to find a
closest vector in L to x.

Definition 2.11 (Guaranteed Distance Decoding (GDDφ
γ) problem). On input of an n-

dimensional lattice basis B, a target point t, and two functions γ, φ that often depend on
the dimension of the lattice n, the goal is to output a lattice vector x ∈ L(B) within distance
γ(n)φ(n) of the target, i.e. ‖x− t‖ ≤ γ(n)φ(n).

The Guaranteed Distance Decoding problem is usually instantiated with φ = ν, the
covering radius of the lattice. (The covering radius is the maximum distance of a point
x ∈ Rn from the lattice, and thus a solution is guaranteed to exist for any γ ≥ 1.) The
GDDν

γ problem is similar to the Closest Vector Problem (CVP) but the quality of the
solution is compared to the worst-case distance from the lattice, instead of the distance of
the target point from the lattice.

The next problem is a bit contrived and shares its name with the GDD problem. Intu-
itively, it is called incremental GDD as it can be used to sequentially improve a potential
solution to GDD (or other lattice problems) until it satisfies the appropriate bound.

Definition 2.12 (Incremental Guaranteed Distance Decoding (IncGDD)). An IncGDDφ
γ,g

instance is a tuple (B, S, t, r), where B is a lattice basis, S ⊂ L(B) is a set of n linearly
independent vectors, t is a target point, and r ≥ γ(n)φ(n) is a real number. A solution to
the IncGDDφ

γ,g problem is a lattice vector s ∈ L(B) such that

‖s− t‖ ≤ ‖S‖
g

+ r.

IncGDD was used as an intermediate problem in the worst-case to average-case reduc-
tion from SIVP to SIS in [39]. Improvements to this reduction used similar problems, that
were used to sequentially reduce the length of a set of independent vectors until it satis-
fies a bound. In particular, the reduction from [25] used an intermediate problem called
Incremental Independent Vectors Decoding.

Definition 2.13 (Incremental Independent Vectors Decoding (IncIVD)). An IncIVDφ
γ,g

instance is a tuple (B, S, t) where B is a basis for a full-rank lattice in Rn, S ⊂ L(B) is a
full-rank set of lattice vectors such that ‖S‖ ≥ γ(n) · φ(B), and t ∈ Rn is a target point.
The goal is to output a lattice vector s ∈ L(B) such that ‖s− t‖ ≤ ‖S‖/g.
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Finally, we introduce the well known Short Integer Solution (SIS) and Learning With
Errors (LWE) problems, which are often used to construct one-way functions and other
cryptographic primitives. The SIS and LWE problems (or related problems) are usually
the average-case problems in worst-case to average-case reductions.

Definition 2.14 (SIS Problem). On input of a matrix A ∈ Zn×mq and β ∈ R, the goal is
to find a vector z ∈ Zm such that Az = 0 mod q and 0 < ‖z‖ ≤ β.

Equivalently, the SIS problem asks to find a short (of norm ‖z‖ ≤ β) nonzero vector in
the (modular) lattice

Λq(A) = {z ∈ Zm : Az ≡ 0 mod q}.

Thus the SIS problem is closely related to the shortest vector problem on a certain class of
q-ary lattices.

A well known counterpart to SIS is the LWE problem introduced by Regev [45]. Defined
as finding a solution to a system of slightly perturbed equations, the LWE problem can
also be shown to be a dual problem to SIS.

Definition 2.15 (Learning With Errors). Let p ≥ 2 be an integer, and let χ : Zp → R+ be
a probability distribution on Zp. Let s be a vector in Znp for some integer n, and define As,χ
as the distribution on Znp × Zp where we sample a ∈ Znp uniformly at random and e ∈ Zp
according to χ, and output (a, 〈a, s〉+ e mod p).

The LWEp,χ problem asks to find s given samples from As,χ for some s ∈ Znp .

Equivalently, given (A, b) where A ∈R Zm×np , b = As + e, and the components of e are
sampled according to χ, the LWE problem asks us to find s.

2.3.1 Dilithium Specific Definitions

This section will present the definitions that are only needed for the analysis of the signature
scheme Dilithium (in Chapter 6). The definitions will first present the general concept,
followed by the instantiation used by Dilithium as an example.

As a reminder, we start by presenting the definitions of a ring and a module.

Definition 2.16 (Ring). A ring (R,+, ·) is comprised of a set R along with two binary
operations + and · such that (R,+) is an abelian group, and the following conditions are
satisfied:
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(i) There exists a unit element 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R.

(ii) · is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ R.

(iii) Multiplication is distributive over addition: a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

The ring is commutative if a · b = b · a for all a, b ∈ R.

As an example, the ring used in the signature scheme Dilithium is Rq = Zq[X]/(Xn+1)
for n = 256 and prime q = 223 − 213 + 1.

A module over a ring is a generalization of the concept of a vector space over a field,
where the scalars come from the ring, and a multiplication function is defined between
elements of the ring and elements of the module.

Definition 2.17 (Module). Let R be a commutative ring. An R-module M consists of an
abelian group (M,+) and an operation × : R ×M → M such that for all x, y ∈ M and
s, r ∈ R we have:

(i) r × (x+ y) = r × x+ r × y,

(ii) (r + s)× x = r × x+ s× x,

(iii) 1R × x = x,

(iv) (r · s)× x = r × (s× x).

The modules used in Dilithium are Rq-modules over the set Rk
q for some k ∈ N. We

next present a few definitions related to the ring Rq that will be used in Dilithium.

We define a norm on vectors over Rq as follows. The norm of x ∈ Zq is given by
‖x‖∞ = |x mod ±q|, where w′ = w mod ±q is the unique element w′ in the interval
[− q−1

2
, q−1

2
]. The norm of z = z0+z1X+· · ·+zn−1X

n−1 ∈ Rq is given by ‖z‖∞ = maxi ‖zi‖∞.
Finally, the norm of w = (w1, . . . , wk) ∈ Rk

q is given by ‖w‖∞ = maxi ‖wi‖∞. (We can
define the `2 norm similarly, but it is not used in the signature scheme.)

The following subsets of Rq will also be important. First, we define the set Sη as
the set of elements w ∈ Rq such that ‖w‖∞ ≤ η, that is the set of elements of Rq with
coefficients between −η and η inclusively. We also need to define the set Bh, which is the
set of elements of Rq that have exactly h coefficients that are either −1 or 1, the remainder
being 0. We have |Bh| = 2h

(
n
h

)
. The set Bh is the range of the hash function H used in
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Dilithium. In particular, Dilithium picks h = 60, for which |B60| ≥ 2256. For the definition
of the hash function H, please refer to the Dilithium specification [36].

LWE and SIS can both be generalized to work over rings or over modules. Dilithium
bases its security on the module versions of both problems, which we will present here.
While these definitions can be given over any module (with a norm), we will only present
the instantiation specific to Dilithium.

Definition 2.18 (Module Learning With Errors (MLWE)). The Module-LWE distribution
on Rk

q × Rq is defined by ` pairs (ai, bi) ∈ Rk
q × Rq such that bi = aTi s1 + s2,i, where the

secret s = (s1, s2) is sampled uniformly from the set of short elements Skη × S`η and fixed
for all pairs, and the ai are sampled uniformly at random from Rk

q .

The (decisional) Module-LWE problem 3 asks to distinguish between m samples (ai, bi)
chosen from the Module-LWE distribution and m samples (ai, b

′
i) chosen from the uniform

distribution.

Definition 2.19 (Module Short Integer Solution (MSIS)4). Given a matrix A selected
uniformly at random from Rk×`

q , the (homogenous) MSISk,`,β problem over Rq (also denoted
MSISβ for brevity) asks for a y ∈ Rk+`

q such that 0 < ‖y‖∞ ≤ β and [A|I] · y = 0.

Note that MSIS is both a generalization of the SIS problem and of the Ring-SIS problem,
as setting Rq = Zq returns the SIS problem, while picking k = 1 gives us the Ring-SIS
problem.

The next problem is used in the security proof for Dilithium as a safeguard against
new message forgery. Its security is based on the combined hardness of MSIS and certain
security properties of the hash function H.

Definition 2.20 (Self Target Module Short Integer Solution (SelfTargetMSIS)). Let H :
{0, 1}∗ → B60 be a hash function whose image B60 is a set of short elements of the ring
Rq. Given a matrix A selected uniformly at random from Rm×k

q and a vector t selected
uniformly at random from Rm

q , the SelfTargetMSISH,m,k,β problem over Rq (also denoted
SelfTargetMSISβ for brevity) asks for a y ∈ Rm+k+1

q with 0 < ‖y‖∞ ≤ β and a message M

such that H(M‖[A|t|I] · y) = c, where y =

r1

c
r2

 with r1 ∈ Rk
q , r2 ∈ Rm

q , and c ∈ B60.

3We can think of the computational version of MLWE as a Learning With Errors problem in the Rq
module over Rkq .

4We can think of the MSIS problem as a Short Integer Solution problem in the Rq module over Rkq .
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2.4 Miscellaneous

The following is a method used for finding an orthogonal basis of Rn5.

Definition 2.21 (Gram-Schmidt Orthogonalization (GSO)). Let {b1, . . . , bn} be a basis of
a subspace of Rn. The Gram-Schmidt vectors are a basis {b∗1, . . . , b∗n} of Rn such that

(i) b∗1 = b1; and

(ii) for all 2 ≤ i ≤ n, b∗i = bi − proji(bi) where proji(bi) =
∑i−1

j=1 µi,jb
∗
j with µi,j =

〈bi,bj〉
‖b∗j‖2

.

We call the µi,j the Gram-Schmidt coefficients.

Finally, we present the following Theorem, which is used in security reductions for
signature schemes in the random oracle model.

Theorem 2.22 (Generalized Forking Lemma ([12, Lemma 1])). Let t ≥ 1 be an integer,
IG be a probability distribution from which x is drawn, and let H be a set of size h from
which elements are drawn uniformly at random. Let A be a randomized algorithm such
that

A(x, h1, . . . , ht) = (J, σ)

where J ∈ [0, t]. Let acc denote the probability that J ≥ 1 if A is given inputs as described
above. We can then define a Forking Algorithm FA(x) as folows:

1. Pick a random tape r for A.

2. Pick h1, . . . , ht uniformly at random from H.

3. Run A on input (x, h1, . . . , ht; r) to produce (J, σ).

4. If J = 0, return (0, 0, 0).

5. Pick h′J , . . . , h
′
t unformly at random from H.

6. Run A on input (x, h1, . . . , hJ−1, h
′
J , . . . , h

′
t; r) to produce (J ′, σ′).

7. If J ′ = J and hJ 6= h′J , then return (1, σ, σ′), otherwise return (0, 0, 0).

5The same definition also works for any subspace of Rn.
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Then the probability that FA outputs a triple (1, σ, σ′), given an input x chosen uniformly
at random from IG is at least

acc ·
(
acc

t
− 1

h

)
.

In particular, if F is a forger for a signature scheme that succeeds with probability δ, makes
h queries to the random oracle and s queries to the signing oracle (with domain DH), then
the Forking Algorithm produces two different valid signatures σ, σ′ for the same message m
with probability

δ ·
(

δ

h+ s
− 1

|DH |

)
≈ δ2

h+ s
.
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Chapter 3

Worst-Case to Average-Case
Reduction

This chapter describes existing worst-case to average-case reductions for the Short Integer
Solution (SIS, see Definition 2.14) problem. We will first describe Micciancio and Regev’s
reduction [39] in detail, and analyze its tightness gap. The reduction is in three parts.
In Section 3.1 we have a worst-case to average-case reduction from the Incremental Guar-
anteed Distance Decoding (IncGDDηε

β
√
n,g

, see Definition 2.12) problem to the SISn,m,q,β
problem. This is followed in Section 3.2 by a worst-case to worst-case reduction from
GIVPηε

gγ to IncGDDηε
γ,g. Our study of Miccianccio and Regev’s reduction is concluded in

Section 3.3, which presents a reduction from SIVPγ = GIVPλn
γ to GIVPηε

γ , combines the
results of the previous sections into a reduction from worst-case SIVPγ to average-case
SISn,m,q,β, and describes the reduction’s tightness gap. Figure 3.1 gives an overview of the
strategy of the reduction.

SIVP8β
√
nω(
√

logn) = GIVPλn
8β
√
nω(
√

logn)
→ GIVPηε

8β
√
n
→ IncGDDηε

β
√
n,8
→ SISn,m,q,β

Figure 3.1: SIVPγ to SIS Reduction Overview

Finally, Sections 3.4 and 3.5 present the improved worst-case to average-case SIS reduc-
tions of Gentry, Peikert and Vaikuntanathan [25] and Micciancio and Peikert [38], which
follow the same template as the reduction from [39] but achieve better parameters, and
analyze their tightness gaps.
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Figure 3.2: Simplified Reduction Diagram

3.1 IncGDD to SIS

3.1.1 Simplified Overview

We will first describe a simplified reduction. Suppose we are given an IncGDD instance
(B, S, t, r) and access to an SIS oracle for parameters n, m = n log n, q = n4 and β = n,
that on input of a random matrix A ∈ Zn×mq outputs with high probability a vector z ∈ Zm
such that Az = 0 mod q and 0 < ‖z‖2 ≤ β. For the purposes of the simplified reduction,
assume the target t is 0 and that the independent set S is B. We will also assume that
g = 4, but will ignore φ, γ and r for the purposes of this simplified reduction. Note that
although this IncGDD instance is trivial, as t = 0 is always a vector in the lattice L(B),
we will nevertheless seek to find a non-zero lattice vector close to the target t = 0.

In the setup phase, subdivide the fundamental parallelepiped P(B) into a grid of qn

smaller parallelepipeds of equal size by subdividing each of the n sides of P(B) into q
segments of equal size. Label each parallelepiped with an element of Znq in the natural

way, starting with ~0 in the lower left corner of the parallelepiped; see Figure 3.2.
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The first ingredient of the reduction is a sampling procedure S that samples m pairs
(ci, yi), where each ci is distributed uniformly at random mod P(B), and yi is a lattice
vector that’s close to ci (note that yi does not have to be the closest lattice vector to ci,
only one of the vectors close to it; this property is fundamental for the reduction to work).

For each ci, let c̃i = BbqB−1cic/q be the lower left corner of the subdivided paral-
lelepiped that ci is in. Notice that the distance between ci and c̃i is at most n‖B‖/q =
‖B‖/n3. Define ai = bqB−1cic mod q to be the element of Znq corresponding to the par-
allelepiped that ci is in. This is depicted in Figure 3.2.

Define C = [c1 . . . cm], C̃ = [c̃1 . . . c̃m], and A = [a1 . . . am]. Notice that since each ci
is distributed uniformly in P(B), each ai is distributed uniformly in Znq . Therefore A is
uniformly distributed in Zn×mq . We call the SIS oracle with the matrix A, and get back a
short vector z such that Az = 0 mod q and ‖z‖2 ≤ β. By properties of norms, we have
‖z‖1 ≤

√
m‖z‖2 ≤

√
mβ ≤ n2.

Observe that the mapping of Znq vectors to the subdivided parallelepiped is such that

all lattice vectors are labelled ~0. Since Az = 0 mod q, C̃z must then correspond to a point
labelled ~0 in the superlattice grid, and hence it is a lattice point. Finally, since each yi was
chosen to be a lattice point, Y z is also a lattice point as a linear combination of lattice
points.

