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Abstract

Effective Hamiltonian engineering is a powerful technique that utilises time-dependent
perturbation theory to suppress or enhance certain effects that arise from otherwise weak
Hamiltonian terms, when an experimenter attempts to control the evolution of a quantum
system. With this thesis we conduct theoretical, numerical and experimental explorations
of two somewhat different kinds of effective Hamiltonian engineering in magnetic resonance,
aimed at elongating spin coherence times and increasing spin polarization.

First, we provide a general framework for computing arbitrary time-dependent pertur-
bation theory terms relevant for effective Hamiltonian engineering, as well as their gradients
with respect to control variations, that immediately enables the use of gradient methods
for optimizing these terms. We demonstrate the method in various numerical control en-
gineering examples, including decoupling, recoupling, and robustness to control errors and
stochastic errors. We then utilize the method in high-resolution nanoscale magnetic reso-
nance experiments that use high-sensitivity silicon nanowire based force detection. With
our numerically engineered control sequences, that are optimized to suppress spin decoher-
ence under dipolar and chemical shift Hamiltonians, we achieve an increase by a factor of
500 in the proton spin coherence time for low-temperature, (50-nm)? polystyrene sample.
We harness the enhanced spin coherence times for magnetic resonance imaging experiments
on the nanoscale, and achieve one-dimensional imaging resolution below 2 nm on the same
sample.

Secondly, we study low-temperature, high magnetic field nuclear hyperpolarization of
phosphorus donor nuclei in isotopically enriched 28-silicon crystal irradiated with non-
resonant above band gap laser light. We demonstrate hyperpolarization with a time con-
stant of 51.5 s, and introduce a phonon-mediated effective Hamiltonian model detailing the
process. We verify our model by designing and conducting a series of magnetic resonance
experiments.
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(a) Ilustration of the control setting considered in this section. We say
that we an ensemble I'" of quantum systems, the unique characteristics of
each quantum system v € I' are captured by the transfer function ) as-
sociated with it. We carry out our numerical control finding searches on
the optimization control sequence a°P*(¢) that is converted into an experi-
mentally implementable sequence a(t) through the use of the optimization
transfer function Z°P*. Z°P' is used for imposing the experimentally nec-
essary constraints on a(t), while a°P*(¢) need not adhere to such restric-
tions. When performing experiments, the sequence a(t) is outputted by
some control signal source, typically thought of as an AWG. a(t) is trans-
formed by the set of transfer functions {Z} to a set of control amplitudes
{6 (t) = Z) [a(t)]} which dictate the evolution of each quantum system.
(b) Each quantum system « € IT" is identified by its unique transfer function
=), whereas the evolution of it is determined by the system propagator
U(t) generated by the system generator G (t) = 22:1 bEV)(t)Gi, such

that U (t) = T exp (J"Ot dthW)(tl)). ....................

Control sequence robust to 1/f noise that implements a Y gate: a,(t) on
the left and a,(¢) on the right. The control waveform was optimized to take
zero values at its beginning and its end, furthermore, the limited range of
frequency components within the waveform ensures its smoothness.

(a) A schematic illustrating the silicon nanowire coated in polystyrene and
current focusing field gradient source (CFFGS) configuration during the
force deteced magnetic resonance experiments. The nanowire axis is aligned
with the external magnetic field marked as By. The red loops near the con-
striction of the CFFGS denote contours of constant Rabi frequency wy /(27)
generated by currents flowing in the CFFGS. (Inset) Representative scan-
ning electron micrograph (SEM) of a polystyrene-coated silicon nanowire.
The dashed red line marks the perimeter of the silicon nanowire itself. (b)
SEM of the CFFGS used in experiments. (c) A plot of constant Rabi fre-
quency wy/(2m) contours generated by the CFFGS at 50-mA peak RF cur-
rent in a plane along the dashed line in sub-figure (b). The axis in the figure
correspond to those in sub-figure (a). Besides the Rabi contours, we also
display an illustrative schematic of the polystyrene-coated silicon nanowire
positioned around 50 nm above the CFFGS top surface, which coincides
with the horizontal axis in the figure. . . . . . . .. ... ... ... ...
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4.2 (a) Timings of the MAGGIC detection protocol. The measurement period,
indicated in blue, consists of gradient modulation at the frequency f of the
nanowire, which is turned on and off with an exponential rise and fall times
of Q/(mf) = 8 ms to minimize spurious electrostatic excitation of the silicon
nanowire. Only once the gradient modulation has reached its peak value,
the AFPs are also turned on for a duration of 7y, yielding a resonant net
spin magnetization dependent force on the silicon nanowire oscillator. The
measurement window is followed by an encoding period of duration 7., dur-
ing which RF pulses resonant with the spin Larmor frequency are applied.
The encoding period is always followed by a second measurement period not
shown here. (b) Pulse diagram for the MAGGIC waveform during the mea-
surement period which includes periods of gradient modulation interspersed
with AFPs. . . . . .

4.3 (a) Experimentally determined distribution of Rabi field strengths parametrized
by 7 such that w; = 277y. (b) 10.6 kHz wide Lorentzian distribution cor-
responds to the wy/(27) inhomogeneity measured. Because we use the
points displayed, and their respective probabilities, in our spin signal simu-
lations in Section 4.4, the probability distributions are normalized such that
> erbrob(y)=1and 3 5 caprob(dw)=1.. ... . ............

4.4 (a) Amplitude transfer function A as a function of frequency v for the con-
trol electronics, determined through electrostatic force detection scheme.
The shaded area marks the bandpass filter described by Equation 3.80 for
restricting the control sequence frequency components within Arv = 10 MHz
of the carrier frequency of wy/(27) = 48 MHz. (b) Phase transfer function ¢
as a function of frequency v for the control electronics that was also deter-
mined through the electrostatic force detection scheme. The experimentally
determined amplitude and phase transfer functions have been normalized to
have values one and zero at v = 40 MHz, respectively. . . . . . . . .. . ..

4.5 (a) ay(t) for pulse #1. (b) as(t) for pulse #1. (c) Absolute value of the
Fourier-transformed pulse centred at the carrier frequency. The limited
spectral range of the sequence waveform is clearly visible. (d) Unitary metric

\119) defined in Equation (4.26) as a function of the Rabi strength parameter
7. It can be seen that the pulse targets the range 0.6 MHz to 1.2 MHz. (e)

Dipolar metric \Ilg) defined in Equation (4.27) as a function of . (f) o.
metric \I/((,Z) defined in Equation (4.28) as a function of 7. . . . . . ... ..
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(a) ay(t) for pulse #2. (b) as(t) for pulse #2. (c) Absolute value of the
Fourier-transformed pulse centered at the carrier frequency. (d) Unitary
metric \Ifg) defined in Equation (4.26) as a function of v; the target range
21 x 0.9 MHz to 27 x 1.75 MHz is clearly seen. (e) Dipolar metric \Ilg)
defined in Equation (4.27) as a function of v. (f) o, metric U5 defined in
Equation (4.28) as a function of . . . . ... o000

(a) Single spin simulation results of (o.) (n), defined in Equation (4.29) for
pulse #1, and (b) simulations of (0.) (n) for pulse #3 as a function of n. n
is the number of pulses applied. . . . . . . . . ... ...

(a) ay(t) for pulse #3. (b) as(t) for pulse #3. (c) Absolute value of the
Fourier transformed pulse centred at the carrier frequency. (d) Unitary
metric \I/(U”) defined in Equation (4.26) for pulse #3 (blue) and for pulse #1
(red). (e) Dipolar metric qu) defined in Equation (4.27) for pulse #3 (blue)

and for pulse #1 (red). (f) o, metric U defined in Equation (4.28) for
pulse #3 (blue) and for pulse #1 (red). . . . . . . .. ... .. L.

Normalized spin correlation C'(n)/C(n = 0) as a function of n, the number
of pulse #1’s applied on the spin ensemble. C' is defined by Equation (4.3).
The data has been fitted to the function cos (n7/10) exp (—cn), with ¢ = 0.01
yielding the best least squares fit. . . . . . .. ... ... ...

Magic echo sequence: the green (£2,) and the blue (€2,) blocks denote the
application of pulse #1 and pink blocks (x and X) denote a rotary echo. The
blue dots represent the normalized spin correlation C(t)/Cy measurements
after applying a €); pulse, which is not shown, at various times during the
magic echo sequence. C'is defined by Equation (4.3). The data has been
fitted with Gaussian functions that have a decay time of T3 = 11 pus.

Protocols for (a) the SME4 and (b) SME16 experiments. The initial /2
rotation creates a coherent state, after which, n blocks of SME sequences
are applied with their respective 7/2 rotations and rotary echo phases indi-
cated in the figure. The experiments end with an inverse 7 /2 rotation that

converts the coherences to populations, which are then measured through
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Normalized spin correlations C'(n)/C(n = 0) for n applications of: (a) SME4
with 7 = 25 us and (b) SME16 with 7 = 15 ps. The total duration of n
blocks of SME sequences is denoted by 7., and displayed along the horizontal
axis below the data. The data has been fitted to a decaying exponential
function C'(n)/C(n = 0) = exp(—7./T.), with T, denoting the effective
coherence time. . . . . . . . .. Lo 108

(a) Pulse diagram for the modified asymmetric SME4 sequences used for
one-dimensional imaging experiments in this figure. AT determines the
asymmetry offset for the rotary echos. (b) Spin correlation function C(t)
measured with a single modified SME4 sequence for various t = 8AT val-
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nanowire tip-CFFGS distance of 55 nm. (c) Fourier transformed spin cor-
relation functions C'(t). The absence of force signal from low w;-value spins
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dimensional proton spin density in the polystyrene sample as a function of
z measured from the top surface of the CFFGS. The nanowire tip-CFFGS
distances are the same as in (b). (Inset) 75-kHz resolution data, where the
65 nm trace, denoted by the red diamonds, has been shifted left by 9 nm. 112

(a) Vertical axis on the left: C(w;) for the 75 kHz resolution data from Fig-
ure 4.13 for nanowire tip-CFFGS surface separation of 55 nm (blue). Vertical
axis on the right: x75 (w1) as defined by Equation (4.7) (red). (b) Vertical
axis on the left: C(w;) for the 25 kHz resolution data from Figure 4.13 for
nanowire tip-CFFGS surface separation of 55 nm (blue). Vertical axis on
the right: Yas (w1) as defined in Equation (4.8) (red). (c) C(w;) for the
25 kHz resolution data in (b) (blue), C(wi)x2s (w1) /x75 (wi) for the 75 kHz
resolution data in (a) (red). . . . . . ... 114

(a) Eight spin simulation results for (2.J.);;; (n), defined by Equation (4.38),
using pulse #1 and (b) simulations for (2.J,);; (n) using pulse #3. (2.J.)y1y; (7)
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Orbital energy levels for a phosphorus donor defect electron in silicon. F,, =
12.95 eV denotes the energy splitting between the orbital ground state and
the first excited states. The 1s ground state of the electron lies Ey, =
45.3 meV below the bottom of the conduction band. . . . . . .. ... ..

Approximate mean distances, and the corresponding spin interaction strengths,

for nearest neighbour defect spins in silicon for 10'® cm™3 concentration in

46 ppm isotopically enriched ?*Si crystals: (a) for neutral donor defects, and
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idea for the 3!P nuclear spin coherence times arising from these interactions. 122

Energy levels for the neutral phosphorus defect spin degrees of freedom in
high external magnetic fields. w, and wsip are the electron and 3'P nuclear
spin Larmor frequencies, respectively. A, is the hyperfine constant between
the electron and the nuclear spins. The shaded area corresponds to electron
spin |.) state manifold, which was used for all of our experiments.

Photoionization and neutralization cycle taking place inside the silicon crys-
tal illuminated with above band gap light. (a) Initially, the donor defect is in
a neutral state D° with a single electron at the 3P site. At a rate of kpo_poyx
a free exciton is captured yielding a bound exciton D°X that comprises a
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Circuit for the NMR probehead proposed in [10], and utilized for measure-
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show that the inverse of TIDO is linearly proportional to the laser power in
the inset. . . . . . . e
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6.8

6.9

6.10

6.11

6.12

(a) Experimental sequence used for collecting the data in Figures 6.7, 6.8(b)
and 6.8(c). (b) 3P spin polarization at the end of a 160 s lasing/saturation
period for Q/(2m) = {0 Hz, 120 Hz, 240 Hz} for various Av values. The hor-
izontal axis origin is at the *'P spin resonance wsip/(27) = 115.3116 MHz,
while the gray vertical line denotes our best estimate for the paramag-
netic shift 6. The Q/(27) = {120 Hz,240 Hz} data have been fitted to
Equation 6.26, and the fits are presented in the figure. (c) 3P spin po-
larization at the end of various lasing/saturation periods for Av = ¢ and
Q/(2m) = {0 Hz,120 Hz,240 Hz}. The vertical dash dotted line marks
the 160 s lasing/saturation period used for collecting the data in (b). The
2/(2m) = 0 Hz data has been fitted with an exponential, the time constant of
which is T?°, while the dashed lines laid over the Q/(27) = {120 Hz, 240 Hz}
data sets are our model predictions for the signal. The inset displays the
3P spin polarization measurements at short lasing periods. (d) The same
data as the Q/(27) = 0 Hz measurements in (c) fitted with a single ex-
ponential (solid line) and local light intensity dependent integrated signal
[ dI n(I) (1 —eP) (dotted line), where 8 has been adjusted to yield the
best least squares fit to the data. . . . . . . . .. .. ... ... ... ...

(a) Experimental sequence used for collecting the data in (b). The 160 s
lasing period brought the spin polarization to 96% of its terminal value.
For half of the measurements a m-pulse resonant with D° nuclear spins was
included at the end of the lasing period to flip the spin orientation. The
7 pulse length was ~13 us, hence, its inclusion did not affect the effective
experiment time. (b) 3P spin polarization as a function of saturation time,
the round/blue (square/yellow) markers correspond to measurements with-
out (with) the application of the m pulse. The dashed lines correspond to
our model prediction for the signal decay. . . . . .. ... ... ... ...

(a) Build up data from Figure 6.8(c) and our best fits to Equation (6.37) for
Q/(27) = {0 Hz, 120 Hz, 240 Hz}, Av = § and MP°(0) = 0. (b) Data from
Figure 6.8(b) and our best fits to Equation (6.37) for ¢ = 160 s, Q/(27) =
{0 Hz,120 Hz,240 Hz} and MP°(0) =0. . . .. ... ... ... ......

Data from Figure 6.9(b) and the predictions by Equation (6.37) for Q/(27) =
4 kHz, Av = 4, given the parameters extracted from the fits in Figure 6.10.

(a) Simulation of M"°(Av, Ay, t) in Equation 6.44 for t = 100 s and Ay, /(27) =
{0.5 MHz,1 MHz, 1.5 MHz}. (b) Simulation of MP’(Av, Ay, t) for t = 1's
and Ap/(27) = {0.5 MHz,1 MHz, 1.5 MHZ}. .+« + « o oot
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B.1

C.1

C.2

Magnetic field and magnetic field gradients in the xy plane at constant
heights z around the centre of the CFFGS constriction as indicated in
Figure 4.1(a). The four heights picked for finite element simulations were
z € {50 nm, 60 nm, 70 nm, 80 nm}. In the top row, we display the Rabi fields

By (7) = \/B:%(F) + B2(7") /2 at various locations in the horizontal plane of a

fixed z-coordinate, as well as a vector plot that indicates the relative mag-
nitudes of B,(7) and B,(r) at these locations. In the middle row, we give
dB;/dz values, and in the bottom row, we give dB,/dx values at the four
heights above the CFFGS top surface. The black regions in the contour
plots denote the outside contours of the CFFGS near its centre. . . . . . .

Bloch sphere trajectories {ml(-'Y) ()}, defined by Equation (C.1), and their in-
tegrals { M ()} defined by Equation (C.3) for spins evolving under pulse #1
with three distinct Rabi strengths: v = 0.7 MHz (blue), v = 0.9 MHz (red),
v = 1.1 MHz (orange). (a) m{(t), (b) m{(t), (¢) m$ (1), (d) MO (1), ()
M@, () MO () for 0 <t < T, with T =12.95 pis. . . . . . . . .. ...

Bloch sphere trajectories {mz(-ﬂ ()}, defined by Equation (C.1), and their in-

tegrals {MZA(A’) (t)} defined by Equation (C.3) for spins evolving under pulse #3
with three distinct Rabi strengths: v = 0.7 MHz (blue), v = 0.9 MHz (red),

v = 1.1 MHz (orange). (a) m{"(t), (b) m{ (1), (c) m(¢), (d) M (¢), (e)
M), () MO () for 0< ¢t < T, with T =7.24 ps. . . . . .. .. ....
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Chapter 1

Introduction

Ever since the introduction of nuclear magnetic resonance by Rabi in 1938 [94], magnetic
resonance has proven to be a truly transformative tool in fields as diverse as physics, mate-
rials science, chemistry, biology, medicine, engineering and quantum computing. Magnetic
resonance utilises the fact that intrinsic spin angular momentum of electrons and of nuclei,
that possess non-zero spin, couples to magnetic fields, which gives rise to energy differences
between quantized spin angular momentum states. These spins can then be driven between
the quantized levels with external electro-magnetic radiation — typically in the MHz to GHz
frequency range — and the quantized state of the spins can be detected by having the mag-
netic moment of the spins couple to some external physical system. The fact that the spins
are generally localized to atomic or nuclear length-scales makes them incredibly localized
magnetic field sensors, that can be operated in a completely non-destructive way due to
the low photon energies involved in magnetic resonance experiments. Moreover, in the case
of nuclear spins, the coupling to magnetic fields depends on the chemical species and the
particular isotope of the nucleus, therefore, such magnetic field sensors provide chemically
and isotopically specific information about the sample, which forms the foundation for a
variety of magnetic resonance applications including spectroscopy, sensing and imaging.

Two crucial challenges in further expanding the range of magnetic resonance applica-
tions are:

e improving spin coherence times in a particular physical system and for a particular
experimental configuration, and

e increasing spin polarization in a fast manner.



The former usually translates to enhanced spectral and imaging resolution, improved sens-
ing ability or lower error rates in the case of quantum computing, while the latter can
result tremendous gains in device and experimental efficiencies. These challenges are espe-
cially critical when magnetic resonance techniques are shrunk down to nanometre scale for
sensing, spectroscopy and imaging at molecular length-scales, at which point conventional
spin detection and coherence preservation methods become impractical. Increasing spin
polarization becomes particularly important also for applications such as magnetometry,
which benefit from diluting the particles with non-zero spin to enhance the precision of
sensing, because using dilute spin samples reduces the spin interactions that would hamper
the sensing ability. With this thesis we address both of these challenges through effective
Hamiltonian engineering. Effective Hamiltonian engineering drives a spin system to un-
dertake a desired evolution while suspending the effects of unwanted couplings and system
Hamiltonians, and it can be utilised for elongating effective spin coherence times, or driving
the spin into states of increased polarization.

1.1 Thesis Outline and Main Results

Here, we give the outline for the rest of this thesis.

e With the rest of Chapter 1 we give a brief treatment of spin dynamics in magnetic
fields. This entire thesis is concerned with time evolution of spin systems, hence,
we introduce the Schrodinger and Lindblad equations that govern the time evolution
of spin systems, treated as quantum systems in finite dimensional Hilbert spaces.
In this chapter, we will only focus on spin-1/2 dynamics; we will introduce more
complicated spin Hamiltonians when they become necessary throughout the rest of
the thesis. Importantly, we give a brief sketch of the rotating wave approximation that
is used when computing the dynamics of spins in static fields that are considerably
stronger than the amplitudes of time-dependent magnetic fields employed for driving
the spin system.

e Chapter 2 will introduce the concept of effective Hamiltonians by considering two an-
alytical paradigms for Hamiltonian engineering: average Hamiltonian theory (AHT)
[11] and stochastic Liouville theory [58]. We will argue that effective Hamiltonian
engineering translates to setting certain perturbative expressions to desired values.
Specifically, we say that if a quantum system is controlled over a period 0 <t < T,
and the unitary evolution over this time period, as is generated by the experi-
menter’s best characterization of the system’s internal and control Hamiltonians,



is U(0 <t <T), then successful engineering of the desired effective evolution boils
down to ensuring that U(7') and certain variations of it take a desired form. These
variations can generally be expressed as time-dependent perturbation theory expres-
sions of the following form:

/T dt, /t1 dtg.../tnl dtn f(t1,te, .o tn) U HE) AU () .. U Nt A(t)U(t,),
0 0 0 (1.1)

where f(ty,t,...,t,) is a scalar function and {A(t;)} is a set of, possibly time-
dependent, operators.

With Chapter 2 we review that AHT prescribes a systematic approach for setting
perturbation theory integrals of the kind in Equation (1.1) with f = 1 to some desired
values. Here, we remark that AHT proved an indispensable tool for the development
of a vast number of magnetic resonance control sequences, e.g., dipolar sequences [121,
, 95, 79, , 17], composite pulses for control and internal Hamiltonian variations
[(61], imaging sequences [18] and many more. We will also show in Chapter 2 that
perturbation theory terms with f # 1 in Equation (1.1) appear when solving for the
ensemble averaged evolution of a quantum system under stochastic operators, as is
the case for stochastic Liouville theory [58]. f(t1,%s,...,t,) will then be composed
of correlation functions that characterize the stochastic operators. Analytic control
design seeking to minimize nested integrals of that kind was performed in [13].

Chapter 3 is devoted to developing a framework for efficient evaluation of expressions
appearing in Equation (1.1), which is very easy to incorporate into numerical control
design algorithms.

Achieving the most efficient and accurate control of any quantum system, or an en-
semble of quantum systems, requires tailoring of control sequences for the particular
experimental setup and physical system at hand. When it comes to flexible tailored
control design, numerical control optimization has a number of advantages over ana-
lytical control design: (i) it can easily deal with simultaneous control of an ensemble
[7, 63], (ii) even though it is limited to smaller Hilbert space dimensions, it is not
specific to any Hilbert space dimension [1&], (iii) it can accommodate any experimen-
tal constraints present for the specific hardware configuration, e.g., amplitude and
bandwidth constraints for the control waveform [82, 105, 6], (iv) it can account for
deterministic control distortions due to control hardware [17, 26], and (v) it stands
a better chance of yielding control sequences that are closer to being time optimal
than analytic solutions, given (iii) and (iv).



Given the benefits of both — perturbative tools and numerical control design — there
has been increasing interest in numerical engineering of control sequences that im-
plement effective Hamiltonians. A filter function formalism for mitigating the effect
of stochastic noise in quantum control was introduced by Green et al [34, 35, 89],
and has been combined with gradient free numerical optimization, which lead to
experimental advancements [1041]. Although there are individual, problem specific,
numerical approaches that have previously been taken [38, 33], a complete frame-
work for numerical control optimization that would yield a desired value for U(T),
simultaneously with values for an arbitrary set of perturbation terms, has so far been
lacking.

With Chapter 3 we provide a general method for the numerical evaluation of U(T') si-
multaneously with the evaluation, or arbitrarily close approximation, of any number
of nested integrals in Equation (1.1). Furthermore, the method also enables straight-
forward computation of gradients of these integrals, which is crucial for efficiently
searching large control landscapes when numerically optimizing quantum control se-
quences. We demonstrate that such integrals can be evaluated by solving particular
block matrix differential equations, that we call Van Loan equations, which have the
same form as the Schrédinger equations, that determine U(t). We demonstrate the
efficiency and applicability of our framework by conducting four control searches that
involve various nested integral terms and one control search that deals with stochastic
noise process. The latter also implements various experimentally realistic constraints
on the pulse waveform, including amplitude and pulse bandwidth limitations, and a
demand that the ends of the pulse waveform go smoothly to zero.

Chapter 3 is largely based on the results in [39], a research project conducted by the
author in collaboration with Daniel Puzzuoli.

Chapter 4 comprises an experimental implementation and verification of the Van Loan
numerical control engineering framework developed in Chapter 3. We used our tools
for nanoscale magnetic resonance imaging experiments which posed a very challenging
control setting — we were dealing with an ensemble of strongly dipolar coupled proton
spins that experienced a vast Rabi frequency variation from 0.6 MHz to 1.3 MHz,
while the phase coherence time T, of the coupled spins was 11 ps. Our numerical
tools helped us find control sequences that yielded a 7/2 unitary rotation that was
insensitive to first order perturbations due to dipolar and chemical shift Hamilto-
nians for the entire spin ensemble simultaneously. Even though the rotation took
7.5 us to implement, it enabled an increase of spin T by a factor of ~500. We also
demonstrate numerical simulations which indicate strongly that such elongation of



the phase coherence time would not have been possible without our effective Hamilto-
nian engineering tools. We made use of this enhanced coherence time by performing
one-dimensional magnetic resonance imaging experiments on the same proton spin
sample with a resolution of ~2 nm. Crucially, we performed the experiments on
virtually the same setup that was limited to ~10 nm spatial resolution in previous
imaging experiments due to phase coherence time resolution limitations [35].

Chapter 4 is largely based on the published results in [96], which the author conducted
in collaboration with William Rose and Raffi Budakian.

Chapter 5 introduces low temperature properties of phosphorus defects in silicon at
low doping concentrations, with a particular focus on properties relevant for mag-
netic resonance experiments. We will specifically discuss phosphorus nuclear spins
(3'P) embedded at dilute concentrations in high quality isotopically purified sili-
con-28 (?Si) single crystals that have been demonstrated to have extremely long
coherence times both at cryogenic and room temperatures [03]. These nuclei in that
material are the subject of our interest in Chapter 6. Consequently, the nuclei have
been proposed as a candidate for quantum information storage in a scalable, fault-
tolerant quantum computer architecture [50, , |. The same long coherence
time, coupled with various efficient read out schemes, also make the *'P nuclei in
silicon a viable candidate for extremely high accuracy, high sensitivity magnetom-
etry. A crucial challenge for realizing the latter is to establish a fast and simple
means for hyperpolarizing the nuclear spins in order to enhance the measurement
efficiency and sensitivity. It is known experimentally that the 3'P nuclear spins can
be hyperpolarized by illuminating the silicon crystal with above band gap light at
high magnetic fields and cryogenic temperatures [77, 38]. With Chapter 5 we will
summarize the aforementioned excellent coherence properties of the defect nuclei, we
will also outline two proposed candidate mechanisms explaining the low temperature
optical hyperpolarization schemes.

Chapter 6 presents our studies of nuclear hyperpolarization of 3'P donor nuclei in
an isotopically enriched 28-silicon crystal under the illumination of above band gap
1047 nm laser light at a high magnetic field of 6.7 T at low temperature of 1.3 K. We
demonstrate spin polarization growth with a time constant of 51.5 s and introduce
a microscopic effective Hamiltonian, phonon mediated model detailing the process.
In order to verify our model, we demonstrate experimentally that the nuclear po-
larization build up is independent of the local light intensity variations inside the
crystal and uncorrelated with donor ionization events under the above band gap illu-
mination. We attribute the photoionization to Auger recombination that follows free



exciton capture at the donor defect sites, hence, implying that the hyperpolarization
mechanism is unrelated to the exciton capture. To study such events we introduce a
magnetic resonance technique that directly characterizes the donor defect ionization
process. This previously unexploited way of probing the photoionization enables us
to measure both the rate and the average duration of the defect site ionization under
our illumination, temperature and field conditions.

The studies in Chapter 6 were conducted by the author in collaboration with Thomas
Alexander and Rahul Deshpande.

e Chapter 7 provides concluding remarks.

1.2 Brief Introduction to Magnetic Resonance

In this thesis, we deal with Hamiltonian engineering in the context of magnetic resonance,
hence, all problems will be stated in terms of spin Hamiltonians. Nevertheless, it should
be understood that in most cases, as far as the mathematical treatment goes, the the
word ’spin’ is interchangeable with ’finite level quantum system’. Here, we will give a brief
mathematical treatment of magnetic resonance concepts that govern the dynamics of a
single isolated spin-1/2 nucleus and a single isolated electron, that experiences negligible
spin-orbit coupling, when placed in magnetic fields [62]. Nuclear spins that have spin num-
bers greater than 1/2 also couple to electric field gradients through their non-zero electric
quadrupolar moment, and electrons in solid state matter with non-zero spin-orbit coupling
can exhibit effective couplings to electric as well as strain fields. For the sake of brevity,
we will ignore these aspects of spin dynamics for now along with multi-spin Hamiltonians,
which will be introduced as they become necessary in the rest of this thesis. Further-
more, this section does not touch on the experimental aspects of magnetic resonance, such
explanations will also be reserved for the upcoming chapters.

The spin degree of freedom for a single isolated spin-1/2 particle forms a two-dimensional
complex FEucledian vector space, usually referred to as the Hilbert space. All through this
thesis, we work in the Schrodinger picture, i.e., we say that the spin state of a system
at any time ¢ is fully characterized by state vector [1(t)). [¢(t)) can be decomposed as
a linear superposition of two ortho-normal basis vectors, which we will denote as |1) and
|4) throughout this thesis: [1(t)) = ¢1(¢) [1) + ¢, (¢) [{), where ¢+(¢) and ¢ (t) are complex
numbers for which it holds that |c+(£)[*4]c; (£)]* = 1. We often work with an explicit vector
representation of |¢(¢)) in that basis, in which case we identify [¢(¢)) with a complex unit



vector
w0 (i )= (46) 12

When a spin-1/2 particle is placed in magnetic field B(t), the spin state |4)(t)) evolves
according to the Schrodinger equation:

L d
ih L (0) = HE) é(e). (13
where the Hamiltonian H(¢) is the Zeeman Hamiltonian:
H(t) = —ji- B(t), (14)

ii being the magnetic moment proportional to spin angular momentum of the particle:
i = %h(ax,cry,oz). ~ is called the gyromagnetic ratio and is specific to a free electron
or a particular nuclear isotope, while o;, i € {z,y,2} denotes a Pauli operator. From
this point on, throughout this thesis, we take h = 1, which implies that we express our
Hamiltonians in units of frequency rather than energy. Furthermore, we use a convention
that designates |1) and [|) as the +1 and —1 eigenvalue eigenstates of the o, operator, and
we generally use the matrix representation of {o;} for the {|1),|])} basis interchangeably

with the operators themselves, i.e., we assert that

o (V) om (U ) (10, 05

Since the evolution of [¢(t)) in Equation (1.3) is generated by a Hermitian operator,
the state vector |1 (t = 0)) is transformed to |¢)(t > 0)) by a unitary operator U(t), such
that |¢(t)) = U(t) [1(0)), and U(t)UT(t) = 1, where 1 is the identity operator. U(t) itself
is a solution to the Schrodinger equation

d

LU0 = —iHOU(®), (1.6)

with U(0) = 1. If H(t;) commutes with itself for all times ¢; € [0, ], then

U(t) = exp [—z' /0 o H(tl)} , (1.7)



otherwise, we can express U(t) either in terms of Dyson series [22]:

U(t) = IL—Z/ dt Hity) + (i) /dtl/ dty H(t)H(ts) + ... (1.8)

or in some cases through Magnus series [70,

U(t):exp( /0 dt, H

where [A, B] = AB — BA denotes a matrix commutator.

dt1

dt2 (t1), H(t2)] + .. >, (1.9)

1.2.1 Rotating Wave Approximation

With this subsection we tie the mathematical nomenclature introduced so far in this section
to the physical phenomenon of magnetic resonance. In the case of most magnetic resonance
experiments, the spins are placed in a strong static external magnetic field [62], the strength
of which is denoted by By and its direction is conventionally taken to be along the z-axis,
ie., B = (0,0, By). The resulting drift Hamiltonian is then Hgig = vBo0,/2 = woo,/2,
where the quantity wy is called the Larmor frequency of the spins. It easy to see that
the energy difference between the ground and the excited state of Hauig — |J) and [1),
respectively — is hwy.