To conclude the simplified reduction, note that both C̃z and Y z are close to Cz, since
the sampling procedure picked each (yi, ci) pair to be close together, and since c̃i is simply

a rounding of the corresponding ci. Thus, (Y − C̃)z is short, and is in the lattice as it is a
difference of lattice vectors. We can bound its length by the triangle inequality, using the
distances ‖Y z − Cz‖ and ‖Cz − C̃z‖. It turns out that the dominant distance is usually

that between Cz and C̃z, which we can bound by

‖Cz − C̃z‖2 = ‖
n∑
i=1

(ci − c̃i)zi‖2

≤
n∑
i=1

‖ci − c̃i‖2|zi|

≤
n∑
i=1

‖B‖
n3
|zi|

= ‖z‖1
‖B‖
n3
≤ n2‖B‖

n3
=
‖B‖
n

� ‖B‖
4
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by the inequalities above. For the simplified reduction we ignore the distance ‖Y z − Cz‖,
which will be bounded by r (and dependent on φ, γ) in the actual proof. Therefore, (Y−C̃)z
is a solution to our IncGDD instance.

Recall that we originally made two simplifying assumptions, that t = 0 and S = B.
To generalize the algorithm to work for any S (in the algorithms that call the IncGDD
oracle we often consider ‖S‖ � ‖B‖), we will first sample things uniformly in P(B), map
them to a uniform distribution on P(S), and then continue as above, subdividing P(S)
into smaller parallelepipeds. To account for the fact that t does not have to be 0 (and in
general will not be), we simply modify the sampling procedure to take as additional input
a point t′ and to output a pair (c, y), where y is close to c + t′. By carefully choosing the
vectors t′ that we give as input to the sampling algorithm we can guarantee the solution
will be close to the target t with reasonable probability.

In Section 3.1.2 we will describe the general algorithm in detail, and present a proof of
its correctness.

3.1.2 Formal Reduction

Lemma 3.1 (Sampling Procedure). There is a polynomial time algorithm S(B, t, s) that
on input of an n-dimensional lattice basis B, a vector t ∈ Rn, and real number s ≥ ηε(B),
outputs a pair (c, y) ∈ P(B)× L(B) such that

(i) c is (ε/2)-close to uniform;

(ii) For any ĉ ∈ P(B), the conditional distribution of y given c = ĉ is DL(B),s,t+c.

Proof. Proof Sketch The sampling procedure S(B, t, s) is the following:

1. Generate a noise vector r with probability density Ds,t.

2. Output c = −r mod P(B) and y = r + c.

To show that c is (ε/2)-close to uniform, we would need Fourier analysis as well as results
about the properties of the Gaussian distribution and of the smoothing parameter. As the
details of this portion of the proof are not important for the remainder of the discussion,
the proof of this property and a discussion of the relevant properties of the smoothing
parameter are omitted from this work, but can be found in [39].
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To show the second property, fix any ĉ ∈ P(B). By definition, the distribution of r+ ĉ
is Ds,t+ĉ. Conditioning on c = ĉ is the same as conditioning on r+ ĉ ∈ L(B), since we only
consider the value of c, ĉ modulo P(B). By the discussion in Chapter 2, the distribution
of r + ĉ conditioned on r + ĉ ∈ L(B) is DL(B),s,t+ĉ as desired.

Note that this sampling procedure is efficient, as there are efficient algorithms for
sampling from a distribution with density function Ds,t.

The sampling procedure is used in the IncGDD to SIS reduction to create inputs for
the so-called Combining Procedure, which takes in a set of pairs (c, y) from the sampling
procedure, maps each c to a c̃ and a vector a, and obtains a short linear combination of
the vectors a that sums to 0 through a call to the SIS-oracle F .

Lemma 3.2 (Combining Procedure). On input an n-dimensional lattice L(B), a full rank
sublattice L(S) ⊂ L(B), m vectors C = [c1 . . . cm] ∈ P(B)m, a positive integer q, a bound
β and an SISn,m,q,β oracle F , there is a polytime algorithm that makes a single oracle call
F(A) = z and outputs a vector x ∈ Rn such that:

(i) If C is uniformly distributed, then the input A to the oracle is also uniformly dis-
tributed;

(ii) If the oracle’s answer z was in Λq(A), then the output vector x is in L(B); and

(iii) The distance between x and Cz is at most
√
mn‖S‖ · ‖z‖/q.

Proof. We define the combining procedure as follows:

1. Generate m uniformly random vectors vi ∈ L(B) mod P(S).

2. Let wi = ci + vi mod P(S) for each i = 1, . . . ,m.

3. Let ai = bqS−1wic ∈ Znq , for each i = 1, . . . ,m.

4. Call the SISn,m,q,β oracle with A = [a1 . . . am].

5. Output (C −W + SA/q)z, where W = [w1 . . . wm].

To show the first property, note that the sets v + P(B) mod P(S) for v ∈ L(B)
mod P(S) form a partition of P(S) into sets of equal volume. This implies that if C is
distributed uniformly, then so are both W and A.
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For the second property, consider the output vector

(C −W + SA/q)z =
∑
i

(ci − wi)zi + SAz/q.

We have that SAz/q is in L(B) since Az ≡ 0 mod q, whence Az/q is an integer vector.
Additionally, ci − wi = ((ci + vi)− wi)− vi is in L(B), as ci + vi ≡ wi mod L(S) ⊆ L(B)
and vi ∈ L(B). Thus,

∑
i(ci − wi)zi and hence the output vector, (C −W + SA/q)z, are

in the lattice.

For the third property, we have that

‖x− Cz‖ = ‖(C −W + SA/q)z − Cz‖
= ‖Wz − SAz/q‖

= ‖
∑
i

(wi − Sai/q)zi‖

=
1

q
‖S
∑
i

(qS−1wi − ai)zi‖

=
1

q
‖S
∑
i

(ui − buic)zi‖

where ui = qS−1wi. Then since the vector
∑

i(ui − buic)zi has all its entries bounded by∑
i |zi| ≤

√
m‖z‖, the triangle inequality gives us

‖S
∑
i

(ui − buic)zi‖ ≤ n
√
m‖z‖‖S‖

and thus ‖x− Cz‖ ≤ n
√
m‖z‖‖S‖/q.

Finally, we use the combining procedure to obtain a solution to the IncGDD instance.
The proof of this is presented in the next Theorem:

Theorem 3.3 (IncGDD to SIS reduction). Suppose

(i) g(n) > 0 and ε(n) = n−ω(1); and

(ii) m(n), β(n) = nO(1) and q(n) ≥ g(n)
√
m(n)nβ(n).

Then there exists a polynomial time reduction from solving IncGDDηε
γ,g (for γ = β

√
n) in

the worst case to solving SISn,m,q,β on the average with non-negligible probability (at least
1

6βm
), with a single call to the SIS oracle.
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Proof. Suppose n is fixed, and let g = g(n),m = m(n), ε = ε(n) and q = q(n). Given an
IncGDDηε

γ,g instance (B, S, t, r) and an SIS oracle F that succeeds with probability δ on
uniformly random inputs, the reduction does the following:

1. Pick an index j ∈ {1, . . . ,m}, and α ∈ {−β, . . . ,−1, 1, . . . , β} uniformly at random.
Let

ti =

{
−t/α, if i = j,

0, otherwise.

2. Call the sampling procedure m times to get (ci, yi) = S(B, ti, 2r/γ).

3. Let C = [c1 . . . cm] and Y = [y1 . . . ym].

4. Call the combining procedure with inputs B, S,C, q and the SISn,m,q,β oracle to get
back the vector x (and the output z of the oracle). Output s = x− Y z.

We will prove that this reduction takes polynomial time and succeeds with nonnegligible
probability.

Suppose j = j′ and α = α′, and denote by δj′,α′ the probability that the output z′ of
the oracle on a uniformly random input A′ satisfies

z′j′ = α′ and z′ ∈ Λq(A
′) \ {0} and ‖z′‖ ≤ β.

Since z′ is non-zero and bounded by β, we must have∑
j,α

δj,α ≥ δ.

Thus, there exists a (j′, α′) pair such that δj′,α′ ≥ δ
2βm

(which is non-negligible). For the
rest of the reduction, assume that j = j′, α = α′, as the event j = j′, α = α′ happens with
probability 1

2βm
which is nonnegligible.

We now show that if j = j′ and α = α′, the remainder of the reduction succeeds with
high probability. This will complete the proof, as it implies that the reduction succeeds
with nonnegligible probability.

Let H be the event that F is successful and that zj = α. We will use properties of the
statistical distance to show that the input C of the combining procedure to the SIS oracle
is very close to uniform, which implies that H happens with probability very close to δj,α.
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We will then show that the probability of success of the reduction conditioned on H is at
least 1

3
, to conclude the proof.

By the Sampling Procedure, the distance between each ci and the uniform distribution
on P(B) is ≤ ε/2. Hence, as all of the ci’s are independent, we have

∆(C,U(P(B))m) = ∆([c1 . . . cm],U(P(B))m) ≤
m∑
i=1

∆(ci,U(P(B))) ≤ εm

2
.

Recall that the statistical distance between two random variables cannot increase by
applying a (possibly randomized) function f . Hence, the distance between z and a z′

obtained from a uniformly random input to the combining procedure is ≤ εm
2

, and the
event H holds with probability at most δj,α − εm/2.

Finally, we show that the reduction conditioned on H succeeds with probability at
least 1/3. To establish this, we will show the stronger fact that the reduction succeeds
with probability at least 1/3 given fixed values of C,A and z = F(A) for which H is
satisfied. Thus, assume we have C,A and z such that zj = α, z ∈ Λq(A) \ {0} and
‖z‖ ≤ β.

Note that

‖s− t‖ = ‖x− Cz + Cz − Y z − t‖ ≤ ‖x− Cz‖+ ‖(C − Y )z − t‖

by definition of s and the triangle inequality. Notice that Tz = [t1 . . . tm]z = −t/α ·α = −t
by definition of T . Also note that q ≥ g

√
mnβ or, equivalently, 1

g
≥ n

√
mβ
q

, and thus by

Lemma 3.2 the distance between x and Cz is bounded by
√
mn‖S‖β
q

≤ ‖S‖/g. Thus, we
have

‖s− t‖ ≤ ‖S‖
g

+ ‖(C − Y + T )z‖.

It remains to show that ‖(C − Y + T )z‖ = ‖(Y − (C + T ))z‖ is bounded by r. We will
need the following two lemmas.

Lemma 3.4. Let v1, . . . , vm be m vectors chosen independently from probability distribu-
tions V1, . . . , Vm such that E[‖vi‖2] ≤ ` and ‖E[vi]‖2 ≤ k for all i. Then for any z ∈ Rm,

E[‖
∑
i

vizi‖2] ≤ (`+ k ·m)‖z‖2.
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Proof. By linearity of expectation and the fact that
∑

i |zi| ≤
√
m‖z‖, we have

E[‖
∑
i

vizi‖2] =
∑
i,j

zizjE[〈vi, vj〉]

=
∑
i

z2
iE[‖vi‖2] +

∑
i 6=j

zizj〈E[vi], E[vj]〉

≤ `
∑
i

z2
i +

∑
i 6=j

zizj‖E[vi]‖‖E[vj]‖ (by Cauchy-Schwartz inequality)

≤ `‖z‖2 +
∑
i 6=j

zizj max
i,j
‖E[vi]‖2

≤ `‖z‖2 + k
∑
i 6=j

zizj

≤ `‖z‖2 + k(
∑
i

|zi|)2

≤ `‖z‖2 + k(
√
m‖z‖)2

= (`+ km)‖z‖2.

Lemma 3.5 ([39, Lemma 4.3]). For any n-dimensional lattice Γ, vector c ∈ Rn, 0 < ε < 1,
and s ≥ ηε(Γ) (where ηε is the smoothing parameter of the lattice), the following two
properties hold:

(i) ‖Ex∼DΓ,s,c
[x− c]‖2 ≤

(
ε

1−ε

)2
s2n, and

(ii) Ex∼DΓ,s,c
[‖x− c‖2] ≤

(
1

2π
+ ε

1−ε

)
s2n.

As the proof is very technical, we won’t present it here. It can be found in [39].

We will now prove that ‖(Y − (C + T ))z‖ ≤ r with high probability. Since each yi is
distributed according to DL(B),s,ci+ti , Lemma 3.5 implies that

E[‖yi − (ci + ti)‖2] ≤
(

1

2π
+

ε

1− ε

)
s2n,

and

‖E[yi − (ci + ti)]‖2 ≤
(

ε

1− ε

)2

s2n.
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Since y1, . . . , ym are independent, Lemma 3.4 implies that

E

[
‖

m∑
i=1

(yi − (ci + ti))zi‖2

]
≤
(

1

2π
+

ε

1− ε
+

ε

1− ε
2

m

)
s2n‖z‖

≤ ‖z‖s
2n

6

since 1
2π
≤ 1

6
, ε = n−ω(1), and m = nO(1) imply that ε

1−ε and ( ε
1−ε)

2m are negligible for

sufficiently large n. As ‖z‖ ≤ β, s = 2r/γ and γ = β
√
n, we have

‖z‖s2n

6
≤ 2

3
r2.

By Markov’s inequality, we know that for a random variable X, Pr(X ≥ a) ≤ E(X)
a

. Hence,
we have

Pr[‖(Y − (C + T ))z‖ > r] ≤ Pr[‖(Y − (C + T ))z‖2 > r2] ≤ 2r2

3
· 1

r2
=

2

3
.

The reduction succeeds if ‖(Y − (C + T ))z‖ ≤ r. By the above, this happens with
probability ≥ 1

3
, and hence the reduction succeeds with non-negligible probability

Pr[reduction succeeds] ≥ 1

3 · 2βm
.

This concludes the proof.

Note that the big components of the runtime of this reduction are

1. The time it takes to sample m pairs using the Sampling Procedure, where each pair
takes the time needed to sample one element from Ds,t (O(m) operations);

2. A (small) number of matrix-vector multiplications (each requiring O(m2) operations);

3. One oracle call.

We make the simplifying assumption that the cost of an oracle call is at least as large
as sampling vectors and matrix-vector multiplications, thus making the number of oracle
calls the dominant term in the runtime. Note that this is a reasonable assumption, as even
checking that a vector x is an SIS solution takes a matrix-vector multiplication, and we can
expect finding an SIS solution to take at least as long as checking whether it is valid.
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3.1.3 Guaranteeing SIS Solutions

It is useful to restrict the remaining reductions and applications to SISn,m,q,β instances
that are guaranteed to have a solution (otherwise a reduction doesn’t give us any useful
information; if SISn,m,q,β is unsolvable, then it is trivially at least as hard as any solvable
problem). The following Theorem gives us a condition for the existence of a vector of norm
at most β in the SIS lattice. If it is left unspecified, we will implicitly assume in the coming
reductions that β satisifies this bound and that SISn,m,q,β has a solution.

Theorem 3.6. For any q and any A ∈ Zn×mq , the SIS instance (q, A, β) is guaranteed to

have a solution if β ≥
√
mqn/m.

Proof. Consider all vectors in Zm with coordinates in {0, . . . , qn/m} (which have norm
≤
√
mqn/m as needed). There are (bqn/mc+1)m ≥ (qn/m)m = qn of them, so the pigeonhole

principle implies there must be two vectors z1, z2 such that Az1 = Az2 mod q. (Think as
Az as a function that maps a vector in Zmq to a vector in Znq . As there are at least qn vectors
in the set we’re considering, they cannot all map to different values.) Then z = z1 − z2

satisfies Az = Az1 − Az2 = 0 mod q and ‖z1 − z2‖ ≤
√
mqn/m as each of the coordinates

is between −qn/m and qn/m.

3.2 GIVP to IncGDD

The original paper by Micciancio and Regev [39] presented multiple worst-case to worst-
case reductions from well known lattice problems to IncGDD. These include both adaptive
and non-adaptive reductions from GDDλn

γ , SIVPγ and GapCRPγ. Since SIVPγ is arguably
the most studied of the three in lattice cryptography, and many hard problems reduce to
it, we will only present the SIVPγ to IncGDD reduction.

Additionally, since the adaptive reductions have better parameters and tighter proofs,
we will only present the adaptive versions.

Theorem 3.7 (GIVP to IncGDD). For any γ(n) ≥ 1 and any φ, there exists a polyno-
mial time reduction from GIVPφ

8γ to IncGDDφ
γ,8. This reduction makes O(n2) calls to the

IncGDD oracle and succeeds with high probability.

Proof. Given a basis B and an IncGDDφ
γ,8 oracle, we want to construct a basis S of L(B)

such that ‖S‖ ≤ 8γ(n)φ(B). This is done iteratively. Let si be the longest vector at the
current step, with S = {s1, . . . , sn}. Let t be a vector orthogonal to s1, . . . , si−1, si+1, . . . , sn
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of length ‖S‖/2. Call the IncGDD oracle on (B, S, t, ‖S‖/8). If it succeeds, we have a
lattice vector u at distance ≤ ‖S‖/8 + ‖S‖/8 = ‖S‖/4 from t. Notice that ‖u‖ ≤ 3‖S‖/4,
and that u is independent from the vectors s1, . . . , si−1, si+1, . . . , sn as the angle between
u and the hyperplane spanned by the vectors sj, j 6= i is at least π/4 (t was orthogonal, of
length ‖S‖/2, and u is at distance at most ‖S‖/4 from it).

When the oracle call fails, it must be the case that ‖S‖/8 ≤ γ(n)φ(B) or ‖S‖ ≤
8γ(n)φ(B) as we need.

We need to show that this terminates in a polynomial number of steps. To see this,
note that the starting value of log(

∏
‖si‖) is polynomial in n, and decreases by a con-

stant every turn. Indeed, we can use the LLL algorithm to ensure the starting S satisfies
‖S‖ ≤ 2nλn(B), which implies log(

∏
‖si‖) ≤ log(

∏
‖S‖) ≤ log(2nλn)n. Then note that

log
∏

i ‖si‖ decreases by log 4
3

at each iteration, as the chosen si is replaced by a new vector
s′i satisfying ‖s′i‖ ≤ 3

4
‖si‖.

Finally, note that the quantity log
∏

i ‖si‖ will always be bounded from below by
log
∏

i min{‖si‖, 3
4
λn(B)} (as any si that is picked at any iteration must satisfy ‖si‖ ≥

λn(B)). Thus, the number of iterations will be bounded by

log(2nλn)n − log
∏

i min{‖si‖, 3
4
λn(B)}

log 4/3
= O(n2),

which is polynomial.

3.3 SIVP to SIS

Recall that SIVPγ = GIVPλn
γ . Thus, to be able to build a reduction from SIVPγ to SIS,

we first need a reduction from SIVPγ = GIVPλn
γ to GIVPηε

γ′ for some γ′. We present this
reduction in the following Lemma.

Lemma 3.8. There exists a negligible ε = ε(n) for which there is a (trivial) polynomial
time reduction from SIVP

γω(
√

logn)
to GIVPηε

γ .

Proof. By properties of the smoothing parameter, there exists a negligible ε(n) such that
ηε(Λ) ≤

√
ω(log n)λn(Λ) for any n-dimensional lattice Λ.

Thus we have a polynomial time reduction from SIVP
γω(
√

logn)
to GIVPηε

γ as desired.
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Finally, we can combine all of the reductions so far to get a reduction from SIVPγ to
SISn,m,q,β. Recall from Section 3.1.3 that we need β ≥

√
mqn/m to guarantee the existence

of SISn,m,q,β solutions. If that holds, then we can construct a reduction from SIVPγ to SIS.

Theorem 3.9. Let n ∈ N, β = nO(1),m = nO(1), q ≥ 8n
√
mβ and γ = 8

√
nω(
√

log n)β.
Then there exists a reduction from worst-case SIVPγ to average-case SISn,m,q,β. The re-
duction has tightness gap O(n2βm).

Proof. Recall that we have:

1. A reduction from IncGDDηε
γ,g to SISn,m,q,β for g(n) > 0,m(n) = nO(1), negligible

function ε(n) = n−ω(1), β(n) = nO(1) and q(n) ≥ g(n)
√
m(n)nβ(n) (Theorem 3.3),

for γ = β
√
n.

2. A reduction from GIVPηε
8γ to IncGDDηε

γ,8 (Theorem 3.7).

3. A reduction from SIVP
8γω(
√

logn)
to GIVPηε

8γ (Lemma 3.8).

Setting g(n) = 8, we can combine these into a reduction from SIVPγ to SISn,m,q,β for

γ = 8β
√
nω(

√
log n), whenever q ≥ 8n

√
mβ.

Consider the tightness gap of this proof. The IncGDD to SIS reduction makes one call
to the SIS oracle and succeeds with probability ≥ 1

6βm
, and the GIVP to IncGDD reduction

makes O(n2) calls to the IncGDD oracle and succeeds with probability close to 1 (if the
SIS instance has a solution). Thus, the total tightness gap is given by

t · 1

ε
= O(n2)6βm = O(n2βm).

3.4 Gentry, Peikert, Vaikuntanathan Reduction

Theorem 3.10 ([25, Proposition 5.2]). Let g > 1 be a constant. Let m = nO(1) be an
integer, β = nO(1), and q ≥ β

√
nω(
√

log n). Then there exists a reduction from worst-case
SIVPγ to average-case SISn,m,q,β for γ = g · β

√
nω(
√

log n).

The tightness gap of this reduction is O(n2βm).
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Proof Sketch. This reduction follows the same template as the reduction from Theorem 3.3.
We first present the high-level overview in Figure 3.3. We then give a proof sketch and an
analysis of the tightness of the proof.

SIVPg·β
√
nω(
√

logn) = GIVPλn
g·β
√
nω(
√

logn)
→ GIVPηε

g·β
√
n
→ IncIVDηε

g·β
√
n,g
→ SISn,m,q,β

Figure 3.3: SIVPγ to SIS Reduction Overview (Gentry, Peikert & Vaikuntanathan)

The first part of the reduction is a reduction from IncIVD to SIS. IncIVD (see Defi-
nition 2.13) is an intermediate problem that’s very similar to IncGDD, but finds a lattice
vector slightly closer to the target point. This reduction is similar to that of Theorem 3.3,
but instead of using a continuous Gaussian to sample uniformly amongst the cosets of
1
q
L(B) in L(B) to create the input matrix A to the SIS oracle, we use a discrete Gaussian

to sample uniformly amongst the cosets of L(B) in qL(B)1.

This part succeeds with probability 1
2βm

. Indeed, as in Theorem 3.3, we choose an index

j ← [m] and α ← {−β, . . . ,−1, 1, . . . , β} and succeed if the jth component of the vector
returned by the SIS oracle is equal to α (which happens with probability ≥ 1

2βm
).

For the second part of the proof, we reduce GIVPηε
gγ to IncIVDγ,g, which requires O(n2)

calls to the IncIVD oracle. The proof of this reduction is very similar to that of Theorem 3.7.
Finally, we use Lemma 3.8 to reduce SIVPγω(

√
logn) to GIVPηε

γ (which is tight).

Chaining these reductions, we obtain a reduction from SIVPO(β
√
nω(
√

logn)) to SISn,m,q,β
with tightness gap O(n2βm).

3.5 Micciancio and Peikert Reduction

Theorem 3.11 ([38, Theorem 1]). Let n and m = nO(1) be positive integers, and let
β ≥ β∞ ≥ 1. Let q be a prime satisfying q ≥ βnδ for some constant δ > 0. Let γ =
max{1, ββ∞/q} · O(β

√
n)ω(
√

log n). Then there is a reduction from worst-case SIVPγ to
average-case SISn,m,q,β,β∞

2.

The tightness gap of this reduction is n2.
1The change from sampling from a continuous Gaussian to a discrete one is what allows us to find a

closer lattice point to the target t using the SIS oracle (along with improved discrete Gaussian sampling
techniques and bounds).

2SISn,m,q,β,β∞ is the problem of finding a solution z to SISn,m,q,β that also satisfies ‖z‖∞ ≤ β∞.
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Proof Sketch. Again, this proof follows a similar approach to Theorems 3.9 and 3.10. The
main difference is that the intermediate problem no longer resembles a closest vector prob-
lem (which was then used to iteratively find shorter and shorter sets of vectors), but is
replaced with the problem of iteratively sampling from Gaussian distributions of decreas-
ing widths. We first present the high-level overview in Figure 3.43. We then give a proof
sketch and an analysis of the tightness of the proof.

SIVPγω(
√

logn) = GIVPλn
γω(
√

logn)
→ GIVPηε

γ → test ηi → IncDGSηi
si
→ SISn,m,q,β,β∞

Figure 3.4: SIVPγ to SIS Reduction Overview (Micciancio and Peikert)

The IncDGSηi
si

problem takes as input a set {(yi, si) : yi ∼ DΛ,si} of discrete Gaussian
samples (of varying widths), calls the SIS oracle on a matrix of coefficients A = [a1, . . . , am]
defined by ai = B−1yi mod q, and uses the output of the oracle to find a sample from
a narrower discrete Gaussian distribution DΛ,s, where s < max si. If q is a prime (as is
usually the case in our applications), then this part succeeds with high probability with a
single call to the SIS oracle. Otherwise, it succeeds with probability 1/dq, where dq denotes
the number of proper divisors of q.

The function test ηi takes in a candidate upper bound ηi for the smoothing parameters,
and recursively uses an IncDGSηi

si
oracle to find samples of width ≤ q

√
2β∞ηi. This takes

(up to) n calls to the IncDGSηi
si

oracle, and succeeds with high probability.

Finally, to solve GIVPηε
γ , the reduction calls the function test ηi with candidate upper

bounds ηi = 2i, 1 ≤ i ≤ n for the smoothing parameter ηε (note that we can guarantee that
ηε is in the range [1, 2n] by first LLL reducing the basis). Each call either fails, or returns a
set of linearly independent vectors of length bounded by γ/2ηi < γηε by a property of the
smoothing parameter, thus solving GIVPηε

γ . This takes n calls to the test ηi oracle, and
succeeds with high probability.

Finally, we can reduce SIVPγω(
√

logn) to GIVPηε
γ using Lemma 3.8 (which is tight).

Thus, we have a reduction from SIVPγ to SISn,m,q,β,β∞ , where

γ = max (1, ββ∞/q) ·O(β
√
n)ω(

√
log n),

that makes n2 calls to the SIS oracle and suceeds with high probability.

3The intermediate problems were not named in [38]. We added names to better highlight the similarities
and differences between this reduction and previous ones.
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3.6 Tightness Discussion

We have seen three different reductions. Theorems 3.9 and 3.10 both achieve an approxi-
mation factor of γ0 = O(β

√
nω(
√

log n)) and have a tightness gap of O(n2βm). The only
non-technical difference between the two results is the lower bound on the value of q (q
can be smaller in the reduction from Theorem 3.10).

Theorem 3.11 further decreases the required bound on q and achieves an approximation
factor γ1 ∈ [1, β]O(β

√
nω(
√

log n))4, but has a smaller tightness gap of only n2. If γ1 > γ0,
then Theorem 3.11 reduces a strictly easier instance of SIVPγ to SISn,m,q,β (for a fixed
β). While this doesn’t affect the tightness gap, it needs to be taken into account when
analyzing the concrete security guarantees that the worst-case to average-case reductions
grant to cryptographic constructions based on SIS. Methods for estimating the cost of
solving SIS and SIVP problems will be presented in Chapter 4.

We will discuss the concrete security guarantees obtained from the worst-case to average-
case reductions for two signature schemes based on the hardness of SIS in Chapters 5 and
6.

4We have that ββ∞/q < 1 if q ≥ ββ∞, and ββ∞/q = β/nδ (which can be as big as β if δ ≈ 0) if
β = β∞.
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Chapter 4

Solving SIS and SIVP

This chapter discusses the fastest known algorithms for solving hard problems on lattices.
In particular, we will present the best algorithms for solving the SIS and SIVPγ problems,
and methods for estimating the security level of a particular SIS or SIVPγ instance.

The Shortest Integer Solution problem (Definition 2.14) is often found at the heart of
lattice-based hash functions and signature schemes. By presenting the best algorithms for
solving SIS, we describe the methods used for evaluating the security of these cryptographic
constructions directly.

The Shortest Independent Vector problem (Definition 2.8) is a problem at the heart of
many security proofs in lattice cryptography. However, not many people have analyzed the
hardness of solving SIVP. Micciancio and Goldwasser [37] showed that SIVPγ

√
n polytime

reduces to SVPγ, thereby establishing that the asymptotic hardness of SIVPγ
√
n is not sig-

nificantly more than that of SVPγ. Note that for general lattices, no polynomial reduction
from SVPγ to SIVPγ′ is known. Thus, it is possible that SIVPγ

√
n is significantly easier

than SVPγ.

Many lattice-based cryptographic constructions base their hardness on Ring or Module
variants of SVP or SIVP. It is known that Ring-SVP is equivalent to Ring-SIVP, since if v
is a short polynomial in Z[x]/(f), where f(x) is an irreducible polynomial of degree n, then
v, vx, vx2, . . . , vxn−1 are linearly independent ring elements and have the same length as v.
It is not known whether Module-SIVP is strictly harder than Ring-SIVP, or strictly easier
than integer SIVP, so the best current algorithms are the same for SIVP and Module-SIVP.

Section 4.1 will describe the best algorithm paradigms for solving exact-SVP and the
running times of state-of-the-art exact-SVP algorithms. Then, Section 4.2 will describe the
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best algorithms for approximate SVP (SVPγ). Finally, Section 4.3 will discuss methods
for solving other lattice problems using an SVPγ oracle, in particular showing how to
solve SIVPγ (Section 4.3.1), SIS (Section 4.3.2) and SIS and SVPγ in different norms
(Section 4.3.3).

4.1 Algorithms for Exact SVP

We will now describe the best algorithms for solving exact-SVP. Note that the Shortest
Vector Problem is NP hard, so no efficient algorithm is expected to exist for solving it
exactly.

There are two main categories of algorithms for SVP, enumeration and sieving algo-
rithms. Both have exponential runtimes, with sieving algorithms being faster asymptoti-
cally. However, the constants in the exponent are such that enumeration algorithms are
faster up to relatively large (n ≥ 70) lattice instances. To further complicate the issue,
experimental runtimes have been lower than the ones that have been proved, which means
it’s unclear at which point sieving becomes faster than enumeration. Lattices of the size
used in cryptographic protocols currently fall into this grey zone, so we can only provide
upper bounds on the runtimes of algorithms for SVP.

We will present a basic enumeration algorithm and a sieving algorithm, as well as
improvements and best known runtimes for both categories of algorithms. Our description
of the algorithms is primarily based on the survey work of Laarhoven, van de Pol and de
Weger [30].

4.1.1 Enumeration

The main idea behind enumeration algorithms is to try all possible combinations of the
basis vectors and see which one is the shortest. However, as there is an infinite number
of such combinations in a lattice, it is necessary to find a good enumeration strategy and
to bound the number of vectors we need to enumerate. Let R be an upper bound on the
length of the short vector we are seeking. If we seek an exact solution to the SVP problem,
then R = λ1.