We will now show that electro-magnetic radiation, specifically alternating magnetic
field resonant with wy, drives the spin state between ||) and |1). It is this exact resonant
phenomenon that gives magnetic resonance its name. We begin by considering a different,
time-dependent, component to the B (t) vector, that points orthogonal to the z-axis. Here,
with no loss of generality, we take it to point along the z-axis:

Bi(t) = By (cos(wit — ¢),0,0), (1.10)

where Bj is referred to as the Rabi field and ¢ is some phase constant, while w; is the
transmitter frequency of the AC magnetic field, named so, because it is typically gener-
ated by radio-frequency (RF) or microwave (uw) synthesizers. The corresponding spin
Hamiltonian becomes

H(t) = wy cos(wit — @)o, + wg% (1.11)
_ WGt [Wl (% cos(¢) + % Sln(¢)> + WO% + wlefi(wtthZ)oz%ei(wtt7¢/2)az e*iwt%zt7



with w; = 7B /2 being referred to as the Rabi frequency. For solving Equation (1.3) for
H(t) given by Equation (1.11), we first make an ansatz that |(t)) = e®t2t |¢)(t)), where
|4(t)) is called the state vector in the frame of w,% Hamiltonian. Inserting this ansatz

into Equation (1.3), and collecting some terms, yields a differential equation for |@Z (1)):

zh% (t)) = [wl (% cos(¢) + % sin(@) + UJO% + W1e_i(”ft_¢/2)"z%ei(wtt_¢/2)az] [0(t))
~ [wl (% cos(¢) + % sin(¢)> n Aw%} 1D(1) (1.12)

with Aw = wy — wy; the omission of the time-dependent term on the second line is called
the rotating wave approximation (RWA). RWA is a very good approximation as long as
w; < wp and |Aw| < wp, which is a regime where most magnetic resonance experiments
are performed. It is now clear that

2y

W](t» _ eiwt%te—i[wl(% cos(¢)+— sin(qb))—i—Aw%z]t ‘¢(0)> (1‘13)
or

[B(8) = Ut) [(0)) = e 1 (F @ @) +00 ] ) (114)
> of wos
of the spin Hamiltonian, i.e., we only concern ourselves with the evolution of |¢(t)) for
resonant Aw = 0 drive fields. This makes physical sense because the detection of [¢(t))
in magnetic resonance experiments happens generally either at the transmitter frequency
wy, as is the case for inductive detection, or as an effective measurement of o, expectation
value which coincides for [1(t)) and |¢(¢)). Consequently, we regard the Rabi fields defined
by Equation (1.10) to always be modulated by transmitter or carrier frequency w; = wy,

the resulting rotating frame Hamiltonian being w; (%‘ cos(¢) + % Sin(gb)). It is easy to see

that such Rabi field drives the state [¢)(t)) between |{) and |[1) with Rabi frequency w.
The transitions |]) <> |1) are called Rabi oscillations.

In the rest of this thesis, unless stated otherwise, we work implicitly in the frame of wy

1.2.2 Open Quantum System Dynamics

For most real spin systems, the state vector |1(t)) description given above does not fully
encapsulate the measurement results in magnetic resonance experiments. In general a
density matrix description is necessary to account for ensemble effects or to describe the
dynamics of some particular spin degree of freedom within a larger quantum system. With

9



this subsection, we give a brief sketch of the density matrix description in the case of open
quantum system setting. The density matrix p(¢) is a trace-one, positive semi-definite
operator, meaning that it can always be written as a sum of orthogonal rank-one projectors,
the real eigenvalues of which are always non-negative and add to one. In that sense p(t),
describing a spin-1/2 system, can be regarded as a probabilistic mixture of two orthogonal

states {|a(t)), |b(¢))}:
p(t) = p(t) |a(t)) (a(t)] + [1 = p(t)] |b(£)) (b(E)], (1.15)

where 0 < p(t) < 1. p(t) is a mathematical object that packages expectation values
for any measurement performed only on the spin degree of freedom of the particle. For
p(t) = {0, 1}, the density matrix description reduces back to pure state description given

above, such that p(t) = [(t)) (d(t)].

Under certain assumptions about the underlying quantum system dynamics [10, 61],
which ensure that the evolution of p(t) follows a quantum dynamical semigroup, the time-
dependence of p(t) is governed by Lindblad equation:

(0 = <ILHO,p0] + 3 0,0 [ A,0p(0A)0) - HADA .00 (110

where {A, B} = AB + BA denotes a matrix anti-commutator, {a;(t)} is a set of non-
negative real constants and {A;(t)} is a set of operators. If A;(t) = 0 for all j, Equa-
tion (1.16) reduces to Liouville equation and the evolution of p(t) is unitary. Equa-
tion (1.16) enforces that for any initial trace-one, positive semi-definite p(0) the final density
matrix p(t) is also a trace-one, positive semi-definite operator.

1.2.3 Bloch Equations

In this subsection, we deduce a particular set of phenomenological equations describing
the evolution of a spin-1/2 system through p(t), called the Bloch equations. Let H(t) =
Wy ("7* cos(¢) + %sin(qﬁ)) + Aw% and ay(t) = s/T1, Ai(t) = o4, ao(t) = (1 = 5)/T,
Ay(t) = o_, ag(t) = 1/Ty — 1/(2T}), As(t) = 0./v/2 and 0 < Ty < 271, 0 < s < 1 in the
Lindblad equation defined by Equation (1.16), then

1 1

Loty = i [ (%2 cos(0) + Lsin(@)) + 2w (1) + (f - E) (0-p(t)0 — p(1)

+ % <U+P(t)o_ - %{J_a+,,0(t)}> + 1;15 (O._p(t)g+ - %{0+0—,P(t)}> . (1.17)

10



oy and o_ = ai are the spin raising and lowering operators, respectively,

Equation (1.17) is a first order operator differential equation for p(t), which can be
expressed as a matrix differential equation, just as the Schrodinger equation in Equa-
tion (1.3), when a particular operator basis is chosen for p(t). Here, we choose p(t) =
S (r(O) 1 + ro(t)o, + 1y (t)oy, + 7.(t)0.), where 7(t) = (ry(t),ry(t),7.(t)) is a vector in R?,
and is called the Bloch vector, which has to satisfy |r(t)| < 1, as well as r(t) = 1 for
p(t) to be a trace-one semi-definite operator. Fixing an operator basis for p(t) and ex-
pressing the density matrix as a four-dimensional vector will be referred to as vectorization
throughout this thesis, and we will often denote it as |p(t)), importantly, in many cases we
do not explicitly write out the basis but merely rely on its existence. For deriving Bloch
equations, we identify |p(t)) = (ry(t), 7, (t),r.(t),r1(t)), where the elements of |p(t)) can

be found as r;(t) = Tr [ajp(t)}, for i € {z,y,z}, while ri(t) = Tr [17p(¢)] = 1. Using this

identification, we can rewrite Equation (1.17) as

_T% —Alw wy sin(¢) 0

d B Aw -7 —wycos(p) 0
E |p(t)> - —w; sin(¢) Wy CO:g((b) _Til % |10<t)> : (1'18)

0 0 0 0

The 4 x 4 matrix above is referred to as the Bloch equations for a spin-1/2 system. Solving
the equations for w; = Aw = 0 and any p(0) = 3 (1 + 7,(0)o, 4+ r,(0)o, + r.(0)0.) yields

p(t) = (1.19)
1

5 (IL + rm(())e*T%az + T’y(())@iT%O'y + [rz(())e*TLl +(2s — 1) (1 - 67%1>] az> ,

which elucidates the physical interpretation of the quantities s, T and 75, and the corre-
sponding operators, that were inserted into the Lindblad equation above in a seemingly ad
hoc manner. T; is called the dephasing, or the transverse relaxation time, and it determines
the time scale over which the coherence, i.e., x and y components of p(t), decay to zero.
Such dephasing is a universal phenomenon in the case of magnetic resonance experiments,
and arises due to ensemble effects and/or due to noise, furthermore, dephasing also ap-
pears when the spin degree of freedom couples to external systems. The fact that x and y
operators are treated on an equal footing is also universal and arises because the external
magnetic field By merely determines a symmetry axis for the spin system. 77 is called the
longitudinal relaxation time, and it characterizes the time scale it takes for the spin system
to return to thermal equilibrium state pihermal = % 1+ (25 —1)o.], where 0 < s < 1is
often determined by Boltzmann distribution such that s = 1/2 (1 — tanh [Owoh/(2k5g)]).

11



O is inverse temperature and kg the Boltzmann constant. Finally, we remark that this
thesis is largely concerned with elongating 75 values and engineering effective T processes
with s-values greater than 1/2 (1 — tanh [Owyhi/(2kg)]) in order to enhance the sensitivity
and efficiency of various magnetic resonance experiments.
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Chapter 2

Coherent Averaging and Effective
Hamiltonians

With this short chapter we give a brief review of the earliest two effective Hamiltonian
analytical treatments: average Hamiltonian theory (AHT) introduced by Haeberlen and
Waugh [11] in 1968 and stochastic Liouville theory introduced by Kubo [58] in 1963. We
do not intend our treatment here to be comprehensive, since the use of AHT and stochastic
Lioville methods is incredibly broad. Our main aim is to motivate the next two chapters,
and specifically, to demonstrate that both of the analytical treatments work with nested
integrals of the following form:

/ "t / " .. / Tty (bt b)) UM AWDT () o U (6 AU (1), (2.1)

where f is a scalar function. In the case of AHT f = 1, whereas for stochastic Lioville
theory f is generally a non-trivial function of {t1, %, ...,t,}. We also give an explicit AHT
treatment of the magic echo sequence [71, 12] that will be used extensively in Chapter 4.

This chapter contains no significant original contributions by the author.

2.1 Average Hamiltonian Theory

AHT was introduced in the context of spin Hamiltonians in magnetic resonance experi-
ments. Haeberlen and Waugh [11] considered a spin system driven by some time-dependent

13



Hamiltonian H;(t), that evolves under a total Hamiltonian
H(t) = Hi(t) + Hin, (2.2)

where Hj,; is some time-independent internal Hamiltonian, the evolution under which is
unwanted. In the next chapter, it will be shown by Equation (3.12) that the evolution
under H (t) can be partially separated into evolution under H;(t) and another term. This
is done through the concept of toggling frame. Here, we just assert that we can write

U(t) = Uy (t) U (), (2.3)

where U(t), Uy(t) and Uiy (t) are solutions to the following respective Schrédinger equa-
tions: U(t) = —iH()U(t), Uy(t) = —iH,(t)Uy(t) and Upg(t) = —iHu(t)Ung(t), with
U(0) = Uy (0) = Uiy (0) = 1, and Hyne(t) = UJ (t) Hino Uy (£) being called the toggling frame
Hamiltonian.

Because H;(t) is assumed to be totally under the experimenter’s control, hence, result-
ing in an ability to generate any arbitrary U;(¢), Haeberlen and Waugh [11] analysed the
effect of Ui (t) on the spin system evolution. They assumed that Hy(t) is periodic and
cyclic over time t., implying that

H1<t + Ntc) = Hl(t) and

Uy (Nt.) =1,
for any N =1,2,... . These two conditions ensure that the toggling frame Hamiltonian is
also periodic, i.e.,
Hing(t + Nto) = Hini(8), (2.6)

with the same period as H;(t). The cycle time ¢. is usually considered to be a period
sufficiently shorter than the characteristic time scale for evolving under Hj,, and the
above implies Uiy (Nt.) = [Uine (to)]V.

Haeberlen’s and Waugh’s [11] treatment considers spin system state at integer intervals
of t., which translates to considering the properties of U(Nt.) = U;(Nt.)Upni(Nt.) =
Ui (to)]Y. In that way, only a short cycle period evolution under the toggling frame
Hamiltonian has to be considered, which can be done using Magnus expansion introduced
in the previous chapter:

Ul(t.) = exp (=it F), (2.7)
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where F is a time-independent average Hamiltonian given as F = Hyy, + H l(nt +H mt) + ..

such that

_ 1 [t
= / dty Fun(tr), 2.8)

— —i
Al - / dah, / Qb e (11), g (1), (2.9)
int = 6t / dtl/ dt2/ dt3 int (f1), [Hmt(t2) Hlnt(t3>]] (2.10)
+—/ dtl/ dtz/ dt3[ﬁint(t3)a[ﬁint<t2)aﬁint(tl)]]
6tc Jo 0 0

Since F is time independent we see from Equation (2.7) that U(Nt.) = exp (—iNt.F),
which is the unitary operator that entirely determines the spin system dynamics. Finally,
AHT prescription for making the spin system evolve as if the H;,; Hamiltonian term is not
present, is to pick a H;(t) that satisfies the conditions in Equation (2.4) and (2.5), while
setting Magnus terms up to some order to zero, i.e, H = ﬁ(l) = .= ﬁ(n) = 0. For short
enough t., one then has U(Nt.) ~ 1. We also point out that all Magnus terms appearing in
Equation (2.8) can be composed of nested integrals in Equation (2.1), with f = 1, because

Hine (t) = U{ (8) Hin Uy (£).

2.1.1 Magic Echo Sequence

In this subsection, we provide an AHT analysis of a particular, idealized NMR pulse
sequence, called the magic echo [74, 12]. The pulse sequence is depicted in Figure 2.1, and
consists of two 7/2 rotations, that are assumed to be infinitesimally short, sandwiching a
rotary echo implemented with Rabi frequency 2. The same pulse sequence will form the
basis for most of the experiments in Chapter 4. We will specifically focus on the AHT
terms arising due to resonance offset/chemical shift Hamiltonian and spin-spin dipolar
coupling Hamiltonian — the former could be written as Hi,, = Aw%, Aw denoting the
resonance offset/chemical shift for a particular spin, while the latter is given as H, =

¢ (3% ® % — Zke{x’w} F® %), where £ specifies the strength of the dipolar interaction
between a pair of spins.
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Figure 2.1: Magic echo sequence: the sequence consists of 7-long zero-amplitude periods
at the beginning and at the end of the sequence, and two rotary echo periods with opposite
phases, each of length 27 that are sandwiched by 7 /2 rotations around the z-axis. The
rotary echo periods are denoted by y and y, and stand for a continuous Rabi drive along
the y and negative y-axis, respectively.

We now find the zeroth order average Hamiltonian Hiy = 6% 067 dt ﬁint(t) for the two
Hiyi's over the 67-long duration of the magic echo sequence. The unitary Ui () is generated
by the Hamiltonian H;(t), which is determined by the pulse amplitudes in Figure 2.1. We

can therefore write U (t) as

1, for0<t<r

Uy (1) = exp [ sz’(t — 7')] exp (— 371) , for 7 <t <37 (2.11)
exp [—iQZ (57 — t)] exp (—iZ %), for 37 <t <57
exp( m%’“) , for 57 <t <67
We first evaluate ﬁint(t) = UlT(t)Hthl (t) for Hip = Aw%:
Aw%, for 0 <t <7
o () = Aw (cos [Q(t — 7)] Z — sin [Q(t — 7)] 7*1 for 7 <t <3r (2.12)

Aw (cos Q5T —t)] 2 —sin [Q(5T — 1)] &
—Awe, for 57 <t <67

) for 3r <t < 571

Correspondingly, the zeroth order average Hamiltonian for chemical shifts and resonance
offsets under the magic echo sequence is

67

1 ~
-/ dt Hint (t) -

int =
67

3;;2 (sm(zm) 2 + [cos (207) — 1] %) (2.13)

It is clear that H,, becomes zero in the limit of Q7 — oo.
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For Hy, = & (3"2—2 ® %F — Zke{m,y,z} 5 ® "’“), we follow an analogous procedure as
above. This time, we have Hyy(t) = [Uf( ) ® Ulf(t)] Hin [Ur(t) @ Up(t)] since Hyy is a two-
spin Hamiltonian. Furthermore, we notice that » ;. (UlT ® U1T> (o @0k) (UL @Uy) =

Zke{x y,2} OkQ0k for any unitary operation U;. The last identity arises because Zke{x .
2Uswap — 1 ® 1, where Uswap denotes the swap operator. Therefore, we only need to ex-

plicitly evaluate H,.(t) = 3¢ [U{r(t) ® Uf(t)} (% ® %) [Ui(t) ® Ui (t)] to calculate Hipg (1)

p

G %, for0<t<T
Yoz +20%) +eos20t—7)] (202 -2 %)]

(1) = —Esin2Qt -7 (202 +2®%), for T <t<3r (2.14)
Kl(5 0% +50%) +eos PG )(30F - 0F)]
—Esin20(57 - )] (202 + 2 ® %), for 3r <t <57
(38%F @ %, for b7 <t <67

Consequently,

- 1 67 - 1 67

Hm—— dt Hip(t) = — dtsz — Q= 2.15
= =g e Y Ze (215)

ke{xyz}
Tet-Z2) i[(;05(497)—1] (Ze2+Z2eZ)

_ g (
- sin(407) (57 ® 5 = 5 ® 5 )+ g 2 ¥ T ¥y

4718
which also becomes zero in the limit of 27 — oco. That implies that for an ideal magic echo
sequence — with its two infinitesimally short /2 rotations as well as a rotary echo Rabi
frequency that substantially exceeds both Aw and £ — will remove the effect of these Hamil-
tonians in AHT zeroth order. In Chapter 4, we will study the effects of introducing finite
length 7/2 rotations in the magic echo sequence. Finally, we remark that while checking the
AHT properties for a specific pulse sequence is usually not too involved, it is generally not
obvious which pulse sequence would result the desired values for Hiy, i int > Ffﬁt, ... . Much
of the existing NMR pulse sequences have been derived based on physical and mathemat-
ical insights, nevertheless, such derivations become very difficult for non-standard control
settings, or when experimental pulse distortions are taken into account, too. With the next
chapter we provide a numerical control engineering method that enables one to search for
an Hi(t) that generates a U (t), that yields desired values for various AHT integrals.
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2.2 Stochastic Liouville Theory

With this section we give an overview of another perturbative paradigm called stochastic
Liouville theory, that can be used for effective Hamiltonian engineering in the presence
Hamiltonian terms that can be modelled as stochastic operators described through their
moment functions. Stochastic Liouville Theory is appropriate for evaluating the effect of
stochastic Hamiltonians, that are substantially smaller (in norm) than deterministic system
Hamiltonians, for the evolution of a quantum system over short times.

We start with a Hamiltonian H(t) governing the evolution of our quantum system
determined by p(t):

H(t) = Haee(t) + Y ei(t)As, (2.16)
where Hge(t) is some, potentially time-dependent, deterministic Hamiltonian, {A;} is a set
of constant Hermitian operators and {e;(t)} is a set of stochastic functions characterised
by their moments {(g;(¢))}, {(i(t)e;(t))}, ... . We note that {A4;} are not assumed to form
an operator basis nor even be orthogonal to each other. p(t) evolves according to Liouville
equation p(t) = —i[H(t), p(t)], where [, ] stands the matrix commutator. Here, we denote a
vectorized density matrix as |p(t)), that should be understood as a particular element-wise
mapping of d x d complex matrices to d? dimensional complex vectors, which we will not
explicitly state. We say that A; is the Liouville operator that acts on the density matrix
p(t), such that A; [p(t)) = |[A;, p(t)]). Therefore, we can write the Liouville equation for
the evolution of p(t) as

% |p(t)) = —i [Hdet(t) + Zsi(t)Ai] (1) (2.17)

where H et (t) is also defined implicitly through the relationship Haet (¢) [p(t)) = |[Haet(2), p(t)])-

Just like earlier in this chapter, we move into the toggling frame of the deterministic
Liouville operator Hqei(t). The remaining stochastic Lioville equation for a particular
realisation of noise processes {&;(t)} is given as

% p(1), {ei)}) = —i Z&(t)ji(t) p(1), {e:(1)}) (2.18)

where A;(t) = UT(£)AU(t) and U(t) is a solution to U(t) = —Hae (H)U(t), with U(0) = 1.
The stochatic Liouville equation above has a formal solution given by Dyson series or
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Magnus expansion

0
- (2.19)
where E(t) =Y, &;(t).A;(t) and we have assumed the initial density matrix p(0) = p(0) to
be independent of the stochastic processes {g;(¢)}.

We are generally interested in the ensemble averaged behaviour of |p(t), {e;(t)}), there-
fore, we would like to calculate (|p(0),{e;(t)})) = S(t) [p(0)), where

S(t)zll—i/o dt, (E( /dtl/ dta(E(t)E(t2)) + ... . (2.20)

We can now rewrite S(¢) in terms of cumulant averages introduced by Kubo [58], and
defined implicitly through the equation

swzexp[ o [ [Ma [ e e e oo

whereas the explicit first few cumulant averages can be extracted from the following equa-
tions

(E(t1)) = (E(t1))e; (2.22)
(B()B(12)) = (B()E(t2))e + 5 ((B())er (B (1)} (2.23)
(B() B(t2) B(ts)) = (B () E(1)E(t). (2.24)
4 LB (B Bt} + 3 (U)o, (B() B ().}
S UBE)e, (BB} + (BB (B (1))}
+ B ()b (BlEs))el + (B A (B0, (Blta))e).

with {, } being the anti-commutator of matrices.

From now on, we assume that {¢;(t)} is a set of independent Gaussian random pro-
cesses. That implies that all correlation functions (€;, (t1)€;, (t2)...€;, (t,)) separate as long
as i; # iy; it also implies that any correlation function (€;(t1)€;(t2)...€;(t,)) can always be
written in terms of the first and second order correlation functions (e;(t1)) and (e;(t1)e;(t2)),
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respectively. Furthermore, we also assume that the stochastic processes have zero mean,
ie., (€(t1)) = 0, for all 4, and hence, all odd order correlation functions are zero, which
implies that all odd order cumulant averages are zero, too. The motivation for using cu-
mulants, instead of evaluating Dyson series in terms of moments of the stochastic process,
arises from the fact that cumulant averages enter the exponential in Equation (2.21) and,
hence, reduce the risk of secular terms as is argued below.

The cumulant averages are constructed in such a way that due to statistical indepen-
dence the nth order cumulant disappears if for a set of times {t1, s, ..., t,} any of the gaps
|t1 — taf, |ta — 3], ..., |tn_1 — t,] is larger than the correlation time 7. of the stochastic
process. This fact was proved by Kubo in [58]. Since cumulants at every order vanish once
the gap between the set of time points exceeds 7., an nth order cumulant

/Ot dt, /Otl dts ... /Utnl At (E() E(ty).. E(ty)).e, (2.25)

is effectively an integral over n — 1 dimensional sphere with radius 7. and therefore grows
linearly in time ¢ provided ¢ > 7.. This fact enables one to put bounds on errors induced by
truncating the cumulant series at any even order. Here, we look at truncating the cumulant
expansion at second order. Given the discussion above, it is clear that for ¢ > 7. the norm
of f; dty 0t1 dits ... fot"*l dt,(E(t1)E(t3)...E(t,)). scales as 77 'et, where e is the norm of

E(t). Comparing the norms of second and forth order cumulants yields e ejt = 72e2,
Tee4t c

meaning that if 7.e < 1 and t > 7. we can safely truncate the cumulant expansion at
second order.

Lastly, we point out that nth order cumulants are functions of statistical averages up
to nth order, while the latter can be written explicitly as

/t dt, /tl dty ... /t dt(E(t)E(ty)... E(t)) = (2.26)
> /0 i, /0 ity /0 T (e (1) ()i (b, (1) (82) o i (1),

11,02,--yfn

having used the definition of F(t) given above, where (g;, (t1)e;,(t2)...€;, (t,)) is a scalar
function determined by the correlation functions of the stochastic process. This makes it
clear that cumulants are functions of nested integrals of Equation (2.1) kind, with f # 1
unlike the terms appearing in AHT.
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2.3 Conclusions

With this chapter we have reviewed two analytical treatments of effective Hamiltonian En-
gineering. Importantly, we have shown that both of these schemes work with perturbation
expressions which take a form of Equation (2.1). Nevertheless, it is also clear that, while
AHT and stochastic Liouville theory provide a list of nested integral terms that have to
be set to zero or to some specific value, they do not necessarily prescribe a way for doing
it. This motivates the development of control engineering tools that would enable using
numerical optimization for setting any number of expressions in Equation (2.1) to certain
desired values. In the next chapter, we will do just that.
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Chapter 3

Numerical Engineering of Effective
Hamiltonians

With the past two chapters we have argued that in order to successfully engineer some
desired effective evolution for a quantum system, we need to ensure that the system evo-
lution operator U(T') and certain time dependent perturbation theory expressions of the
following form:

/0 dtl/oldtz.../onl dt, f(ty,ta, o tn) [U'(0)] T AGDU (B) .. [U' (8] At U (t),

(3.1)
take some specific values. Here, f(t1,1s,...,t,) is a scalar function and {A(¢;)} is a set of,
potentially time-dependent, operators. U’(t) is either equal to U(t) or is a function of it. In
Chapter 1, we also highlighted the numerous benefits of numerical control engineering tools.
Specifically, their ability to handle arbitrary system Hamiltonians of arbitrary Hilbert space
dimension, find control sequences that adhere to experimental constraints and easily extend
to ensembles of quantum systems that are controlled with the same control sequence.

Although there exist problem specific numerical control engineering approaches that
have been used [38, 33| to optimize the value of U(T") along with some perturbation terms
in the literature, a complete framework for such optimization has been lacking. In this
chapter, we develop a general framework which enables efficient and easy to implement
numerical evaluation of U(T), simultaneously with the evaluation or arbitrarily close ap-
proximation of any number of nested integrals in Equation (3.1), for piecewise constant
control sequences. We do this by setting up and solving a first order matrix differential
equation, which we call the Van Loan equation. The Van Loan equation incorporates the
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same control amplitudes that appear in the Schrondinger equation for U(t) and is con-
structed by replacing the Hamiltonian matrices in the Schrédinger equation with certain
larger block matrices. We accomplish this by generalizing the work of Van Loan [116], Car-
bonell et al [11] and, more recently, Goodwin and Kuprov[31], who noticed that various
nested operator integrals can be evaluated by exponentiating certain block matrices.

Our generalizations of the existing work are two-fold: we first introduce a way of cal-
culating the perturbation terms in Equation (3.1) of time dependent operators under time
dependent control amplitudes, we also develop tools for approximating nested integrals
involving arbitrary scalar functions f(t1,ta, ..., t,). The Van Loan matrix differential equa-
tion formulation has two immediate benefits: for piecewise constant control amplitudes the
integrals can be evaluated accurately and efficiently by matrix exponentiation. Further-
more, such formulation immediately enables the use of numerical control search methods
that use gradient information. Most of this chapter is devoted to demonstrating how to
exploit the differential equation formulation for the purpose of numerical control searches
that involve various perturbation expressions. The numerical tools developed in this chap-
ter will be deployed in the next chapter for engineering effective nuclear spin Hamiltonians
for nanoscale magnetic resonance imaging experiments that were published in [90].

In this chapter, we first introduce our notation and terminology in Section 3.1 and
give some computational background for matrix differential equations in Section 3.2. In
Section 3.2, we also present a solution for a general time dependent upper triangular block
matrix differential equation and highlight how it can be used for calculating these nested
integrals in Equation (3.1), for which f = 1. After that, in Section 3.3, we introduce
the GRAPE algorithm [57] for numerical control searches, that was used for finding all
examples within this thesis. Subsequently, we exemplify the construction of Van Loan block
matrix differential equations and numerical control optimizations that include perturbation
integrals with four simple, yet non-trivial, examples in Section 3.4. For some of these simple
examples the searches converge to well-known analytical control sequences. We then outline
our approach for tackling general experimental control problems in Section 3.5, followed by
a description of our matrix methods for implementing transfer functions in Section 3.6. In
Section 3.7, we give a prescription for how to approximate perturbation terms with f # 1
in Equation (3.1). Finally, in Section 3.8, we provide an experimentally realistic example of
numerical control engineering that deals with stochastic 1/f noise using control waveforms
that are subject to bandwidth limitations.

The methods to be introduced here were developed by the author in collaboration with
Daniel Puzzuoli, contributions that were not the author’s have been clearly indicated in
the footnotes.
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3.1 Notation and Terminology

In this section, we describe the notation that we will use throughout this thesis for denoting
various matrices, block matrices and nested integral expressions. We also introduce various
definitions, including the definitions for the matrix norms and fidelity functions that we will
use within this and the next chapter, typically as metrics characterizing the performance
of our control sequences.

We use M, ;(S) to denote a set of matrices of dimension ¢ x j that have their entries
drawn from some set S. Since most of the matrices we deal with are square matrices, we
will use M;(S) as a shorthand for M, ;(S). We can write each element A € M,, ,,,(S) in its
component form as A = (.9;;), where 1 < i <n and 1 < j < m. For example, the set S
could be the set of complex numbers, in which case M, ;(C) stands for the set of i x j complex
matrices. We introduce another shorthand, denoting M; ;(C) simply as M; ;. Nevertheless,
the set S is not restricted to numbers and given our notation My(M,,(C)) = My (M,,) would
denote the set of k x k block matrices composed from n x n complex matrices, hence, an
element A € My(M,,) is also an element of Myy,. For any set S, we denote n-dimensional
vectors with elements drawn from that set as S™, although, we generally only consider
either real or complex vectors, R™ or C", respectively. Finally, we take 1,, to stand for the
n-dimensional identity operator, i.e., 1, = diag(1,1,...,1).

—_—
n elements

For denoting functions that map an element from some space A to an element of another
space B, we frequently use a notation A — B. Specifically, since most of the functions used
throughout this thesis are matrix valued functions of a single real valued (time) parameter
t, where 0 < t < T, we denote such functions as A(t), A :[0,7] — M,. We will often use
the trace function Tr : M,, — C, where Tr[A] = > " A;, for any A € M,,. We also make
frequent use of the transpose function * : M,, — M,, and the conjugate transpose function
t M, — M, which combines the transpose and entry-wise complex conjugation. An
inverse of matrix A € M,, will be denoted as A~!. Finally, we say that the inner product
between a pair of matrices A, B € M,, is given as Tr[ATB], and the matrices A and B are
called orthogonal whenever their inner product is zero.

Since much of this and the next chapter deals with nested integrals of various time

dependent matrix valued functions Ay,..., A, : [0,7] — M,, that have been transformed
by some evolution operator U(t), U : [0, T] — M,,, we denote
Dy(Ay, ..., An) (3.2)

U(T) /OT dty- - - /Otn_l dt, U (t) A1 (t)U(t) ... U () An(t)U (),
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where U1 (t)A;(£)U(t) € My, for all 7, represents a particular matrix valued function that
has been transformed by U. D could be read as Dyson term, for which we give some
context in the next section.

Here, we define the only matrix norm and the matrix fidelity function to be used in
this thesis. We take || A|| to stand for the Hilbert-Schmidt norm [120] for a matrix A € M,;

the norm is defined as
|A] = /Tr (ATA), (3.3)

and [[Al| = /> [4i ;% Note that ||A|| > 0, for all A € M, and [|A]| = 0 if and only
if A = 0; it is this property that we will generally exploit throughout this and the next
chapter. Furthermore, if U(T) is a unitary matrix, i.e UUT = 1,,, then | Dy (A4, ..., A,)| =
|U"XT)Dy(Ay, ..., A,)|, the latter being the quantity generally appearing in various time
dependent perturbation theory expressions. We also define a fidelity function F (U, V') for
a pair of matrices U,V € M,,

FUY) = \/Tr (UV) Tx (VD) 5

Te (UT0) Tx (VIV)

The fidelity function is useful for characterizing the closeness of two unitary matrices since
all eigenvalues of unitary matrices have a modulus of one, i.e., they lie on the complex
unit circle. It can be seen that for two unitary matrices U,V € M,,, it always holds that
0 < F(U,V) <1, whereas F(U,V) = 1 if and only if U = V, and F(U,V) = 0 if the
matrices are orthogonal.

3.2 Matrix Differential Equations and Computational
Methods

We start this section by introducing our treatment of matrix differential equations and the
toggling frame. We then show that the nested integral expressions appearing in AHT, that
we discussed in the previous chapter, can be thought of as various directional derivatives of
the evolution operator. We finish the section by introducing our block matrix methods for
calculating a certain class of such nested integral, while keeping our most general treatment
of various perturbation integrals for Section 3.7.

Given a matrix valued function G(t), G : [0, 7] — M,,, we consider initial value problems
of the following form: .
U(t) = GOU (1), (3:5)



where U : [0,7] — M,, U(0) = 1,, and where U denotes the time derivative of U.
We call G(t) the generator and U(t) the propagator of the initial value problem. For
quantum control problems we can often, but not always, relate G(t) to the time dependent
Hamiltonian H(t) for the quantum system by setting G(t) = —iH(¢). In such cases U(t)
would be a unitary matrix for all 0 < ¢ < T. Equation (3.5) has a unique solution [13],
which we write using the time-ordered exponential notation:

U(t) = T exp ( /0 o G(t1)> | (3.6)

Here, the time-ordered exponential should be understood as the solution to the matrix
differential equation above. By definition, the time-ordered exponential has the prop-
erty 47 exp (fot dt, G(tl)) = G(t)T exp <f0t dty G(t1)>; it is this property that we will
use extensively throughout this chapter, importantly, not just in the case of Hamiltonian
generators.

It is possible to express the solution of Equation (3.5) as a series of nested integrals
called the Dyson series [22]

Uit)=1,+ /t dty G(t1) + /t dt /t1 dty G(t1)G(t2) + ... . (3.7)

Under certain conditions [70, 5] we can also express the propagator through the Magnus
expansion giving U(t) = exp [Q(t)] for

t) = /0 LG + /0 o /0 " dlG().Clt) + .. (3.8)

3.2.1 The Toggling Frame and Variations of the Generator

Given two matrix valued functions G(t) and Gy(t), such that G,G, : [0,T] — M,, we
consider the evolution of a system under the combined generator G(t) + Gy(t), where we
regard G (t) as a variation of the generator G(t). Even though our treatment here is
abstract and independent of any particular system, we remark that in the case of quantum
computing we typically think of G(t) as the unwanted or the uncharacterized parts of the
system Hamiltonian, while in the case of sensing and spectroscopy G (t) might be regarded
as some unknown part of the Hamiltonian that we intend to characterize.