One way to bound this is through projective lattices. Let Λ be an n-dimensional lattice
with basis {b1, . . . , bn}. Let πk(u) denote the projection of the vector u onto the projected
lattice, that is, Λ projected onto the orthogonal complement of the span of the vectors
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〈b1, . . . , bk−1〉. If u is a vector of length at most R, then it clearly holds that

‖πn(u)‖2 ≤ ‖πn−1(u)‖2 ≤ · · · ≤ ‖π1(u)‖2 = ‖u‖2 ≤ R2.

By finding bounds on the length of ‖πi(u)‖2 for the relevant i’s, we can bound the
number of u’s that satisfy the inequalities, and recursively use short vectors in πi(Λ) to
find short vectors in πi−1(Λ). We will not cover the derivation of the bounds, but suffice
to say that the vectors we need to check are exponential in number.

One can think of enumeration algorithms as a search through a tree where each node at
the ith level corresponds to a short vector v in πn−i+1(Λ) and its children are short vectors
u in πn−i+2(Λ) that project to v by πn−i+1, that is v = πn−i+1(u).

The running times of such algorithms grow exponentially, but are guaranteed to find a
vector of the desired length (if such a vector exists). Other enumeration algorithms make
use of a tradeoff between probability of success and performance, pruning branches of the
search tree when the probability of them containing the short vector is small and thus
decreasing the size of the tree. There are also extreme pruning algorithms which prune
large portions of the tree, but are fast enough that running them repeatedly makes the
probability of success sufficiently large.

The fastest enumeration algorithm has a runtime of approximately 20.187n logn+1.019n+16.1

[6].

4.1.2 Sieving

An alternative to enumeration algorithms are the so-called sieving algorithms. The first
sieving algorithm was described by Ajtai et al. [4]. Their algorithm started with a huge
list of lattice vectors and iteratively reduced both the size of the list and the norms of the
vectors in it. Later sieving algorithms such as the one of Micciancio and Voulgaris [40] use
ideas from [4] to describe a way to build a list that hopes to exhaust the space of short
lattice vectors. We will describe the main ideas behind the algorithm of [40].

The idea is as follows: Start with an empty list Q. Suppose we have an estimate
µ ≈ λ1(Λ) (if the estimate is wrong, we can always increase or decrease µ and re-run the
algorithm). Given the estimate µ, the algorithm samples short error vectors ei, finds an
associated lattice vector vi, reduces the vector ri = vi + ei to a shorter vector r′i = v′i + ei
using lattice vectors already in Q, and adds v′i to the list Q. Thus, the algorithm builds a
list Q of short lattice vectors (of norm at most ‖B‖ and pairwise at least µ apart). The
algorithm stops if two lattice vectors in Q are at most µ apart or we have used too many
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samples. It suffices to show that at any point in time, it is likely that either a solution
is found, or a new vector is added to the list. Showing that the list size is bounded by a
finite constant concludes the proof, as it guarantees that we will escape the loop by finding
a short vector with high probability.

To show that the size of the listQ is bounded by a constant (depending on the dimension
n) one can note that the bounds on the length and pairwise distance of vectors in Q mean
that there is a cone around each vector that contains no other vectors from Q. It is possible
to show that each such cone has width at least π/3, so the size of the list Q is bounded
by the number of cones of angle π/3 needed to cover an n-dimensional sphere. Details on
this can be found in [40] or [30]. This gives us a lower bound of 20.2075n+o(1) on the space
complexity of any sieving algorithms (as the list Q needs to be close to its maximal possible
length before we are likely to find a short vector). Experimentally, this lower bound has
proved to be pretty accurate for the space used by sieving algorithms. The runtime of
sieving algorithms is approximately quadratic in the size of the list Q, or about 20.415n+o(1),
as a sieving algorithms needs to find the shortest distance between vectors for all pairs of
vectors in Q.

Sieving algorithms are asymptotically faster than enumeration algorithms with runtime
O(2cn), but still exponential and with much larger constants. Micciancio and Voulgaris’
algorithm finds a solution in time at most poly(n)23.199n and space at most poly(n)21.325n

with high probability. Currently, the best sieving algorithms are from [7], and have asymp-
totic runtime predictions of 20.349n+o(n). However, similarly to enumeration algorithms, the
practical runtimes are often much smaller, taking 2cn+o(n) with c = 0.292. A “paranoid”
lower bound on the runtime of sieving algorithms is given by 20.2075n, as any such algorithm
must take at least this time to construct the list Q [7].

4.1.3 Sieving vs. Enumeration

It is not immediately obvious whether sieving or enumeration is the faster approach for a
given lattice. Enumeration has smaller multiplicative constants but an extra log factor in
the exponent, while sieving has larger multiplicative constants (but no log n factor in the
exponents). Thus, for smaller instances, enumeration is better, but sieving is believed to
be faster for lattices of dimension n ≥ 250 (such as the ones in many concrete proposals for
lattice-based post-quantum cryptosystems) [8]. Some better estimates have been obtained
recently, and suggest the dimension at which sieving outperforms enumeration could be as
low as n = 70 [7]. However, sieving and enumeration algorithms keep being improved, so
it is possible this crossover point will change in either direction.
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To test the exact and approximate-SVP algorithms, there are a number of lattice chal-
lenge problems at [1]. The largest instance of exact-SVP that has been solved to date is a
lattice of dimension n ≈ 100, by Albrecht et al. [7], using the sieving method1.

4.2 Algorithms for Approximate-SVP

Algorithms for SVPγ depend on the approximation factor we desire. If we want a solu-
tion for γ = O(1) (which includes exact solutions), we need to use sieving or enumeration
algorithms that have exponential running time. These were covered in Section 4.1. Algo-
rithms for solving SVPγ for larger γ’s are generally so-called basis reduction algorithms,
and produce a basis of reasonably short vectors (of which the shortest is a solution to
SVPγ).

Recall that the Gram-Schmidt Orthogonalization (GSO, see Definition 2.21) of a basis
B = {b1, . . . , bn} of Rn is a basis B∗ = {b∗1, . . . , b∗n} of vectors that are pairwise orthogonal
and reasonably short. Lattice reduction algorithms are based on trying to mimic GSO for
lattice bases.

4.2.1 LLL

The LLL algorithm [32] attempts to mimic GSO on an integer lattice Λ, by subtracting
integer multiples (based on the Gram-Schmidt coefficients) of vectors b∗1, . . . , b

∗
i−1 from bi

to obtain b∗i . The LLL algorithm seeks to find vectors that are length reduced (i.e. it is
impossible to find a shorter vector by subtracting integer multiples of other vectors in the
basis) and such that the ratio between two GSO-vectors is sufficiently large (i.e. the lengths
of the GSO vectors of the basis do not decrease too quickly).

We say that a basis B is LLL reduced if

1. For every i < j, we have |µi,j| ≤ 1
2
; and

2. For every 1 ≤ i < n, we have
‖b∗i ‖2
‖b∗i−1‖2

≥ δ − µ2
i,i−1 for δ ∈ (1/4, 1).

1There is no fast method to determine whether a short vector is indeed the shortest vector in a lattice.
It is thus possible that algorithms for solving approximate-SVP in higher dimensions have in fact solved
exact-SVP. The number presented is the dimension of the largest lattice on which Albrecht et al. [7] ran
a sieving algorithm.
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The LLL algorithm (Algorithm 1) returns an LLL-reduced basis. In the two-dimensional
case, we can use Gauss’s algorithm to return almost-optimal bases, that is bases {b∗1, b∗2}
such that the GSO-ratio satisfies

‖b∗2‖2

‖b∗1‖2
≥ 1− µ2

2,1 ≥
3

4
.

While achieving this ratio would be ideal in higher dimensions, no one has found an al-
gorithm that achieves it with provably polynomial runtime, and so Lovász’s condition
represents a relaxation of this goal, replacing 1 − µ2

i,i−1 with δ − µ2
i,i−1 for δ ∈ (1/4, 1).

The LLL algorithm seeks to find a basis that is locally (that is for each adjacent pair of
vectors) Gauss reduced, by applying Gauss’s algorithm to each pair of vectors bi, bi−1 while
ensuring the basis is size-reduced at all times.

We now present the LLL algorithm. For simplicity, we omit the updates to the Gram-
Schmidt vectors, and instead assume that the Gram-Schmidt vectors are known and up-
to-date with the current basis at all times. The LLL algorithm returns a basis B satisfying
‖B‖ ≤ 2nλn(B), i.e. a basis with aproximation factor 2n. The runtime is O(n6(log ‖B‖)3)
(it can be improved slightly via optimizations) [32].

Algorithm 1 LLL basis-reduction algorithm

Require: a basis {b1, . . . , bn} of L and a constant δ ∈ (1
4
, 1).

Ensure: the output basis {b1, . . . , bn} of L is LLL reduced.
1: i← 2
2: while i ≤ n do
3: bi ← bi −

∑i−1
j=1bµi,jebj

4: if ‖b∗i ‖2 ≥ (δ − µ2
i,i−1)‖b∗i−1‖2 then

5: i← i+ 1
6: else
7: swap(bi, bi−1)
8: i← max{2, i− 1}

4.2.2 Korkine-Zoltarev and the BKZ Algorithm

Korkine-Zoltarev (KZ) reduction (Algorithm 2) is a different notion of reduction, which
returns bases with small approximation and Hermite factors. The idea is to obtain a basis
{b1, . . . , bn} such that the Gram-Schmidt vectors of the basis satisfy ‖b∗i ‖ = λ1(πi(L)),
where πi(L) is the lattice projected onto the complement of the linear span 〈b1, . . . , bi−1〉.
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Given an SVP oracle that works for small (up to β dimensons), we can use it to find a
KZ-reduced basis for a lattice of dimension β. The SVP subroutine can be either a sieving
or an enumeration algorithm, generally chosen based on how the block size compares to
the cutoff at which sieving becomes more efficient than enumeration, which implies the
KZ basis-reduction algorithm has exponential runtime. We will describe this algorithm in
more detail in Section 4.3.1.

Algorithm 2 KZ basis-reduction algorithm

Require: a basis {b1, . . . , bβ} of L and an SVP oracle for up to β dimensions.
Ensure: the output basis {b1, . . . , bβ} of L satisfies ‖b∗i ‖ = λ1(πi(L)) for each i ∈
{1, . . . , β}.

1: for i = 1 to β do
2: call the SVP oracle to find b∗i ∈ πi(L) of length λ1(πi(L))
3: lift b∗i to a lattice vector bi such that {b1, . . . , bi} is size reduced
4: update the vectors {bi+1, . . . , bβ} by changing them to lattice vectors such that
5: {b1, . . . , bβ} is a basis for L.

The block Korkine-Zolotarev (BKZ) algorithm (Algorithm 3) provides a way to harness
the KZ notion of reduction, while keeping the runtime reasonable. The BKZ algorithm
returns a basis that is locally KZ-reduced, that is, a basis in which each block of β con-
secutive vectors is KZ-reduced. The idea is similar to the LLL algorithm, but focuses on
ensuring all β-dimensional sub-bases are optimal (in the Korkine-Zolotarev sense), instead
of all 2-dimensional bases. If the blocksize is β = 2, then the BKZ algorithm is equivalent
to the LLL algorithm.

Algorithm 3 BKZ basis-reduction algorithm

Require: a basis {b1, . . . , bn} of L, a constant δ ∈ (1
4
, 1), and an SVP oracle for up to β

dimensions.
Ensure: the output basis {b1, . . . , bn} of L is LLL-reduced with factor δ and satisfies
‖b∗i ‖ = λ1(πi(bi, . . . , bi+β−1)) for each 1 ≤ i ≤ n− β + 1.

1: i← 2
2: repeat
3: for i = 1 to n− β + 1 do
4: KZ-reduce the basis πi(bi, . . . , bi+β−1)
5: size-reduce the basis {b1, . . . , bn}
6: until No changes occur.
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The runtime of the BKZ algorithm has not been proven polynomial, but when the
algorithm halts we know that the basis is good.

Specifically, we know that BKZ with blocksize β on a basis of dimension n achieves a
provable root Hermite factor of

δ0 =
(√

γβ
1+n−1

β−1

)1/n

where γβ is the Hermite constant in dimension β. Recall that this means that the shortest

vector b1 in the basis satisfies ‖b1‖ ≤ δn0 (vol(L))1/n. Exact values of γβ are not known for

β ≥ 24, but can be bounded by γβ ≤ 2
π

(
(1 + β

2
)!
)2/β

[30]. Figure 4.1 depicts this provable
upper bound. Better upper bounds on γβ can be computed numerically, although it doesn’t
seem to have been done for n ≥ 50. A few examples of improved provable root Hermite
bounds can be found in Table 4.1.

Figure 4.1: Provable BKZ root Hermite factor (δ0(β)) achieved by blocksize

As is often the case with lattice algorithms, experiments show that the root Hermite
factors achieved in practice are often better (smaller) than the ones we can prove. For
blocksizes β ≥ 50 and β � n, the root Hermite factor achieved experimentally seems to
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follows the asymptotic formula (see [7]):

δ0(β) =
[
(βπ)1/ββ/(2πe)

]1/2(β−1)
. (4.1)

This seems to be the best tool for estimating the root Hermite factor BKZ achieves for
blocksizes βBKZ ≥ 50. Figure 4.2 depicts the behaviour of the function δ0(β).

Figure 4.2: BKZ root Hermite factor (δ0(β)) achieved by blocksize

For smaller blocksizes, the achievable root Hermite factor is usually measured experi-
mentally. We reproduce some results from [30, Table 1] in Table 4.1.

Various improvements to BKZ have been proposed since its introduction. The most
influential one is BKZ 2.0 [21], which uses several optimizations and a technique known
as pruned enumeration to increase the achievable blocksize β in BKZ and to minimize the
number of calls to the exact-SVP oracle needed by BKZ. Many other improvements have
been proposed since, most recently by Albrecht et al. [7].
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Algorithm-β LLL (BKZ-2) BKZ-20 BKZ-28

Experimental root-Hermite factor δ0 1.0219 1.0128 1.0109
Theoretical proven upper bound 1.0746 1.0337 1.0282

Table 4.1: BKZ root Hermite factor for small blocksizes.

Some work has also been done towards analyzing the quality of a basis output by so-
called truncated BKZ, which halts the BKZ algorithm after some number of iterations
instead of waiting until the basis stops changing. Experiments have shown that BKZ
achieves good results in relatively few calls to the SVP oracle, and so ending the algorithm
early can provide a worthwhile tradeoff between runtime and the quality of the output
vectors.

4.2.3 Estimating Security Levels from BKZ

To estimate the cost of running BKZ, there are two main factors to consider. The first is
the cost of the exact-SVP oracle, and the second is the number of calls to the SVP oracle
used by BKZ. Albrecht et al. [6] provide a comprehensive list of the cost models chosen
for the various lattice-based schemes in the NIST-PQC competition. The runtimes of
enumeration and sieving algorithms were presented in Sections 4.1.1 and 4.1.2 respectively.
When determining the number of SVP oracle calls required by BKZ, the most common
choice was the “Core-SVP” model introduced in [42] which considers a single call to the
SVP oracle. An alternate model estimates the number of calls to be 8n, where n is the
dimension of the starting lattice.

The Dilithium team [36] chose to consider an SVP oracle based on sieving with cost
20.292β, and the core-SVP methodology of a single SVP call to estimate the cost of an
attack on their signature scheme. We will be using the same cost model for our analysis
in Chapters 5 and 6.

Thus, given a lattice problem that can be solved using lattice reduction, one can use
the following steps to determine the cost of using BKZ to solve it. If this lattice problem is
obtained from the security proof of a cryptosystem, one can then use the cost to determine
the security level of the cryptosystem.