We now introduce the concept of a toggling frame, which enables us to partially separate
the evolution under G(t) and G (), hence, illuminating the effect of the variation generator.
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We say that U(t) is the propagator under G(t) alone:

U(t) = T exp < /0 t dth(t1)> , (3.9)

whereas the propagator under G(t) + G, (t) is

Uspa(t) = T exp < /0 “anicn) + Gv(tl)]) | (3.10)

In addition, we define the toggling frame propagator

Usog(t) = T exp (/Ot dtlév(tl)) , (3.11)

where G, (t) = U™ ()G (t)U(t). We now show that
Utotal(t) = U (t)Usog() (3.12)

by first noting that at time ¢ = 0 the equality holds because Uiota1(0) = U(0)Utog(0) = L,.
If the time derivatives of Uyotai(t) and U (t)Usog(t) are also equal for all times, the equality in
Equation (3.12) is true. Differentiating the right-hand side of the equation and employing
the property of the time-ordered exponential that we highlighted above yields

iU(t>Ut0g<t) = U(t)Utog(t) + U(t)Utog(t) = G(t)U(t)Utog(t> + U(t)év(t)Utog(t)

dt
= [G(t) + G, (1)U (t)Usog (1), (3.13)

demonstrating that the time derivative of U(t)U (%) is equal to that of Upoga(t).

It can now be seen that, with the decomposition Uietai(t) = U(t)Uiog(t), we have en-
capsulated the effect of the variation on Uoga(t) into Useg(t) only. This enables us to
conveniently analyse various derivatives with respect to the variation. As an example, we
consider the directional derivative of U(t) arising from a variation in G(t) in the direction

Gy(1):

de

Expanding Uyoe(t) into the Dyson series we arrive at a power series for Usoai(t) in €

T exp ( / “ancn) + er(tl)]) | (3.14)

e=0 0

Usotal(t) = U(t) + €U(t) /tdtlév(tl)Jrer(t) /tdtl /tl dtsGy(t1)Gy(ta) + ..., (3.15)

0
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which enables reading off the directional derivative in Equation (3.14) simply as the mul-
tiplier of the € term

de

e=0

T exp < /0 “anen) + eGVm)]) — U /0 " an G ()

m /0 U ()G UL, (3.16)

Of course, the second directional derivative then reads as

d2

de?

€=

Texp ( /0 LanGn) +eGV(t1)]) —2u(t) /0 o /0 " dtyGi (1) (1)

—2U(1) / o / Y U ()G () U ()T () Gu(t)U (k). (3.17)

We can also apply the same exact analysis for multiple variations, for that we consider

Texp (/Ot dtl[G(tl) + €1GV1<t1) + €2Gv2(t1)]> = U(t) + U(t) /Ot dtl(Elévl(tl) + Ezévg(tl))

+ U(t) /t dtl /Vt1 dtQ(Elévl(t1> -+ 626V2<t1))(616v1(t2) -+ 626V2<t2)) —+ ... s (318)

which enables us to identify

d ¢ " N
de OTeXp </ dt1[G(t1) + e1Gyi(t1) + €2Gv2(t1)]> = U(t)/ dt; Gyi(tq) (3.19)
€1= 0 ;
and
d ¢ " B
des 0TeXp </ dt[G(t1) + e1Gi(th) + EQGV2(t1)]) = U(t)/ dt; Gyo(ty),  (3.20)
o= 0 o
as well as
a - T /t dt1[G(t1) + €1Gv1(t1) + €2Gya(ty)] (3.21)
dEl €1=0 d€2 e2=0 Xp 0 ! 1 €1bvitta €2Gvalll .

— W) /O o /O "ty G (1) Gonlte) + U (1) /0 o /0 "ty Gon(t) G (1),

As we said at the beginning of this chapter, engineering of quantum control typi-
cally aims to implement a particular propagator U(T") on the system or an ensemble of
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systems, which would correspond as closely as possible to the experimenters best char-
acterization of the system generator G(t). Nevertheless, because of additional system
generators, couplings to the environment or variations in G(t) — which can all be thought
of as various {Gy(t)} — the final system propagator will be perturbed from the value

U(T) = Texp ( f(f dth(t1)>. In the context of quantum computing, the experimenter

typically wants to make the control robust against such perturbations, which translates to
ensuring that various directional derivatives with respect to the variations present are set
to zero or near zero. In the case of sensing and spectroscopy the usual goal is to have the
perturbation from a certain G, (t) generate a very well characterized effect on the system
propagator, while potentially ensuring that the perturbations from other {G,(¢)} have no
observable effect. Both of these demands can be fulfilled by ensuring that the directional
derivatives that arise from the variations present for the system take some specific values.

Furthermore, in the context of control engineering the directional derivatives can also be
seen as a way of calculating the change in U(T') corresponding to a variation in the system
generator, this information could be exploited when searching for a G(t), G : [0,7] —
M,,, that would yield the desired propagator U(T'). In particular, we will show in the
next section that for piecewise constant control sequences one is typically interested in
directional derivatives of U(T') for constant G(¢) and G, (t). This can be done by setting
t=1,G(t) = A and G,(t) = B in Equation (3.16), which gives

d 1
—|empe TP = eA/ da e= 4 Be®A, (3.22)
de 0

3.2.2 Computing Directional Derivatives of Propagators Using
Block Matrices!

We now introduce our linear algebra tool set for numerically evaluating integral expressions
of the following form: U(t) fot dtyU=1(t,)G(t,)U(t1). First, we note that naively one might
expect that the evaluation of such integrals requires integral approximation methods, which
can become computationally very expensive, since it would necessitate many evaluations
of U(t) for various t € [0,7]. In order to familiarize the reader with our block matrix
methods we first consider the case of constant generators, i.e., G(t) = A and G,(t) = B,
A,B € M,, such that the integral above becomes e? f(f dtie 4" Bet . A convenient
method for calculating that integral was pointed out by Van Loan [ 16] and it stems from

!The theorem and its proof appearing in this subsection was shown to the author by Daniel Puzzuoli.
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the following block matrix equation:

At LAt [t —At1 p At
eprg1 ﬁ)t]:(eo ¢ Jy dtre 1 Be ) (3.23)

e

From this identity, it is evident that the integral e fot dtie 4" Bet can be evaluated by
performing a single matrix exponential operation for a matrix in My(M,,). This observation
is incredibly useful for accurate numerical evaluation of such integrals. The equality above
can be easily verified by noticing that both sides of the equation are equal to 1, for ¢t =0
and the time derivatives on the left and right-hand side of the equation are equal. In the
same vein, we can evaluate the integral e fot dty Odtl dtye= 4 BeAtie= A2 A2 by noticing
that the following is true:

A B 0
exp 0 A C |t = (3.24)
i 0 0 A
Al At fot dtlefAtlBeAtl oA fot dt, Odtl dt2€fAt1B€At1efAtgceAt2
0 et et f(f dtie~ A CeAtr
0 0 eAt

This equality can be verified the same way as the one above. Again, the evaluation of the
nested integral expression is converted to a problem of exponentiating a single matrix in

M3(M,,).

The block matrix expressions above were first pointed out by Van Loan [116], who
deduced the expressions for exponentials of arbitrary upper triangular block matrices in
My4(M,,). Such expressions were then generalized by Carbonell et al [11] for exponentials
of upper triangular block matrices in M,,,(M,,), where m is arbitrary. These block matrix
methods have already found use in quantum theory and control applications [33, 31],
where there exist a demand for efficient and accurate numerical evaluation schemes of
various nested integrals. Specifically, these block matrix methods have been employed for
calculating first and second order derivatives of the unitary propagator U(T") with respect
to piecewise-constant control amplitude variations in gradient ascent pulse engineering [32].

Such block matrix methods are especially attractive for numerical evaluation of various
nested integrals since they are very easy to implement and they exploit numerical exponen-
tiation algorithms, which are heavily optimized [60]. Furthermore, it will be demonstrated
in the upcoming sections that the block matrix differential equation representation works
extremely well for numerical optimization algorithms that exploit gradient information.
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This lays the foundation for numerical control engineering techniques that enable finding
U(T), which has its directional derivatives with respect to certain variations set to desired
values.

With this work, we first extend the existing methods by introducing a time dependence
for the operators generating the propagator U(t) and the operators appearing in the nested
integral expressions. As the first example, we point out that Equation (3.23) holds also in
the time-dependent case:

Texp [ ( A(()t) igg ) t} _ ( U(()t) Ut o dtlU(‘Jl((tt)l)B(tl)U(tl) ) | (3.25)

where U(t) = T exp < fot dtlA(t1)>. The equation above is easily verified by first noticing

that at ¢ = 0 both sides of the equation are equal to 15, and then confirming that the time
derivatives for the block matrices on either side of the equation are equal.

We now give a full time-ordered generalization for the theorems of Van Loan [116] and
Carbonell et al [11] as an expression for the time-ordered exponential of an arbitrary time-
dependent upper triangular block matrix through a set of recursive relations. The theorem
is proved in Appendix A, and will be employed in our first numerical control searches that
include AHT terms in Section 3.4, as well as in the next chapter.

Theorem 1. Let B, ; : [0,7] — M, for 1 <i < j <m. And let C;; : [0,7] — M, be
defined implicitly by the equation

Cia(t) Cia(t) ... Cim(t)
R (3.26)
0 0 . Con®)
Bii(t) Bist) ... Bum(t)
_— /tdtl 0 B2i2(t1> Bgm?(tl)
0 0 0 . Bum(t)

For all 1 <k <m, t € [0,T], it holds that

Croxlt) = Up(t) = Texp ( /0 t dtlBM(tl)) , (3.27)
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while all C (), for 1 < j < m — k, can be found recursively as

J t
Ck7k+j(t) = Z Uk(t)/ dtlUlgl(tl)Bk7k+i(t1)ck+i,k+j(t1)- (3.28)
i=1 0
In order to evaluate all {Cy x1;(t)}, one has to apply the recursion relation above sequen-
tially for j = {0,1,...,m — k}.

3.3 GRAPE Algorithm

In this section, we describe the Gradient Ascent Pulse Engineering (GRAPE) algorithm
that was introduced by Khaneja et al [57]. [57] points out a way for numerically solving
bilinear control theory problems for piecewise constant control amplitudes. Even though
Khaneja et al only considered problems of unitary engineering and state to state transfer,
the same approach is equally applicable for any bilinear control theory problem including
every example presented in this thesis.

We say that a control problem is bilinear if the control sequence a(t) used for controlling
the system over a time interval [0,77], such that a : [0,7] — R*, determines the system
evolution through a first order matrix differential equation

Ut) = U(t), (3.29)

k
Go + Z a; (ﬁ)Gl
=1

where G; € M,,, for all i € {0,1,...,k}, and U(0) = 1,,. It is clear that the Schrodinger
equation is a special instance of bilinear control with {G;} being anti-Hermitian matrices,
ie, G; = —GZ , for all 2. We remark here that Van Loan equations, that will be introduced
in the upcoming sections, also have the bilinear form of Equation (3.29), yet their generators
{G;} are not anti-Hermitian.

Throughout this thesis, we will only deal with piecewise constant control amplitudes
a(t), for which we split the interval [0, 7] into N subintervals with respective durations
ATj such that AT; > 0, for all j € {1,2,..., N}, and Zjvzl AT; = T. We say that the
control sequence a(t) takes a constant value over each of the subintervals, i.e.,

j—1 j—1
a; (Z AT, <t <> AT, + ATJ) = a;;, (3.30)
s=1 s=1
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where o € My y(R) is a real valued matrix that contains all piecewise control elements
{a; ;}. In such case

(3.31)

k
(Go + Z Oéi,jGi> ATj
=1

where the product symbol denotes a sequential matrix multiplication.

U(T) = H exp

A bilinear control theory problem for piecewise constant control amplitudes is stated
as: find an a(t), a : [0,T] — R*, or equivalently an «, that adheres to certain problem
specific constraints and yields a U(T') with some desired properties. The constraints on
a(t) can vary from problem to problem, a common constraint sets a maximum amplitude
for a(t). Given the desired properties for U(T'), we can always write down a target function
® : M,, — [0, 1] that is an analytic function, and takes the value 1 if and only if its argu-
ment has the properties that we want from U(7T'). Having defined such a target function,
the problem of finding an « that yields ® [U(T")] = ®(«) = 1 becomes a multivariable opti-
mization problem. Because ® is an analytic function of U(T'), knowing U(T") and its partial
derivatives {&U(T}}, ie{l,...,k}and j € {1,..., N}, is enough for determining both
¢ [U(T)] and {8%”@ [U(T)]}. The key insight by Khaneja et al [57] was to point out that
the computational cost for the simultaneous evaluation of U(7T') and {aaiijU (T)} is not

too much more expensive than that for the evaluation of U(T') only. We will demonstrate
this fact explicitly below. First, however, we note that such relative computational cost
of U(T) and { aoi nd (T)} evaluation makes it advantageous to use numerical multivariable
optimization algdrithms that make use of the gradient information, e.g., conjugate gradient
algorithm [86], rather than just ®(«).

Here, we proceed by evaluating a partial derivative

0

Oay g

U(T) = (3.32)

N k s—1 k
( H exp (GO + Z Oéi7jGi> A,I'] ) Trs exp (GO + Z Oéi7jGi> A,I']
j=1 i=1

j=s+1 i=1
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with

9 k
T, = Fa, P (Go + Zlac;> AT, (3.33)
k k
o> exp (Go + Z aLSGi) AT, + eG,.AT,| = exp (Go + Z Oéi,st) AT,
€le=0 i=1 i=1

G, exp

)

AT k k
: / dt exp |— (GO +) ozi,SGZ) t (GO +) az-,SGi) t
0 i=1 i=1

where we have introduced the last integral using the identity in Equation (3.22). The com-
bination of Equation (3.32) and (3.33) makes it apparent that the evaluation of {%MU (1)}
involves evaluating a set of matrix products

{ﬁ exp <G0 + Z OZZ'J‘GZ') AT‘] } s (334)

as well as

N i k 7

{H exp <G0 +) ai,jGi> AT, } : (3.35)
j=s i i=1 i

for all s € {1,..., N}, and all kN integral terms given by the last line of Equation (3.33).
If we ignore the cost of calculating the integral terms, the evaluation of U(T') costs N
matrix exponentials and N matrix multiplications, while the simultaneous evaluation of
U(T) and { aaa,. -U (T)} costs N matrix exponentials and 2(k+ 1)N matrix multiplications —
an extra computational cost which is almost always outweighed by the faster convergence

of gradient based optimization algorithms.

The integral term in Equation (3.33) can be evaluated either through block matrix
techniques introduced in Section 3.2 with Equation (3.23) or by noticing that

AT, k k
/ dt exXp [— (G(] -+ Z @i,sGi> t] GT exp (GO -+ Z ai’sGZ') t] (336)
0 i=1 i=1
k
G, AT, (Gg +) a,,@-) AT,

=1
k k
G, AT, (Go +) ai,sGi) AT, , (GO +) ai,SGl) AT,
=1 =1

1
— GTATS + 5

. +
-
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and approximating the integral with a finite sum of commutators. During the optimization
of the examples presented in this thesis, we always approximated the integral with a finite
sum of 15 commutators, since the speed of the optimization was not our main concern. We
point out that a very comprehensive treatment of bilinear control optimization performance
is given in [30], this work also investigates the use of block matrix methods for evaluating
the integral expression in Equation (3.36).

Khaneja et al [57] suggested that unitary engineering, i.e., the search of an « that would
yield U(T') = Usarget, Where Uparger € M,, is some desired final unitary operation, could be
carried out by maximizing the fidelity function F [U(T"), Urarget] defined in Equation (3.4).
The explicit form for such a target function then becomes

O(a) = %\/ Tr [U(T)Ujarget} Tt [U(T) Usarget, (3.37)

where U(T) is given by Equation (3.31). The partial derivatives of {32 ®(a)} can be
evaluated simply using the chain rule, yielding 7

YR b (1 |55 U () U] T [U(T) Vi) (338)
Dy n @ (U(T) Ul g | T [U(T) Urarge]

where Re denotes the real part of a complex number and the partial derivatives of U(T)
are given by Equation (3.32). As we said in Section 3.1, the fidelity function satisfies
0 < FIU(T), Usarget) < 1 for any unitary U(T), and F [U(T'), Uarget) = 1 if and only
if U(T) = Utarget- Khaneja et al [57] described a basic implementation of a gradient
ascent algorithm that could be used for maximizing ®(a) starting from some initial o(®) €
M n(R). The control finding procedure then entails generating a set of {a(?’} and running
a gradient ascent algorithm for each of these a(®)s until the algorithm yields a ®(a) value
sufficiently close to one.

In this work, we do not just use the fidelity function as the target function for our opti-
mizations, because our generators do not yield a U(T') that is a unitary matrix. Moreover,
we are frequently interested in having only certain parts of U(T') satisfy certain properties.
Therefore, the target functions we will employ are more elaborate than the one in Equa-
tion (3.37). Nevertheless, the general scheme of our control searches is much the same
as the one proposed by Khaneja et al [57]. We always define target functions that are
analytic functions of U(T), i.e., ®(a) = ®[U(T)], ® : M,, — [0, 1]. The partial derivatives
of ®(a) with respect to {e ;} are then evaluated in terms of {%U (T')} using the chain
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rule. Finally, we use an off-the-shelf gradient ascent optimizer to maximize ®(«) start-
ing from a set of initial control sequences {a(®)} just as it was described above. Unlike
Khaneja et al [57], we did not attempt to implement our own gradient ascent optimizer
since Mathematica’s FindMaximum conjugate gradient ascent implementation proved to
work extremely well.

3.4 Simple Examples

The aim of this section is to familiarize the reader with the basic idea of our block matrix
methods with as little notational overhead and complexity as possible. We do this by
demonstrating the use of block matrix computational methods for control sequences that
fulfill certain AHT conditions with four simple examples that have an increasing level of
complexity. We reserve the complete description of our methods and the treatment of
Van Loan differential equations in their most general form for Section 3.5 and 3.7. All of
the examples involve typical spin Hamiltonians. Nevertheless, we point out that there is
nothing spin physics specific about the method nor the solutions, hence, a ’spin’ here could
also be understood as a 'two level quantum system’.

First, we introduce another shorthand that makes the definitions of our target functions
in this section more concise. For any nested operator integral Dy (A, ..., A,), we denote
its maximum Hilbert-Schmidt norm maximized over all permissible control sequences a(t),
t € (0,71, as max,q) || Dy (A, ..., Ayn)|. Because all examples in this section involve AHT
terms with n = 1, we also point out that for any time independent matrix A; it holds that

max () || Do (Ar)l| = T Av].

We proceed by setting up three rather standard decoupling problems with known ana-
lytical solutions and in some cases arrive at pulses which resemble control sequences that
have been known for some time. Our aim is not to reiterate these solutions, rather it is to
demonstrate that the length of the control sequences found using block matrix numerical
tools does not significantly exceed that of the analytically derived ones. This demonstration
provides an encouraging starting point for employing the same tools to tackle far harder
control problems, for which the search of analytical solutions is intractable. With the fourth
example, we provide an illustration for a problem that demands simultaneous minimization
of some AHT terms, while preserving or maximizing other AHT terms. Such control prob-
lems are very common in many sensing and spectroscopy applications. Furthermore, here,
we do not search for control sequences that are intended to be experimentally applicable —
we apply no transfer functions, control field distributions, pulse waveform bandwidth con-
straints etc. Only maximum amplitude constraints are used which generally yield pulses of
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rather jagged form, however, such constraints are typically the only constraints considered
when deriving analytical solutions. In Section 3.8 we give a much more experimentally
realistic control search example and the next chapter is devoted on control engineering for
nanoscale magnetic resonance experiments.

For our numerical pulse searches, we always use a target function ® that is a linear
combination of different matrix norms for various AHT terms and the fidelity of U(7T") with
the target unitary Uparger. A typical target function takes the following form:

® = po (FIU(T), Usarger)* + > pi ( Do (4:) | 2) , (3.39)
i>0 [maxq(e) || Do (A)) ]

where 0 < p; <1, for all 4, such that ) . p; = 1. {p;} denote various weights of constituent
optimization targets. It easy to see that 0 < ®(«) < 1, for all a, and equal to one if and
only if U(T) = Usarget, as well as Dy (A4;) = 0, for all 7. Contrary to the target function
defined earlier in Equation (3.37), here, we work with the square of the ﬁdelity metric
and the matrix norms because this somewhat simplifies the evaluation of {5%— B (ID} while
yielding the same behaviour for the optimization. The linear form of the target functlon in
Equation (3.39) is not strictly necessary, however, it does greatly simplify the calculation
of partial derivatives of ® with respect to the control amplitudes. We generally pick {p;}
that assigns relatively equal weights to all optimization targets, although, we typically pick
a po value that is slightly lower than the weights of the AHT terms, because generating
the desired final unitary is a somewhat easier optimization task than the rest. For the
examples demonstrated in this section, we always define target functions, for which it is
known from analytic solutions that the value ® = 1 is attainable.

All examples in this section concern either one or two spins. In the case of two spins, the
control is taken to be global, i.e., the Rabi fields for either spin are identical. Furthermore,
we say that our control sequence a(t) only couples to the z and y angular momentum
operators such that a : [0,7] — R? For notational convenience, we assign a,(t) = a;(t)
and a,(t) = as(t). For all searches in this section, we use amplitude constraints: —\% <
a;(t) < \% for i = {z,y}, to ensure |a(t)] < 1, for all ¢ € [0,7]. The latter amplitude
constraint is common for analytical pulse derivations. In the case of single spin problems,
we define a generator

Gi(t) = —z‘az(t) oy — z’ay;t) oy, (3.40)

which generates a unitary U;(t) = T exp [ f(f dthl(tl)} Correspondingly, in the case of
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two spins identical spins, we define a generator

o1 ay(t
Golt) = —z'“T() (0, @1y + 1o ® 0y) — Z%T“ (0, @12+ 1, ®0,), (3.41)

which generates the following separable unitary propagator Us(t) = T exp [ fg dt1Go (tl)} =

Uy(t) @ Uy(t). Since our numerical pulse searches assume piecewise constant control am-
plitudes, we specify the control amplitudes by a matrix a € My x(R), where the elements
of v are given by Equation (3.30).

All control searches were undertaken using the modified GRAPE algorithm for evalu-
ating partial derivatives with respect to piecewise constant control amplitudes, the details
of which were given in Section 3.3. Our general procedure for finding a working control
sequence was to first pick a pulse length T and thereafter a number of time steps N. We
kept all subintervals of [0,7] of equal length AT = T/N and always picked an N for
which AT < TRrapi/30, where Trapi is the length of a Rabi cycle. Given some T and N, we
generated ~40 seed waveforms o), the pulse amplitudes {0453-)} of which were drawn from
independent uniform distributions. We used Mathematica’s FindMaximum function for
multivariate conjugate gradients optimization on these seeds with the maximum number
of target function evaluations set to 1000. If none of the ~40 searches yielded ® < 0.9999
we increased 7" and N and repeated the same procedure. For the seeds that reached
® < 0.9999 in under 1000 ¢ evaluations, we let the optimization run until FindMaximum
was terminated by machine precision.

When presenting the control sequences found in the figures below, we rotate the G(t)
basis in the following way: o, — \% (04 +0y) and o, — \/Li (0, — 0y). This is done since
the basis change tends to highlight the similarities between the pulses found and known
analytic solutions. Furthermore, because for all examples in this section, we are either not
concerned about the final unitary U;(T") generated or we demand that U, (7") = 1,, such
basis change does not affect the desired characteristics of the control sequence.

3.4.1 Dipolar Decoupling

The simplest numerical AHT example that we consider is the problem of dipolar decou-
pling. For such a problem, we imagine two spins coupled via the dipolar Hamiltonian
D =30,®0, — Zie{x,y,z} 0; ® 0;. The control task is to engineer a sequence that en-
ables the spins to evolve effectively uncoupled. Zeroth order AHT solution to the problem
dictates setting the first derivative of Uy(T") in the direction of D to zero, i.e., we want
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Us Y(T)Dy, (D) = fOT dt; Uy *(t1)DUy(t,) = 0. The dipolar decoupling problem is a simple
yet non-trivial problem — it is easy to show that the desired Us(t), t € [0, 7], that yields
Uy ' (T)Dy,(D) = 0 cannot be generated with either a,(t) = 0 for all ¢ € [0, 7] or a,(t) = 0
for all t € [0,T].

Here, we are not concerned about the final unitary U;(T") generated on either of the
spins. Accordingly, our target function for the optimization is

Uz (TP, (D)
[max, |Us (1) Dy, (D)|]*

d=1-— (3.42)

where the denominator is a normalization factor ensuring that 0 < ® < 1. We now set up
a block matrix differential equation for V(t) € My(My), that will be used for evaluating ®.
It easy to show either by differentiation or by employing Theorem 1 that

V(t) =T exp Vot dt, ( GQ(()“) Gf()tl) )1 = ( U2O(t) Dg;((tl))) ) : (3.43)

Consequently, our target could also be given as

T [y (T)Vaa (7))

=1 ,
2477

(3.44)

where we have used the fact that [max, | Dy, (D)]] ? = 247 and that |Us Y(T) Dy, (D)]|? =
| Dy, (D)||?. Following the procedure outlined in Section 3.3, we can evaluate V(T') as a
function of v along with the partial derivatives { %V(T)} with respect to the piecewise

constant control amplitudes {«;;}.

Given V(T') and {aai”V(T)}, we can write

0 2 0
®=————Re|Tr V(T V(T 3.45
804,-7]- 24772 e( r 1,2( )(aam ( ))172 )7 ( )
for all + and j, where we have used the fact that 83- and the projection operations

commute. We employ these partial derivatives in the optimization protocol described
above. We find a pulse with a total length of T" = 6.2 consisting of N = 100 subintervals
shown in Figure 3.1 which yields the following norm for U, *(T) Dy, (D):

1U5 (1) Dy, (D)

-7
max, () ||U; (1) Dy, (D)]| 3:09 > 10
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Figure 3.1: Numerically found dipolar decoupling control sequence: a,(t) on the left and
a,(t) on the right.
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Figure 3.2: Dipolar decoupling pulse sequence introduced by Mehring: a,(t) on the left
and a,(t) on the right.
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We point out the rough similarity to the dipolar sequence proposed by Mehring [79] con-
sisting of two square 116°14" pulses with orthogonal phases depicted in Figure 3.2. Our
numerically found sequence is only 1.02 times longer than the known analytical solution.
We also remark that further optimization of the target would likely be senseless for any
practical case, since at that point the second derivative of Uy(T') in the direction of D is
expected to become more important than Uy ' (T)Dy, (D).

3.4.2 Universal Decoupling

With the next two subsections, we turn to single spin pulses. As the first example, we
consider a universal decoupling sequence which would decouple all non-identity operators
03,05,0, acting on a single spin at the zeroth order AHT level. This translates to setting
Uy Y (T)Dy, (0,) = Uy {(T)Dyy, (0,) = Uy {(T)Dyy,(0.) = 0. A sequence known to satisfy
these conditions, called the XY8 sequence [30], is shown in Figure 3.5. For that sequence
U(T) = 1,. Hence, in addition to the AHT integral terms we also require the final unitary
operation on the spin to be an identity. To achieve this, we use the following target:

b =

4 1 U (T) Dy, ()| 1 2
il 5|+ (FlL,Uy(D)])*. (346
> [maxaq U7 (T) Doy (03)]] 5 7t ) 40

i€{z,y,2}

Again, we can define a block matrix propagator V(¢) € My(M,) that enables us to
calculate the integral terms as well as the final unitary. It is easy to see that

Gl (tl) Ox 0 0
¢ 0 G1 (tl) o 0
Vit) = dt Y 3.47
( ) Texp /0 ! 0 0 Gl(tl) (o ( )
0 0 0 Gi(t)
Ul (t> DUl (O-BU) DUl (0-17 Uy) DU1 (UQH Oy, Uz)
— 0 Ul(t> Dy, <O-y) Dy, (Oyagz)
0 0 U1 (t) DUl (O'Z)
0 0 0 Uy (t)
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is true and suitable. Our target ® can therefore be given as

i 1T V@YD) T VD] T Vi)
50773 27 T3 1 ’

=1

(3.48)

where we have used the fact that max, ||U; (T)Dy, (07)|| = V2T, for all i € {z,y, 2},
and that Tr [VL(T)VM(T)] Tr (1] = 4. Using the chain rule, we can again evaluate the

partial derivatives of ® with respect to the piecewise constant control amplitudes {a; ;}:
) 4 g i)
o= Re [ T [VL, (T) | =—V(T 3.49
o= T R ( |V (v >)D (3.49)

+ %Re (TI [‘/;[,I(T)] Tr (8(()1,]-‘/(T))1 1 ) 7

for all ¢+ and j. Equipped with ®(«) and {%ij@(oz)} we use the procedure described

above to search for a piecewise constant control sequence a(t) that yields the maximum
®(a) value. We find a sequence with a total length of 7' = 19.6 consisting of N = 200
subintervals which has the following characteristics:

”U;l(T)'DU1 (UCL‘)H
maxa(y) Uy Y(T)Duy, (02)||
Uy (T)Dy, (o)l -
maXg,(t) ||1Uf1(T)DU1 (O'y)” 472 X 10
|U; (1) Dy, (02) ] -~
e UL 1 )Do, ol 03 X 10
1 — F 1y, Uy (T)] 166 < 10-12

8.22 x 1077

The control sequence is shown in Figure 3.3. It is interesting to note that the sequence
found is 0.78 times the length of the XY8 sequence.

3.4.3 Universal Decoupling with Control Variations

While the XY8 sequence [30] satisfies the conditions stated in the previous subsection, it
is also robust against variations in the controls, i.e., it satisfies U; '(T)Dy, [a,(t)o,] = 0
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Figure 3.3: Numerically found universal decoupling sequence implementing an 1, gate:
a,(t) on the left and a,(¢) on the right.

and U7 '(T)Dy, [a,(t)o,] = 0. This robustness is the property that ensures its excel-
lent performance under realistic experimental conditions. To demonstrate the ability of
our numerical control searches in incorporating averaging of time dependent operators,
we set up a search that would simultaneously set U, ' (T)Dy, (0,) = U; (T)Dy,(0,) =
Uy (T)Dy, (0.) = Uy {(T) Dy, ax(t)o.] = U (T) Dy, [ay(t)a,] = 0, while implementing an
identity operation. We search for a pulse with the following target:

1 12
oo2fr [ElE AT .
ie{x,y,2} [maxa(t) HUl (T)DUI (UZ)H]
2 1 U; (1) Dy, [ai(t)oi] || 1
2 iala OIS R Ve
oy [maxa U (1) Dy, [ai(t)oy] ||
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A suitable block matrix propagator V (t) € Mg(My) for such a target function is

V(t) = (3.51)
[ Gl (tl) Og 0 0 0 0 i
0 G1(t1) oy 0 0 0
! 0 0  Gi(ty) o, 0 0
T exp /0 dit; 0 0 0 Gi(h) an(t)on 0 —
O O O O Gl(tl) ay<t1)0'y
i 0 0 0 0 0 G1(t1)
Ui(t) Dy, (0z)
0 Ui(t) Dy, (oy)
O 0 U1 (t) DU1 (GZ) .
0 0 0 Ui(t) Dy, |ax(t)o,] .
0 0 0 0 Ui (t) Dy, ay(t)o,]
0 0 0 0 0 U (t)

Note that, we have not specified the V(¢) elements that are not relevant for our control
problem. Given the V() above, ® can be determined as

o [ 1 & T [V (MVie (T) 1 & T [V (D)W (T)

d=(1-2 42 1--)

5 34 272 5 2 T2

=1 =4

;Tr i }Tr Yl (3.52)

where we have used the fact that max, ||U; (T)Dy, (0:)|| = V2T, for all i € {z,y, 2},
and that Tr [Vﬂl(T)VM(T)} Tr[15] = 4. In the above, we also used that

max U (T) Dy, (ai(t)oy) || = T, (3.53)

for i € {x,y}, which corresponds to having a;(t) take its maximum value a;(t) = 1//2 for
all t € [0,7]. Again, we can evaluate the partial derivatives of ®(«) with respect to the

44



piecewise constant control amplitudes:

0
b = T
3ozi,j 15T2 ZRG ( g
5T2 ZRe (Tr

+ ERe <Tr [VJI(T)] Tr

Vi z+1 (aa” >i,i+1] )
V(1) (ai’jv(ﬂ)i,m])

<aci,j WT)) L ) - (3.54)

Using the above, we find a pulse with a total length of T" = 30 consisting of N = 200
subintervals with its pulse metrics given below:

- - -
ot
maxﬁ% ||1L(f:1;)11(21(>:;)$y)|| 1.62 X g
maXﬁS}”lﬁ)ﬁiﬁZl(t(;;ﬂ||| 6.24 - 106
e S el
max, ) ||Uf1(T;DU1 lay (t)ay]l 6.24 %10

1= F Ly, Uy(1)] 283 x 1071

We present the pulse waveform in Figure 3.4. We note that, while the pulse found is 1.19
times the length of the XY8 sequence [30], it does display definite similarities to the latter
shown in Figure 3.5.