1. Based on the problem that you’re trying to solve, determine the root Hermite factor
needed to solve it. When solving SIS directly, the root Hermite factor is given as
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(
β

qn/m

)1/m

(see Section 4.3.2). When solving SIVPγ, the approximation factor γ

corresponds to a root Hermite factor of
(√

γ√
n

) 1
n

(see Section 4.3.1).

2. Use the asymptotic formula for the root Hermite factor (4.1) to find the BKZ blocksize
βBKZ needed to achieve the root Hermite factor from part 1.

3. Use your favorite BKZ cost model to estimate the runtime of BKZ with a blocksize
of βBKZ . Use this to determine the security parameter.

4.3 Solving Lattice Problems Using SVP

4.3.1 Solving SIVP

We will first present the polynomial-time reduction from SIVPγ
√
n to SVPγ described in

[37]. This is composed of a first reduction from KZPγ to SVPγ, followed by a reduction
from SIVPγ

√
n to KZPγ. We will then use this reduction to estimate the computational

cost of solving an SIVPγ instance.

Definition 4.1 (γ-approximate Korkine-Zoltarev problem (KZPγ)). Let B = {b1, . . . , bn}
be a basis, and B∗ be the corresponding Gram-Schmidt orthogonalized basis, defined by
b∗1 = b1 and b∗i = bi − proji(bi) for i ≥ 2. The projection is defined by the formula
proji(bi) =

∑i−1
j=1 µi,jb

∗
j where µi,j = (bi · b∗j)/‖b∗j‖2 are the Gram-Schmidt coefficients.

We call a basis B γ-approximate Korkine-Zoltarev (KZγ) reduced if

(i) ‖b∗i ‖ ≤ γλi for each 1 ≤ i ≤ n; and

(ii) For all j < i, the Gram-Schmidt coefficients µi,j of B satisfy |µi,j| ≤ 1
2
.

The γ-approximate Korkine-Zoltarev problem asks, given a basis B, to output a basis
equivalent to B that is KZγ reduced.

Theorem 4.2. There is a polynomial-time reduction from KZPγ to SVPγ

Proof. Let Λ be a full rank basis. First, we call the SVPγ oracle on Λ to get a vector b1

such that ‖b1‖ ≤ γλ1. By definition of the Gram-Schmidt vectors, ‖b∗1‖ = ‖b1‖ ≤ γλ1 as
desired. Suppose we have found vectors b1, . . . , bi−1, and want to find the vector bi. Let
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Λi = πi(Λ) be the projection of Λ onto the orthogonal complement of b1, . . . , bi−1, and call
the SVPγ oracle to find a γ-approximate vector b̄i in this lattice.

We now lift b̄i ∈ Λi to a lattice vector bi ∈ Λ that satisfies πi(bi) = b̄i. Note that
it is possible find such a vector bi which is at distance at most ±1

2
‖b∗j‖ from each of the

hyperplanes spanned by vectors [b1, . . . , bj−1]2. This implies that |µi,j| ≤ 1
2

by definition,
as µi,j measures the (normalized) distance between bi and the hyperplane spanned by b∗j .

Finally, we show that this bi also satisfies ‖b∗i ‖ ≤ γλi(Λ). Notice that b∗i = πi(bi)
by definition. Then, since we found b̄i = πi(bi) using an SVPγ oracle in Λi, we have
‖πi(bi)‖ ≤ γλ1(Λi). We also know that Λ must contain at least i linearly independent
vectors of length ≤ λi(Λ), so there must be a vector in Λi of length at most λi(Λ). Thus,
we have λ1(Λi) ≤ λi(Λ) and so

‖b∗i ‖ = ‖πi(bi)‖ ≤ γλ1(Λi) ≤ γλi(Λ)

as desired. We repeat this for all i, and output the basis [b1, . . . , bn] which is KZγ reduced
by definition.

Thus, we can find a solution to KZPγ by making n calls to the SVPγ oracle.

Finally, we reduce SIVPγ
√
n to KZPγ.

Theorem 4.3. There is a polynomial-time reduction from SIVPγ
√
n to KZPγ.

Proof. We show that if B is KZγ reduced, then B is a solution to SIVPγ
√
n by showing

that ‖bi‖ ≤
√
nγλi.

It is clear that a KZγ-reduced set is a basis (as each vector has a non-trivial portion
that is orthogonal to the ones picked previously). We know by definition that |µi,j| ≤ 1

2
.

2This can done by an algorithm known as the Nearest Plane Algorithm, which finds a close lattice point
to b̄i by finding the closest point on each hyperplane spanned by the Gram-Schmidt vectors [b∗1, . . . , b

∗
j ].
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Thus, we have

‖bi‖2 = ‖b∗i +
i−1∑
j=1

µi,jb
∗
j‖2

≤ ‖b∗i ‖2 +
i−1∑
j=1

µ2
i,j‖b∗j‖2

≤ γ2λ2
i +

1

4

i−1∑
j=1

γ2λ2
j

≤ γ2λ2
i +

i− 1

4
γ2λ2

i

=

(
i+ 3

4

)
γ2λ2

i .

We have ‖bi‖ ≤
√
iγλi ≤

√
nγλn as desired. Thus, SIVPγ

√
n reduces to KZPγ (and SVPγ).

Note that this reduction is tight, as a single call to the KZPγ oracle returns a basis
that is also a solution to SIVPγ

√
n.

Thus, if the running time of the SVPγ oracle is T (i) on a lattice of rank i, then the
running time of the SIVPγ

√
n to SVPγ reduction is

∑n
i=1 T (i), which is O(T (n))3, so the

reduction is tight.

To estimate the cost of solving an SIVPγ instance using BKZ, we have two options.
First, we could directly study this cost. Unfortunately, there doesn’t seem to be anything
in the literature on the length of the vectors output by BKZ4. The second option is to note
that SIVPγ reduces to SVPγ/

√
n, which in turn reduces to HSVP√

γ/
√
n
. Thus, we can use

an HSVP√
γ/
√
n

solver (i.e. one that achieves root Hermite factor
(√

γ/
√
n
)1/n

) to solve

SIVPγ. This gives us an upper bound on the cost of solving SIVPγ.

Finally, note that we are concerned with the cost of solving a worst-case SIVPγ instance,
as the reductions from Chapter 3 are all from worst-case SIVPγ. If we pick blocksizes that

provably achieve the root Hermite factor
(√

γ/
√
n
)1/n

, then we will clearly be able to

solve the worst-case instance of SIVPγ. However, evidence suggests (see [30]) that the

3This holds as we can expect the cost of any SVP solver to be fully exponential.
4The Geometric Series Assumption lets us estimate the length of the Gram-Schmidt vectors of the

output basis, but it is not clear how to relate those to the length of the basis vectors.
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provable upper bound is only an upper bound for a worst-case basis given as input to the
basis reduction algorithms, and that the true cost of solving a worst-case lattice problem
is much lower, as we can pick one of many bases for the lattice in question.

For instance, in the case of LLL (or BKZ-2), there are input bases for which the output
of the LLL algorithm satisfies the provable upper bound. However, the output of running
LLL on a re-randomized basis of the same lattice again achieves the experimental root
Hermite factor [30]. Similarly, one can show that there are bases that achieve the provable
upper bound for KZ-reduction (although whether there are bases for which BKZ returns a
basis that achieves the provable upper bound root Hermite factor is unknown), but these
worst-case instances again depend on the shape of the basis, and not on the underlying
lattice. Thus, as the worst-case root Hermite factor of lattice reduction algorithms depends
on the shape of the input basis, it seems likely that the BKZ blocksize needed to solve a
worst-case lattice problem (such as worst-case SIVPγ) is much closer to the BKZ blocksize
found experimentally than the BKZ blocksize obtained from the provable root Hermite
factor formulas. As far as we can tell, there doesn’t seem to be any literature analyzing
the hardness of worst-case lattice problems.

Thus, we will use the experimental root Hermite factor formula (4.1) to estimate the
BKZ blocksize needed to solve an SIVPγ instance. However, as the provable upper bound
on the BKZ root Hermite factor (see Figure 4.1) is the only bound on the hardness of
worst-case SIVPγ, we will also provide estimates of the provable hardness of SIVPγ to
the reader (although the reader should keep in mind that these figures are likely to be a
significant overestimate of the hardness of worst-case SIVPγ).

4.3.2 Solving SIS

Note that SIS is very similar to SVPγ, as we’re looking for a short vector in an integer
lattice. There are a couple of differences between SIS and SVP. The first is that the bound
on the length of the short vector is given in absolute terms, and not as a multiple of the
length of the shortest vector.

The second is that an SIS lattice is a q-ary lattice, as it is defined by a matrix in Zn×mq .
This means that there could be an algorithm that solves an instance of SIS faster than an
SVP instance of the same dimension. No such algorithm is currently known, so the best
algorithm known for solving SVP (the BKZ algorithm, see Section 4.2.2) is also the best
algorithm for solving SIS.

However, the fact that an SIS lattice Λ ⊆ Rm is q-ary implies that its volume is equal
to qn with high probability. This in turn implies that the root Hermite factor needed to

44



solve an SISn,m,q,β instance is(
‖v‖

vol(Λ)1/m

)1/m

≤
(

β

qn/m

)1/m

.

Thus, we can use the methodology of Section 4.2.3 with the root Hermite factor
(

β
qn/m

)1/m

to estimate the cost of solving an SIS instance.

Note that it is possible to do slightly better by ignoring some of the columns of the SIS
matrix (which is over-determined). A more thorough analysis of the root Hermite factor
needed to solve an SISn,m,q,β is presented in [15].

4.3.3 Lattice Problems in Other Norms

Lattice problems are most commonly defined with respect to the `2 norm. Other metrics,
for example the `∞ metric, are more intuitive when definining cryptosystems based on
lattice problems. In particular, the signature scheme Dilithium [36] is based on the hardness
of the `∞−SIS problem.

There has not been a lot of work done to evaluate the hardness of lattice problems
in different norms. Since most lattice algorithms have been studied in the `2 norm, a
reduction from a problem in the `2 norm to a problem in the `p norm would allow us to
make statements about the hardness of the `p problem (as such a reduction would imply
that the `p problem is at least as hard as the `2 problem), and thus about the security of a
cryptosystem based on the hardness of that problem in the `p norm. On the other hand,
a reduction from an `p problem to an `2 problem implies that there is an algorithm for
solving the `p problem using an oracle for solving the `2 problem (possibly a polynomial
number of times), thus giving an upper bound on the hardness of the `p problem. We will
present known reductions to problems in the `∞ norm, and discuss what this means about
the hardness of `∞ problems.

There is an immediate reduction from `2−SVP√nγ to `∞−SVPγ, as for any vector
x ∈ Rn we have that ‖x‖∞ ≤ c implies ‖x‖2 ≤

√
nc. This shows that the cost of solving

an `∞−SVPγ instance is at least that of solving an `2−SVPγ
√
n instance. We also have a

reduction from `∞−SVPγ to `2−SVPγ, as ‖x‖2 ≤ c implies ‖x‖∞ ≤ c. This shows that
the cost of solving an `∞−SVPγ instance is at most that of solving an `2−SVPγ instance.

Note that we can use the same argument to get reductions from `2−SISn,m,q,√mβ to
`∞−SISn,m,q,β and from `∞−SISn,m,q,β to `2−SISn,m,q,β which gives us upper and lower
bounds on the hardness of `∞−SIS instances.

45



Similar reductions exist for other `p norms, but they are less commonly used in appli-
cations so we will not present them here. If we want a better approximation factor, Regev
and Rosen presented reductions from `2−SVPγ to `p−SVPγ′ for all p and closer approxi-
mation factors γ, γ′ [46]. Since we will need to estimate the hardness of lattice problems
in the `∞ norm, we will present the result about the `2−SVP to `∞−SVP reduction by
Regev and Rosen.

Theorem 4.4. [46, Theorem 1.2] For any γ ≥ 1, there exists a randomized polynomial
time dimension-preserving reduction from solving SVPO(

√
lognγ) in the `2 norm to solving

SVPγ in the `∞ norm. This reduction makes one call to the `∞ oracle and succeeds with
probability ≥ 1− 1

n
.

The additional structure of an SIS instance causes Regev and Rosen’s reduction to fail
between SIS instances, so it is not clear whether similar results can be shown for SIS.

Note that Micciancio and Peikert’s SIVP to SIS reduction (see Theorem 3.11) applies to
`∞−SIS instances, as the above discussion implies we can use β =

√
mβ∞ in Theorem 3.11

to establish a reduction from SIVPγ to `∞−SIS. However, as we will see in Chapter 6, this
reduction is not generally used for setting parameters and determining security of `∞−SIS
instances (and is perhaps not the best tool to do so).

Finally, note that these reductions are only useful if they reduce to well-defined `2−SIS
instances. In particular, note that it is trivial to find a vector of `2-norm q in an SIS lattice,
as the vector (q, 0, . . . , 0) has this length and is a solution to the equation [I|A] · z ≡ 0
mod q. This can be a problem when looking for reductions involving the SIS problem in
`∞ norm as they might reduce from `2−SIS problems of norm ≥ q (which is trivial, and
thus doesn’t give us any information about the `∞−SIS instance).

We will use these tools in Chapter 6 to estimate the security level of Dilithium, which
is based on an `∞−SIS instance.
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Chapter 5

Lyubashevsky Signatures

Lyubashevsky [35] presented a signature scheme based on the hardness of the SISn,m,q,β
problem. The main innovation introduced in the paper was the concept of rejection sam-
pling, which is a method of ensuring that the distribution of signatures is independent of
the secret key. This method has since been used in many lattice-based signature schemes,
including multiple NIST submissions, and so the signature scheme presented by Lyuba-
shevsky can be seen as an early precursor to some of these schemes. Lyubashevsky pro-
vided concrete parameters for the signature scheme, but the relatively large signature sizes
(when compared to the state-of-the art lattice signature schemes that exist today) make
this signature scheme impractical.

In the paper, Lyubashevsky stated that the worst-case to average-case proof gives
confidence in the security of the signature scheme:

On the theoretical side [...] the scheme constructed in this paper [... is] based

on the hardness of finding a vector of length Õ(n) in SIS instances, which by
the worst-case to average-case reduction of Micciancio and Regev is as hard as
solving approximate SIVP with a factor of Õ(n1.5) in all n-dimensional lattices.

However, he didn’t set parameters based on the reduction itself, as he was concerned by the
security implications of the difference in dimensions between the SIVPγ instance (dim = n)
and the SIS one (between n and m, where m ≥ n). All of the comments Lyubashevsky
made in his paper about the security implications of the reduction from SIVPγ are informal.

In this chapter, we will determine the security guarantees provided by the worst-case
to average-case reduction, taking into consideration the tightness of the reduction and the
relative hardness of the SIS problem and the corresponding SIVPγ problem.
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5.1 Signature Scheme

We will start by presenting Lyubashevsky’s signature scheme. Let DH = {v : v ∈
{−1, 0, 1}k, ‖v‖1 ≤ κ} and let H : {0, 1}∗ → DH be a cryptographic hash function. Also
recall from Chapter 2 that DZm,c,σ = Dm

Z,c,σ denotes the discrete Gaussian distribution on
the integer lattice Zm, centered at c (if c = 0, we simply denote this distribution Dm

Z,σ).

Algorithm 4 Key Generation

Output: Public key pk = (A, T ) and secret key sk = S.
1: S ← {−d, . . . , 0, . . . , d}m×k
2: A← Zn×mq

3: T ← AS
4: Return pk = (A, T ) and secret key sk = S.

Algorithm 5 Signature Generation

Input: Secret key sk = S and message µ ∈ {0, 1}∗.
Output: Signature (z, c) on µ.