3.4.4 Exchange Interaction Recoupling
With the following example, we wish to highlight that the block matrix method does

not only enable the removal of unwanted Hamiltonian terms; it is equally easy to set
up optimization targets which retain or reshape parts of the Hamiltonian, while possibly
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Numerically found universal decoupling pulse robust to control variations

implementing an 1, gate: a,(t) on the left and a,(t) on the right. It should be seen that
this sequence bares significant resemblance to the XY8 sequence shown in Figure 3.5.
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Figure 3.5: XY8 sequence: a,(t) on the left and a,(t) on the right.



removing others. A problem, which arises in many situations involving ensembles of spins,
is removing pairwise dipolar interactions between all members of the ensemble as well as
inhomogeneities in their energy level splittings, while retaining exchange interaction with
some other system or systems the spins are interacting with.

Such a situation would be described by the following Hamiltonian:

exchange ZA(A}@ +Z§ D(Z’j +Zg ( ®C] )‘|‘0'()® [ ()}T>, (355)

where 0y = (0, £i0,) /2 and (i,j) denotes a sum over all spin pairs. The first sum
in Equation (3.55) specifies these spin dependent energy level splitting variations {Aw;},
the second sum gives all dipolar interaction strengths {¢; ;} that correspond to the dipolar
Hamiltonian D) for a pair of spins The third sum contains the aforementioned exchange
interactions 0( )% " + ¥ [q( } that can often be substantially weaker than the other
two terms, yet this is frequently the term in the Hamiltonian that leads to desirable spin
dynamics. The exchange interactions could, for example, arise from spin cavity interactions
in which case ¢ = ¢\9) = ¢, for all i and j, would stand for the annihilation operator acting
on the cavity. Alternatively, the exchange interaction could also arise from interactions
with a different ensemble of spins, e.g., the main ensemble in Equation (3.55) could be
an ensemble of electron spins, which is used for polarization enhancement of some nuclear

spin ensemble through an effective exchange interaction. In such case ¢ = a@, where

o is a lowering operator acting on the ith nuclear spin.

Our block matrix tools enable us to search for control sequences that would effectively
remove the spin-spin dipolar couplings and variations in level splittings (o, offsets), while
retaining the form of the exchange interaction and performing an identity operation. To
achieve this, zeroth order AHT prescribes setting U; ' (T)Dy, (0.) = Uy ' (T)Dy, (D) = 0,
U(T) = 1y and U; (T)Dy,(04) = Dy, (o), where ¢ € R is a constant. In order to
set up a target function ® that can reach its maximum value, we do not set up the
optimization with any specific value for c¢. Instead, we merely enforce that the integral
I = U (T)Dy, (o) is proportional to Dy, (o). This is achieved by demanding that I is

orthogonal to o, and o_, i.e., Tr (crl]) =Tr (0{]) = 0. We do not demand that I be
orthogonal to 15 since Tr(/) = fOT Trloy] = 0. Correspondingly, the optimization target
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for this problem is

@ZE(l_ UL D, ()2 (U NP, (D) )
5\ 2 [maxy |UTHT)Dy, (0:)]]° 2 [maxag |U5 (T)Dr, (D))
2, [t @pn et [T [ @D )
5 2 [maxy) [|UTH(T) Doy (0 )] 2 [maxaq U (T) Dy (0]
+ 2 (F (1,0 (T)) (3.56)

In order to simplify the calculation of the target function and its partial derivatives below
we, will replace the second line of Equation (3.56) with

. Tr |:O'T_DU1 (U+)i|

_ 2 _ 2
5\ 2 [maxeg [IUT (1) Dy, (o) 2 [maxa [|[UT(T) Dy, (0]

2 ‘Tr [alDUl (U+)} ‘2

. (357)

which is allowed because we are looking for solutions for which U;(7") and its inverse will
be very close to 1,. If our target unitary was not an identity operation this replacement
would not be appropriate. Nevertheless, at the expense of slightly more involved derivative
terms, this scenario could also be handled in much the same way.

This time, we define a block matrix propagator V(¢) € My, which decomposes into a
direct sum of M3(Mz) and My(My) and helps us evaluate ®:

Gl(t1> (o 0 0 0
t 0 Gl(t1> (o 0 0
V@:Twp/dh 0 0  Gi(ty) O 0 (3.58)
0 0 0 0 Go(ty) D
0 0 0 0 Gylt)
Ul(t) DUl(Uz) DU1(02,0+) 0 0
0  U(t) Dylos) 0 0
=1 o 0 Uy (t) 0 0
0 0 0 Us(t) Dy, (D)
0 0 0 0 Us(t)

In the following, when writing our target function ® in terms of V' (7"), we will slightly abuse
our notation for specifying the components of a block matrix. We take V; ;(T") to mean the
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ith row and jth column of V(T') as it is specified above. However, note that not all blocks
of V(T') are of the same size, e.g, Vi5(T") = Dy, (D) € My while Va3(T") = Dy, (04) € Ms.
It can now be seen that

T e L L s AW R A L)
S5\ 2 272 2 24772 5 4
r [o1Vas r o, V), r o' Vas T o Vi
(i [ Zv,m}T;r[ Vis(T) _%T[ V. <T>]T2T[ O

where we have used the fact that [max,) || Du, (D)]H2 = 2477, [max,) | Dy, (aZ)H]2 =277,
[max, ||Dus, (04)[]]” = T2 and Tr [VL(T)VM(T)} Tr[1,] = 4. The partial derivatives of

® with respect to {a; ;} evaluate to

9 1 ’
60éi,jq) 5T2Re< e )(30%,1‘/( )>1,2 )
1 (0 4
60T2Re (Tr Vis( )(8041-,]-‘/( )>4,5 >
1 t 0
+ ERe (TI" [VM(T)] Ir <8ai,jv<T))1,1 )

2.3

_ %Re (Tr _ai ( aaai,jV(T)) Tr [azvgg(T)D

—lRe Tr |o] 0 V(T)
512 8ai,j 2,3

Tr [angg(T)D . (3.60)

Using the partial derivatives in our optimization scheme, we arrive at a control sequence
with a total length of T' = 24 consisting of N = 200 subintervals with the following
characteristics:
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Figure 3.6: Exchange recoupling pulse sequence: a,(t) on the left and a,(¢) on the right.

|U; " (T)Dy, (D)]]
maxg (1) ||1U2_1(T)DU2 D)
Uy~ (T)Dy, (02)]] -7
max, (4) ||1U1_1(T)DU1 (o2)ll 3.11 x 10
UL (T)Duy (o4)l
max, ) U] (T)Dy, (o4)ll 0.476
BE TDU1(0+)]|

5.41 x 107¢

-7
maxa‘(t) |[|U1 (T)DUﬁ |(0+)H 1.49 x 10
Tr crz’DU1 o+) -
maXa(t) o (r)D v, (0 1.66 x 10
1 — 7Ly, Uh(T)] <10-1°

The sequence is presented in Figure 3.6. It can be seen from the table above that the
pulse does virtually remove the dipolar and ¢, Hamiltonians while rescaling the exchange
coupling U; H(T)Dy, (0..) by a factor of 0.47 with extremely small (< 2 x 10~7) unwanted
orthogonal components.

3.5 Setup of the Full Control Problem

In this section, we build on the block matrix methods introduced so far and give a full
description of the quantum control problems that are addressed by the tools developed
in this work. We hope that the examples presented so far will provide a sufficient guide
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for understanding the rather abstract descriptions in this section. We also add that the
problem description outlined in this section maps almost one to one to our implementation
of the control optimizer in Mathematica. In fact, a lot of our treatment and notation
has been chosen specifically to simplify the implementation process, while retaining full
generality.

With Figure 3.7, we illustrate the general control setting addressed. We say that we
have a finite set of quantum systems labelled by v € I'. In principle, this is true for any
control setting, although in many practical cases one approximates macroscopic ensembles
of quantum systems as being parametrized by some set of continuous variables — Rabi field
strengths, resonance offsets, etc — in such cases, we think of I' as a representative sample
of the real ensemble. Note that v is a single compound label, that could encapsulate any
number of constituent system parametrizations, which we use in order to keep our notation
as clear and concise as possible. Furthermore, the ensemble I' could in some cases denote
the same quantum system under different conditions for distinct experimental realizations,

e., it might stand for an ensemble in time rather than a spatial ensemble of physical
systems. For all examples in the previous section, we had |T'| = 1 to simplify the initial
discussions. In the next chapter, we will provide an example, for which |[T'| # 1. That
example was used for nanoscale magnetic resonance experiments.

The ensemble I" of quantum systems is controlled by the control sequence a(t) — a real vector
valued function specified over an interval [0, 7] and delivered by some control signal source.
The source should be thought of as a physical device which outputs a(t), a : [0,T] — RF;
usually, we think of it as an arbitrary waveform generator (AWG). In the context of this
thesis, we regard a(t) as the waveform generated by our numerical pulse search routines.
Each quantum system labelled by ~ has an associated transfer function =, 20 : ¢# — ¢,
where we use ¢' to denote the space of real vector valued functions, i.e., gbl : [0, 7] — R
Z0) is an analytic deterministic map which transforms the control sequence a(t) to system
specific control amplitudes b (t) = 20 [a(t)], b : [0, T] — R’ The components of b(")(t)
are the real valued functions that appear in the matrix differential equation determining
the evolution of system v € I'. In the next section, we demonstrate how to construct
=) for piece-wise constant control sequences and control amplitudes in the case of linear
transfer functions.

All quantum control problems boil down to engineering quantum state trajectories
with certain desired properties. Mathematically this corresponds to generating a system
propagator UM (t), UO) . [0,T] — M, which satisfies some set of conditions. We want
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Figure 3.7:  (a) Illustration of the control setting considered in this section. We say
that we an ensemble I' of quantum systems, the unique characteristics of each quantum
system v € I are captured by the transfer function Z() associated with it. We carry out
our numerical control finding searches on the optimization control sequence a°®*(t) that
is converted into an experimentally implementable sequence a(t) through the use of the
optimization transfer function Z°P*. =°P* is used for imposing the experimentally necessary
constraints on a(t), while a°?*(¢) need not adhere to such restrictions. When performing
experiments, the sequence a(t) is outputted by some control signal source, typically thought
of as an AWG. a(t) is transformed by the set of transfer functions {=(} to a set of control
amplitudes {b()(t) = 2 [a(t)]} which dictate the evolution of each quantum system. (b)
Each quantum system v € I is identified by its unique transfer function ), whereas the
evolution of it is determined by the system propagator U (¢) generated by the system

generator GO (t) = S0, b (£)G;, such that UM (t) = T exp (fot dt, GO (tl)).
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to emphasize that the properties desired from {U(¢)} need not be merely its value at
time 7', these could also be various integral expressions of U™ (¢) over 0 < t < T, which
describe the trajectory of U™ (¢). Here, a quantum system should be understood simply
as a finite level system or one that can be treated as such; the time dependent state of
the quantum system is determined by U™ (t). The time dependent value of U")(¢) itself
is determined by a first order linear matrix differential equation which we refer to as the
system differential equation:

U () = GO U (1), (3.61)

where G, : [0,T] — M,, is the system generator, while U (0) = 1,,. The value of G (¢)
at each instant is determined by the control amplitudes

GOy =Y ()G, (3.62)

=1

where G; € M,, is a constant matrix for all . This implies that the problem is a bilinear
control theory problem. The system differential equation should be understood as the
Schrodinger equation or some generalization of it, e.g., Liouville equation for vectorized
density matrices. For the cases where Equation (3.61) stands for the Schrédinger equation,
we have G (t) = —iH (t), where H(t) is the system Hamiltonian, and accordingly U (t)
is a unitary operator. However, this need not always be the case.

It is important to realize that we are using transfer functions in a somewhat uncon-
ventional way. Usually, one associates transfer functions with deterministic distortions of
a(t) specific to the experimental setup (electronics in use), whereas we use Z(%) to describe
these distortions as well as control amplitude variations that enter G(?)(¢) due to other fac-
tors, e.g., Rabi dispersion. Moreover, in some cases, we use transfer functions to introduce
additional auxiliary amplitudes into b()(¢) which may be totally independent of a(t). The
simplest of such auxiliary amplitudes would be the amplitude for the drift term in G (t).
By drift we mean time independent terms in the system generator, which are, at first sight,
absent from Equation (3.62). Such formalism enables us to describe all inherent system
variations (e.g., Rabi distribution, resonance offsets) through {Z()}, which lends for con-
cise notation and, perhaps more importantly, reflects the structure of our implementation,
while being totally general.

We also note that, here, we have assumed all G () to have identical generators for all
~v € I'. Even though this may not be the case for all quantum control problems, one can
always use our problem description by employing a direct sum of different sets of {G;} —
similar to how we handled the example in Section 3.4.4. Such approach is computationally
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not the most efficient, but it does substantially simplify implementing the algorithm while
retaining total generality.

As was said in Section 3.2, Equation (3.61) has a formal solution

UD(t) = T exp (/t dtlc:(”(tl)) : (3.63)

0

We are typically interested in finding an a(t), 0 < ¢ < T, that yields some wanted final
unitary operations {U)(T)} as well as some desired values for nested integral expressions
of the following form:

AU (t).

(3.64)
Such expressions can be thought of as perturbations of U(T), as it was presented in Sec-
tion 3.2, and they appear in various perturbative treatments of quantum control, e.g., AHT
and stochastic Liouville theory reviewed in the previous chapter. So far in this chapter, we
have only treated control scenarios, for which f = 1, however, with Section 3.7 we extend
our formalism to include arbitrary time dependent functions.

/ e / " Flt, . tn) [UO@E)] AU (1) . [UO(1)]

The main and the most significant result of this chapter is demonstrating that control
problems of this kind can still be written as bilinear control theory problems that involve
the same control amplitudes {b(")(¢)} that appear in the system differential equation. In
order to find a(t) that yields the desired {U(™(T)}, and the desired values for any set of
integral expressions for {UM(¢)}, UM : [0,T] — M, we can always construct a block
matrix differential equation — called the Van Loan differential equation — which comprises
the system generators {G;} and the objects that appear in the integral expressions for
{UM(¢)}. The Van Loan differential equation is expressed as

VO () = L)V (1), (3.65)

where V) (t) is the Van Loan propagator and L) (t) is the Van Loan generator
!
LO(t) = Lo+ b7 (1)L (3.66)
i=1

for L; € M,,(M,). In the previous section, we constructed four Van Loan differential
equations, the propagators and generators of which can be seen in Equations (3.43), (3.47),
(3.51) and (3.58). In all of these equations, the L(¢) term appears in the time ordered

o4



exponential on the left-hand side of the equation, and V'(¢) appears on the right; it is also
clear that all of the integral expressions of interest appeared as various blocks of V(7).
The benefit of such block matrix methods is two-fold: it enables an accurate and efficient
way for evaluating the integral expressions for piece-wise constant b")(¢) and, as we have
demonstrated, is readily deployable within control finding routines that take advantage of
the linear differential equation structure of the problem. We should note that the Van Loan
generators, and hence, the propagator in Equation (3.58), were not members of M,,(M,)
because we simplified the Van Loan differential equation using the fact that the two-spin
control was global. This aspect is rather universal — while the Van Loan generators can
always be written as L; € M,,(M,,), where n is the dimension of the system differential
equation, the dimension of {L;} can often be reduced from m x n by exploiting certain
symmetries in the problem. Such reduction typically decreases the computational cost for
the control search.

Having constructed the Van Loan differential equation that enables the evaluation of
all terms of interest, we can always define a target function ®( for each system in the
ensemble. ®) being a function of the final Van Loan propagator V) (T') for system 7, i.e.,
O™ : M, (M,,) — [0,1], where &) = 1 corresponds to having the desired properties from
the system propagator U™ (T) and from any number of nested integral terms of interest.
The construction of &) is done much the same way as it was described at the beginning
of Section 3.4. Our examples for target functions expressed as functions of the final Van
Loan propagator V(7T') are given in Equations (3.44), (3.48), (3.52) and (3.59). Finally,
we combine {®} into a target function ® for the whole ensemble I': & = > Ser pMNOM),
where {p(?)} are the relative weights assigned to each member of I'. We have assumed that
0 <p <1, for all ¥ € T, and that Z'\/GF p") = 1. Of course, the linear form of ® is not
necessary, but it does tremendously simplify the implementation. It is clear that ® is a
functional of a(t) and its derivatives with respect to the control sequence are given as

8aa(t)q) = Veer('y) 8a8(t) o [V(v) (T) (E('y) [@(t)m . (3.67)

For all examples in Section 3.4 we regarded the transfer function = as the identity func-
tional, hence, we had V(T) (E) [a(t)]) = V(T) [a(t)], which simplified the evaluation
o

of aa—(t)@, because the derivatives extracted from the Van Loan differential equation were

%@)V(V) (T'). Given a non-identity transfer function =, which is likely the case for any
experimental setting, we have to use the chain rule to evaluate WV(V)(T) (2D [a(t)]).
Since in this work we deal exclusively with piecewise constant control settings, we now

define the matrices {3} that specify the piecewise constant amplitudes of {b)(¢)}. Just
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like in Section 3.3, we say that we split the interval [0, 7] into M subintervals with respec-
tive durations 67} such that 07; > 0, for all j € {1,2,..., M}, and Zj‘il 0, =T. We
note that M does not necessarily have to match N — the number of subintervals used for
specifying a(t). We can now specify 3 € M; 5;(R), the components of which correspond
to the piecewise constant values of b (¢):

j—1 j—1
b\ (Z 0T, <t < 0T, + 57}) =87 (3.68)

s=1 s=1

Because we treat the control sequence and the control amplitudes as piecewise constant
functions, we will also, from now on, regard the transfer functions {Z(")} as matrix val-
ued functions, i.e., 20 : My x(R) — M;(R), such that 80 = Z¥(a). We can now

write ®(a) = > p pM M (VOU(T) [EW(a)]). Solving the Van Loan differential equa-

tions gives us the values of 8;@) VON(T), just as it was shown in Section 3.3. Hence, we

5]
I M - -
can evaluate %V(V)(T) = > ey D % (20 (a>)s,t %SQVW) (T). As we assume =V

to be an analytic matrix valued function, we can always evaluate the elements of its Ja-
cobian {52 (5(7)(a))s .} in order to implement the maximization of ®. For all examples
7 )

considered in this thesis, {Z("} were taken to be linear, meaning that their Jacobians are
trivial.

We now tie the formalism introduced in this section together, and give an outline of
our procedure for treating the problems described. The problem of engineering control for
an ensemble of quantum systems I', where each system is specified by its unique transfer
function =), v € T', breaks into the following steps.

e First, we need to identify the properties desired from the system propagators {U)(¢)},
U :[0,7] — M,, and construct suitable Van Loan generators {L)(¢)} for evalu-
ating the terms of interest.

e Secondly, we need to construct a set of ®) which are analytic functions of V) (T)
and yield the value one if and only if all the terms of interest in V) (T') take their
desired values. In practice, this step usually takes some tweaking whenever multi-
ple optimization targets are being considered. Determining the relative weights of
the various optimization targets — such that no single one of them dominates the
optimization — always takes some trial and error.

e After that, we need to pick the relative weights for the each of the ensemble members:
{p™}. Typically, when all members of the ensemble are equally important, it is
sufficient to pick p( = 1/|T|, for all v € T,
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e Equipped with the above, we need to evaluate {%UCD}, and proceed with the control
search as it was described in Section 3.4. We first generate a set of seed control
sequences {a(o)} and then run a conjugate-gradient maximization algorithm for each

seed until a sequence that yields a ® value sufficiently close to one is found.

Finally, in most practical cases the experimentalist needs a(t) to adhere to some con-
straints, e.g., pulse waveform bandwidth and amplitude constraints or periods for which
a(t) = 0. Such constraints are often convenient to implement with the use of an optimiza-
tion transfer function Z°PY, =Pt : My, yopt (R) — My n(R), where N°P* is the number of time
steps for the piecewise constant optimization control sequence a®*(t). Z°P* is constructed
in a way which ensures that all control sequences belonging to its output space adhere to
the constraints — that regardless of the input a°?*(¢). Having constructed Z°P*, the numer-
ical pulse searches are then carried out on a°P*(¢), which does not need to adhere to the
constraints. We represent the piecewise-constant a°®*(t) by a matrix P € My yort (R),
just as we did for a(t) and {b()(¢)} above. For finding a suitable control sequence using

gradient based algorithms, one then needs to evaluate

0 3,
- $ = () (I)(“/) V(“/) T E(v) Eopt opt 3.69
¥ ;p G 27 V) [E (7 [ ])] ] (3.69)

1,J

which means evaluating the elements of the Jacobian for {=}, as well as for Z°P*. After
finding an a°P' that yields a high enough ® value, the control sequence, that is to be
implemented experimentally, is calculated simply as a = Z°P' (@°P'). In the next section,
we demonstrate explicitly how to construct Z°P' that introduces zero pulse amplitudes to
the beginning and the end of the control sequence and how to construct Z°P* that limits

the bandwidth of a(t) waveform in frequency (Fourier) domain.

3.6 Transfer Functions

In this section, we describe the matrix methods that we used when performing control
searches for the example in Section 3.8, as well as for the nanoscale magnetic resonance
experiments that will be discussed in the next chapter. In both cases, the control sequences
a(t), a : [0,T] — RF, are piecewise constant over intervals of equal length AT such that
T = NAT. Furthermore, in both cases, the control vectors a(t) are of dimension two, i.e.,
k = 2. Consequently, the real valued control vectors could be mapped onto a complex
scalar function o'(t) : [0,7] — C, with &/(t) = a1(t) — ias(t) = a,(t) — ia,(t). Given the
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complex vector representation, and the fact that all transfer functions {Z(} in this work
are linear functions that treat a,(t) and a,(t) symmetrically, since a,(t) and a,(t) stand
for the in-phase and quadrature components of the control waveform, we could represent
each 2 as an N x N matrix with complex entries such that

B = Re [ED (a1 — ian)] ., (3.70)
and

By = —Im [ED(ay —iaw)] (3.71)

where {BZ(Z)} are the piecewise constant control amplitudes as defined in Section 3.5, and
«; denotes the ith row of the matrix a € My x(R) that specifies the control sequence a(t).

Moreover, for all examples in this thesis {27} are diagonal in the Fourier domain, and
fully specified by two real valued scalar functions — the amplitude transfer function A (v)
and the phase transfer function ¢ (). In order to construct each 2, we first calculated
the discrete Fourier transform matrix, which is a unitary transformation Uit (N) € My,
with its elements given as

[UFourier(Nﬂs’t _ \/1N exp {27”(3 _]\1])(75 - 1)] ’ (3.72)

for 1 < s,t < N. We then construct a diagonal matrix A € My, the diagonal elements
of which are given as A%-) = A (v;) exp [i¢" (v;)], with

vy — ﬁ (2 [(j ~ 1) mod g} . 1)) | (3.73)

for 1 < j < N. Here, x mod y denotes the remainder from diving = by y. Finally, we
evaluate

ZEO(N, AT, A0, ¢0)) = [UFwier(N)] ™ AN, AT, A g uFomien(N), (3.74)

for each v € I'. The control amplitudes {3} are then evaluated via Equation (3.70) and
(3.71). The elements of the Jacobian {%ﬁﬂ)}, that are also necessary for the control

o8



searches, evaluate to

%u ) = Re (ED),, (3.75)
2 - (e,

G = —Im (27),,

ait ) —Re (27) |

forall 1 <s,t <N.

3.6.1 Optimization Transfer Functions

In Section 3.5, we argued that to implement certain constraints on the control sequence
a(t), one can use an optimization transfer function Z°°* such that o = Z°P* [a°P*], where
a and a°P* specify the piecewise constant control sequences a(t) and a®*(t), respectively.
=°Pt is constructed in such a way that its output functions always adhere to the necessary
constraints. In this subsection, we demonstrate explicitly how to construct Z°P* that in-
troduces periods of zero pulse amplitudes at the beginning and at the end of the control
sequence a(t), and limits the bandwidth of a(t) in the Fourier domain. This optimization
transfer function was used for control searches in Section 3.8 and in the next chapter.

First, we construct an optimization transfer function that ensures that the control
sequence a(t) has equal periods of zero amplitude at the beginning and at the end of
the sequence. To introduce such periods, we define an optimization transfer function =°.
Just like above, we map both a € My x(R) and a®®® € My yort (R) onto complex vectors
o = o —iay and o = " — iadP", respectively. N°P* = N — 2Ny is the number of
piecewise constant elements of a°®*(¢), while Ny is the number of zero amplitude elements
that are introduced at the beginning and at the end of a(t). The action of Z° € My yopt is

then defined implicitly as

oo

— / l
o =Z0%P = [ aopt || (3.76)
oMo
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for any aP"; 0N denotes a zero vector of length Ny. It is easy to see that a Z°, which has
the property above, can be constructed from three blocks:

0
EON,No) = | Inon, |, (3.77)
0

where 0 € My, n_2n, is a rectangular matrix with all its entries being zero. The elements
of a are then given by
a1 = Re [E(N, No)(af™ —iad™)] (3.78)

and
as; = —Im [EO(N, No) (™ — mgpt)]j . (3.79)

Of course, the construction of Z°(N, Ny) generalizes easily for introducing an arbitrary
number of zero amplitude periods of an arbitrary duration into a(t).

Now, to limit the bandwidth of a(t) frequency components, we construct an optimiza-
tion transfer function =PP that acts as a low-pass filter. Here, a low-pass filter should be
understood simply as some amplitude transfer function A’® : R — R in Equation (3.74),
that takes non-zero values only over some limited range Av centred around v = 0. In this
thesis, we used a particular functional form:

AP (v, Av) = i (1 + tanh l% (1/ + %)D (1 — tanh l% (,, - %)D ., (3.80)

that has smooth frequency cut-offs at £Ar/2 in order to prevent introducing long lasting
ripples to the pulse waveform a(t). Accordingly, we implement =P as

=PP(N, AT, Av) = Z(N, AT, \*?,0), (3.81)

where Z(N, AT, A\P?.0) is given by Equation (3.74).

The optimization transfer function Z°P!, that we used in Section 3.8 and in the next
chapter, combined the action of Z° and =P and is calculated as

Z°PY(N, Ny, AT, Av) = Z°P(N, AT, Av)Z°(N, Ny). (3.82)
The elements of a are consequently determined as

Oélj - Re [Eopt(N, N07 AT? Alj) (Oétl)pt - iagpt)]j (383)
a2j — —Im [EOpt(N, NU: AT, AV) (@Tpt — Z’Oégpt)}j y
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for all 1 <7 < N |, whereas the elements of the Jacobian { oo a;s} evaluate to

0

—8aopta1,s = Re [Eopt(N, No, AT, Au)}si (3.84)
1t
_8 = Im [E°PY(N, Ny, AT, A
aagllt m [Z7P(N, No, V)],
a —opt A A
aaopta = —Im [ (N N07 T V)] st
1t
a —opt
WO{ZS = Re [: (N, No,AT, Ayﬂs,t’
2,

forall1 <s< Nand 1<t < Nt

3.7 Generalizations

So far in this chapter, we have demonstrated how to construct Van Loan differential equa-
tions that would enable numerical evaluation of nested integrals of the following kind:

Dy(Ay, ..., A (3.85)

/dt1 / dt, U ()AL (t)U(t) ... U ) A (t)U (),

where U(t) = T exp (f(f dth(t1)> and Ay,..., A, : [0,7] — M,. Nevertheless, as it was

shown in the previous chapter, there exist control settings which require the evaluation of
the following integral expressions:

T /O Dt /0 Tt (U ) AT () U (1) AU (L), (3.56)

where f is a scalar valued function. This section will be devoted on constructing block
matrix methods to address integrals of that kind, which appear frequently when treating
stochastic noise operators. In that case, the scalar function f is typically either the noise
correlation function or some function of that correlation function, e.g., the four-point cor-
relator. In the next section, we put the generalized numerical tools developed here into
use for an example that treats qubit control in the presence of stochastic 1/f noise.
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It is clear that integrals of Equation (3.85) kind involve matrix valued /integrands that
have a particularly simple product structure, i.e., they can all be written as Ai(ty) ... An(ty),
where A;(t;) = U™ (t;)A1(t;)U(t;). On the other hand, it is certain that an arbitrary scalar
function f(t1,...,t,) can not be written in such product form. This makes the extension of
our methods, to integrals such as Equation (3.86), not obvious. We approach this problem
by first assuming that we can approximate any f(t1,...,t,) as a linear combination of
functions that can be written in a product form:

Flt,.. ot Z ci gin(t) .. gin(tn), (3.87)

with {¢;} being constant complex coefficients and {g; ;(t)}, ¢;; : [0,7] — C, being scalar
valued functions of a single argument. Given this approximation, we can now write Equa-
tion (3.86) as

T) /OTdtl.../Otnl dtn, f(ty,. .., t ) U #)AL(E)U ) ... U () An(t2)U (1) =

> / iy / U (1) 9 () A ()] T (82) . U (6) (g0 () An(8)] U (82):
Z (3.88)

The equation above immediately suggest one way for evaluating the integrals in Equa-
tion (3.86): given the set of {A;} and the decomposition of f(ty,...,t,), we can define a
new set of operators {B; ;(t)}, where B; ;(t) = ¢;;(t)A;(t), and evaluate each integral in
the sum of Equation (3.88) independently. Nevertheless, such approach may not always be
the most efficient one in the context of piecewise constant control amplitudes, especially
if {A;} happen to be time independent operators; in that case the number of time steps
needed to accurately approximate {g; ;} can become prohibitively large.

In this section, we consider two specific kinds of {g;;} that can be integrated into
Van Loan differential equations in a very natural way — without having to resort to the
B, j(t) = g;;(t)A;(t) mapping described above. First, we describe block matrix integral
evaluation techniques for the special case of g; ;(t) = exp(d; ;t), where d;; is a complex
constant. After that, we describe our techniques for the case of g; ;(t) = t*, where s; ; € N
denotes the power of t. We note that the assumption that we can write f(¢1,...,t,) as
a linear combination of exp(d;it;)...exp(d;,t,) and ¢} ...t;"" is not overly restrictive
because functions of this form, as a vector space, are dense in the set of all continuous
functions. Of course, the last statement ignores the fact that if the number of non-zero ¢;
needed to approximate f(ti,...,t,) becomes too large, our numerical integral evaluation
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methods might become infeasible. However, we expect that in most practical cases — with
reasonably well behaved f(¢y,...,t,) and short time intervals [0, 7] — the number of non-
zero ¢; needed will not be too large. In the next section, we provide an example which
supports this assumption.

3.7.1 Products of Exponentials®

With this subsection we introduce the Van Loan generator L(t), L : [0,T] — M,;,11(M,,),
that can be used for evaluating the following nested integral expressions

Dy (e™'Ay, ... " 4,) = (3.89)
L“TXA dm~-[¢L:ﬁnU'%ﬁ)k““Aﬂhﬂ[Kh)”.U%m)k%WA%@@}U@Q,

where U(t) = T exp (fot dth(tl)) is the system propagator generated by G(t), G : [0, T] —
M,,, and Ay,..., A, : [0,T] = M,,. The block matrix expression for L(t) is

L(t) = (3.90)
G(t) Ay(t) 0 . 0 0
0  G(t)+di1, Ay(t) . 0 0
0 0 G(t)+ (dh +d)L,, ... 0 0
0 0 0 . G(t) + Z‘?;f di Lo, A;(t)
0 0 0 : 0 G(t) + >0 dilpy,

and the corresponding Van Loan propagator can be written as

V(t) = (3.91)
U(t) DU (edltAl) DU (GdltAl, ethAQ) Ce DU (€d1t141, . 7€dnt14n)
0 et U(t) e Dy (e Ay) ... MDDy (eBiA,, ... et A,)
0 0 elditd2)t [](¢) ... elditd)tp,, (edStAg, o ,ed"tAn)
0 0 0 o X Dy (et A)
0 0 0 . exi=1dit [ (¢)

2The matrix identity in this subsection was shown to the author by Daniel Puzzuoli.
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such that Dy (eM Ay, ..., e"" Ay) =V} 1 (T). Equation (3.91) can be checked by employ-
ing Theorem 1 given in Section 3.2. First, we notice that its diagonal elements [V ()], ,,
for 1 <k <n-+1, can be evaluated as

Vi(t) = Texp (/ dtll (t) +Zd]l D = XIS (¢, (3.92)

because 1,, commutes with G(t) at all times. Next, we use the recursive expression in
Theorem 1 noticing that for all 1 < k < n: Ly 1(t) = Ag(t); and Ly g4i(t) = 0, for all
1 > 1, hence,

t
Viers (1) = eXi=1 B (t) / dtre™ 2= W T ) A (t) Vi 1 (B)- (3.93)
0

The equation above enables us to write
Vikes(t) = e 40 U (1) (3.94)

/dt1 / dt; e U () Ag(t)U () . €415 U™ () Ajjoa (t2) U (22),

which verifies Equation (3.91). In the next section, we make use of L(¢) in Equation (3.90)
for n = 2.

3.7.2 Products of Monomials

With this subsection we give a procedure for evaluating nested integral expressions of the
following kind:

Dy (t" Ay, ...t A) (3.95)

/ ity / “dt U= (1) [0 As ()] U (1) - U (1) [ An ()] U (1),

where s1,...,s, € N, while U(t) = T exp (f(f dth(t1)> is the system propagator gener-
ated by G(t), G : [0,T] — M,,, and Ay,..., A, : [0,7] — M,,. Unlike the exponential

case considered above, the monomial case requires the evaluation of H?:_ll(si + 1) Van
Loan propagators. Here, we will first describe how to construct the necessary Van Loan
propagators, and then outline a procedure for evaluating Dy (t51 Ay, ...t A,).
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Let z1,...,2, € N, for which we denote Z, = Y z;. We also say that
A= U AU, (3.96)

The main result in this subsection relies on a simple observation that

n—1+4Zn ~
/ ity / Qo Ar(t) Aa(tara) As(tsgarsns) . Anltuiz, ) = (3.97)
g th—ta)? ~  (ta—t th~
[t [ an S ) O ) BB R )
Z9. Z3: n

where we have used the identities f(f dty--- f(fz_l dt. = & and fot dty--- [)7 dtry F(ty.) =

fot dtl%F(tl), for any function F' : [0,7] — M,,; the latter identity can be obtained
via sequential integration by parts.

To construct a Van Loan generator L(t) for evaluating the expression in Equation (3.97),
we first identify that

T tn—1+2p - - ~
T) / dtl‘ e / dtn+Zn Al (tl)AQ(t2+21)A3(t3+21+22) .- -An(tn+Zn—1) =
0 0

Dy | AL, Lons ooy Lons Aoy Loy oy L ooy Ay Ly o L | (3.98)
Z1 copiles Z2 copiles Zn CoOples

) necessary for

since U~ H(t)1,,U(t) = 1, for any 0 < ¢t < T. The L(t) € M,1z,+1 (M,
1<k<n+2,+1,

evaluating the expression above has all of its diagonal elements Ly, 5 (1),
equal to G(t), and the first off diagonal given as

ALy Ly, Aoy e Ty oy A s oo o | (3.99)
N ~~ : 4 A ~~ - >y N - s
z1 copies 29 copies zn copies
so that
t — tl) ~ (tl — tg)z2 ~ (tz — t3> tin ~

~ U A Ayt As(t = Ap(tn

o) [ [T () P2 Al 2P () . )
t

= ‘/I,n—l—Zn—&—l(T) = |:TeXp (/ dtlL(t1)>:| . (3100)
0 1,n+Zn+1

65



The last fact can easily be checked by employing Theorem 1 in Section 3.2 in the same
way as it was done in the previous subsection.

Finally, we point out that the term of interest Dy (t*' Ay,...,t°"A,) appears as one
of the terms in Equation (3.97), after one expands the binomials and sets z; = s;, for
all 7. Nevertheless, to isolate Dy (t°1 Ay,...,t°" A,,), one has to evaluate Equation (3.97)
forall 0 < 2y < sy, ..., 0 < 2,1 < 8,_1, which yields a system of H;:ll(si + 1) linear
equations. Therefore, we need to generate H?;ll(si—l— 1) Van Loan propagators, as described
above, in order to evaluate Dy (t*1 Ay, ..., t*" A, ). This set of Van Loan generators {L;(t)},
1 <i <[5 (si + 1), can be combined into single a direct sum generator L(t) = L;(t) @
@ LH?;11(5i+1)<t) the same way as we did in Section 3.4.4. At first sight, this might
seem hugely inefficient, however, it should be noted that solving such a system of linear

equations yields the values for all Dy (t** Ay, ..., t""A,), 0 <21 < s1,...,0< 2,1 < Sp1.
And because the goal of evaluating such Dyson terms is generally to approximate some
f(t1,....t,) as a linear combination ), ¢; ¢7"" ... t5", then the fact that our protocol could

provide all monomials up to ] ...t%" is not an unreasonable overhead.

3.8 1/f Noise Decoupling

In this section, we turn to an experimentally realistic control example. We will demand
that the pulse ends go smoothly to zero, and that the spectral width of the pulse wave-
form be limited. The example we consider demonstrates our ability to engineer control
sequences that are designed to decouple stochastic noise characterized by its spectral den-
sity function. For that, we employ the tools for that were developed in the previous section
for evaluating generalized nested integrals of Equation (3.86) kind. We pick 1/f noise due
to its ubiquity in solid state devices [12]. We proceed by evaluating the first non-zero term
in the perturbative cumulant expansion for the Liouville equation, which was described
in the previous chapter. We then demonstrate how such a toggling frame term can be
approximated, and consequently minimized, using Van Loan differential equations.

In this section, unlike for the examples in Section 3.4, G(t) will denote the Liouville
generator rather than the system Hamiltonian. Accordingly, we start with a single spin
Liouville generator which includes a stochastic noise term G, (t) = €(t)G, and dictates the
evolution of the system

G(t) + Ga(t) = au(t)Ga + ay (1) Gy + £(£) G, (3.101)

T
where G; = —i (% RL-1® %), for i € {z,y,z}, and £(¢) is a stationary, zero mean,
Gaussian stochastic function capturing the fluctuations in the spin level spacing. This
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implies that (¢(t)) = 0, where the angle brackets denote an ensemble average over noise
realizations. Here, we take the power spectral density of () to be given by P(v) =

% [arctan <AL1> — arctan <AL2>}, where A; and A, are smooth low and high frequency

cutoffs for P(v), respectively. It is easy to show that limp, 0 r,—00 P(V) = ‘—114 For this

example, we use A; = 27 Hz and Ay = 27 - 10'Y Hz. According to the Wiener-Khinchin
theorem:

(0e(t1)e(t)) = / dv P(v)e™" =21 = —2[Ei (= Ay [t; — tof) — Ei (—Az |t — t2])],
(3.102)
where Ei(z) = — [ dt e7"/t stands for the exponential integral function.

Using stochastic Liouville theory, we can treat the noise perturbatively and show that
the toggling frame propagator Uy.g(T') is given as

Urog(T) = <Texp [ / " Ul(tl)Gn(tl)U(tl)D (3.103)

0

— et /T dh /t1 dty (e(tr)e(ta)) U™ (1) G.U (0) U (t2) GU (t2) + ..,

where U(t) = T exp (fot dtq G(t1)> and we have made use of the fact that

/t dtl <€(t1)> Uﬁl(tl)GZU(tl) =0. (3104)

We remark that Uy (7') is not a unitary matrix, in fact, it is precisely the operator that
encapsulates the non-unitary decoherence effects induced by G, (t). In order to reduce
such decoherence at its lowest perturbative order, we need to minimize the nested double
integral term in Equation (3.103). Because the generator G(t) is a Liouville generator, it

also holds that U(t) = T exp (fg dt, G(tl)) = Uy (t) ® Uy(t), where the bar denotes an
entry-wise conjugation of the matrix and Ui (t) = T exp (—i fot dty [a.(t1)% + ay(tl)%y}).

To employ the method developed in the previous section, we first note that a linear
combination of exponential functions provides a good approximation for (g(ty)e(t2)) over
a region of integration 0 < ¢ty < t; < T, with T' = 400 ns. Using a least squares fit to
the correlation function over that region, we find an approximation that combines seven
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exponential functions
7
(e(t)e(ta)) = =2 [Bi (—Ay [ty — to]) = Bi (=g |ty — o) & D ¢y €172 (3.105)
i=1

where ¢; = 7.49448, d; = —1.11796 - 10® Hz, ¢, = 0.947027, dy = —3.37122 - 107 Hz,
c3 = —0.490555, d3 = —4.69721 - 10° Hz, ¢4 = —0.163987, dy = —3.77087 - 10° Hz,
cs = 29.83, d5 = —577865 Hz, c¢ = —0.102058, dg = 122339 Hz, ¢; = 0.00035238 and
d7 = 2.05605 - 10" Hz. Given the approximation, we can now write

Lyy(t) = /0 tdtl /0 ! dty (e(t)e(te)) U™ (t) G U () U (1) GLU ()
~ C: t 1 t1 , edilti—t2)p7—1 )G, . -1 NG (L
;z/()dt/odt U™ (t)GLU(8)U ™ t)GLU (ty)

=) U N T)Dy (e™'G., e *'G.). (3.106)

=1

It is important to realize that in the case of actual experimental scenarios either the
noise correlation function or its power spectral density would be characterized before em-
barking on control engineering. In such cases, (¢(t1)e(t)) is extremely unlikely to fit to
some simple and specific analytic function. Therefore, our procedure, for fitting a set of
functions to a set of data — in this case an analytic function — in order to approximate the
noise correlation, closely matches a real control engineering protocol.

We search for a pulse implementing a Y gate, i.e., we wish to set U(T) = e /2 @
e~my/2 Consequently, we use the following target function:

o (_ |U(T) Ly (1)
g [max, |U(T) Iy ()]

Combining Equation (3.106) with Equation (3.90) in the previous section, we set up a Van

1 . —
) + g]: [e—zway/Q ® e—z7r(7y/27 U(T) . (3107)
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Loan differential equation for V' (t) € Mg (My):

V(t) = (3.108)
[ G(t) G. 0 ... 0 0 0 \|
0 G(t)+di1y G, ... 0 0 0
. 0 0 G(t) ... 0 0 0
T exp / dtq : : : . : : : _
0 0 0 0 ... Gt) G. 0
0 0 0 0 G(t1) +d:1y G,
i 0 0 0 e 0 0 G(ty) |
U(t) Dy (edltGZ) Dy (edltGZ, e’dlth) o 0 0
0 eBtU(t) eMDy (emMG,) L. 0 0
0 0 Ul(t) e 0 0
0 0 0 ... Dy (ed7th) Dy (ed7th, e’d7tGZ)
0 0 0 e e Dy (e7G,)
0 0 0 e 0 Ul(t)
We can now approximate the target as a function of V (7'):
T
4 Tr ([ZZ:l CiV3(i71)+1,3i(Tﬂ Zle Civz’)(ifl)+l,3i(T)>
¢= 5 b T t 2
2(J dtr o' dts (=(t)=(1)))
1T —imoy /2 T® —imoy /2 Ty, (T
+3 r (e ) (: Vi) (3.109)

where we have used the fact that \/Tr [VlTJ(T)VLl(T)] Tr[14] = 4 and that Tr[GIG.] = 2,

while fOT dty J Ydty (e(t1)e(t2)) is evaluated numerically for any particular 7. The partial
derivatives of ® with respect to the control amplitudes {f; ;} are given as

7 T 7
0 4Re [Tr ([Zizl Vain s Liey (ﬁv(Toiﬁ(i—l)-ﬁ-l,?ﬂ)}

0Bi ; -5 (fontl (fl dt <5(t1)5(t2)>>2
+%Re (Tr (e7mv/2)T @ (eim/2)T ( ang(T))m ) (3.110)
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Here, we attempt to closely mimic a control search procedure that would be undertaken
when searching for an experimentally implementable sequence. Hence, we impose three
distinct constraint on the pulse waveform: maximum amplitude constraint, bandwidth
limitations for the pulse waveform frequency components and zero amplitude periods at
the beginning and at the end of the sequence. The last two constraints are implemented
by introducing an optimization transfer function Z°P*, as was described in Section 3.5, and
the explicit construction of Z°P* was given in Section 3.6. Here, we do not consider any
ensemble effects, i.e., [['| = 1, and we take the only experimental transfer function to act
as the identity, such that 3 = ) = 2 (a) = a. Accordingly, the numerical control
searches are conducted for P!, with o = Z°P* (a°P").

For the searches, we limit the Rabi frequency |a®P*(¢)|/(27) to be less than or equal to
200 MHz by enforcing that

- %% +200 - 10° Hz < ;™' (t) < %% +200 - 10° Hz (3.111)
for i = {z,y}. We take the pulse length 7" to be 10 Rabi cycles or 50 ns, which is divided into
N = 300 intervals of equal length AT = 1.67-1071" s, whereas the zero amplitude periods
at the beginning and at the end of the pulse a(t) have a length of 8.33 ns, corresponding to
Ny = 50. Therefore, the numerical control search is conducted on 33.33 ns-long a°P*(t) that
is divided into N°P* = N — 2N, = 200 equal steps. Using Z°P*, we constrain all spectral
components of the pulse a(t) to lie within a Av = 400 MHz bandwidth around the carrier
frequency. The optimization transfer function Z°P*(N, Ny, AT, Av), that is employed to
enforce the constraints, is defined by Equation (3.82) in Section 3.6.

Because our control optimization was carried out on the optimization control sequence
a’P*(t), we needed to evaluate {%Cb}, for all i = {1,2} and j = {1,..., N°*'} in order
perform our conjugate gradient mli’Ijlimization procedure. With Equation (3.110) we have
evaluated {85 -@}; we have also identified that 52 Fa P = a 7552 for all i = {1,2} and j =
{1,...,N}. Flnally, we link { Optq)} with { 52— 75 <I>} through Equatlon (3.84) in Section 3.6:

0
_— 3.112
804(1)"’»t ( )

> <Re [Z°PH(N, Ny, AT, Av)]

t=1

) - )
tj %Q) —Im [._ p (N7 No, AT, AI/)] tj WM@)
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and

aoptcb: (3.113)
@az’j
N —opt AT A 0 —opt AT. A —8
2 (Im [ (N, No, AT, Aw)] 5= @+ Re [EH(N, No, AT A @ )
t=1 7 |

Given the target function and the partial derivatives above, we search for a control
sequence just like for the examples in Section 3.4. The resulting waveform a(t) is shown
in Figure 3.8 and the pulse characteristics are given as:

Hh/f(T)n/\/z (fOT dty [ dt <5(t1)5(t2)>> 0.0127
1— F(o,,U(T)) 1.25 x 1077

We point out that, while 8.33 ns-long zero amplitude periods were introduced to the be-
ginning and the end of a(t) with the use of Z°P' the waveform in Figure 3.8 does not
immediately display such character. That is because the low-pass filter, also incorporated
into Z°P, creates ripples at the beginning and at the end of a(t). Nevertheless, by adjust-
ing NoAT', and the functional shape of the low-pass filter, one can always ensure that the

waveform dies off to any desired degree at its ends.

Finally, in the case of a stochastic operator Gy, (), one cannot expect to be able to set the
integral I1,¢(t) in Equation (3.106) equal to zero, since the high frequency components of
the noise always retain their decoherence inducing effect. This last fact can easily be verified
by considering the noise correlation function for uncorrelated white noise: (g(t1)e(ts)) =
d(t1 — tg), where §(t; — to) stands for the Dirac delta function. In that case, it is obvious
that the perturbative terms in I;,¢(¢) are completely independent of the control sequence.
Nevertheless, for a reasonably low amplitude noise, our sequence in Figure 3.8 would extend
the spin coherence time by a factor of 1/0.0127 ~ 80.

3.9 Conclusions

With this chapter, we have developed an extremely versatile Van Loan block matrix dif-
ferential equation framework for efficient and accurate numerical evaluation of any nested
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Figure 3.8: Control sequence robust to 1/f noise that implements a Y gate: a,(t) on the
left and a,(t) on the right. The control waveform was optimized to take zero values at its
beginning and its end, furthermore, the limited range of frequency components within the
waveform ensures its smoothness.

matrix integral expression of the following kind:

U(T) /letl.../tn1 dtn f(ty, ... t) U ()AL (E)U () ... U Ntn) An(tn) U (L),
’ ’ (3.114)

where the system propagator U(t), 0 < ¢ < T, is generated by piecewise constant control
sequences a(t). We have shown that Van Loan differential equation formalism is partic-
ularly suitable and easy to incorporate into gradient based control finding schemes that
seek to set U(T') and various integrals of the above kind to certain desired values. We
have demonstrated the latter property of our formalism by conducting four simple, yet
non-trivial, control searches in Section 3.4. For many of these examples our numerical
searches converged to control sequences that bore definite resemblances to known analytic
solutions. This is a very reassuring starting point for deploying our block matrix methods
in experimental control situations, where the constraints on the control sequences, exper-
imental distortions and ensemble effects do not allow for analytic control engineering. In
order to mimic such a control engineering situation as well as to demonstrate our ability to
handle noise resulting from stochastic processes, we generated the example in Section 3.8
that has a bandwidth limited waveform a(t) with zero amplitude ends.

The fact that our formalism provides a natural way for evaluating partial derivatives of
the integral expressions with respect to the control amplitudes is critical for ensuring fast
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convergence of our control search implementation. The control sequences presented in this
chapter typically converged to the solutions presented within a few thousand target function
and partial derivative evaluations. Gradient information becomes especially crucial at the
stage of the optimization when the target function ® — and hence the values for the integral
expressions and the final propagator U(T) — approach their desired values, which in the
case of @ is one of its local maxima. Consequently, we expect our methods to provide faster
convergence of ® to its local maximum than any method for control engineering that does
not utilize gradient information of ®. Nevertheless, in the case of applications that require
high fidelity operations, optimal or near optimal ® values are absolutely imperative.

The examples presented in this chapter should not be understood as demonstrative of
the full capacity of our framework. In order to keep our treatment illustrative and concise,
we did not present control searches that included Dyson terms of orders higher than the
first. However, such extensions follow from our examples in a very obvious way and can
easily be included to any control search protocol. We have tried searching for single spin
sequences that include higher order Dyson terms and have found them to also converge to
desired solutions. In this chapter, we did not consider control searches for an ensemble of
quantum systems or control searches with non-trivial transfer functions. A control problem
of this kind will be dealt with in the next chapter, where we demonstrate an experimental
implementation of our control sequences that were designed for an ensemble of proton
spins in force detected nanoscale nuclear magnetic resonance experiments. In the case of
these experiments, we were also dealing with non-trivial transfer functions for the control
electronics.

The methods developed here could, in principle, be used in any setting that requires ro-
bust coherent control of quantum systems, whether it be quantum computation, sensing or
spectroscopy. The main requirement for successful implementation is an accurate model of
the system generators and a precise knowledge of the control amplitudes seen by the quan-
tum system, i.e., sufficiently good characterization of the experimental transfer function.
The methods work best if the experimenter has an ability to generate continuously varying
arbitrary waveforms a(t), although it is also possible to implement the framework in the
case of more restrictive control electronics, e.g., an ability to only generate pulses with their
phases drawn from a discrete set {0,7/2,7,37/2}. Quantum control problems that have
not yet been addressed with tools of this kind include, but are not limited to: minimizing
the effect of cross-talk in the case of simultaneous multiple system control, reducing the
effect of counter-rotating terms in the cases where the Rabi strength approaches the spin
level spacing, i.e., Bloch-Siegert type effects, and adding robustness against variations in
the experimental transfer functions. Another potential avenue for using this framework
would be the inclusion of non-Hamiltonian Lindblad terms for cross-polarization problems.
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In the next section, we discuss some further possible refinements and extensions of the
methods described here.

3.10 Outlook

In this section, we first briefly describe some technical aspects related to our framework
that this work has not addressed. Finally, we give an example of a control problem,
that involves integral expressions of the system propagator U(t), which are not derived
from perturbation expansions. Nevertheless, we can still employ the Van Loan differential
equation formalism to evaluate such integrals and numerically search for control sequences
that would set them to some desired values. We expect this property to generalize to a
variety of integral expressions involving U (t).

Although, in this chapter, we did not concern ourselves with the speed and efficiency
of the optimization, we remark that the computations involved in our optimizations are
frequently highly parallelizable. We could parallelize the Van Loan propagator evaluations
at an ensemble member level, or break up Van Loan generators that are of direct sum form,
so to evaluate them in parallel. Furthermore, the upper triangular block matrix structure of
the Van Loan generators often allows for substantial reductions in the computational cost
of their multiplication and exponentiation. Another path for future refinements, which
was not explored within this work, is the use of block matrix methods for evaluating
partial derivatives of the integral expressions with respect to the control amplitudes. The
convergence of the numerical searches to the optimal target function values might also be
substantially sped up by the inclusion of second order partial derivatives (Hessians), which
can also be evaluated using the same block matrix techniques.

3.10.1 Adiabatic Control

With this subsection we wish to highlight that the numerical methods developed in this
chapter are not only useful for numerical control engineering involving perturbation ex-
pressions. In fact, the method is potentially applicable for control searches that require
the system propagator U(t), U : [0,7] — M,, to have any arbitrary property or a set
of properties that can be expressed as a set of integral expressions. To exemplify this,
we consider the design of adiabatic passages. Here, we will not carry out explicit control
searches, rather we state the conditions necessary for performing an adiabatic state to state
transfer and demonstrate how they can be rewritten in a way that enables the use of Van
Loan differential equations for finding control sequences to implement it.
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Adiabatic control sequences have proven to be an indispensable tool in many applica-
tions of quantum state to state transfers which require extreme robustness against some

system variation [29]. Nevertheless, adiabatic pulse waveforms are almost always pos-
tulated analytically and parametrized by a small number of parameters, which are then
adjusted for the problem at hand [29, 117]. Such control design could have a few drawbacks.

It may not always be obvious how to engineer adiabatic control sequences in unconventional
control settings: either in the case of non-standard system generators or in cases where the
control waveform has some limitations due to control electronics. Furthermore, analytic
waveforms may not easily extend to systems of large Hilbert space dimensions, and they
may not always yield the most time-efficient control sequences. Lastly, numerical control
engineering has an ability to deal with various ensembles of quantum systems, which is
often difficult to handle analytically.

The basic working principle of adiabatic control is that the system Hamiltonian, and
accordingly the system generator G(t) = —iH(t), G : [0,T] — M, is modulated in such a
way that the quantum state of the system [¢)(t)) is taken from its initial state [¢/(0)) to the
final state |¢(7)) while remaining an approximate eigenstate of G(t) for all 0 <¢ < 7. In
this subsection, we will consider the case of a spin-1/2 system, just like in Sections 3.4 and
3.8, however, it should be understood that generalizations to larger systems follow easily.
The spin will be controlled through a sequence a : [0,7] — R? where again we identify
a,(t) = a1(t) and a,(t) = as(t), that couple to the z and y angular momentum operators:

G(t) = —@'a”ﬁT(t)am - iayT(t)ay. (3.115)

The system generator generates a unitary propagator U(t) = T exp [ fot dth(tl)} Suc-

cessful adiabatic passage relies on two aspects: (a) that the time-dependent state of the of
the quantum system |[i(t)) = U(t) |¢(0)) is very close to being an eigenstate of G(t), for
all 0 <t < T, and (b) that the norm of G(t) is as high as possible throughout 0 <t < T.
The latter condition ensures that the energy cost for leaving the instantaneous eigenstate
|t)(t)) would remain as high as possible.

We first sketch how could one enforce condition (a) in numerical control searches that
utilize Van Loan differential equations. Here, we will not concern ourselves with the par-
ticular [1(0)) and without loss of generality assume it to be the i/Tr [GT(0)G(0)]/v/2
eigenvalue eigenstate of G(0). Requirement ( can then be expressed as G(t) [¢v(t)) =

GU(t) [4(0)) = iX(H)U(t) | (0)), where A(t) = /Tr [GT(t)G(t)]/v/2. Tt is clear that this
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condition can be rewritten as

i\/wﬂg _ U OGOU®) | [0(0)) = 0. (3.116)

Multiplying both sides of Equation (3.116) with (¢(0)| reveals that we seek to find an a(t)
that would minimize the difference

4 \/Tr [GH(H)G(1)]

1
2

— @)U GHU(H) [1(0)) (3.117)
for all times 0 <t < T'. This can be done by minimizing the expression

/ Gl

(3.118)

+/0 dty (¥(0)| U™ (1) G (1)U (1) [(0)) (¥ (0)| U™ (1) G(1)U (1) [4(0))

where we have used the fact that G(¢) is anti-Hermitian, i.e., G(t) = —G1(¢).

At first sight, Equation (3.118) does not resemble the integral expressions we have
considered so far in this chapter. Specifically, the appearance of the square terms in the
integrand seems problematic. Nevertheless, we will now demonstrate a way for rewriting
Equation (3.118), such that it can be treated within our framework. We first note that

Te [GH(H)G()] = —~Tr [GHG(H)] = —Tr [G(t) ® G(t) Uswap], (3.119)

where Uswap is the swap operator:

Uswap = : (3.120)

oS O O
o= O O
o O = O
_ o O O

and we have used the fact that G(t) is an anti-Hermitian operator. Secondly, we point out
that

(W(O) U ()G (1)U (1) [£(0)) (0(0)| U ()G (t1)U(t) [9(0)) =
((0)|*2 [U™ ()G (1)U (81)] % [1(0)) 2. (3.121)
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Combining the above, we can now rewrite Equation (3.118) as

(¢(0)|®2/0 dty [U™(t) @ U™ (t1)] [G(tr) © G(1)] [U (1) @ U(t1)] [16(0))*
_ %Tr [ /O "ty G(t) © Gty Uswar . (3.122)

which bears closer resemblance to the integral expressions of U(t) that we have been
considered so far. Finally, we identify that U(t)®@U (t) is generated by G(t)® Lo+ 1, G(t),
which enables us to immediately write down the Van Loan generator L(t) € My(My) for
the problem:

G(t) ® 1y + 1, ® G(1) G(t)® G(t) 0 0
B 0 Gt)®@ 1+ 1, @G(t) 0 0
L) = 0 0 0 cyecr |- B1%)
0 0 0 0
Equation (3.118) can now be expressed as
WO [U™HT) @ UHT)] Via(T) [(0)™ — ST [Vaa(T) Uswar). (3.124)

2

where V(T) = T exp [fOT dtlL(tl)]

For the adiabatic passage to proceed as desired, we also need to ensure that the in-
stantaneous eigenvalue of the system generator A\(¢) remains as close as possible to its
maximum value Ay, for all times. Therefore, we also need to minimize the integral

fOT dty [Amax|? + %Tr [fOT dt; G(t1) ® G(t1) Uswap |, which translates to

T Amax] + %Tr [V3.4(T) Uswap] - (3.125)
The expressions that appear in Equation (3.124) and (3.125) can now be minimized, along
with the fidelity function for U(T'), which determines the final state |¢)(T)), by defining a
suitable target function ® [V (7)] and evaluating its derivatives as we did for all examples
in this chapter. We expect that various generalizations of the procedure outlined in this
subsection for rewriting integral expressions involving U (¢), such that they could be handled
by Van Loan differential equations, to be extremely versatile and not at all limited to the
example presented here.
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Chapter 4

High-resolution Nanoscale Magnetic
Resonance

With the previous chapter, we developed a framework for numerical control engineering
that includes Dyson terms. Nevertheless, we only demonstrated the ability to generate
control sequences that generate the desired system propagators without any numerical or
experimental tests evaluating the performance of such sequences. In this chapter, we pro-
vide an experimental implementation of such numerically optimized sequences, as well as
thorough numerical evaluation of the numerically found controls. We employ our control
engineering tools in force detected magnetic resonance experiments working with nanome-
ter scale proton spin ensembles and experimentally demonstrate a 500-fold increase in the
effective spin coherence time. We make use of this coherence time by performing one-
dimensional magnetic resonance imaging (MRI) experiments with a resolution of ~2 nm.

The experiments presented here demonstrate a neat feature of the numerically engi-
neered control sequences that include Dyson terms. Namely, the operations U(T') that
result from these optimizations approximate zero-length control pulses, since the un-
wanted Hamiltonian terms are suspended over the pulse duration 0 < ¢t < T. For
zero-length pulses, it is easy to show that all directional derivatives of U(T') with re-
spect to time-independent Hamiltonian terms become zero. In the case of the current
experiment, these variations of U(T') are mainly with respect to the dipolar Hamilto-

nian D = (Zke (2,2} Tk & Ok — 30,R Jz> and o, Hamiltonian, which represents either

resonance offsets or chemical shifts. This feature of the numerically engineered control
sequences implies that the pulses can be used in any existing NMR sequences by substi-
tuting the existing unitary rotations with our numerically optimized pulses. The major
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benefit of that approach is, that it enables the use of the enormous wealth of existing NMR
sequences, e.g., multidimensional spectroscopy and imaging sequences, in much more chal-
lenging control settings, such as the one described in this chapter.

In this chapter, we will briefly describe force detected magnetic resonance or magnetic
resonance force microscopy (MRFM) in Section 4.1 as well as the properties of the sample
and the control electronics used, the latter includes experimental characterization of the
transfer functions. Since the author was not directly involved with conducting the experi-
ments, here, we keep the descriptions of the experimental setup and protocols rather brief,
we will mostly focus on the aspects relevant to the control engineering. With Section 4.2,
we provide full details of the numerical control engineering that was undertaken to perform
the MRFM experiments presented in Section 4.3. With Section 4.4 we provide numerical
studies of our control sequences, in order to argure for their necessity in these experiments.
Furthermore, in Appendix C we show some illustrative simulations of the control action
on the full spin ensemble.

All experiments in this chapter were conducted by William Rose and Raffi Budakian,
the author conducted all of the control engineering and simulations. Data analysis was
conducted by the author, William Rose and Raffi Budakian.

4.1 Force Detected Magnetic Resonance

Force detected magnetic resonance experiments can essentially be thought of as localized
Stern-Gerlach experiments. A single spin, or a spin ensemble, of interest are fixed onto
a mechanical resonator that has some resonance frequency f and acts as a transducer;
applying a magnetic field gradient at the location of the spin, or the spin ensemble, gen-
erates a force on the mechanical resonator the spins are fixed to. If that force is periodic
and resonant with f, an increase in the oscillator amplitude ensues. For the atto-Newton
level forces involved in typical MRFM experiments, the mechanical oscillator generally
behaves as a classical damped harmonic oscillator that starting from standstill, hence, the
application of a resonant force for some period of time ¢ results in an oscillator amplitude
that is proportional to both the net magnetic moment attached to the resonator and the
magnetic field gradient strength; the phase of the oscillator reflects the phase of the force,
i.e., the direction of the net magnetic moment. Given a means for detecting the oscillator
amplitude and phase, a projection of the total angular momentum for the spin sample can
be inferred.

There are several ways of generating the necessary oscillatory force on the mechanical
oscillators in MRFM experiments. One widely employed way is to apply a magnetic field
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gradient by bringing a magnetic (nano)particle near the spin sample, and flip the spins at
intervals equalling half the period of the oscillator [97, 20]. Nevertheless, for high-frequency
mechanical oscillators — advantageous for high-sensitivity detection — this protocol tends
to become impractical since the Rabi field strengths required to yield sufficiently fast
spin flips can become prohibitively large [23], that especially in the presence of large wy
inhomogeneity, which results from the presence of the magnetic field gradient source.

For the experiments presented in this chapter, the mechanical oscillator was a sin-
gle crystal silicon nanowire grown via vapour-liquid-solid method. The roughly elliptical
nanowire tip dimensions were 60 x 80 nm? and its length was approximately 20 gum. The
elliptical cross-section was achieved by asymmetrically depositing, and thereafter etching
away, amorphous silicon from the nanowires. The lowest frequency flexural modes, em-
ployed for spin detection, had frequencies f = {315 kHz, 369 kHz}, with respective quality
factors of @ = {8000,8300} at the experimental operating temperature of 4.2 K, and
the oscillator spring constant for the f = 315 kHz mode was ~1.0 x 10 N/m. The
f = 315 kHz mode of the nanowire was used for all MRFM measurements here; the posi-
tion of the mechanical oscillator was detected with a 2 um wavelength laser interferometer,
the beam of which was polarized along the length of the nanowire, and focused on a roughly
2 pm-diameter spot in the middle of the nanowire.