1: y ← Dm
Z,σ

2: c← H(Ay, µ)
3: z ← Sc+ y

4: Output (z, c) with probability min
(

DmZ,σ(z)

MDmSc,σ(z)
, 1
)

Algorithm 6 Signature Verification

Input: pk = (A, T ) and signed message (µ, z, c).
Output: “Accept” or “Reject”.

1: Return “Accept” if ‖z‖ ≤ 2σ
√
m and c = H(Az − Tc, µ), “Reject” otherwise.

The main idea of the signature scheme is that the output distribution of z should be
statistically close to Dm

Z,σ. However, since z = Sc+y, z is actually distributed according to
Dm

Z,Sc,σ. To modify the output distribution, the signing algorithm only outputs a signature
(z, c) if z is also distributed according to Dm

Z,σ. This is formalized in Lemma 5.1.

Sample parameter sets for the Lyubashevsky signature scheme can be found in Ta-
ble 5.1. All the parameter choices are for the same security level; They serve to demon-
strate different trade-offs between key and signature size. We will discuss the security level
of the Lyubashevsky signature scheme in Section 5.2.
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Table 5.1: Parameter options for Lyubashevsky’s signature scheme.
I II III

n 512 512 512
q 227 225 233

d 1 1 31
k 80 512 512
m ≈ 64 + n · log q/ log (2d+ 1) 8786 8139 3253
κ 28 14 14
σ ≈ 12 · d · κ ·

√
m 31496 15157 300926

M 2.72 2.72 2.72
Secret key size (bits) 220 222.5 223

Public key size (bits) 220 222.5 223

Signature size (bits) 163000 142300 73000

5.1.1 Correctness and Security Proofs

We will present sketches of the proofs of correctness and security. In order to prove these,
we need the “rejection sampling” Lemma from [35].

Lemma 5.1. Let V be a subset of Zm in which all elements have norm less than τ , σ be
some element in R such that σ = ω(τ

√
logm), and h : V → R be a probability distribution.

Then there exists a constant M = O(1) such that the distribution of the algorithm A:

1. v ← h

2. z ← Dm
Z,v,σ

3. Output (z, v) with probability min
(

DmZ,σ(z)

MDmZ,v,σ(z)
, 1
)

is within statistical distance 2−ω(logm)

M
of the distribution of the algorithm F:

1. v ← h

2. z ← Dm
Z,σ

3. Output (z, v) with probability 1
M

.
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Moreoever, A outputs something with probability ≥ 1−2ω(logm)

M
.

In particular, if σ = ατ for some α > 0, then M = e12/α+1/(2α2), the output of algorithm
A is within statistical distance 2−100

M
of the output of F, and A outputs something with

probability at least 1−2−100

M
.

The parameters for Lyubashevsky’s signatures scheme are selected so that they satisfy
the conditions of Lemma 5.1.

To show correctness, note that if ‖z‖ ≤ 2σ
√
m, the signature verification procedure

will always accept an honestly generated signature, since

Az − Tc = A(Sc+ y)− (AS)c = Ay.

The probability that the verifier accepts a signature created by an honest signer is thus
the probability that ‖z‖ ≤ 2σ

√
m. Since the rejection sampling lemma tells us the output

z’s are distributed according to a distribution statistically close to Dm
Z,σ, we can use the

probability that an element sampled from Dm
Z,σ has length at most 2σ

√
m. By properties

of the discrete Gaussian distribution, we know that this will happen with probability
≥ 1− 2mem/2(1−22) ≥ 1− 2−100.

To prove security, Lyubashevsky reduces solving the Short Integer Solution problem to
forging a signature. We will present the relevant Theorem and a sketch of the proof.

Theorem 5.2. [35, Theorem 4.1] If there is a (strong) polynomial-time forger, who makes
at most s queries to the signing oracle and h queries to the random oracle H, and who
breaks the Lyubashevsky signature scheme with probability δ, then there is a polynomial
time algorithm that can solve the `2−SISn,m,q,β problem for β = (4σ + 2dκ)

√
m = Õ(dn)

with probability ≈ δ2

2(h+s)
.

Proof. We prove the theorem as a sequence of games.

Game 0 is the signature scheme as defined above.

Game 1 (Algorithm 7) is the same signature scheme, but we generate c uniformly at
random from the range of H (and update the random oracle with the assigned hash values).

We define Game 2 (Algorithm 8) as Game 1, but replacing z = Sc+y with z generated
according to Dm

Z,σ. This makes signatures independent of S.

We can show that the statistical distance between Game 0 and Game 2 is at most
ε = s(h + s) · 2−n+1 + s · 2−100

M
. Indeed, the only difference between Game 0 and Game 1
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Algorithm 7 Game 1

Input: Secret key sk = S and message µ.
Output: Signature (z, c) on µ.

1: y ← Dm
Z,σ

2: c← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}
3: z ← Sc+ y

4: With probability min
(

DmZ,σ(z)

MDmZ,Sc,σ(z)
, 1
)

5: Output (z, c)
6: Program H(Az − Tc, µ) = c

Algorithm 8 Game 2

Input: Secret key sk = S and message µ.
Output: Signature (z, c) on µ.

1: y ← Dm
Z,σ

2: c← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}
3: z ← Dm

Z,σ
4: With probability 1/M
5: Output (z, c)
6: Program H(Az − Tc, µ) = c

is that the output of the random oracle is chosen randomly in Game 1, and the random
oracle is programmed without checking if that value had been assigned any other hash
previously. Thus, the advantage of the distinguisher is given by the probability that there
is a collision amongst the h+ s values ever assigned to the random oracle. A bit of careful
consideration gives us a probability of s(s+ h)2−n+1.

We then use Lemma 5.1 to show that the statistical distance between Game 1 and
Game 2 is at most s · 2−100

M
. This shows that the total statistical distance between Game 0

and Game 2 is at most ε = s(h+ s)2−n+1 + s2−100

M
. Thus, Game 0 and Game 2 are ε-close

statistically, and we can replace the signature scheme with Game 2 to prove security.

To conclude the proof, we show that a forger that is successful against Game 2 lets
us solve SIS for the given β. Note that with very high probability (there’s only a 1/|DH |
chance of guessing a c such that c = H(Az − Tc, µ), where (µ, (z, c)) is the forged signed
message produced by the forger) the random oracle must have produced the value c in
response to some query. This query could have been made during a signing query, or for a
query directly to the random oracle H.
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In the first case, suppose the signer programmed the random oracle H(Az′−Tc, µ′) = c
when signing a message µ′. If the forger outputs a valid forgery (z, c) for some message
µ, then we have H(Az′ − Tc, µ′) = c = H(Az − Tc, µ) by correctness. Since (µ, (z, c))
is a forgery, we must have (µ′, z′) 6= (µ, z). If µ 6= µ′ or Az − Tc 6= Az′ − Tc, then the
forger has found a collision for H (which we assume is infeasible by the definition of the
hash function H). Thus, we have µ = µ′ and Az − Tc = Az′ − Tc. Hence, A(z − z′) = 0,
and z − z′ 6= 0 (since the forged signature must be different from the queried signature).
Finally, we have that ‖z‖, ‖z′‖ ≤ 2σ

√
m (since the verifier accepts both signatures), and

hence ‖z − z′‖ ≤ 4σ
√
m, as desired.

In the second case, suppose c was the response to a query the forger made directly to the
random oracle. We begin by recording the signature (z, c) of the forger on the message µ,
and then use the Forking Lemma (Lemma 2.22) to rewind the forger to obtain a second valid
signature (z′, c′) on the message µ. Suppose that the random oracle query that returned
c and c′ was a string s (it must be the same string, by the proof of the Forking Lemma).
Then by correctness of signatures (z, c) and (z′, c′), we must have Az−Tc = s = Az′−Tc′
and so (using the fact T = AS), we have

A(z − z′ + Sc− Sc′) = 0.

Since ‖z‖, ‖z′‖ ≤ 2σ
√
m and ‖Sc‖, ‖Sc′‖ ≤ dκ

√
m, we have

‖z − z′ + Sc′ − Sc‖ ≤ (4σ + 2dκ)
√
m

as desired.

Finally, we must show that z−z′+Sc′−Sc 6= 0. To show this, note that there is a high
chance that there exists another key S ′ such that AS = AS ′, and if z − z′ + Sc′ − Sc = 0
then z− z′+S ′c′−S ′c 6= 0. Since the signature algorithm in Game 2 is independent of the
signing key S, the adversary has no way of knowing which of S, S ′ was used. Thus, with
probability at least 1

2
, we will get z − z′ + Sc′ − Sc 6= 0.

The probability of success of this reduction is given by 1
2

times the probability of success
of the Forking Lemma, or

δ2

2(h+ s)
,

as desired.

5.1.2 Reducing to SIVP

Lyubashevsky notes that we could reduce the signature scheme further to SIVPγ, but
doesn’t do so because he believes it is harder to solve the SIS instance than the associated
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SIVPγ instance. We present a proof of this reduction here.

Theorem 5.3. Let F be a polynomial-time forger who makes at most s queries to the
signing oracle and h queries to the random oracle H, and breaks the signature scheme with
probability δ. Let β = (4σ + 2dκ)

√
m, with parameters as defined above.

(i) If q ≥ 8n
√
mβ, then there is an algorithm that can solve the SIVPγ problem for

γ = 8β
√
nω(

√
log n)

in time O(n2)× Time(F) and with probability

ε = O

(
1

βm

)
δ2

2(h+ s)
.

(ii) If q ≥ gβ
√
nω(
√

log n), then there is an algorithm that can solve the SIVPγ problem
for

γ = gβ
√
nω(

√
log n)

for any constant g > 1 in time O(n2)× Time(F) and with probability

ε = O

(
1

βm

)
δ2

2(h+ s)
.

(iii) If q ≥ βnc for some constant c > 0, then there is an algorithm that can solve the
SIVPγ problem for

γ =
β

nc
· β
√
nω(

√
log n)

in time n2 × Time(F) and with probability

ε =
δ2

2(h+ s)
.

Proof. From Theorem 5.2, we know that solving SISn,m,q,β for β = (4σ + 2dκ)
√
m with

probability ≈ δ2

2(h+s)
reduces to breaking the signature scheme, with at most two calls to

the forging oracle.

Recall from Theorem 3.9 that if q ≥ 8n
√
mβ, we can reduce SIVPγ to SISn,m,q,β for

γ = 8β
√
nω(

√
log n) = 8(4σ + 2dκ)

√
m
√
nω(

√
log n) = 8(4σ + 2dκ)

√
mnω(

√
log n)

with probability 1
6βm

. Combining these proves the first part of the Theorem.

The second and third parts are similarly derived by combining Theorems 3.10 and 3.11
with Theorem 5.2.
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From Table 5.1, we can compute the value of β = (4σ + 2dκ)
√
m for parameter sets

I, II, and III. We can then use this β to compare the value of q in the parameter sets
against the minimum value of q required by parts (i), (ii), and (iii) of Theorem 5.3. These
computations are summarized in Table 5.2.

Remark. We use ω(
√

log n) =
√

log n, nc = 1, and g = 1 in the computations in Table 5.2,
as they are tight lower bounds for these values. We also ignore the constants from O(·)
notation.

Table 5.2: Lower bounds on q for Lyubashevsky’s signature scheme (cf. Theorem 5.3).
I II III

β = (4σ + 2dκ)
√
m 223 222 226

q 227 225 233

8βn
√
m (Theorem 3.9) 242 240 243

gβ
√
nω(
√

log n) (Theorem 3.10) 231 230 233

βnc (Theorem 3.11) 223 222 226

Note that none of the parameter sets satisfy the bound q ≥ 8βn
√
m of Theorem 3.9

(all values of q are at least a factor of 210 too small). They also do not satisfy the bound
q ≥ β

√
nω(
√

log n) of Theorem 3.10. However, they are a relatively small factor (between
g and 25g, where g can be as small as 4) from satisfying the bound, so the parameters
could easily be modified to satisfy the conditions of Theorem 3.10. They also all satisfy
the conditions of Theorem 3.11.

Thus, by Theorem 5.3, we can either reduce SIVPγ1 (for γ1 = gβ
√
nω(
√

log n)) to
breaking Lyubashevsky’s signature scheme with tightness gap

g1 = T
1

ε
= O

(
n2βm

)
· 2(h+ s)

δ
,

or reduce SIVPγ2 (for γ2 = β
nc
· β
√
nω(
√

log n)) to breaking Lyubashevsky’s signature
scheme with tightness gap

g2 = T
1

ε
= n2 · 2(h+ s)

δ
.
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5.2 Concrete Security Guarantees

In this section, we will determine concrete security guarantees for Lyubashevsky’s signature
scheme. We will first present the analysis that Lyubashevsky used to determine security,
and then compare this value to the bits of security that the signature scheme gets from
the worst-case SIVPγ problem. We will present this analysis for parameter set I, and list
the numbers for parameter sets II and III in Table 5.3.

5.2.1 Security Guarantees from SIS

To set parameters, Lyubashevsky assumed that achieving a root Hermite factor of δ0 =
1.007 would be out of reach of lattice reduction algorithms for the foreseeable future. He

then picked parameters such that the root Hermite factor needed (which is ≈
(

β
qn/m

)1/m

)

to find a vector of length β = (4σ + 2dκ)
√
m is smaller than δ0.

Lyubashevsky did not convert this root-Hermite factor to some number of bits of secu-
rity1. Using the heuristic

δ(βBKZ) =
[
(βBKZπ)1/βBKZβBKZ/(2πe)

]1/2(βBKZ−1)

from (4.1), a root-Hermite factor of 1.007 could be achieved using a BKZ blocksize of
βBKZ = 175. The cost of running a sieving algorithm in dimension βBKZ is given by
20.292βBKZ ≈ 251, which means the signature scheme has approximately 51 bits of security
with the recommended parameters (for each of the three parameter sets).

5.2.2 Security Guarantees from SIVP

We will now determine the security guarantees that Lyubashevsky’s signature scheme gets
from the worst-case SIVPγ instances.

Recall from Theorem 5.3 that the tightness gap of the reduction from SIVPγ is given
by either

g1 = O(n2) · 2(h+ s)

δ
· 2βm

1The heuristics we use to estimate bits of security were presented after Lyubashevsky’s paper was
published, and our knowledge of lattice reduction algorithms has also improved since then.
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or

g2 = n2 · 2(h+ s)

δ
,

where β = (4σ + 2dκ)
√
m. Substituting the values of n,m, β for parameter set I, we get

that the tightness gap is

g1 = 255 2(h+ s)

δ
or

g2 = 218 2(h+ s)

δ
.

We can also use the methodology from Section 4.3.1 to estimate the hardness of SIVPγ

for
γ1 = gβ

√
nω(

√
log n)

and

γ2 =
β

nc
· β
√
nω(

√
log n).

We get the corresponding root Hermite factors

δ1 = 1.0176

and
δ2 = 1.0332.

From Table 4.1, we see that we can expect to achieve the root Hermite factor 1.0195 ≈ δ1

using the BKZ algorithm with blocksize 20. From Figure 4.1, we see that the blocksize
necessary to achieve the provable root Hermite factor δ1 is 85. Similarly, the expected
and provable BKZ blocksizes necessary for the root Hermite factor δ2 are 2 and 28. As
discussed in Section 4.3.1, the expected value represents our best guess at the hardness of
worst-case SIVPγ, while the provable value is the only known upper bound on the hardness
of worst-case SIVPγ.

Finally, we can convert BKZ blocksizes to bits of security using the estimated runtime
of 20.292∗βBKZ for BKZ with blocksize βBKZ from Section 4.2.3. This gives us estimated
costs of 26 and 2, and provable costs of 224 and 28 for δ1 and δ2 respectively.

Thus, parameter set I gets at most 6 − 55 = −49 bits2 of security (or 24 − 55 = −31
bits of provable security) from the worst-case to average-case reduction of Theorem 3.10.

2A security level of −` bits (where ` > 0) means that the fastest attack takes time 2−` operations.
Note that this implies that to achieve this security level breaking the cryptosystem must take less than 1
operation, which is of no use as a security guarantee.
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Alternatively, it gets at most 1−18 = −17 bits of security (or 8−18 = −10 bits of provable
security) from the worst-case to average-case reduction of Theorem 3.11.

We can contrast this with the 51 bits of security that Lyubashevsky claimed for pa-
rameter set I. Note that the direct bits of security (i.e. the value obtained by evaluating
the hardness of SIS against known attacks) would again be slightly higher, as we would
need to increase the value of q for Theorems 3.10 and 3.11 to apply.

We can do a similar analysis for parameter sets II and III. The results are presented in
Table 5.3. Note that the tightness gaps presented in Table 5.3 do not include the factor
×2(h+s)

δ
that comes from the Forking Lemma.

g1 γ1 BKZ-β1 Security Level g2 γ2 BKZ-β2 Security Level

I 255 1.0176 20 (85) 6 (24) 218 1.0332 2 (28) 1 (8)
II 254 1.0168 20 (90) 6 (26) 218 1.0317 2 (28) 1 (8)
III 256 1.0194 20 (70) 6 (20) 218 1.0368 2 (28) 1 (8)

Table 5.3: Tightness Gaps and hardness of SIVPγ instances. BKZ blocksizes and security
levels are written as expected (provable).

We conclude that Lyubashevsky’s signature scheme does not get any useful concrete
security guarantees from the worst-case to average-case reductions, even ignoring the tight-
ness gap that arises from the use of the Forking Lemma.
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Chapter 6

Dilithium

The Crystals-Dilithium signature scheme [36] is one of the round 2 contenders for stateless
signatures in the NIST Post-Quantum Cryptography standardization contest. Its security
is based on the hardness of the SIS and LWE problems. We will present the signature
scheme, its parameters, and a proof of correctness in Section 6.1. Section 6.2 presents a
security reduction from MSIS to forging Dilithium signatures. Finally, Section 6.3 presents
an analysis of the security guarantees for Dilithium, starting with an analysis of the security
assurances Dilithium gets from SIS (in Section 6.3.1), and followed by an analysis of the
concrete security assurances that Dilithium gets from worst-case SIVPγ (in Section 6.3.2).

6.1 The Dilithium Signature Scheme

6.1.1 Parameters and Roles

Dilithium is defined over the ring Rq = Zq[X]/(Xn + 1), where q = 223 − 213 + 1 and
n = 256. Both n and q are fixed for all security levels (Dilithium bases security levels on
the size of the MSIS matrix) and were picked for efficient computation, but other choices
of q and n are also possible.

There are multiple parameters that can be chosen in Dilithium. Many are fixed for all
parameter sets, while others vary depending on the security level. We will first present the
roles of the parameters, and then list the values they take in Table 6.1.

η A small integer, between 3 and 7, depending on the security level.
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k, ` The size parameters for the keys. The matrix A is in Rk×`
q , and the secret key (s1, s2)

is in Skη ×S`η (defined in Section 2.3.1). The values of k and ` vary depending on the
security level.

γ1 This parameter determines the maximum size of the coefficients of the masking vector
of polynomials y. The bound for the Module Short Integer Solution problem (see
Definition 2.19) that forgeries reduce to also depends on γ1. Thus, γ1 is picked large
enough to mask the secret key, but small enough to ensure forgeries are hard.

γ2 This parameter is used to determine how many bits of a vector are considered “high-
order” bits. A validity check during signing also depends on γ2, which is necessary
for both security and correctness.

βr This parameter is used in the rejection sampling used in Dilithium. In particular, βr
bounds the largest possible coefficient of csi. Then, if any coefficient of z is larger than
γ1 − βr, we reject and restart the signing procedure. There is an efficiency/security
tradeoff to consider when picking βr, as smaller βr implies fewer repetitions to get
a signature, but a βr that is too small can skew the distribution of signatures and
reveal information about the secret key.

d Fixed parameter that determines how many bits are considered “high order bits” in the
decomposition x = x12d + x0 (where x0 ≡ x mod ±2d).

The fixed parameters and parameter choices for the different security levels of Dilithium
are summarized in Table 6.1.

6.1.2 Simplifed Signature Scheme

The Dilithium signature scheme is based on a modified Fiat-Shamir with Aborts framework.
We will first present a simplified version of the Dilithium signature scheme in Algorithms 9,
10, 11, and then describe the modifications that are added in the full signature scheme.

The function HighBits(x, α) is defined as follows. For each coefficient w of the element
x ∈ Rq, write w = w1α+ w0, where |w0| ≤ α/2. The function HighBits(x, α) then returns
a vector w1 comprised of all the elements w1. Similarly, the function LowBits(x, α) returns
a vector w0 comprised of all the elements w0.

The reason why we can only output z = y + cs1 some of the time is because the high-
order coefficients in z can leak information about the secret key s1. To avoid this leakage
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Algorithm 9 Key Generation

Output: Public key pk = (A, t) and secret key sk = (s1, s2).
1: A← Rk×`

q

2: (s1, s2)← S`η × Skη
3: t← As1 + s2

4: return pk = (A, t), sk = (s1, s2)

Algorithm 10 Signature Generation

Input: sk = (s1, s2), message M ∈ {0, 1}∗.
Output: Signature σ = (z, c), where z ∈ Rq and c ∈ B60.

1: z =⊥
2: while z =⊥ do
3: y ← S`γ1−1

4: w1 ← HighBits(Ay, 2γ2)
5: c← H(M ||w1), where the range of H is B60.
6: z ← y + cs1

7: if ‖z‖∞ ≥ γ1 − βτ or ‖LowBits(Ay − cs2, 2γ2)‖∞ ≥ γ2 − βτ then z =⊥
8: return σ = (z, c)

Algorithm 11 Signature Verification

Input: pk = (A, t) and signed message (M,σ).
Output: “Accept” or “Reject”.

1: w1
′ ← HighBits(Az − ct, 2γ2)

2: “Accept” if ‖z‖∞ < γ1 − βτ and c = H(M ||w1
′); else “Reject”.
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Table 6.1: Dilithium parameters

Parameter Set I II III IV

q 223 − 213 + 1 = 8380417
d 14
n 256
Weight of c 60
γ1 = (q − 1)/16 523776
γ2 = γ1/2 261888
(k, `) (2, 3) (4, 3) (5, 4) (6, 5)
η 7 6 5 3
βr 375 325 275 175
Security Level from MSIS (in bits) 68 103 138 176

of information, Dilithium uses rejection sampling, which ensures that no coefficients of the
signature component z are too large (≥ γ1 − βτ ) and similarly that no coefficients of the
low order bits of Ay − ct are too large (≥ γ2 − βτ ). The parameters are selected so that
the expected number of repetitions is not too large (between 4 and 7 repetitions for the
proposed parameters).

6.1.3 Proof of Correctness

Notice that

Az − ct = Az − c(As1 + s2) = Az − Acs1 − cs2 = Ay − cs2

by definition. Additionally, we know that the low-order bits of Ay − cs2 are strictly less
than γ2 − βr. Since the coefficients of cs2 are at most βr (by definition of βr), this means
that Ay − cs2 + cs2 = Ay has the same high-order bits as Ay − cs2 = Az − ct, and hence
that w1 = w′1. Thus, H(M ||w1) = H(M ||w′1) and this concludes the proof of correctness.

6.1.4 Full Signature Scheme

Dilithium introduces some modifications to the above signature scheme template. We will
briefly discuss them here, but will not present the signature scheme in full detail. The
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concrete details are unnecessarily complicated for the purposes of this chapter, and do not
affect the discussion that follows.

The first major improvement is to reduce the size of the public key by replacing the
matrix A ∈ Rk×`

q by a seed ρ. The matrix A is then generated from the seed ρ by using
the extendable output function SHAKE−128.

A second improvement further reduces the public key size, in exchange for a small
increase in signature size. This is done by only including the high-order bits (in the binary
representation) of t = As1 + s2, and modifying the HighBits function to take as input an
additional one bit hint (for each coefficient) that lets us compute Az − ct given only the
high-order bits of t.

6.2 Security Proof

From the NIST submission, we can characterize the security of Dilithium by the following
statement:

Theorem 6.1. If H is a quantum random oracle, the advantage of an adversary A breaking
the SUF-CMA security of the signature scheme is

AdvSUF− CMA
Dilithium

≤ AdvMLWE
k,`,Sη + Adv

SelfTargetMSIS
H,k,`+1,4γ2

+ AdvMSIS
k,`,4γ2+2 + 2−254.

Remark. The authors of Dilithium did not present a classical security result. We will
assume that this statement of security is also valid for a classical adversary.

The proof of Theorem 6.1 can be found in [29]. Note that the MLWE assumption
protects against key recovery attacks. Thus, the hardness of forging Dilithium signatures
depends on the hardness of the MSISk,`,4γ2+2 and SelfTargetMSISk,`,4γ2

problems. We will
only be analyzing the hardness of forging Dilithium signatures.

SelfTargetMSIS (see Definition 2.20) is not a standard lattice problem, as it’s essentially
the convolution of a hash function and the MSIS problem. Lemma 6.2 presents a classical
reduction from MSIS to SelfTargetMSIS. A sketch of this reduction was presented in the
NIST Round 2 submission as well as in [29].

Lemma 6.2. There is a classical reduction from MSIS2β to SelfTargetMSISβ.

If the SelfTargetMSIS oracle succeeds with probability δ and makes h queries to the
random oracle, then this reduction succeeds with probability δ2

h
in two calls to the oracle.
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Proof. Suppose we have access to an oracle that solves SelfTargetMSISβ (this oracle has
access to the random oracle H), i.e., given as input some matrix A and a vector t, finds

an M and a y =

r1

c
r2

 such that H(M ||[A|t|I] · y) = c and 0 < ‖y‖∞ ≤ β.

Suppose now that we are given an MSIS2β instance [A|t]. We run the SelfTargetMSIS

oracle with input (A, t) to obtain M and y =

r1

c
r2

 such that

H(M ||[A|t|I] · y) = c

and 0 < ‖y‖∞ ≤ β. Then, using the Forking Lemma (Lemma 2.22), we rewind the
SelfTargetMSIS oracle and return different responses to its random oracle queries, to obtain

y′ =

r′1c′
r′2

 such that

H(M ||[A|t|I] · y′) = c′

and 0 < ‖y‖∞ ≤ β for some hash value c′ 6= c. If the SelfTargetMSISβ oracle succeeds with

probability δ, then this succeeds with probabilty δ2

h+s
.

Since the random oracle must have been queried with the same string M ||s, we must
have

[A|t|I] · y = s = [A|t|I] · y′,

and hence
[A|t|I](y − y′) = 0.

We know that 0 < ‖y − y′‖∞ ≤ ‖y‖∞ + ‖y′‖∞ ≤ 2β by the triangle inequality. Thus,
y − y′ is a solution to the MSIS2β instance [A|t].

The probability of success of this reduction is the probability of success of the Forking
Lemma, δ2

h
.

We can combine Theorem 6.1 and Lemma 6.2 to show that if we can forge Dilithium
signatures, then we can solve either MSISk,`,4γ2+2 or MSISk,`+1,8γ2 , with tightness gap

2
δ

h+ s
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where h is the number of queries to the random oracle (made during the reduction of
Theorem 6.1 or of Lemma 6.2) and s the number of queries to the signing oracle (made
during the reduction of Theorem 6.1).

Note that the authors of Dilithium know that this reduction is non-tight, and instead
assume that the only way to find an SelfTargetMSIS solution is to pick some w, compute
H(M‖w) = c, and then find z′, u′ such that Az′+u′ = w+ ct [36]. Thus, solving the above
SelfTargetMSIS problem is at least as hard as finding z′, u′ with `∞ norm at most 4γ2 such
that

Az′ + u′ = t′

for some given t′. This is essentially ignoring the loss of tightness of the Forking Lemma
in the proof of security, instead arguing [36] that

since H is a cryptographic hash function whose structure is completely indepen-
dent of the algebraic structure of its inputs, choosing some M “strategically”
should not help – so the problem would be equally hard if the M were fixed.

Note that finding a vector of length 8γ2 is no harder than finding a vector of length
4γ2+2. Additionally, the approximation factors of the SIVPγ problems from Theorems 3.9,
3.10 and 3.11 do not depend on the value of m, and their tightness gaps increase as m
increases. Thus, we will be basing our analysis on MSISk,`,4γ2+2, as this gives us an upper
bound on the security assurances that Dilithium gets from worst-case SIVPγ.

6.3 Concrete Security Guarantees

6.3.1 Security Guarantees from SIS

In this section, we will examine the hardness of the `∞−SISn,m,q,β problem related to
Dilithium. We will briefly discuss the method that the Dilithium team uses to determine
their security estimates, followed by an alternate method supporting this security estimate.

The Dilithium team determines the best `2−SVP algorithm is BKZ (which is also the
best `2−SIS algorithm) and considers its effectiveness at solving `∞−SIS. They describe
well known methods for describing the shape and quality of BKZ output vectors (in the `2

norm) for a given blocksize, and compare the length of the shortest vectors output by BKZ
(in the `2-norm) to their `∞−SIS bound. They do not directly address the relative costs
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of solving `2−SIS and `∞−SIS, but rather evaluate the effectiveness of current algorithms
at solving `∞−SIS.

The Dilithium team also consider the effects of ignoring columns of the SIS matrix
(which is overdetermined) and of re-randomizing parts of the matrix in their cost analysis.
The algorithms they use to determine cost of `∞−SIS can be found at https://github.

com/pq-crystals/security-estimates. For their level III parameters, which they say
gives them 138 bits of security, they give the best estimated blocksize to break the MSIS
instance they reduce to as βBKZ = 475. According to (4.1), this blocksize corresponds to
a root Hermite factor δ0 = 1.003478.

On the other hand, we can build on the discussion from Section 4.3.3 to use the hardness
of `2−SISn,m,q,β and `2−SVPγ to bound the hardness of an `∞−SISn,m,q,β∞ instance.

Recall that our `∞−SIS instance is given as a tuple

(n,m, q, β∞) = (256k, 256(k + `), q,
q − 1

8
),

and defined by a (random) matrix [A|I] ∈ Z256k×256(k+`)
q . The lattice related to this SIS

instance is
L⊥(A) = {x ∈ Zm : [A|I]x = 0 mod q},

and it has (with high probability) volume qn.

From Section 4.3.3, we know that we have a reduction from `2−SISn,m,q,β∞
√
m to

`∞−SISn,m,q,β∞ , so `∞−SISn,m,q,β∞ is at least as hard as `2−SISn,m,q,β∞
√
m. By the dis-

cussion in Section 4.3.2, this means that solving an `∞−SISn,m,q,β∞ instance is at least as
hard as using BKZ to solve an `2−SISn,m,q,β∞

√
m instance and achieve a root Hermite factor

of (√
mβ∞
qn/m

)1/m

.

For the Dilithium level III parameters, we get a root Hermite factor δ√mβ ≈ 1.00386,
which corresponds (based on Figure 4.2) to a BKZ blocksize of around 420.

Note that the discussion from Section 4.3.3 on the hardness of `∞−SVPγ suggests
that re-randomizing the lattice basis might improve the reduction from `2−SISn,m,q,β to

`∞−SISn,m,q,β∞ to β = β∞
√

lnm. It is interesting to note that the Dilithium team also
remarked that
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re-randomizing1 the input basis before running the BKZ algorithm [...] always
improves over the [non randomizing] strategy for the parameter ranges consid-
ered.