To circumvent the aforementioned problem of having to flip the sample spins at intervals
of 1/(2f) = 1.6 us in the presence of a static magnetic field gradient, the resonant time
dependent force on the mechanical resonator was induced by a periodic modulation of
the field gradients. This was achieved by driving electrical currents of extremely high
current densities past the spin ensemble through a nano-fabricated metal device that had
a narrow — ~150 x 80 nm? cross-section, 100 nm-long — constriction on the current’s
path. The device was fabricated lithographically by liftoff of 5 nm/80 nm-thick Ti/Ag
film off of a MgO substrate. A scanning electron micrograph of the device can be seen
in Figure 4.1(b). Because the device generates high current densities, and hence, high
magnetic field gradients, by focusing electrical currents, we refer to the device as a current-
focusing field gradient source or CFFGS through the rest of this chapter.

An illustration of the full experimental setup used can be seen in Figure 4.1(a); it in-
cludes the CFFGS and the silion nanowire transducer, the axis of which was positioned
perpendicular to the CFFGS surface approximately 50 nm above the centre of the constric-
tion. The tip of the nanowire was coated with a thin layer of polystyrene, which contains
the proton spins that constituted the spin ensemble used for the MRFM experiments. We
will discuss the properties of polystyrene relevant for the experiments and simulations in
Section 4.1.3. A scanning electron micrograph of a sample silicon nanowire end, that has
been coated with polystyrene, is given as an inset of Figure 4.1(a). The MRFM setup —
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kept at ultra-high vacuum environment, and placed in the bore of a superconducting mag-
net, the By = 1.13 T field of which coincides with the nanowire axis — was cooled down
to 4.2 K. During spin detection, AC currents of 70 mA peak amplitude at the resonance
frequency of the nanowire oscillator were driven through the CFFGS, which generated field
gradients of dB,/d, = 1.0 x 10° T/m at a height of 55 nm above the surface of the device.
The resulting resonant force on the nanowire oscillator generated Angstrom scale motion,
which was detected by the laser interferometer. In the next subsection, we discuss the
exact spin detection protocol employed during the experiments.

In addition to producing high magnetic field gradients for the spin detection, CFFGS
was also used for delivering RF control sequences that were resonant with the Larmor
frequency wy of the spin ensemble. This experimental configuration could, at first sight,
appear problematic, because the design consideration for the CFFGS to generate high
magnetic field gradients across the spin ensemble seems at odds with the demand of gen-
erating accurate control operations for the whole ensemble, that is because the resulting
Rabi field wy dispersion can end up being very large. In Figure 4.1(c), we show a contour
plot of the Rabi frequencies w; /(27) as a function of distance from the CFFGS surface that
were produced by COMSOL finite element simulations for 50 mA peak amplitude drive
at wy/(2m) frequency. The spin control problem is further complicated by the high proton
spin density in the solid-state polystyrene sample, which results rather short — dipolar
interaction limited — spin coherenece times on the order of 11 us. Hence, not only need the
control sequences a(t) yield the same unitary operation U(T') over the spin ensemble, they
also need to suspend the spin evolution under the dipolar Hamiltonian and the chemical
shift Hamiltonian during the pulse period 0 < ¢ < T', in order to successfully result high
fidelity operations.

We solved all of these seeming issues by employing the numerical control engineering
tools developed in the previous chapter. In fact, we used the approximate one-to-one
mapping between w;/(27) — averaged over the cross-section of the polystyrene sample —
and the height z from the CFFGS to our advantage, for performing one-dimensional MRI
experiments. Detailed COMSOL simulations of the w; strengths and dB,/dx values, that
were used for analysing the data from these experiments, are given in Appendix B.

4.1.1 Spin Detection

For the experiments presented here, we worked with spin noise, which results from the
statistical imbalance of spins that are in |]) state versus [1) state and scales with /Ngpins,
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Figure 4.1: (a) A schematic illustrating the silicon nanowire coated in polystyrene and
current focusing field gradient source (CFFGS) configuration during the force deteced
magnetic resonance experiments. The nanowire axis is aligned with the external magnetic
field marked as By. The red loops near the constriction of the CFFGS denote contours of
constant Rabi frequency w; /(27) generated by currents flowing in the CFFGS. (Inset) Rep-
resentative scanning electron micrograph (SEM) of a polystyrene-coated silicon nanowire.
The dashed red line marks the perimeter of the silicon nanowire itself. (b) SEM of the
CFFGS used in experiments. (c) A plot of constant Rabi frequency wi/(27) contours
generated by the CFFGS at 50-mA peak RF current in a plane along the dashed line in
sub-figure (b). The axis in the figure correspond to those in sub-figure (a). Besides the
Rabi contours, we also display an illustrative schematic of the polystyrene-coated silicon
nanowire positioned around 50 nm above the CFFGS top surface, which coincides with the
horizontal axis in the figure.
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where Ngpins is the total number of spins in the ensemble. For small enough spin ensem-
bles, statistical polarization can greatly exceed thermal polarization. Furthermore, using
statistical polarization enables one to perform experiments continuously without waiting
for the spins to thermalize, a feature which can substantially reduce experiment times for
low temperature nuclear spin systems that can often have very long relaxation times 7}’s.
The main disadvantage of spin noise detection is the fact that the resulting signal cannot
be coherently averaged. This is because for spin noise measurements, the initial spin polar-
ization has a random magnitude and direction, and hence, one has to always measure and
compare overall spin magnetization before and after a period of spin control operations.

As we mentioned already, the overall magnetization of the spin ensemble is measured
by driving AC currents, resonant with the frequency f of the nanowire oscillator, through
the CFFGS and detecting the amplitude of the oscillator. Nevertheless, when driving
the CFFGS with AC currents at frequency f, the resonant AC voltage that accompanies
the AC currents can cause electrostatic excitation of the mechanical oscillator by cou-
pling to stray charges present on the nanowire. To prevent such electrostatic excitation of
the nanowire a measurement scheme called modulated alternating gradients generated with
currents (MAGGIC) was used. The MAGGIC readout protocol is designed such that the
AC current, and hence, the AC voltage modulation has minimal frequency components
at f, which is achieved by inverting the phase of the gradient modulation periodically at
every 0.2 ms. To ensure that the force generated on the nanowire is still resonant with
f, the sample spins are also inverted simultaneously with the gradient modulation phase
inversions. We display the exact timings of the measurement scheme in Figure 4.2. Given
the extremely broad range of Rabi strengths w; within the sample demonstrated by Fig-
ure 4.1(c), adiabatic full passages (AFPs) were used to invert the spins of interest, we
discuss the action of the AFPs in the next subsection.

Spin noise encoding means that the z-projection of the spin angular momentum has to
be measured both before and after performing the unitary operations. In Figure 4.2, we
indicate that the experiment splits into three blocks: two measurement periods of duration
130 ms before and after an encoding period of duration 7.. We now work out the explicit
details of the MAGGIC protocol. We use a convention that the average force on the
mechanical oscillator generated by a single spin at location 7 in state |1), and sinusoidally
modulated field gradient that has a peak value of g (7) = dfi;xm, is given by F' = pug (7) /V/2,
where p is the magnetic moment of the spin. We model the instantaneous spin z-angular
momentum projection under MAGGIC readout protocol for a proton at location 7 as
a stationary zero-mean Markovian process, described by the random telegraph function
h(7,t). Hence, h(7,t) is a stochastic function, that any instant takes values of +1. For
some initial value h (7,0) = £1, the probability of @ spin flips over an interval [0, ¢] is given
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by the Poisson process, such that prob(Q) = (t/7.,)? exp(—t/7,)/Q!. The last property
determines the correlation function (h (7,t') h(7,t)) = exp(—|t — t'|/7n). We note that
the correlation time 7, encapsulates the effects of both the thermal 7T; relaxation of the
nuclear spins and the spin flips occurring under the application of AFPs.

Given the protocol in Figure 4.2(a), we can express the integrated force correlation
function for a single spin at location 7 inside the sample:

U (7)) = (4.1)

326 (O (]l (e (2] (1= emm)?,

where
O[U (M) = MU (7 o.U (7)), (4.2)

and U () is the unitary operation applied on the nuclear spin over the encoding period
Te. T, is the effective spin dephasing time during the encoding period. The high-pass
filter x [wy (7)] in Equation 4.1 arises because of the AFPs present in the detection scheme,
specifically, due to the fact that AFPs have a high yield for flipping spins only for sufficiently
high Rabi strengths w; (7), since that is necessary for fulfilling the adiabatic condition. We
derive the properties of y in the next section, here, we note that by choosing a specific
amplitude and modulation rate for the AFPs, we can effectively set x [w; (7)] = 1 only for
the spins of interest, and y [wy (7)] = 0 for the rest of the spins. Finally, as we mentioned
already, assuming that the nanowire motion is described by a classical driven harmonic
oscillator that is stationary at the beginning of the measurement period, the integrated
resonant force and the amplitude of the nanowire have one-to-one correspondence, hence,
the interferometric measurement tracks the spatial integral of the quantity in Equation 4.1:

1 a2

0 e (2) e [ar @ O (], (03
To

where p (7) is the spatial spin density inside the sample. Accordingly, C' will be the quantity

we quote for all experimental results in Section 4.3. It is clear that in the limit /7, < 1

and 7./7,, < 1 the measurement C' is essentially a weighted projection of spin z-angular

momentum.
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Figure 4.2: (a) Timings of the MAGGIC detection protocol. The measurement period,
indicated in blue, consists of gradient modulation at the frequency f of the nanowire, which
is turned on and off with an exponential rise and fall times of Q)/(7 f) = 8 ms to minimize
spurious electrostatic excitation of the silicon nanowire. Only once the gradient modulation
has reached its peak value, the AFPs are also turned on for a duration of 7y, yielding a
resonant net spin magnetization dependent force on the silicon nanowire oscillator. The
measurement window is followed by an encoding period of duration 7., during which RF
pulses resonant with the spin Larmor frequency are applied. The encoding period is always
followed by a second measurement period not shown here. (b) Pulse diagram for the
MAGGIC waveform during the measurement period which includes periods of gradient
modulation interspersed with AFPs.
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4.1.2 High-Pass Filter

In the previous subsection, we introduced the high-pass filter y (w; (7)) that arises because
the adiabaticity condition for the AFPs is fulfilled only by spins experiencing sufficiently
high Rabi strengths. Here, we will outline how to calculate the characteristics of x (w1 (7)),
used for the imaging experiments presented in Section 4.3.

The AFPs work by turning on the effective magnetic field along the z-direction, and
thereafter slowly inverting the direction of the magnetic field. The desired spin flips ensue
as long as the effective magnetic field is strong enough, and modulated slowly enough, that
the spins will remain in an eigenstate of the effective field Hamiltonian throughout the
AFP pulse duration. An effective field along the z-direction is implemented by starting and
finishing the pulses far off resonance. Specifically, we used hyperbolic secant and hyperbolic
tangent modulation of the x and z-components of the effective field, respectively [29]. The
rotating frame spin Hamiltonian during the AFPs is given by

o o o,
Harp(wi, A 1) = w1 <a1 )2 + a2<t)7y) +omas(\ 1) 2, (4.4)

2 2
where w; is the Rabi strength and )\ is an adjustable parameter that determines the reso-
nance offset at the beginning and at the end of the AFP. The pulse envelope for 0 <t < T
is given by

{a1(t), as(t), as(t, \)} = {sech [arcsech(@ (% _ 1)} 0, Manh {arcsech(/i) @ _ 1)} 1
4

with k = 0.001 and 7" = 20 us. For our imaging experiments we used AFPs with three
different \ values: A = {\; = 10%, Xy = 2x 10% A3 = 3 x 10°}. To evaluate the performance
of the AFPs we calculated the Rabi strength w; and the A-dependent unitary at the end
of the AFP pulse by discretizing a;(t) and as(t, A) with a time step AT = T/N for N =
60,000, and calculated a product of unitary propagators:

Uarp (w1, A Hexp [ (wlal )73; + 27Ta§,N)(/\)%> AT} , (4.6)

where agi) = ay(iAt) and ag)(}\) = ag(iAt, \), for i € {1,..., N — 1, N}. Furthermore, since
we assume full dephasing between consecutive AFPs, we only needed to evaluate v (wq, A)
— the remnant z-axis polarization after a single AFP for a spin with Rabi strength w;.
v (wp, A) =1 =2 (L] Uarp (w1, A) [, where |(}] Uapp (w1, A) [1)]? is the probability for an
AFP to yield a flip.
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Amongst the work resented later in this chapter, we conducted two separate nanoscale
MRI experiments: one with 75-kHz resolution and one with 25-kHz resolution, these ex-
periments used different x functions that will be given below. For these one-dimensional
imaging experiments we approximate x (w1 (7)) ~ x (wi1(z)). The MAGGIC protocol for
the 75-kHz resolution imaging experiments involved performing 400 AFPs, each separated
by 200 us, with A = A; during the two MAGGIC readout periods before and after the
encoding period. The corresponding high-pass filter function for the 75-kHz resolution
experiment is then given as

400 400
X5 (W =101 Z| A1) 401 v (w1, A1) 400 Z v (Wi, An)["
n=0

11— o (wn, A1)
_ Ay Ao [ L ) . 4.7
vl AP o7 1= [0 (wr, A1) (4.7)
The 25-kHz resolution imaging experiments used 400 AFPs; each separated by 200 us,
with A = Ay during the detection periods. Also, to further reduce the signal from low w;
spins, an additional 100 AFPs with A = A3 were applied at the beginning of the encoding
period. Hence, the y(w;) function for the 25-kHz resolution experiments is given as

400 400
X25 (w1) = 101 Z | (w1, A2)|" 401 | (wi, Ag)|"™ [ (w1, Ao)| ™ nZ:O v (w1, A2)|"

2
L Lo (wi, )™
401 1-— |U (wl, )\2)|

= v (Wi, Ag)|" v (wi, Ag) | (

4.1.3 Sample

The sample used for the experiments was a thin, ~1 to ~100 nm thick, polystyrene coating
applied to the last 1 to 2 um portion of the silicon nanowire. The particular coating
procedure resulted an amorphous crystal structure. Polystyrene has a high density of
proton spins, which is advantageous for spin detection, yet it also results a rather short —
dipolar interaction limited — nuclear spin dephasing time of T, = 11 us. Here, we give the
relative coordinates for the proton spins in a single polystyrene monomer — styrene. Styrene
molecule consists of eight carbon and eight hydrogen atoms, we denote the coordinates of
the latter in a single styrene molecule by 7; for 1 < i < 8. We retrieved {r;} from Wolfram
Mathematica Chemical Data database [121], and we give the relative proton positions
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ri; = r; — 1 for each pair {7, 5}, with 1 <i <7and i+ 1< j <8, as a column vector in
units of Angstrom in the table below.

1 2 3 4 5 6 7
0.0 —232 22 =33 1.9 2.0 33
2 < 2.4 > <70.92) < 1.6 ) <70.12> < 2.7 ) < 0.08 ) ( 1.4 >
35 —0.64 41 2.7 ~17 —0.25 ~0.3
-0.35 5.43 -0.49 -0.06 1.57 5.04 2.11
92 —237 —34 1.9 1.9 3.3
3 ( -3.3 ) ( —0.87) ( —2.5 > (0.32 ) ( —2.3) < —1.0)
2.9 —0.60 0.86 1.8 3.3 3.2
0.49 5.34 1.42 -0.12 —0.66 -0.40
~0.02 11 21 1.2 5.5
4 < 2.5 > <0.8> <3.7> <1.0> (2.3)
~35 —2.0 “ia 0.39 0.33
-0.35 -3.93 0.67 0.89 0.45
11 1.1 12 55
5 (4.7) (1.2) (—1.5) <—0.17)
1.5 2.4 3.9 3.8
3.82 0.35 -0.21 -0.02
5.2 5.3 6.6
6 < 2.9 ) <0.2> (1.5)
0.96 2.4 2.4
0.46 0.09 0.14
0.00 T4
7 <—2.7> (—1.4)
1.5 1.4
0.23 —4.28
8 ( 13 )
—0.06
18.87

In Section 4.4, we make use of {rj;} when simulating the evolution of eight dipolar
coupled proton spins in a styrene molecule under our numerically engineered control se-
quences. {7;;} determine the strength of the dipolar interaction &gipolar between a pair of
proton spins:

9 . ~2
L2 ol 1 TS
ipolar | T'ij, =———-11-3 = , 4.9
o () = 217 [m o

where o = 47 x 1077 kg - m/ (82 . A2) is the permeability of free space, 7, = 2.675 x
10% rad/ (s- T) is the proton gyromagnetic ratio and 6 denotes a unit vector pointing
in the direction of the external field By, evaluated in the same coordinate system as
{r};}. The dipolar Hamiltonian for a pair of spins is therefore expressed as Huaipolar-pair =

2mh fdipolari (Zke{%w} 0, R0, —30,® O'Z>. In the table above, we have also quoted
the values for {ﬁcouphng (ﬁj, CA)} in units of kHz for a particular é = (—0.71,-0.70,0.03),
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Figure 4.3: (a) Experimentally determined distribution of Rabi field strengths

parametrized by 7 such that w; = 27y. (b) 10.6 kHz wide Lorentzian distribution corre-
sponds to the wy/(27) inhomogeneity measured. Because we use the points displayed, and
their respective probabilities, in our spin signal simulations in Section 4.4, the probability
distributions are normalized such that » .prob (y) =1 and )5 A prob (éw) = 1.

which appear outside of the 7j; column matrices. The &oupiing Values that reach tens of
kHz explain the relatively short dephasing times for the proton spins in our experiments.

For the initial experiments, we determined the probability distribution of polystyrene
Rabi strengths w; = 27y and chemical shifts/resonance offsets in the sample volume of
interest to be given by the values in Figure 4.3.

4.1.4 Transfer Function!

In order to ensure that we have a precise knowledge of control amplitudes {6 ()} seen
by the ensemble of proton spins, as a function of control sequence a(t), a set of separate
experiments were conducted to determine the transfer function of the electronics. These
experiments involved bringing a different electrically grounded, gold-coated mechanical
resonator near the CFFGS, which coupled electrostatically to the currents passing through
the CFFGS. The electrostatically induced force F'(t) on the mechanical resonator scales as
the square of the current I(¢) that is driven through the CFFGS. We will demonstrated

!The transfer function measurement protocol was developed by Raffi Budakian and William Rose, who
also conducted its measurement.
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below that the transfer function for the electronics can be determined by driving the
CFFGS with two pure current tones separated in frequency by the resonance frequency
fau of the mechanical oscillator, i.e.,

I(t) = Io (cos 2m (v + fau/2)t] + cos [2m(v — fau/2)t]), (4.10)

and measuring the amplitude response of the oscillator.

The time-dependent force on the gold-coated nanowire that results from the current
specified by Equation (4.10) is

F(t) o< I(t)* = I cos (27 faut) (4.11)
+ %3 (2 + cos [2m(2v + fau)t] + cos 2m(2v — fau)t] + 2 cos [dmvt]),

the term on the first line of the equation being resonant with fa,, while all terms on
the second line of the equation are vastly off resonance with the mechanical oscillator,
since fay =~ 300 kHz, while the v of interest for the magnetic resonance experiments is
in the range of 40 MHz to 70 MHz. It was first experimentally verified that for such v
range, the amplitude response of the gold-coated resonator was indeed quadratic in Iy,
implying that the control electronics behaved as a linear system and could be modelled
the way we described in Section 3.6 of the previous chapter. The quadratic behaviour
of the oscillator amplitude response also confirmed that the amplitude transfer function
A(v) for the electronics did not vary significantly over frequency intervals of width fay,
therefore, A(v) could be directly inferred from the resulting amplitude of the mechanical
oscillator. For determining the phase transfer function ¢(v), quadrature detection of the
mechanical oscillator was necessary, as the phase of the force on the oscillator depends
on the first derivative of ¢(v). A set of measurements for CFFGS currents described by
Equation (4.10) at different v values yielded A(v) and ¢(v) values displayed in Figure 4.4(a)
and (b), respectively.

For our spin control, the carrier frequency of the control waveform a(t) was made
to coincide with wg/(27) = muBo/(27), where wy is the proton Larmor frequency, yig
denotes the proton gyromagnetic ratio and By the external magnetic field applied. The
control waveform a(t) is distorted the least by {Z(}, if the value of A(v) is the same for
all of its spectral components and the value of ¢(v) only varies linearly with v. The latter
corresponds merely to a time delay between the output of a(t) waveform by the AWG
and the arrival of {b()(¢)} at the site of the spins. For our experiments, we were free to
pick the value of wy by changing By, and we could also use optimization transfer function
techniques, described in Section 3.6.1 of the previous chapter, to limit the frequency range

90



(@) 10 (b)
0.8 0
=)
<06 §—10
< <
04 5-20
0.2
0.0 -30
40 45 50 55 60 65 70 40 45 50 55 60 65 70
v (MHz) v (MHz)

Figure 4.4: (a) Amplitude transfer function A as a function of frequency v for the control
electronics, determined through electrostatic force detection scheme. The shaded area
marks the bandpass filter described by Equation 3.80 for restricting the control sequence
frequency components within Av = 10 MHz of the carrier frequency of wy/(27) = 48 MHz.
(b) Phase transfer function ¢ as a function of frequency v for the control electronics that
was also determined through the electrostatic force detection scheme. The experimentally
determined amplitude and phase transfer functions have been normalized to have values
one and zero at v = 40 MHz, respectively.
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of the pulse waveform. This freedom gave us an ability to reduce the control waveform
distortions. Given the experimental measurements of A(v) and ¢(v) displayed in Figure 4.4,
we decided to choose a By value that corresponded to wy/(27) = 48 MHz, and limit the
frequency components of a(t) within a Av = 10 MHz bandwidth around that carrier
frequency. The functional form of such bandpass filter, or a low-pass around the carrier
frequency wy, is illustrated by the shaded areas in Figure 4.4. Finally, the deviations of
A(v) and ¢(v) from a constant function and a linear function, respectively, were accounted
for by including the particular A\ and ¢ values into the definitions of {Z(}, given by
Equation 3.74, when conducting the control searches.

4.2 Control Engineering

In this section, we describe numerical control optimization for three separate control se-
quences. The experiments that will be introduced in the next section were done at two
different nanowire positions with respect to the CFFGS. This yielded two slightly differ-
ent distributions for proton spin Rabi frequencies, therefore, we engineered two separate
control sequences for these experiments. In addition, to explore the necessity of Dyson
terms for our control engineering, we carried out comparisons of control performance in
numerical simulations that contrasted one of the pulses that implemented Dyson term
minimization with a third sequence that was not engineered with such targets. We will
present these simulations in Section 4.4. Here, we first define a general optimization target
for the three aforementioned sequences. We will follow this with the exact details of each
optimization, along with the pulse waveforms found and various metrics characterizing the
control performance.

We will define our control problem exactly according to the ensemble control setup
abstraction that was laid out in Section 3.5 of the previous chapter. We say that we have
an ensemble of proton spins labelled by v € I'. Here, we consider this ensemble to be a
representative ensemble of spins in the sample volume of interest. Each + has an associated
unique transfer function =) that determines the control amplitudes b(?) (t) seen by 7, as
a function of the control sequence a(t). We constrain the maximum amplitude |a(t)| of
the control sequence to be equal to one. Our transfer functions {Z(} reflect the effects
of both the amplitude and phase transfer functions shown in Figure 4.4 and the Rabi field
distributions displayed in Figure 4.3.

In addition to the transfer functions {Z("} defined by Equation 4.12, we also use an
optimization transfer function Z°P* in order to limit the range of frequency components
in a(t) to within a bandwidth of Av, as well as to enforce that the pulse starts and ends
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with zero amplitude. Each of the three control sequences a(t) has piecewise constant pulse
amplitudes for NV equal periods of duration AT, so that the total pulse length is T'= NAT'.
The bandpass filter that is incorporated into the optimization transfer function is illustrated
by the shaded area in Figure 4.4(a). Z°P*(N, Ny, AT, Av) is defined by Equation 3.82
in Section 3.6. The control sequence is then determined by a®® € My yopt(R), where
N°P' = N — 2Ny, and Ny determines the number of zero amplitude intervals of duration
AT at the beginning and at the end of the sequence.

It is natural to label {£} according to the maximum Rabi frequency they yield on
the nuclear spins, i.e., according to the [b()(¢)|/(27) value corresponding to a(t) = 1 for
all 0 <t <T. The transfer functions could then be written explicitly as

ZO(N,AT) = 2ny Z(N, AT, \, ¢), (4.12)

where the function Z(N, At, A\, ¢) is given by Equation (3.74) in Section 3.6. A(v) and
¢(v) in Equation (4.12) are evaluated by interpolating the experimental transfer function
data in Figure 4.4. The particular set of ~ values, along with N and AT, depend on
the specific control setting and will be quoted individually for the three control searches
below. Because our control electronics was the same for all experiments, we take A and ¢
in Equation (4.12) to be the same for each search.

For the following problems, the system generators {G(")(¢)} are given by

GO(t) = —i 2>~ 2( )am — 2 2( )ay,

(4.13)

while the system propagators evaluate to U () = T exp [ f(f dt, GO (tl)}, for each v €

I'. Our control amplitudes ) (¢) are taken to be resonant with the proton spin Larmor
frequency wgy. This implies that we take there to be no drift part, i.e., no z angular
momentum operator, for the system generators. The control amplitudes {b()(¢)} that are
specified by a matrix 307 € My x(R), for each v € T, equate to

B0) = Re [V (N, At) ZP (N, Ny, AT, Av)(a§™ — ial™)]. (4.14)

and
B5) = —Tm [ (N, At) ZP(N, No, AT, Av) (0 — ia3™)] ., (4.15)

where aP® € My yopt(R) is the matrix specifying the optimization waveform a°?*(t). In
order to enforce |a(t)] < 1, for all 0 < ¢t < T, we use the following constraint: —1/ V2 <

93



P < 1/v/2for i € {1,2}. The control sequence a(t), that is implemented experimentally,
is specified by another matrix o« € My y(R) the elements of which are calculated as

arj = Re [E°P(N, No, AT, Av)(af™ —iay™)] (4.16)

and
;= —Im [EPY(N, No, AT, Av)(a™ —ia3™)] (4.17)

after a suitable a°Pt is found.

Our most general objective is to find a control sequence that would yield U™(T) =

ST Oy

Utarget = €Xp (—257), as well as

[UT) @ UNT)] ™ Dy (D) = [UNT)] ™ Dyen (02) =0, (4.18)

1

i to each member of the ensemble and

for each v € I'. We assign equal weights p(") =
define the following combined target function:

d=1-— |Fi| ZPU\/1 — (F [Vsasger, UD(T)))*

yerl

1 D ~ ~ D D el z
Z(m [t o) I o TG ) (1.19)

T maxo() [[Pymeve (D)l 7" maxqq [Dyen (o)

vyel

where py, pp and p,, are the relative weights for the three-part target function, such that
0 <pu,pp,ps, <1 and py + pp + ps. = 1. The weights depend on the particular search,
and will be stated for each search separately.

We construct a set of Van Loan generators LY € M, that decompose into a direct
sum of Mo(My) and My(My):

LO(t) = (4.20)
GO o, 0 0
0 GY(1) 0 0
0 0 GYHR1I+1®GM({1) D ’
0 0 0 GO R1+1®GM(t)
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the corresponding Van Loan propagators of which are given as

t
VOl t) = T exp [/ dtlL(tl)} (4.21)
0
UN(t) Dy (o) 0 0
B 0 U (t) 0 0
o 0 0 U(’Y) (t) ® U(’Y)(t) DU(’Y)@U(’Y) (D)
0 0 0 U (t) @ UM(t)

Here, we will slightly abuse our sub-matrix index notation, just as it was done in Sec-

tion 3.4.4 of the previous chapter, and write the target function in Equation 4.19 as a
function of {V)(T)}:

—1—WZPU\/4 T [V(1) ¢

yel

f i
v (vidm) } L Py {V< (viy'm) } ’
|F| Z (2\/_7'7\/ [ 3’4< ) 374( ) \/ET ( ) 1,2 ( )
where we have used the fact that max, | Dyeguo (D)|| = 2V6T, maxa [ Dy (0.)]| =
T
V2T, and that Tr {vf}) (T) (vﬁ) (T)) } = Tr[1y) = 2.

wm

#] e (i) (42)

We now evaluate the partial derivatives of Equation (4.22) with respect to the elements
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of B, for each v € I':

Re | Tr ( fﬁwvw (T)) iz %
0 __ Dbu 98, 1,1

b =
aﬁz(’;) 2|F‘ ( ) -7 o - O ( ) T
’ 4— Ty [Vlj{ (T) 6’57] Tr [e-5% (VI} (T))

T
Re (Tr (8;@) vw(T)) (vid @)

___bp bd 3,4
2/6T|T|

Re (T T
Do

V2T

) , (4.23)

where we have used that fact that for any p # ~: ﬁ‘/(ﬂ (T') =0, for all 4 and j. In order

to carry out the gradient ascent searches to find Pt that yields ® ~ 1, we evaluate partial
derivatives of ® with respect to the elements of a°P':

0

Opt<I> ZZRe J(N,AT) Z(N, No, AT, Av)], . —aﬁ(”@ (4.24)
vyel' t=1 1,
N
— Z Zlm N At) '_'OPt(N No, AT AV):I tj W@
vel t=1 2.t
and
0
—opt
aaggtcp ZZIm J(N, At) (N, No, AT, Av)], —%w)cb (4.25)
vel' t=1 1,
—o 0
+ ZZRG =0) (N At) pt(N N(),AT AV)} W@
vel' t=1 2

Equipped with & ({o/)pt}) that is given by the combination of Equations (4.22), (4.14)
and (4.15), and the partial derivatives of ® with respect to {OzOpt} that are given by the
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combination of Equations (4.23), (4.24) and (4.25), we can now proceed with the specific
pulse searches.

Our control searches are conducted in the way it was described in Section 3.4 of the
previous chapter — we keep on increasing the pulse length 7" until sufficiently rapid conver-
gence towards the maximum of ® is observed, while keeping the number of time steps N
high enough to ensure that AT is substantially shorter than the Rabi cycle. All searches
are started with {aff;-t} drawn from independent uniform pseudorandom distributions over
a range [—\%, \/Li] . The three individual quantities that appear in Equation (4.22) are the

unitary metric \119 ), dipolar metric \I/g), and o, metric \IJL(TZ), which are defined as

N o T SR

\IJ(’Y) _ HDU(’Y>®U(7>(D)H (4.27)
D max, ) || Dyengre (D)
Dy (o
o _ [Py (02)]] (4.28)

maxa() | Py (o)

respectively. py, pp and p,, — the relative weights of \IISY ), W(g) and ﬁfgz) in Equation (4.22)

— are picked so as to give approximately equal minimization rates for \IJSY ), \Dg) and \IIE,Z)

during the control optimization procedure. In the next three subsections, we give the
specific values for the parameters N, Ny, Av, AT, py, pp and p,, that were used for
engineering the three control sequences used for the experiments and simulations in the
upcoming sections. For each control search, we also state the representative set of Rabi
strengths I', and present a figure displaying the pulse waveform and the values of WS’ ), \Ilg)

and U5 as functions of .

4.2.1 Pulse #1

The first pulse for the nanoscale magnetic resonance measurements was designed to act
on a spin ensemble with proton spin Rabi strengths w;/(27) ranging from 0.6 MHz to
1.2 MHz. Therefore, we picked a representative set I', the elements of which are given
as v € {0.6 MHz, 0.65 MHz, 0.69 MHz, 0.74 MHz, 0.78 MHz, 0.83 MHz, 0.88 MHz,
0.92 MHz, 0.97 MHz, 1.02 MHz, 1.06 MHz, 1.11 MHz, 1.15 MHz, 1.2 MHz}. The control
sequence was designed to suspend the evolution under both the dipolar Hamiltonian and
the chemical shift Hamiltonian, hence, we used the following parameters specifying the
control problem:
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N 522 | Av  10MHz | po 5/9
No 12 AT 0.0248 us pp  3/9
Nt 498 | T 1295 ps | p,. 1/9

The resulting control sequence and its figures of merit are shown in Figure 4.5. We re-
mark that the sequence length of ~13 us corresponds to only 7.8 Rabi cycles for the spins
experiencing wy/(27) = 0.6 MHz. The desired action of the sequence is clear from Fig-
ure 4.5(d,e,f) that shows the values for \DS’), \Ifg) and \Ifgl), respectively, for a range of ~
values.

4.2.2 Pulse #2

The second control pulse was designed for a relocated ensemble of polystyrene proton spins,
with their Rabi strengths w; /(27) ranging from 0.9 MHz to 1.75 MHz. Our representative
set for these strengths was v € {0.9 MHz, 0.965 MHz, 1.03 MHz, 1.095 MHz, 1.16 MHz,
1.225 MHz, 1.29 MHz, 1.355 MHz, 1.42 MHz, 1.485 MHz, 1.55 MHz, 1.615 MHz, 1.68 MHz,
1.745 MHz}. Again, the sequence was designed to suspend the evolution under the dipolar
Hamiltonian and the chemical shift Hamiltonian. We used the following parameters that
specified the control problem:

N 360 | Av 10MHz | py 5/9
No 30 | AT 0.0208 s | po 3/9
NPt 300 | T 749 s | p,. 1/9

The resulting control sequence and its figures of merit are shown in Figure 4.6. The
sequence length of ~7.5 us corresponds to 6.75 Rabi cycles for the spins experiencing
wy/(2m) = 0.9 MHz. Figure 4.6(d,e,f) gives the values for \IJSY), \Ifg) and US| respectively,
for a range of v values.