The root Hermite factor corresponding to β = β∞
√

lnm is 1.00262, which corresponds to
a BKZ blocksize of around 700.

Finally, we note that `∞−SISn,m,q,β∞ must be at most as hard as `2−SISn,m,q,β∞ , since
if ‖v‖2 ≤ β, then ‖v‖∞ ≤ β for any β. The root Hermite factor corresponding to β = β∞
is 1.002175, which corresponds to a BKZ blocksize of around 925.

Unfortunately, all reductions but the last one are meaningless for the specific Dilithium
parameters as we have q−1

8
= β∞ < q < β = β∞

√
m, and it is trivial to find a vector of

norm q for SIS instances. However, it is interesting to note that the BKZ blocksize found
by the Dilithium team falls in the range of blocksizes presented here, suggesting that this
approach has potential. Additionally, in a hypothetical situation where β < q (which could
be achieved by increasing q for the same values of β, β∞), the methodology presented here
would be applicable and the blocksizes found would provide a lower bound on the BKZ
blocksizes needed to solve the SIS instance, as increasing q can only decrease the root
Hermite factor.

6.3.2 Security Guarantees from SIVP

In this section, we will discuss the security guarantees that Dilithium gets from worst-
case SIVPγ to average-case SIS reductions. Recall from Section 6.2 that forging Dilithium
signatures is at least as hard as solving `∞−MSISk,`,β∞ over Rq for β∞ = 4γ2.

We know that there is a reduction from MSIS to SIS:

Lemma 6.3. There is a reduction from `∞−MSISk,`,β∞ overRq to `∞−SIS256·k,256·(k+`),q,β∞.

Proof. We can solve an `∞−MSISk,`,β∞ instance for A ∈ Rk×`
q by solving a related

`∞−SIS256·k,256·(k+`),q,β∞ instance determined by the matrix rot(A) ∈ Z256k×256`
q , defined by

1The meanings of re-randomizing are slightly different in both cases. The reduction from [46] transforms
the basis into a basis for a different lattice, while the re-randomizing described in Dilithium changes the
basis into a different basis for the same lattice.
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expanding each ai,j in A into the 256× 256 matrix

rot(a) =


a0 an−1 . . . a1

a1 a0 . . . a2
...

...
...

an−1 an−2 . . . a0

 .
This works since the coefficient of the product ofRq elements is given by a cyclic convolution
of their coefficient vectors.

Note that whereas there is no reduction in the reverse direction, there is also no known
way to exploit the additional structure of an MSIS instance, so it is often assumed that
the MSIS instance and the corresponding SIS instance are equivalent.

Additionally, recall from Chapter 3 that we have worst-case hardness results for an
SISn,m,q,β instance where:

1. q ≥ 8n
√
mβ (Theorem 3.9), or

2. q ≥ β
√
nω(
√

log n) (Theorem 3.10), or

3. q ≥ βnc for some constant c > 0 (Theorem 3.11).

From the above, we can see that there are two obstacles with applying the worst-case
to average-case reductions to Dilithium:

1. There is no known reduction from SIS to MSIS, and

2. For Dilithium parameters, we have β =
√
mβ∞ > q, so none of the reductions apply.

To address the first obstacle, we have a few options, which all lead to identical hard-
ness results. First, we could assume there is a reduction from SIS to MSIS, and apply
Theorems 3.9, 3.10, and 3.11.

Alternatively, we could note that Theorem 3.10 has been proved in the module setting,
as Langlois and Stehlé [31] presented a reduction from Mod-SIVPγ to MSIS that has the
same bounds on parameters (for n and m given by the dimensions of rot(A)) and achieves
the same approximation factor2. Since the fastest known algorithm to solve Mod-SIVPγ

2The tightness gap might be smaller, but the gap remains at least O(n2) as the reduction from GIVP
to the intermediate problem remains unchanged.
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is the same as the one for solving SIVPγ, we get the same hardness for the worst-case
problem that MSIS reduces to in both cases (with a possible difference in tightness factor).
The MSIS to Mod-SIVPγ reduction has not been generalized to Theorems 3.9 and 3.11,
although there is no reason to believe that this is not possible.

Since Theorem 3.11 has not been generalized to the module setting and there are
interesting tradeoffs between the parameter bounds and approximation factors achieved
in Theorems 3.10 and 3.11, we will take the first approach and assume for the analysis
in the rest of the chapter that MSIS and SIS (of the dimensions of rot(A)) are equivalent
problems.

To address the second obstacle, one could increase q until it satisfies one of the condi-
tions of Theorems 3.9, 3.10, or 3.11. Note that this wouldn’t change the tightness gap of
the proof or the approximation factor γ of the worst-case SIVPγ problem that the MSIS
instance reduces to. It would, however, increase the average-case security of the original
MSIS problem and the key and signature sizes.

We will now present an analysis of the concrete security assurances that Dilithium gets
from worst-case SIVPγ to average-case SIS reductions from Theorems 3.10 and 3.11 for the
Dilithium parameter set II. The worst-case security guarantees for other parameter sets
are presented in Table 6.2.

Recall that parameter set II has (k, `) = (4, 3). Thus, we have n = 256 · k = 1024,
m = 256 · (k + `) = 1792, β∞ = 4γ2 + 2 = 4 · 261888 + 2 = 1047552, and q = 8380417
(see Table 6.1). To solve the MSIS instance that reduces to Dilithium, we need to solve an
instance of `∞−SISn,m,q,β∞ .

From Theorem 3.10, we get an SIVP approximation factor of

γ1 = β
√
nω(

√
log n).

Choosing β =
√
mβ∞ gives us

γ1 = β∞
√
nmω(

√
log n).

Substituting the parameters for set II, and converting γ1 to a root Hermite factor δ1 using
the methodology from Section 4.3.1, we get

δ1 =

√
γ1/
√
n

1/n

= 1.00911.

From this root Hermite factor, we can use equation 4.1 to obtain a BKZ blocksize of 110
to achieve the root Hermite factor δ1. We can also use Figure 4.1 to determine that we
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would need to run BKZ with a blocksize of 360 to provably achieve the root Hermite factor
δ1. However, as discussed in Section 4.3.1, we believe the expected blocksize of 110 to
give us a more accurate picture of the true hardness of worst-case SIVPγ1 , as the values
of Figure 4.1 are only an upper bound on the true worst-case behaviour of BKZ, and as
the provable bounds in lattice reduction algorithms depend on a worst-case basis and not
a worst-case lattice. Using the estimated runtime of 20.292βBKZ from Section 4.2.3, we get
that BKZ blocksizes of 110 and 360 correspond to 32 and 105 bits of security, respectively.

Finally, we can compute the tightness gap of this reduction, which is given by

g1 = O
(
n2βm

)
× 2(h+ s)

δ
= n2β∞

√
mm× 2(h+ s)

δ
= 256 × 2(h+ s)

δ

(by Section 6.2).

Ignoring the 2(h+s)
δ

tightness gap that arises from the Forking lemma, we see that
parameter set II gets 32 − 56 = −24 bits of security (or 105 − 56 = 49 bits of provable
security) from the worst-case to average-case reduction of Theorem 3.10. We can contrast
this with the 103 bits of security that the Dilithium authors claim for parameter set II.

Note that the minimum value of q for Theorem 3.10 (and thus the above analysis) to
apply is 237 (which is a significant increase from the current value of q = 223). Note also
that increasing q decreases the root Hermite factor of an SIS instance, so the SIS instance
with q increased to 237 would have more than 103 bits of security, and thus the difference
between direct bits of security and worst-case bits of security would be even larger.

We can perform a similar analysis using the reduction from Theorem 3.11, which needs
a minimum value of q = 225 to apply. For this reduction, we get

γ2 =
β∞
nc
β∞
√
nmω(

√
log n)

which converts to a root Hermite factor

δ2 =

(√
γ2/
√
n

)1/n

= 1.01596.

The root Hermite factor can be achieved by expected and provable BKZ blocksizes of 20
and 100, which correspond to 6 and 29 bits of security, respectively.

The tightness gap of this reduction is given by

g2 = n2 × 2(h+ s)

δ
= 219 × 2(h+ s)

δ
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by Section 6.2.

Ignoring the 2(h+s)
δ

tightness gap that arises from the Forking lemma, we see that
parameter set II gets 6 − 19 = −13 bits of security (or 29 − 20 = 9 bits of provable
security) from the worst-case to average-case reduction of Theorem 3.11. We can contrast
this with the 103 bits of security that the authors of Dilithium claim for parameter set II.
Note that the direct bits of security would again be slightly higher, as we would need to
increase q to 225 for Theorem 3.11 to apply.

These computations, as well as similar computations for parameter sets I, III, and IV
are summarized in Table 6.2.

Remark. We use ω(
√

log n) =
√

log n, nc = 1, and g = 1 in the computations in Table 5.2,
as they are tight lower bounds for these values. We also omit the tightness gap from the
Forking Lemma in the tightness gaps presented in Table 6.2, since it is not clear how to
bound the values of h, s and δ. We leave it to the reader to choose appropriate values of
these parameters. Thus, the tightness gap presented here is an underestimate of the true
tightness gap.

Also note that we belive the expected root Hermite factors and BKZ blocksizes to more
accurately represent the worst-case hardness of SIVPγ. We include provable root Hermite
factors and the corresponding BKZ blocksizes for reference purposes only. However, it is
interesting to note that for some parameter sets, Dilithium does not get any useful concrete
security guarantees even if we consider the security guarantees given by the provable BKZ
output factors.

6.3.3 Discussion

In Section 6.3.2, we surmised that currently known worst-case to average-case reductions
for the Short Integer Solution problem do not apply to Dilithium. Additionally, Table 6.2
shows that even if the reductions did apply to Dilithium (which could be achieved by in-
creasing q and using equivalent reductions for module lattices), Dilithium would not derive
any useful concrete security guarantees from the worst-case to average-case reductions.

However, Dilithium does get stronger security guarantees from the worst-case to average-
case reductions than Lyubashevsky’s signature scheme (in particular, Dilithium gets posi-
tive bits of security), which suggests it might be possible to construct an efficient signature
scheme with a cryptographically significant number of bits of security from the worst-case
hardness of SIVPγ.

70



P
ar

am
et

er
S
et

I
II

II
I

IV

(k
,`

)
(3
,2

)
(4
,3

)
(5
,4

)
(6
,5

)
(n
,m

)
=

(2
56
·k
,2

56
·(
k

+
`)

)
(7

68
,1

28
0)

(1
02

4,
17

92
)

(1
28

0,
23

04
)

(1
53

6,
28

16
)

β
∞

=
4γ

2
+

2
10

47
55

2
10

47
55

2
10

47
55

2
10

47
55

2
C

u
rr

en
t
q

22
3

22
3

22
3

22
3

B
es

t
E

st
im

at
ed

B
lo

ck
si

ze
to

B
re

ak
S
IS

23
5

35
5

47
5

60
5

C
la

im
ed

B
it

s
of

S
ec

u
ri

ty
(F

ro
m

S
IS

)
68

10
3

13
8

17
6

M
in

va
lu

e
of
q

fo
r

T
h
eo

re
m

3.
10

to
ap

p
ly

:
23

7
23

7
23

8
23

8

δ 1
(f

ro
m
γ

1
=
g
β
∞
√
n
m
ω

(√
lo

g
n

))
1.

01
20

4
1.

00
91

1
1.

00
73

4
1.

00
61

5
E

st
im

at
ed

B
K

Z
b
lo

ck
si

ze
55

(1
80

)
11

0
(3

60
)

15
5

(>
50

0)
21

0
(>

70
0)

B
it

s
of

S
ec

u
ri

ty
16

(5
2)

32
(1

05
)

45
(>

13
8)

61
(>

17
6)

g 1
=
n

2
β
m

(×
2
(h

+
s)

δ
)

25
4

25
6

25
7

25
8

M
in

va
lu

e
of
q

fo
r

T
h
eo

re
m

3.
11

to
ap

p
ly

:
22

5
22

5
22

6
22

6

δ 2
(f

ro
m
γ

2
=

β
∞ n
c
β
∞
√
n
m
ω

(√
lo

g
n

))
1.

02
12

1
1.

01
59

6
1.

01
28

1
1.

01
07

E
st

im
at

ed
B

K
Z

b
lo

ck
si

ze
20

(6
0)

20
(1

00
)

28
(1

55
)

80
(2

50
)

B
it

s
of

S
ec

u
ri

ty
6

(1
7)

6
(2

9)
8

(4
5)

23
(7

3)

g 2
=
n

2
(×

2
(h

+
s)

δ
)

21
9

22
0

22
0

22
1

T
ab

le
6.

2:
T

ig
h
tn

es
s

G
ap

s
an

d
h
ar

d
n
es

s
of

S
IV

P
in

st
an

ce
s

fo
r

D
il
it

h
iu

m
.

B
K

Z
b
lo

ck
si

ze
s

an
d

S
ec

u
ri

ty
L

ev
el

s
ar

e
w

ri
tt

en
as

ex
p

ec
te

d
(p

ro
va

b
le

).

71



Chapter 7

Concluding Remarks

We analyzed the tightness of various reductions from worst-case SIVPγ to average-case
SISn,m,q,β. We then used these to analyze the security assurances that the worst-case to
average-case reductions grant to two real-world signature schemes based on SIS or one of
its variants.

For Lyubashevsky’s signature scheme (see Chapter 5), we found that the reductions
cited as granting worst-case security guarantees (see Theorems 3.9 and 3.10) were not
applicable to any of the presented parameter sets. However, a later reduction by Peikert
and Micciancio (see Theorem 3.11) does apply.

We also studied the signature scheme Crystals-Dilithium (see Chapter 6) from the NIST
PQC competition. For the signature scheme Dilithium, we found that none of the known
worst-case to average-case reductions for SIS or MSIS apply.

For both signature schemes, we considered the worst-case to average-case assurances
that the signature schemes would enjoy if parameters were modified so that the reductions
from Theorems 3.9, 3.10, and 3.11 applied. We found that the SIVPγ instance that the
signature schemes reduce to are much easier to solve (in the worst-case) than the starting
SIS instance (in the average-case). Additionally, the significant tightness gap of the reduc-
tion implies that neither signature scheme would get any useful security guarantees from
the worst-case to average-case reductions.

We note that there were portions of this work that haven’t been studied much (if at
all) in the literature. We believe that the following directions of research would improve
our understanding of the worst-case hardness of SIS-based cryptosystems, as well as of
cryptosystems based on the worst-case hardness of other lattice problems. We leave their
study to future work.
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1. Better provable bounds for the worst-case behaviour of BKZ.

2. A better understanding of the structure and hardness of worst-case lattice problems.

3. Proving results corresponding to Theorems 3.9 and 3.11 in the module lattice setting.

4. Studying the hardness of `∞−SISn,m,q,β∞ when the `2 bound of solutions is > q, both
in the direct and in the worst-case settings.

5. Finding an efficient SIS-based signature scheme (or finding a parameter set for Lyuba-
shevsky’s signature scheme) that gets 2128 bits of worst-case security.

6. Selecting Dilithium parameters so that the worst-case to average-case reduction pro-
vides meaningful security assurances for Dilithium, without severely impacting per-
formance.

Finally, we note that the methodology used to analyze the worst-case security assur-
ances is at least as important as the security assurances we have explicitly computed. Our
analysis can be easily modified to obtain worst-case security assurances for other cryp-
tosystems or if new reductions or bounds are obtained in the future.
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Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
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