4.2.3 Pulse #3

This control sequence was generated only to argue for the necessity of including Dyson
terms to our numerical control engineering. We demonstrated this by searching for a
control sequence with the same I' as pulse #1, yet we set pp = p,, = 0, such that the
search target was exclusively determined by \119). Accordingly, the set of Rabi strength

parameters for the pulse search was v € {0.6 MHz, 0.65 MHz, 0.69 MHz, 0.74 MHz,
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(a) ai(t) for pulse #1. (b) as(t) for pulse #1. (c) Absolute value of the

Fourier-transformed pulse centred at the carrier frequency. The limited spectral range of
the sequence waveform is clearly visible. (d) Unitary metric \Ifg ) defined in Equation (4.26)
as a function of the Rabi strength parameter 7. It can be seen that the pulse targets the
range 0.6 MHz to 1.2 MHz. (e) Dipolar metric \If(g) defined in Equation (4.27) as a function
of v. (f) o, metric 05 defined in Equation (4.28) as a function of 7.
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transformed pulse centered at the carrier frequency. (d) Unitary metric \Ilg) defined in
Equation (4.26) as a function of «; the target range 27 x 0.9 MHz to 27 x 1.75 MHz is
clearly seen. (e) Dipolar metric @g) defined in Equation (4.27) as a function of v. (f) o,

metric U5 defined in Equation (4.28) as a function of 7.
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Figure 4.7: (a) Single spin simulation results of (o,) (n), defined in Equation (4.29) for

pulse #1, and (b) simulations of (¢,) (n) for pulse #3 as a function of n. n is the number
of pulses applied.

0.78 MHz, 0.83 MHz, 0.88 MHz, 0.92 MHz, 0.97 MHz, 1.02 MHz, 1.06 MHz, 1.11 MHz,
1.15 MHz, 1.2 MHz}, the rest of the search parameters being:

N 292 Av 10 MHz py 1
No 26 | AT 0.0248 s | pp
NPt 240 T 7.24 us Do, O

)

Because the sequence in this subsection was engineered for comparing it with pulse #1,
we terminated the control optimization once the performance of the pulse, without any
dipolar effects nor resonance offsets, mimicked the performance of pulse #1. To determine
that, we evaluate the expectation value (o) (n), that has been averaged over all v € ', for
0 < n < 250 back-to-back applications of either pulse on a single spin. We used this kind of
termination condition, rather than matching the \I/gy) curves for the pulses, to ensure that
the eight spin simulations — that will be presented in Section 4.4 in order to compare the
performance of pulse #1 and pulse #3 — will only highlight errors resulting from evolution
under the dipolar and ¢, Hamiltonians, rather than incoherence from the Rabi dispersion.
The ensemble averaged o, expectation value is

() () = > prob (3) (1] ([UO(D)] ") . [UO(T)]" 1), (4.29)

~yerl’
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where
Hexp [27r'y ( zoq,] 2 L 5 ) AT} (4.30)

and the values of v € T', and their relative weights {prob (7)} in Equation (4.29), are taken
from an experimentally determined probability distribution given in Figure 4.3(a). We
evaluated Equation (4.29) for pulse #1 and pulse #3 and show the results in Figure 4.7.

Pulse #3 and its figures of merit are shown in Figure 4.8. The sequence length of
~T7.24 ps is a little longer than half of that for pulse #1. Figure 4.8(d,e,f) gives the values
for \I/gy ), \Ifg) and \Ilgz), respectively, for pulse #3 in blue and for pulse #1 in red. It can

()

be seen that while the unitary metric ¥;;” for pulse #3 is actually somewhat better than

the one for pulse #1, its dipolar and o, metrics, \Ifg) and \Ifgz), are substantially worse.

4.3 Experimental Results?

In this section, we introduce, and present the data, for all of the MRFM experiments that
were undertaken using our numerically engineered effective Hamiltonian control sequences
introduced in the previous section. We will demonstrate three sets of increasingly more
elaborate experiments, that successively build on the results of each other. First, we briefly
present initial experimental tests for pulse #1; we then demonstrate the use of these pulses
within an existing NMR sequence — the magic echo. Finally, we compose the magic echo
sequences into more elaborate sequences — called symmetric magic echos — which were
employed for our nanoscale MRI experiments.

Our numerically engineered control sequences were first tested by applying a cascade
of n pulse #1’s — introduced in Section 4.2.1 — on the spin ensemble and measuring the
spin correlation function C' as a function of the number of pulses n applied. The exper-
imentally determined relative probabilities for the Rabi strength parameter ~, and the
chemical shifts/resonance offsets dw for the proton spins in this experiment, are given in
Figure 4.3(a) and (b), respectively. The pulses were applied in increments of five pulses
for n = {0, 5,10, ..., 250}, and the experimental results can be seen in Figure 4.9 where we
display the normalized spin correlation quantity C'(n)/C(n = 0). In the case of perfect /2
operations for the entire spin ensemble, the spin correlation would behave sinusoidally, i.e.,

2All experimental measurements presented in this section were carried out by William Rose. Data
analysis and interpretation was carried out by the author, William Rose and Raffi Budakian.
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Figure 4.8: (a) ay(t) for pulse #3. (b) ax(t) for pulse #3. (c) Absolute value of the
Fourier transformed pulse centred at the carrier frequency. (d) Unitary metric \Ifg]) defined
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defined in Equation (4.28) for pulse #3 (blue) and for pulse #1 (red).
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Figure 4.9: Normalized spin correlation C'(n)/C(n = 0) as a function of n, the number
of pulse #1’s applied on the spin ensemble. C' is defined by Equation (4.3). The data
has been fitted to the function cos (nw/10) exp (—cn), with ¢ = 0.01 yielding the best least
squares fit.

C(n)/C(n = 0) = cos (nm/2) exp (—cn), with ¢ = 0. Any loss of coherence during the pulse,
or imperfect implementation of the desired /2 rotation, would yield a non-zero c-value.
In Figure 4.9, we fit a function cos (n7/10) exp (—cn), rather than cos (nm/2) exp (—cn), to
the experimental data since the former provides a better guide to the eye over the range
of n-values used while enabling us to extract the value of ¢ equally well.

From the data in Figure 4.9, we extract ¢ = 0.01, which means that for spins starting
from the z-axis, the pulse operations happen with ~99% accuracy, all while the ~13 us
duration of pulse #1 exceeds the dipolar limited coherence time of 11 us. This experiment
shows that the numerical control engineering can yield high-fidelity unitary operations for
an ensemble of spins that experience vastly different Rabi strengths and are controlled
by control electronics that has a non-trivial transfer function. In Section 4.4, we present
numerical simulations that demonstrate that control sequences, which did not include
Dyson term optimization, would not have yielded performance fidelities as high as the
experimental results in Figure 4.9 demonstrate.

Figure 4.9 also indicates that our control engineering methods provide us with unitary
operations that suspend the spin evolution under the dipolar and chemical shift Hamilto-
nians, and hence, they act as approximations for control pulses of infinitesimal duration.
That feature enables us to substitute the unitary rotations into any existing magnetic res-
onance sequence. With the next two subsections we demonstrate an experimental usage of
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our control waveforms within the magic echo sequence that was introduced in Section 2.1.1
of Chapter 2, and that is particularly useful for magnetic resonance imaging experiments.

4.3.1 Magic Echo Experiments

In our implementation of the magic echo sequence, we replaced the usual square pulses im-
plementing the 7/2 spin rotations, that were shown in Figure 2.1, with pulse #1. Pulse #1
implements a /2 rotation around z-axis; the in-phase a;(t) and quadrature ay(t) ampli-
tudes of the pulse are shown in Figure 4.5(a) and (b), respectively. For the rest of this sec-
tion we adopt a notational shorthand which specifies {2, as an implementation of pulse #1.
Furthermore, we use €2, to denote an implementation of 7/2 rotation around y-axis that
is achieved by swapping a,(t) and as(t) of pulse #1, while €2; implements an inverse rota-
tion of pulse #1 by multiplying a,(t) and as(t) with —1, and €25 implements an analogous
inverse rotation around y-axis. For the rotary echo, we use a notation that designates x,
X,y and ¥ as waveforms for which (a1, a2) = (1,0), (a1,a2) = (—1,0), (a1, a2) = (0,1) and
(a1, az) = (0,—1), respectively.

We illustrate our implementation of the magic echo sequence with Figure 4.10. The blue
blocks designate the numerically engineered 7/2 pulses, while the pink blocks designate
the rotary echo part of the sequence. The parameter 7, that determines the rotary echo
x : X length, was chosen to be 7 = {15 us, 25 us, 35 us}, depending on the experiment. For
all experiments, we picked 7 to be greater than the dipolar spin dephasing time of 11 us
in order to avoid spin locking effects [74, 75]. Since the 47-long rotary echo is symmetric
about its centre, the w; inhomogeneity throughout the sample does not have an effect on
the final unitary operation of the full magic echo sequence. In the next subsection, we show
how introducing an asymmetry into the rotary echo can be employed for MRI experiments.

Our first experiment in this subsection verified that the numerically engineered pulses
can indeed be used within the magic echo sequence. Our experimental protocol first brought
the spins to the zy plane by applying a €2, pulse, this was followed by €2; pulse either within
the initial or the final zero amplitude interval of the magic echo sequence, the resulting
data and the pulse sequence used are depicted in Figure 4.10. The 2z pulse was applied
to read out the spin z-projection and the time axis in the figure indicates at what point
the €; pulse was applied. The length of the whole experimental sequence as we as the
individual € pulses was chosen to be an integer number of Larmor cycles to ensure an
accurate characterization of the spin coherence.
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Figure 4.10:  Magic echo sequence: the green (£2,) and the blue (€2,) blocks denote
the application of pulse #1 and pink blocks (x and X) denote a rotary echo. The blue
dots represent the normalized spin correlation C(t)/Cy measurements after applying a
pulse, which is not shown, at various times during the magic echo sequence. C' is defined
by Equation (4.3). The data has been fitted with Gaussian functions that have a decay
time of To = 11 us.

In Figure 4.10, we have fitted a Gaussian decay envelope C(t)/C(0) = exp [— (t/Tg)z] :
with T5 = 11 ps, to the initial decay in the first zero amplitude window of the magic
echo and the revival of the spin signal at the end of the sequence. For the second fit, we
reference t to the end of the magic echo sequence, which happens 67+27 = 176 us after the
beginning of the sequence, where 7 = 25 us is the period used for the particular magic echo
experiment and 7" = 13 us is the length of pulse #1. Cy = C'(0) denotes the spin correlation
value at the start of the sequence. The inverted nature of the revived spin signal arises
because the two €2, pulses within the magic echo sequence yield a cumulative m-rotation.
The near full recovery of the spin signal at the end of the sequence indicates that the magic
echo sequence did indeed work in an expected manner, and that the numerically engineered
pulses serve as viable and useful substitutes for rectangular pulses that are conventionally
used within NMR sequences.

Having confirmed the performance of our magic echo sequences, we now turn to our
initial experiments that tested symmetric magic echo (SME) [8] sequences, which form
the platform for our imaging experiments in the next subsection. SME sequences are
constructed from consecutively applied magic echo sequences, where the phases for the 2
pulses, and for the rotary echos, are alternated in a systematic way. SME sequences have
been demonstrated to have excellent line narrowing properties with conventional NMR
experiments [3]. Furthemore, the long zero-amplitude pulse periods, and rotary echos,
that the SME sequences inherit from their magic echo constituents make them particularly
suitable for Fourier-transform imaging experiments. In Figure 4.11, we show the pulse
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Figure 4.11:  Protocols for (a) the SME4 and (b) SME16 experiments. The initial 7/2
rotation creates a coherent state, after which, n blocks of SME sequences are applied
with their respective 7/2 rotations and rotary echo phases indicated in the figure. The
experiments end with an inverse 7 /2 rotation that converts the coherences to populations,
which are then measured through the MAGGIC protocol.

diagrams for two specific SME sequences inside the square brackets — SME4 and SME16
that comprise 4 and 16 individual magic echo blocks, respectively. Such combinations
of magic echo sequences have several benefits. The symmetrization turns sequences that
set Dymgue (D) = Dy (0.) = 0, over a single application of magic echo sequence,
to ones that set DU("Y)@U(“/) (D) = DU('Y)(X)U(’Y) (D,D) = Dy (UZ) = Dy (JZ,UZ) =0
over each block of two back-to-back magic echo sequences. Hence, the symmetrization
generally yields longer coherence times. Furthermore, the phasing of the constituent (2
pulses within the SME sequences is chosen so that small under and over-rotations in the
7/2 implementations would cancel each other out over the full sequence. Such phasing
ensures that the final unitary generated for different + values, even for imperfect €2 pulses,
comes close to an identity operation.

We now present the data from the various SME experiments. Our experimental proto-
cols for testing the performance of SME4 and SME16 sequences are given in Figure 4.11(a)
and (b), respectively. Some of the resulting spin correlation measurements C, defined by
Equation (4.3), after applying n back-to-back SME blocks, with particular 7 values that
determine the duration of rotary echos, are shown in Figure 4.12. For each 7 value, the
decay of C' was exponential in n, and equivalently in the total length 7. of the sequence, as
is indicated in the figure. We fitted en exponential decay function exp (—7./7.) to the data
that resulted from a set of SME4 and SME16 experiments with different 7 parameters, and
give the best fit T, values below:
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Figure 4.12: Normalized spin correlations C'(n)/C(n = 0) for n applications of: (a) SME4
with 7 = 25 us and (b) SME16 with 7 = 15 us. The total duration of n blocks of SME
sequences is denoted by 7., and displayed along the horizontal axis below the data. The
data has been fitted to a decaying exponential function C'(n)/C(n = 0) = exp (—7./T.),
with T, denoting the effective coherence time.

T: 15 pus 25 us 35 ps
T. (SME4): 2.9 ms
T.(SME16): 5.6 ms 4.4 ms 3.2 ms

It can be seen that the longest effective coherence time 7T, = 5.6 ms is achieved by SME16
sequence with the shortest rotary echo period, 7 = 15 us, and it constitutes an increase by
a factor of 509 from the T = 11 us, that was measured without applying the numerical
effective Hamiltonian engineering techniques, and is shown in Figure 4.10.

4.3.2 Nanoscale Magnetic Resonance Imaging Experiments

In this subsection, we build on the methods and experiments presented so far in this
section to develop a protocol, and carry out nanoscale magnetic resonance imaging (MRI)
experiments on our polystyrene sample. Fourier transform MRI relies on encoding the
spatial coordinate of a spin to the phase value of the spin state by the use of magnetic
fields, the strength of which varies across the spin ensemble, and provides a mapping
between the spatial coordinate and the amount of phase accumulated.
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We proceed by demonstrating how a spatially-varying phase encoding across the sample
can be used for calculating the spatially-varying spin density p(7) from ensemble averaged
measurements of the total spin magnetization. The spatially varying magnetic fields used
in MRI experiments could be either static By = wo/vyig or Rabi field, By = 2w;/yiy. In
some cases linear field variations are desirable, however, any monotonic spatially-varying
field profile suffices, as it provides a one-to-one map between the magnetic field strength
and a spatial coordinate.

For the experiments in this subsection, we used spatially varying Rabi fields, or w;’s,
that could be approximated to vary only along the height, or z-coordinate, of the silicon
nanowire shown in Figure 4.1. Let p(z) be the one-dimensional spatial density of spins in
our ensemble. Ensemble averaged magnetization expectation value for spins starting from
|T) state, and experiencing a location dependent Rabi strength w;(z) for some encoding
period of duration 7., can then be written as

Awl(z)o-yTE _,i“)l(z>°"y7—6

(J2)(7e) :/dz plz)e ™ (M7 ase
= /dz p(2)e” ™/ cos [wy (2) 7]

= e_Te/Tc/ dwy p(wr) cos (wiTe) . (4.31)
0

For deducing the last row in Equation 4.31, we have used the fact that w; is an invertible
function of z, so that we can write z = z(w;) and dz = dw, ﬁ‘llz. T, denotes the effective
dephasing time. For the experiments presented in this chapter the functions wi(z) and
z(wy) were first found through finite element simulations, as is indicated in Figure 4.1(c)
and expanded in Appendix B.

The last row of Equation (4.31) makes it transparent that the spin density plw;(2)]
can be extracted from 7, dependent magnetization measurements through a cosine Fourier
transform:

%/Ooodn (J,)(Te) cos (w1 Te) =

1 = pW)T. /OO pW)T.
g d 4.32
w[/o T )y YTrw—w)re] (4.32)

which in the limit of T. — oo converges to p(w;). For the experiments in this subsection
we always chose the maximum 7, value sufficiently smaller than the effective dephasing
time T, such that the Fourier cosine transformation of the ensemble averaged spin signal
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(J.)(1e) corresponded approximately to the one-dimensional spin density plw;(z)] within
the sample.

Equation (4.32) immediately suggests an experimental protocol for measuring the one-
dimensional spin density of the sample. Assuming that the spin location dependent read-
out field gradient g (7) is approximately a function of z only, and hence a function of
wy only, the spin correlation function defined by Equation (4.3), measured through the
MAGGIC protocol, can be rewritten in the limit of L1 as

C(r) = %,tfe_Te/Tc /dw1 p (w1) g% (wy) cos (wiTe) x(w1). (4.33)

Consequently, measuring C(7.) for a number of 7. values {0, 77* /Nencodes ---, To"**}, such

that 7" < T,, where T, is the proton spin dephasing-time under continuous Rabi drive,
and applying a discrete Fourier cosine transformation to the array

{C(0), C(7"* /Nencode), ---, C (T2 } (4.34)
will yield
X L, 2
Clwr) = —pp(wi)g” (W) x(wn), (4.35)
for wy = {0, ﬁ, e Nencode%ﬁ}. Because g (wy) is a known function from finite element

simulations, that are shown in Appendix B, and the high-pass filter x(w;) is determined by
the AFP properties, which are chosen such that y(w;) ~ 1 for an w; range of interest, we
can extract p(wy), and correspondingly p(z), for that wy range of interest. This observation
forms the basis for all of the experiments that will be presented here.

It is clear that the imaging spatial resolution, that results from measuring C(7.), is
dependent on the maximum encoding time 7."**, which itself depends on the dephasing
time 7., under the particular experimental protocol, and the spin detection sensitivity of
the experiment since the C'(72"**) measurement has to be carried out with sufficient signal-
to-noise ratio. For the initial spin density measurements, an experimental procedure that
followed exactly the steps described above was used, with the results given in Figure 4.3(a).
It can be seen from that figure that the w; resolution under such protocol was limited to
~150 kHz, which corresponds to z-axis spatial resolution of ~10 nm near the tip of the

nanowire and a resolution of ~20 nm at 50 nm above the tip.

The imaging resolution for the experiments presented in Figure 4.3(a) was determined
by T., and coincides with the imaging resolution in a previous experiment by Nichol et
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al [85], that was conducted on essentially the same apparatus. In order to increase the
imaging resolution, an increase of the effective depahasing time was necessary, which in
turn required effective removal of dipolar couplings and chemical shifts for the sample spins.
As we mentioned already, SME sequences have been shown to achieve effective removal
of unwanted Hamiltonian terms in the case of conventional NMR experiments, and are
therefore ideal candidates for Fourier-transform imaging experiments. In addition, with
the previous subsection we successfully demonstrated the use of numerically engineered
control sequences within the SME sequences, while maintaining their spin coherence time
increasing properties. Consequently, we employed particular modified SME sequences for
imaging experiments of significantly higher spatial resolution, that will now be discussed
for the rest of this section.

By introducing an asymmetry to the rotary echo periods, such that the period of x
is 27 + AT long and the period of X is 27 — AT, as is shown in Figure 4.13(a), we can
exploit the long coherence times demonstrated in the previous subsections to improve on
the imaging resolution that makes use of Rabi field gradients. The resulting phase encoding
under such sequence is exactly equivalent to the phase encoding scheme described above.
The Q, and €2, 7/2 rotations appearing before the x drive effectively convert it to a y
drive, just as above, and by keeping the total SME4 sequence length fixed a varying AT
has the following correspondence to the encoding period above: 7, = 8AT. The maximum
possible encoding period 7, within a single SME4 sequence with a fixed 7 value is 167.

For the experiments that will be presented here, and that make use of the asymmet-
ric SME4 sequence described above, the nanowire was slightly repositioned to be exactly
aligned with the CFFGS centre, which increased the maximum w;/(27) experienced by
the sample spins from 1.2 MHz to 1.6 MHz, hence, pulse #2 was used instead of pulse #1
as before. Pulse #2 is 7.5 us long and targets an w;/(27) range of 0.9 MHz to 1.75 MHz.
Pulse #2 was incorporated into a SME4 sequence with 7 = 15 us, yielding a total se-
quence length of 420 us, and a maximum Rabi field encoding time of 240 us. Three
separate imaging experiments were conducted using the modified SME4 sequence: two ex-
periments measured C(7.) for Nepcode = 21 different 7, values {0 us, % us, ..., 6.7 us}, and
one measured C(7.) for Nepcode = 31 different 7, values {0 us, % us, ..., 20 ps}, the data
for these measurements is given in Figure 4.13(b) denoted by the red diamonds, the blue
circles and the green triangles, respectively. The frequency resolution for the experiments
using 7 = 6.7 us was Aw,/(27) = 1/(2 x 6.7 pus) = 75 kHz, and for the experiments

using 7% = 20 ps it was Aw/(2m) = 1/(2 x 20 ps) = 25 kHz.
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Figure 4.13: (a) Pulse diagram for the modified asymmetric SME4 sequences used for one-
dimensional imaging experiments in this figure. AT determines the asymmetry offset for
the rotary echos. (b) Spin correlation function C(t) measured with a single modified SME4
sequence for various ¢t = 8AT values. The red diamonds and the blue circles correspond
to 75 kHz resolution data at nanowire tip-CFFGS surface distance of 55 nm and 65 nm,
respectively. (Inset) The green triangles correspond to 25 kHz resolution data for nanowire
tip-CFFGS distance of 55 nm. (c¢) Fourier transformed spin correlation functions C(t).
The absence of force signal from low wi-value spins arises because of the high-pass filter
discussed in Section 4.1.2. (d) One-dimensional proton spin density in the polystyrene
sample as a function of z measured from the top surface of the CFFGS. The nanowire
tip-CFFGS distances are the same as in (b). (Inset) 75-kHz resolution data, where the
65 nm trace, denoted by the red diamonds, has been shifted left by 9 nm.
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The measurements shown in Figure 4.13 were carried out using time-proportional phase
increment procedure, which meant phase shifting the last 2z pulse in Figure 4.13(a) by
a(1.) = Awrt, with respect to the initial €, pulse. Such modification to the sequence
replaces the cos (w;7.) term in Equation (4.33) by cos [(w; — Aw)7.], and turns its corre-
sponding cosine Fourier transform into 2?p(w; +Aw)g? (w1 + Aw) x (w1 +Aw). Therefore,
by choosing an appropriate Aw value, the phase shifting enabled imaging the spin den-
sity p(wq) for the spins experiencing the highest Rabi drives. For the 25 kHz and the
75 kHz resolution data we picked Aw/(27) = 850 kHz and Aw/(27) = 300 kHz, respec-
tively, which yielded corresponding C' values for 0.85 MHz < w;/(27) < 1.6 MHz and
0.3 MHz < w,/(27) < 1.8 MHz.

The time domain imaging data in Figure 4.13(b) was measured in units of force squared,
which were deduced from the terminal amplitude of the nanowire mechanical resonator
knowing its stiffness & and it quality factor Q. Figure 4.13(c) displays the discrete cosine
Fourier transform Cw; of the time domain data. Because of the time-proportional phase
increment procedure employed in collecting the data, C (wq) is shifted up in frequency by
Aw. To prevent aliased spin signal from sample spins experiencing w; values lower than
Aw we used a high-pass filters y(w;) introduced Section 4.1.2, which suppressed any spin
correlations arising from sample spins experiencing low Rabi strengths. The filters are
labelled as xa5 (w1) and x75 (wy) for the 25 kHz and 75 kHz resolution experiments, and are
given by Equation (4.8) and Equation (4.7), respectively. We plot x75 (w1) in Figure 4.14(a)
along with the imaging data collected with the silicon nanowire tip located 55 nm above
the constriction. xo5 (wy) is plotted in Figure 4.14(b) along with the 25 kHz resolution
data from Figure 4.13. In Figure 4.14(c), we also demonstrate that multiplying the 75 kHz
resolution data by xa5 (w1) /x75 (w1) closely matches the measured 25 kHz resolution data.

Finally, in Figure 4.13(d), the C'(w;) function is converted to one-dimensional spin
density p(z) by using the mapping between wi(z) and g (z) derived from finite element
simulations. We display both coordinates w; and z on the horizontal axis of the figure.
The vertical axis in Figure 4.13(d) corresponds to one-dimensional spin density dN/dz in
the polystyrene sample. The z-coordinate in that figure denotes vertical distance from the
CFFGS device. It can be seen that for the spins nearest to the nanowire tip, i.e., experi-
encing the highest w; values, the 25 kHz resolution data corresponds to a one-dimensional
imaging resolution with the slice thickness below 2 nm, which increases to just above 2 nm
at 30 nm above the nanowire tip. Such result marks a five-fold gain from a previous
nanoscale imaging experiment conducted on essentially the same experimental setup by
Nichol et al [85] without the numerical control techniques developed and implemented
within this thesis.

The imaging resolution for Nichol et al [$5] was set by the effective dephasing time under
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Figure 4.14:  (a) Vertical axis on the left: C(w;) for the 75 kHz resolution data from
Figure 4.13 for nanowire tip-CFFGS surface separation of 55 nm (blue). Vertical axis on
the right: Y75 (w1) as defined by Equation (4.7) (red). (b) Vertical axis on the left: C(w;)
for the 25 kHz resolution data from Figure 4.13 for nanowire tip-CFFGS surface separation
of 55 nm (blue). Vertical axis on the right: x5 (w1) as defined in Equation (4.8) (red). (c)

C(w) for the 25 kHz resolution data in (b) (blue), C(wy)xas (w1) /x7s (w1) for the 75 kHz
resolution data in (a) (red).

Rabi drive, whereas we were able to utilise the elongated dephasing time under SME4
protocol demonstrated by the previous subsection. As we said, the maximum available
encoding time for the sequence we used for performing the experiments in Figure 4.13
was 7" = 240 ps, which would correspond to an imaging slice width of Aw,/(27) =
1/(2 x 240 ps) = 2.1 kHz, or ~0.17 nm, near the tip of the nanowire. We did not choose
to image the sample with such resolution since the averaging times for measuring C(7.)
with sufficient signal-to-noise ratio would have become impractical, and also because we
did not expect the amorphous polystyrene sample, used in the measurements, to have
significant features over sub-nanometre length-scales. Nevertheless, such sub-nanometre
imaging slice widths for our experiments were not prevented by the spin dephasing time
as they were in [85]. In the case of our experiments, sub-nanometre imaging slices would
have been attainable for sufficiently long averaging times, or in the presence of higher spin
polarization that would have increased the spin signal strength for the experiment.

Our imaging experiment was certified by repeating the 75 kHz resolution experiment
twice — once with the nanowire-CFFGS distance being 55 nm and once after moving the
nanowire 10 nm vertically upwards using a calibrated piezoelectric actuator, the two ex-
periments correspond to the blue circles and the red diamonds in Figure 4.13, respectively.
It can be seen in Figure 4.13(d) that the spin density image of the translated sample has
indeed shifted along the z-axis. A least square fitting for the two data sets puts an estimate
for the shift at 9 + 2 nm, we display that fit in the inset of Figure 4.13(d). This procedure
verifies that our finite element field simulations, as well as the assumptions about the w;
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and g profiles being functions of z-coordinate only, were valid. The coherent averaging
performance of the modified SME4 sequences was also checked by applying two modified
SME4 sequences back-to-back — one with a positive AT = 3.12 us, and one with an op-
posite AT which cancelled out the Rabi strength dependent rotations of the first one.
The force correlation measured after the application of the two modified SME4 sequences
was identical to the one measured after two unmodified AT = 0 SME4 sequences. This
implies that introducing the asymmetry into the rotary echos within the sequences did
not degrade their dipolar Hamiltonian averaging properties, and hence, the sequences are
perfectly suitable for imaging experiments the way they were implemented.

4.4 Simulations

With this section we provide complementary numerical studies of the control sequences
that we have presented throughout this chapter. To demonstrate the necessity for includ-
ing Dyson terms into our control engineering, we compare the performance of pulse #1
with that of pulse #3, which was optimized without the Dyson term targets. We will
show that despite the fact that pulse #3 is roughly half the length of pulse #1, it per-
forms substantially worse in numerical simulations with an eight spin network. For our
simulations, we compute the Hamiltonian evolution for eight proton spins under dipolar
couplings, as well as various Rabi strengths and resonance offset/chemical shift terms.
Such simulations provide a good way for assessing the performance of the sequences, as
the effects of experimental distortions and transients are totally removed. The ability to
change the strength of various Hamiltonian terms also enables us to easily discern between
different contributors to pulse performance. Here, such contributors might be Rabi field
dispersion, resonance offesets/chemical shifts, dipolar evolution or any combination of the
former. Disentangling the effects for such a variety of control performance degrading fac-
tors experimentally is a challenging task, although, the merits of numerical simulations
also come with their own limitations. The main disadvantage of the numerical simulations
is the severely restricted Hilbert space size, hence, we can only expect the coherence times
found in our eight spin simulations to put an upper bound for the experimental results. In
addition to the simulations in this section, in Appendix C, we also simulate the resulting
Bloch sphere trajectories for select spins under pulse #1 and pulse #3 to visually illustrate
the action of the control sequences.

The eight spin numerical simulations are performed using a nuclear spin dipolar network
representing the atomic structure of the styrene molecule. The vectors {7};} connecting
the eight protons in a single molecule are given in Section 4.1.3. Here, we ignore the *C
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nuclei in the molecule. Because the sample used in our experiments was an amorphous
sample, we average the simulation results over a number of possible molecular orientations.
A single such orientation is denoted by a unit vector é , which is taken to point along the
direction of the By field in the coordinate system {7};} are evaluated in. By extending
Equation (4.9) in Section 4.1.3, we can express the dipolar Hamiltonian for an eight spin
network for a particular molecular orientation f :

~

Hdipolar(() _ (436)
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Since our experimental results indicated a broad distribution of resonance offsets, we also
include a corresponding term dw into our simulations. The eight spin unitaries for a
particular pulse, determined by a € My y(R), are functions of 7, ¢ and dw:

~

Hdipolar (C)
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+ dwdJ,
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with J, = 320 Jg(f)/Z, J, =30 az(f)/2 and J, = 30, agi)/Q. For our simulations, we
calculate the eight spin z angular momentum expectation value (2J. )y after n applica-
tions of the sequence as a weighted average over experimentally determined distributions
of resonance offsets prob (dw) and Rabi strengths prob () given in Figure 4.3. In addition,
we also include an equiprobable average of 50 random orientations {¢} that sample the
surface of a unit sphere into the definition of

(2J)vin(n) = (4.38)
> ¥ 3o pe ) e ([ugi-o)]') 2. [l o] e
€l SweA ¢ex

We compare the performance of pulse #1 and pulse #3 by evaluating (2.J.),, given
by Equation (4.38), for either of the pulses using 250 back-to-back applications of the
pulses. The results are given in Figure 4.15. It can be seen that pulse #3 performs about
7.1 times worse, despite being nearly two times shorter. Importantly, the performance of
pulse #3 is sufficiently bad that it would not have enabled the experiments discussed in
the previous section. Separate simulations, not presented here, reveal that the signal decay
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Figure 4.15: (a) Eight spin simulation results for (2J. ) (n), defined by Equation (4.38),
using pulse #1 and (b) simulations for (2.J, )y (n) using pulse #3. (2J.)y; () are quoted
as a function of n — the number of pulses applied.

for pulse #3 was mostly due to dipolar evolution — the removal of the resonance offsets
for pulse #3 increases the effective e! time by a factor of 1.3; the removal of resonance
offsets for pulse #1 increases the e~! time by a factor of 1.5.

4.5 Conclusions and Outlook

With the work in this chapter we have provided an experimental demonstration for the
applicability and usefulness of numerically engineered control sequences that are designed
to minimize a set of Dyson terms. Importantly, we have managed to bring together the
high-sensitivity spin detection, enabled by the high field gradients generated by CFFGS,
and high-fidelity spin control, enabled by the pulse engineering methods developed in the
previous chapter, to form a powerful nanoscale magnetic resonance spectroscopy and imag-
ing platform. Furthermore, by incorporating our control sequences into existing SME se-
quences, we have demonstrated that we can adapt existing NMR pulse sequences to be used
on our platform. With the adapted SME sequences we demonstrated a 500-fold nuclear
spin coherence time enhancement for a densely packed proton sample, which is compara-
ble to some of the best conventional NMR experiments [3]. Such adaptation of existing
NMR sequences could enable a variety of experiments on nanoscale spin ensembles, such as
atomic scale NMR diffraction [72] as well as multi-dimensional (correlation) spectroscopy.
Both of the experiments, if successfully undertaken, could prove to be transformative.
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In Section 4.3.2, we argued that the very high field gradients, and long coherence
times, that we demonstrated, provided us with a technical ability to encode Angstrom
scale spatial information to the phase value of our nuclear spin ensemble. For a previous
imaging experiment conducted on a similar experimental setup by Nichol et al [35] the
resolution was limited to 10 nm, due to short coherence times. On the other hand, the
one-dimensional slice thickness for the imaging experiments presented here was chosen to
be ~2 nm, because of spin detection sensitivity limitations, and also due to lack of sample
features, and thereby a lack of non-zero Fourier components, at shorter length scales. The
imaging resolution, for a given measurement period, could be greatly improved by utilizing
the fact that electron spin polarization in our By field and temperature is 12%. Hence, a
perfect transfer of spin polarization from the electrons to the nuclei, using one of the many
dynamical nuclear polarization schemes, would enhance our signal levels by a factor of
nearly a 100. The nuclear spin polarization for our sample could be even further enhanced,
through the aforementioned protocol, by operating at lower temperatures. Finally, the
techniques presented in this chapter can be readily extended to three-dimensional imaging
by fabricating additional modulation coils near the CFFGS for applying gradients in three
directions.
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Chapter 5

Phosphorus Donor Defects in Silicon

With this chapter we give a brief overview of phosphorus donor defects in silicon at low
temperatures. We focus primarily on the magnetic resonance properties of the 3P nuclear
spin, and the spin of the electron that becomes bound to the defect site, at low tempera-
tures. We will argue that the so-called semiconductor vacuum that encases the 3P nuclear
spins in high-purity isotopically enriched ?*Si crystals, makes the nuclear spins an excellent
candidate as a platform for efficient, high-precision magnetometry. That is because the
nuclear spins see very little local magnetic field variations that would dephase them. One
crucial component for exploiting the nuclei for magnetometry applications is an ability to
efficiently polarize them. We will describe some existing methods for achieving nuclear
hyperpolarization, and focus on non-resonant optical pumping with above band gap light,
which is known to yield hyperpolarization [77, 38]. Nevertheless, the microscopic working
mechanism for such hyperpolarization scheme is yet to be experimentally confirmed. We
summarize two explanations, that exist in the literature, and set the scene for our work in
the next chapter, where we introduce a microscopic effective Hamiltonian model describ-
ing the non-resonant optical pumping hyperpolarization scheme, and present extensive
experimental tests of our model.

This chapter contains significant original contributions by the author.
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5.1 Neutral Phosphorus Defects

5.1.1 Wave Function and Orbital Levels

Phosphorus defects are substitutional defects that appear when a single silicon atom in
the lattice is replaced by a phosphorus atom. Silicon crystal has a diamond cubic lattice
structure, such that each silicon site has a full tetrahedral point group symmetry [127].
Tetrahedral point group, or T, group is a discrete group with 24 elements, in Appendix E,
we give an explicit irreducible matrix representation for the group. Phosphorus defect
atom donates its extra valence electron to the silicon crystal, as well as deforms the atomic
potential seen by the electrons. Such deformed atomic potential gives rise to a localized
electronic state with biding energy, referenced to the bottom of the bulk crystal conduction
band, of 45.3 meV at the site of the defect [2]. This shallow potential is not strong enough
to localize electrons at room temperature since at 300 K 45.3 meV < kgT', therefore,
doping silicon with phosphorus atoms yields an excess of negatively charged carriers at
room temperature. Nevertheless, at temperatures below the insulating temperature of
~35 K, the excess electrons become localized at defect sites for silicon crystals doped
with phosphorus at moderate concentrations of < 107 em™3. In Figure 5.1, we give an
illustration of a defect electron localized to a phosphorus site in a silicon lattice. The
phosphorus atom - localized electron system can be thought of as a hydrogen atom with a
lattice point symmetry and an effective mass for the electron. In Figure 5.2, we show the
orbital energies for the electron in that hydrogenic potential, the 1s ground state of the
electron wave function has T, point group symmetry and Bohr radius of approximately
2 nm [68, 2, |. Finally, the indirect band gap of silicon at low temperatures is 1.172 eV
[15, 127], which corresponds to infra-red (IR) 1058 nm wavelength.

5.1.2 Magnetic Resonance Properties

Silicon has three stable isotopes 28Si, 2Si and 3°Si, the natural abundances of which are
92.23%, 4.67% and 3.1% [37], and nuclear spin numbers of 0, 1/2 and 0, respectively.
For the work presented in this thesis, we used an isotopically enriched 28Si crystal which
forms a non-magnetic environment around the 3'P defect nucleus and the electron, it is
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Figure 5.1: Illustration of a neutral phosphorus donor defect at low temperatures. 3'P
atom substitutes a single silicon atom in the silicon crystal lattice, whereas a localized,
represented by the blue cloud, surrounds the defect site.

conduction band

........................................ |
2p.
%p(OE) < 7
S
1s(T>) Ep
E
1s(A,) YOy

Figure 5.2: Orbital energy levels for a phosphorus donor defect electron in silicon. Fy, =
12.95 eV denotes the energy splitting between the orbital ground state and the first excited
states. The 1s ground state of the electron lies F}, = 45.3 meV below the bottom of the
conduction band.
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Figure 5.3: Approximate mean distances, and the corresponding spin interaction
strengths, for nearest neighbour defect spins in silicon for 10> cm™ concentration in
46 ppm isotopically enriched ?8Si crystals: (a) for neutral donor defects, and (b) for ion-
ized defect sites. The interaction strengths give an approximate idea for the 3'P nuclear
spin coherence times arising from these interactions.

therefore sometimes referred to as a semiconductor vacuum [106, 98]. Because the mean
nearest neighbour distance for two defects at low doping concentrations of 10'° cm™3 is
approximately 55 nm, the electron-nuclear spin system forms a relatively isolated two-body
system for magnetic resonance purposes. In Figure 5.3, we illustrate the mean nearest
neighbour distances, and their respective mean interaction strengths which determine the
spin decoherence rates. In the same figure, we show the mean nearest neighbour distance
for 3'P and ?°Si atoms, which has been calculated for the isotopic concentration of 2°Si
within our particular sample, containing 46 ppm 2°Si and *°Si isotopes, with the latter

being much less abundant.

The localization of the defect electron at the site of the phosphorus gives rise to a
substantial hyperfine interaction between the defect electron and nuclear spins. It is shown
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explicitly in Appendix E, that the T; point symmetry of the wave function constrains the
hyperfine interaction to be Fermi contact interaction:

Hyp = %76731p\¢(0)l2 Y o?@0” = %76731p\w(0)!20(6) o™ (5)

ic{z,y,z}

where (0) is the magnitude of the electron wave function at the site of the nucleus,
po = 47 - 1077 Tm A™" is the vacuum permeability and ~./(27) = —28.024 GHz T~!
and ysip = 17.23 MHz T~! are the gyromagnetic ratios of the electron and nuclear spins,
respectively. The upper indices for Pauli operators in Equation (5.1) denote whether the
operators act on the electron, or the nuclear spin degrees of freedom. The work in this
thesis was conducted at high magnetic fields of By = 6.69 T, so that the full two-spin
Hamiltonian also has strong Zeeman interaction terms:

e ‘ Ae
H= %af) - W;Pain) + oo, (5.2)

we/(2m) = v.By = 187.5 GHz and wsip/(27) = 74spBy = 115.3 MHz, are the electron
and 3'P Larmor frequencies, respectively, and A./(2w) = 117.52 MHz is the hyperfine
interaction constant that arises from Equation (5.1) [107]. Because w, is more than three
orders of magnitude greater than A, the eigenstates of H in Equation 5.2 are almost
exactly separable eigenstates of the Zeeman part of the Hamiltonian, i.e., [Ledn), [{eTn),
[Tedn) and [TeT,). In Figure 5.4, we display the corresponding energy level diagram for
the two-spin system and indicate the four dipole allowed transitions that can be driven
with resonant AC magnetic fields — for both the electron and the nuclear spin we have two
possible transitions at w, + A./2 and wsip + A./2, respectively.

At our temperatures of 1.3 K and magnetic fields By = 6.69 T, the thermal spin
polarization for free electrons is tanh [Ow.h/(2kg)] = 0.998 and for free 3'P nuclei it is
tanh [Owsiph/(2kp)] = 0.0021. This implies that the electron occupies its spin ground
state |].) with near unity probability, and the nuclear spins can be driven and detected in
the wsip + A./2 = 2m - 174.1 MHz manifold depicted in Figure 5.4. All of our experiments
presented in the next chapter were performed on 3'P nuclei in that manifold.

It was show by Saeedi et al in [95] that for ionized phosphorus defect sites the 3P
nuclei in isotopically purified 28Si crystals have a dephasing time of T. 2(") = 39 min at room
temperature and TQ(n) = 180 min at temperatures of 2.2 K. These extremely long coherence
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Figure 5.4: Energy levels for the neutral phosphorus defect spin degrees of freedom in
high external magnetic fields. w, and wsip are the electron and 3'P nuclear spin Larmor
frequencies, respectively. A. is the hyperfine constant between the electron and the nuclear
spins. The shaded area corresponds to electron spin |].) state manifold, which was used

for all of our experiments.
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times arise because of the extremely low levels of local magnetic field variations in such
samples after the electrons have been removed. We illustrate that property of the ionized
silicon crystals in Figure 5.3(b), where we indicate the mean nearest neighbour interactions
for ionized defect nuclei. Saeedi et al [98] achieved the defect ionization trough resonant
optical pumping of bound exciton transitions. With our work in [38] it was shown that
at 1.7 K, and for By = 6.69 T, the neutral defect dephasing time T2(n) was 1.2 s, which
is considerably shorter than the dephasing time for ionized nuclear spins in [98]. The
TQ(n) in [38] was caused by the electron spin, that underwent flips between its ground and
excited states as a result of its thermal relaxation T° 1(6) process, and therefore, lead to an
accumulation of random phase for the 3'P spin state. In Appendix D, we derive that the
effective nuclear spin dephasing time TQ(”) as a function of electron thermal relaxation time
Tl(e):

) _ 2T1(e)

T3 (5.3)

1—m’
where m is the thermal electron spin polarization. In the case of our experiments, this
implies that Tz(n) ~ 10007 1(6). The nuclear dephasing times in the second range, that were
observed for neutral donor defects, arise because the donor bound electron spins at high
magnetic fields can have rather short Tl(e) values, which are often in the ms-range [30, 70].

Finally, by considering the properties of 3P nuclei in isotopically purified 2*Si de-
scribed in this section, one can imagine utilizing the nuclei as a platform for high-precision
magnetometry applications, provided the one can successfully realize an efficient hyper-
polarization scheme, to maximize detection efficiency, and a means for ionizing the defect
sites. With this thesis we focus on the former ingredient necessary for magnetometry ap-
plications. We remark that the latter has been achieved by resonant optical ionization [98],
as well as electric ionization for arsenic donors in silicon crystals [66].

5.2 Excitons in Low Temperature Silicon

In this short section, we briefly sketch the dynamics of the free exciton capture process
in low temperature silicon irradiated with above band gap light, in order to then provide
a comparison of the existing explanations for the non-resonant optical hyperpolarization
mechanism with the next section.

The formation of bound excitons at donor defect sites in silicon irradiated with above
band gap light has been known of for nearly 60 years through photoluminescence experi-
ments [10]. Free electron-hole pairs generated by above band gap photons in silicon at low
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temperatures recombine predominantly by creating free excitons — charge neutral quasi-
particles travelling freely inside the crystal [127]. Since radiative lifetimes for such excitons
reach milliseconds many free excitons end up forming energetically favoured bound exciton
complexes at various impurity sites [I01]. The simplest and most common of such com-
plexes for phosphorus donor defects is a localized state of two electrons and a hole called
DX [111]. The radiative recombination channel for bound excitons is greatly suppressed
and they almost always recombine via the Auger mechanism [100], whereby the energy
released by one of the electrons recombining with the hole is transferred to the second elec-
tron which becomes delocalized and leaves behind an ionized defect site D*. The presence
of above band gap light quickly photoneutralizes the ionized sites which capture one of the
free electrons generated by the photons absorbed.

5.3 Optical Hyperpolarization of Phosphorus Donor
Defects

This section provides a brief summary of the two candidate mechanisms for non-resonant
optical hyperpolarization of 3'P defect nuclei in silicon, that have been suggested in the lit-
erature. The idea to exploit material specific properties of longitudinal electron relaxation,
or Tl(e) process, and electron-nuclear cross relaxation, or i) process, for donor defects
in silicon to achieve increased non-equilibrium nuclear polarization, without relying on the
conventional Overhauser effect [37], dates back to the proposals of Bardeen, Slichter and
Pines [91]. Since then several optical hyperpolarization schemes have been realized for the
donor nuclei: optical pumping of the exciton transitions [126] and irradiation with non-
resonant above-bandgap light [77, 38]. The former requires using multiple tunable narrow
band lasers, while non-resonant optical schemes are particularly attractive for many ex-
periments and devices owing to their implementation simplicity — only an above band gap
light source, i.e., of wavelength 1057 nm and shorter [15], is needed.

A detailed microscopic description of the hyperpolarization mechanism underlying these
non-resonant schemes, with conclusive experimental evidence supporting the description,
has so far been lacking. Because non-resonant methods do not target any particular optical
transition, they are notoriously hard to model and convincingly verify. There are currently
two hypotheses explaining the *'P spin polarization build up under above band gap light
illumination at high magnetic fields and low temperatures: one relies on the idea of spin
angular momentum conservation during the free exciton capture process [101], whereas
the other makes a heat bath argument [77]. Definitive knowledge of the polarization
mechanism would enable, amongst other things, to a priori predict the conditions necessary
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for achieving fast and high nuclear spin polarization, hence, greatly assisting the design of
experiments and devices harnessing such a dynamic nuclear polarization (DNP) scheme.

It has been proposed that the optical hyperpolarization of the 3P nuclei results from
net spin angular momentum conservation in the process of capturing free excitons when
forming bound exctions. The electron spins of the D°X ground state are antiparallel in
a singlet state, due to the indistinguishability of the spatial parts of the electron wave
functions [111], while the thermal electron spin polarization of 99.8% at our fields and
temperatures is very close to unity. Hence, either the localized defect electron, or the
free exciton electron, has to flip when creating a D°X. Sekiguchi et al suggest that the
formation of DYX may only take place if the 3'P nuclear spin is in the [1,) state, arguing
that the capture must involve a nuclear spin flip to conserve net spin angular momentum
[L01]. The spin part of the two electron-nuclear wave function would in such case transform
as [dedetn) — \/LE ([dete) + [Tede)) @ [4n), and would eventually drive the 3'P nuclear spins

into the |,,) state.

Alternatively, it has been theorized that the above band gap optical illumination in-
duced hyperpolarization may be driven via a phonon mediated Overhauser-like process
[91, 77]. The photons absorbed in the crystal create free electron-hole pairs which scatter
off the crystal lattice and generate non-thermal phonons that heat the phonon bath. As
long as the effective heat baths yielding the electron Tl(e) and the electron-nuclear cross
relaxation T are distinct, any thermal imbalance between them will lead to a DNP
process.

Most of the immediate predictions for the two proposed mechanisms are the same.
They both predict the same terminal nuclear spin state of |],). The modelling presented
in the next chapter also reveals that the nuclear polarization build up time for a phonon
mediated process is inversely proportional to the light intensity — the same proportionality
relationship as one would expect for a process involving the formation of bound excitons.
Therefore, a simple nuclear magnetic resonance or an electron spin resonance experiment
could not verify the correctness of one model over the other.

5.4 Conclusions

With this chapter we have introduced the physical properties of phosphorus donor defects
at low temperatures along with a brief sketch of the exciton processes that take place when
silicon is irradiated with above band gap light. We also outlined two possible explanations
for the emergence of 3P hyperpolarization under non-resonant optical pumping at low

127



temperatures and high magnetic fields. In the next chapter, we use previously unexplored
magnetic resonance experimental design to directly observe the statistics of free exciton
capture processes, and show that these processes can only very weakly correlate with the
31P polarization build up.
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Chapter 6

Non-resonant Optical
Hyperpolarization

This chapter investigates *'P nuclear spin polarization generated by optical pumping of
silicon crystals with above band gap light at low temperatures and high magnetic fields.
Specifically, we explore the two possible mechanisms that were outlined in the previous
chapter — the phononic generation of hyperpolarization and the free exciton capture related
dynamic nuclear polarization (DNP). Our study is carried out by comparing theoretical
modelling and a series of experiments. We will construct a detailed model for the phononic
mechanism and demonstrate its consistency with our experiments. The phononic model
relies on the generation of an effective electron-nuclear Hamiltonian, however, unlike the
effective Hamiltonians that have been considered so far in this thesis, the effective Hamil-
tonian of the hyperpolarization mechanism is generated indirectly by the light absorption
in the silicon crystal, rather than by deliberate control sequence engineering.

Our argument in favour of the phonon mediated mechanism has two parts. First, we
demonstrate experimentally that the 3!P polarization build up time constant is inversely
proportional to the input laser intensity and, crucially, displays no detectable dependence
on the substantial light intensity variations which extend over ~mm length scales in our
sample. Because sub-terahertz phonons are the only excitations with several-mm mean
free paths in silicon at low temperatures, a phononic explanation for the DNP process is
strongly supported. Secondly, we show experimentally that the photoionization events,
which we assume to be mostly Auger ionization events, present in the illuminated crystal
are largely uncorrelated with the nuclear spin polarization growth. To demonstrate the
latter we design an experiment to study the ionization events in a previously unexplored
manner. We exploit the fact that the reduced 3!P nuclear Hamiltonians for D°, D°X
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and DT have distinct and far detuned Zeeman frequencies. Hence, by irradiating the
silicon crystal with above band gap laser light simultaneously with a low amplitude radio
frequency (RF) tone tuned on resonance with the ionized 3'P Zeeman splitting, we are able
to deduce the average characteristics of the Auger ionization events from the modified build
up dynamics induced by the saturation drive. Combining such novel experiment design
with the theoretical tools of open quantum systems for analysing the results enables us to
demonstrate that the Auger events, and hence the free exciton capture events, can only
very weakly correlate with the nuclear polarization build up.

We study an isotopically purified 2®Si single crystal sample using inductive readout
of the phosphorus donor nuclear spins. The hyperpolarization occurs by illuminating the
sample with 1047 nm laser light in a magnetic field of 6.7 T at 1.3 K temperature. In
this chapter, we first derive the phononic polarization transfer mechanism in terms of time
varying crystal strain fields generated by photocarriers scattering off of the crystal lattice in
Section 6.1. In Section 6.2, we introduce our model which predicts the nuclear polarization
dynamics under simultaneous laser illumination and saturation drive assuming that the
optical DNP mechanism acting is phonon mediated. We also construct a model to describe
polarization transfer resulting from free exciton capture events in Section 6.3, we do that in
order to contrast the predictions of the two possible mechanisms. Finally, in Section 6.5,
we introduce our measurements and data, and verify the self-consistency of our model.
The data also demonstrates disagreement with exciton capture dependent mechanism.
We further discuss our conclusions in Section 6.6 and lay out several opportunities and
extensions of the work we present in Section 6.7.

Because some of the equipment assembly steps, data collection and simulations in this
chapter were not conducted by the author alone, such collaborative contributions have
been clearly indicated in the footnotes of the particular section or subsection.

6.1 Phononic Polarization Transfer

In this section, we introduce a model for phononic polarization transfer by first demon-
strating that populating certain phonon modes with non-thermal phonons amounts to an
effective enhancement of the cross-relaxation rate which is proportional to the light in-
tensity. The non-thermal phonons in our experiments are generated by effective photon
to phonon conversion events happening inside the silicon crystal irradiated with above
gap light. In the second subsection, we derive explicit expressions for demonstrating that
different effective temperatures for the electron thermal relaxation Tl(e) process and the
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electron nuclear cross-relaxation nge") process lead to an increased non-thermal nuclear

polarization.

6.1.1 Light Induced Electron-Nuclear Cross Relaxation

Based on the experimental results in [123], we assume that the hyperfine interaction be-
tween the 3'P nuclear spin and the localised donor electron spin in strained silicon is almost
entirely Fermi contact interaction. Accordingly, we Taylor expand the hyperfine constant
A, up to second order in strain tensor € at the defect site. To simplify our notation we
treat e throughout this chapter as a 6-dimensional vector € = (€4, €4y, €22, 2652, 2642, 264y ),
where the elements of the tensor have been evaluated in the crystallographic coordinate

system. The Taylor expansion yields A, (€) = A.(0) [1 + (6146) €+ E-Hy, -€+ ..,

where ﬁAe and H,4, are a vector and a matrix proportional to the gradient vector and
the Hessian matrix, respectively. Symmetry analysis introduced in [73] constrains VA,

—

and Hy, to a form that gives (6A6> € = W(ew +ey+e)/3 and €-Hy, - € =

X (2, +e,+)+Y (€€z: + €anbes + €aueyy) + Z (€2, + €2, + €2,), where W, X, Y and
Z are constants.

In the following, we will ignore the linear term <6A6> - €, since most experimental

measurements 123, 51] and tight binding simulations [115] for hyperfine shifts under uni-
axial stress have not reported shifts linear in strain, even though small linear shifts under
hydrostatic strain have recently been suggested [73]. Furthermore, and more importantly
for the purposes of this chapter, it was pointed out by Nakayama and Hasegawa [$4] that if
the phononic hyperfine shifts are predominantly linear in strain then the electron-nuclear
cross relaxation would be a single-phonon process, and its time constant would scale as
T x © Jw?, where w, is the electron Larmor frequency and © is the inverse temperature.
Such relationship was not supported by the measurements reported in [50], hence, we pro-
ceed in accordance with Nakayama and Hasegawa [341] by assuming that cross relaxation
is a two-phonon process.

In treating the electron-phonon interactions below, we make the typical adiabatic ap-
proximation [127], and assume that the electron wave-function follows the atomic motion
instantaneously. The first excited orbital state for neutral phosphorus donor defects lies
11.6 meV, or 2.8 THz, above the ground state [2]; for such an approximation to hold the
contributing phonons have to be of substantially lower frequency.

The time-modulated strain field € at the site of the donor defect results from the
effective photon to phonon conversion events taking place at random instances when
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above band gap photons are absorbed by the silicon crystal and create electron-hole
pairs. We model € as a sum of elastic waves with frequencies {w;} originating from
a set of randomly distributed sources inside the crystal, each denoted by 7}, such that
€=, Z;VI € (1) cos(w;t +&;5), where we assume that N;, the number of waves emitted at
frequency w;, with amplitudes {€;} independent of 7, is proportional to the light intensity
I, whereas the phase ; is a uniformly distributed random variable. Summing over the
random phases gives € = Y. v/N;€; cos(w;t + &;). Furthermore, substituting /N;€; = VIE,
results €= /T > & cos(wit + &), € being an effective mode dependent photon to phonon
conversion yield constant.

Introducing strain dependence into the hyperfine part of the electron-nuclear Hamilto-
nian gives

H = Ye e _ 9P A(0)

2 * 2 4
where w, and wsip are the electron and nuclear Larmor frequencies, respectively. In writing
H we have omitted the strain dependent changes to the electron g-tensor. Such changes,
while potentially much greater in magnitude than the hyperfine modulation [123], would

ol + (1+€ Hy -8)o'. o, (6.1)

either commute with weage)/ 2, and would therefore average out due to their oscillatory
nature, or would lead to a Tl(e) process, which will be included in the analysis separately.

Taking the secular part of H in Equation (6.1), with respect to Hy = %Uf) - %%Uén),
yields

A (0 IA.(0 . .
Hsecweq%age)agn) + % Z + Z € - Ha, - € Haip-fop, (6.2)

witw;= Wi —w;=
Wetw3lp  Wetwsip

where Hyip fiop = Dol +a§f)a§”) is the flip-flop Hamiltonian. All terms in Equation (6.2)

commute and the term on the second line is capable of transferring polarization from the
electron to the nucleus. The summations in Equation (6.2) correspond to a two-phonon
absorption process and Raman scattering, respectively, their particular energy conservation
conditions being w; +w; = we+wsip and w; —w; = we+wsip [34, 1]. Consequently, the cross
relaxation process in high magnetic fields involves a sum over the whole phonon spectrum,
and one expects 1 /Tz(e" x I. On the other hand, the phonon mode most responsible for
electron Tl(e), via spin-orbit coupling modulation, is w; =~ w,. since the electron g-factor
experiences shifts linear in crystal strain as demonstrated by [123].

It needs to be emphasized that the treatment above is not meant to imply that the cross
relaxation process is a coherent Hamiltonian process. The strain fields inside the silicon
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crystal result from random photon absorption processes which are distributed uniformly
and isotropically within the crystal, when averaged over phonon mean free paths. Hence,
there cannot be any phase coherence for the elastic waves present at a single defect site at
different times, nor at different defect sites at the same time. We presented the calculation
above to highlight two aspects of the phononic relaxation processes: the electron Tl(e)
and the cross-relaxation T,Ee") arise from interactions with distinct phonon baths, and for
strong enough I, for which the semi-classical treatment is appropriate, 1/T, 1 should be

proportional to I.

6.1.2 Relaxation Rates

In the last subsection, we showed that the phonon baths responsible for the T} 1(6) and 71"
are distinct, hence, their effective temperatures can also be different. In this subsection, we
derive the steady state density matrix and the equilibration rates for an electron-nuclear
spin system that is weakly coupled to two dlstlnct thermal baths at inverse temperatures
O, and O,, which yield a T process and a T en) process, respectively. We will show that
having ©; # O, will generally lead to an increase in the nuclear spin polarization.

Let p be the electron-nuclear density matrix. The Lindblad equation [10, (4], written

in the frame of Hy = %aﬁe) - “’%agn) + AET(O)US‘") .o corresponding to such processes is

then given by

9 = Lygo genlo] = gt (2700 el 20100l (63)
_ ;T_fc)] (99090 + po'0' — 290"
— ZTZEQ”) (0(_6 'ot p 4+ po@ gl 205fn)pa(_en)>
_ ;Tgef) (o176 p 4 poteg™) — 2617 polc))

-1 .
where p = (1 + eh(“e+w3lp>ew/k3 and g = (1 + eﬁwe@l/kf”) " are the thermal occupation

probabilities for the excited state of a two-level system at inverse temperature O, and Oq,

respectwely The var1ous operators in Equatlon (6.3) are defined as 0 =M {l®1,
=) (@1, '™ = [11) (1] and ¢ = |11 (14]. Tt is easy to check that
1 . 1 pP—q 0
— 2 -1 Z|le|z LT % 4
Per [2+(q )2}®{2+p(2q—1)—q2 (64)
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yields %pen = 0, and is therefore the steady state electron-nuclear density matrix.

We define a partial basis set {B, ., B} = {11} (@ [1) (4, 1) (1] @ W) (41, |4} (U] @
Y (T, 1T (T @ |1) (1]} for p in Equation (6.3), chiefly, because here we are only inter-

ested in the time scales pertaining to the diagonal elements of the electron-nuclear density
matrix. Nevertheless, it also turns out that the evolution of such matrix elements is
the only non-trivial part of the evolution under Equation (6.3). Accordingly, we write
p(t) = 325, 0i(t)Bi, where g;(t) denotes the ith element of a four-dimensional vector g(t).
Because Equation (6.3) is a linear matrix differential equation, g(ty + t) = exp(St) - o(to),

Bj]> . Evaluating S

where S € M,y has its elements given as 5;; = Tr <BZT . LT(5> T(em[
1 LT

explicitly gives

1—
Ti(le) _Tl(e% 0 O
1— 1—
_Ti(]e) Tl(g + Tff) ngzn) 0
S=- 0 1-p U T
Tz(en) Tl(e) Tz(en) 1Tl(e)
0 0 Ti(]e) T(g
T(e) _ B
— (e) Ql <P2 + ﬁ:) Ql 1 (6 5)
1 T
1 Téen) _ B
- Qm Pl"’ (:+P2 P1> Qzl7 (6 6)
agen) Tl(e)

where Py = diag(1,0,0,0), P; = diag(1,1,0,0) and

1—7r 0
0 0
1—r 0
0 0

[1]

(6.7)

o 3 O 3
o O OO

with 7 = p+ ¢ —2pq. Tt can be seen that 0 <r <1/2forall0 <p<1/2and 0 < ¢ <1/2.
The matrices (); and @), are given as

1— 2

l-¢ -5 —(1-9) ’%

| (-9 & —q pali=a)
Q1= q qp 1—gq (1—p)g(1—q) ’ (6.8)

—q —q q (1—71;)(12



0 - = ;
—1 o a=r pg(1-q)
_ — 1—r r
Qo = qp _1=¢—r (-p)(i=q) |~ (6.9)
1—r r
0 —q —_a (1-p)g*
1—r r
while their inverses evaluate to
(1-p)g  (A-p)(1—q) pq _p(1-9q)
1-—r 1-—r 1—r 1—r
. _(A-pg (A-p)(d-9) (1-p)(1-9q) _(1—15)(1—;1)2
- 1—7r 1—r 1—r 1—7r
@y _(1-pg  _ (1-p)g p(1—q) pgl—q) ’ (6.10)
1 1 1 1
0 —1+p D 0
. _(-pgq (A-p(-g9 (1-p(-q _ (1-p)(1—q)*
it — 1-r 1-r 1—r 1-r
Q' = | wlon  Oople—r) _plg—r) _ micg (6.11)
1 1 1 1

Writing S as in Equation (6.5) makes it apparent that, for Tl(e) < T we can
approximate

e e (en)
exp(St) ~ @ - diag <e_t/T1( ),e_t/Tl( >, e T 1) Q7 (6.12)

The exponential decaying the slowest in Equation (6.12) is e™" t/ Tée"), hence, for a general

initial electron-nuclear density matrix ¢(0), the steady state density matrix g(t — oo) =
(p(l—q)2 pa(l—q) (1-p)a(1—q)

— P 1 , (1_f )q2> is approached with time constant 7. /7.

From Equation (6.4) we see that when ©, = ©; = © the thermal polarization of
electrons and nuclei is tanh [hiw.©/(2kp)] and — tanh [fiwsi1p©O/(2kp)], respectively. It is
also clear that offsetting ©, and ©; can lead to nuclear polarizations equal to that of the
electrons. For this work we always have T'® < T4, therefore, such terminal non-thermal
is approached with time constant

Tz(en)

. 6.13
p+q—2pq (6.13)

Tpnp =

Even though, it is difficult to conclude which exact phonon modes might contribute to cross
relaxation in a particular experiment, since Equation (6.2) involves a summation over the
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entire phonon spectrum, it is reasonable to assume that for hi%);h enough light intensities
©, — 0, such that p — 1/2, which implies that Tphxp = 274 that is independent of
©; and ¢. It has also been experimentally verified that in the presence of above band
gap illumination at low temperatures the electron polarization (1 — 2q) equilibrates very
close to that of the sample temperature, since p and Tl(e) are mostly determined by factors
other than phononic relaxation — photoionization and photoneutralization, accompanied by
exchange interaction with conduction band electrons all act to thermalize localized donor
electron spins with photocarrier electron spin temperature [77, 25]. Therefore, for high I
one expects 1/Tpnp o I and p > ¢ which yields nuclear spin population in the [{,) state,
aligned with the thermal electron polarization.

6.2 Photoionization and Photoneutralization Dynam-
ics

In this section, we work out the 3'P magnetization dynamics under simultaneous irradiation
with above band gap light and RF saturation drive near the Larmor frequency of the ionized
phosphorus nucleus wsip. When the silicon sample is irradiated with above band gap light
the phosphorus donor defect sites are continuously ionized and neutralized through free
exciton capture processes, Auger ionization and photoneutralization that were outlined
in the previous chapter. The photoionization and neutralization cycle can be divided
into three distinct steps as depicted in Figure 6.1. To explain the build up dynamics
under RF saturation we introduce a three state rate equation model. When modelling the
capture of free excitons and photoneutralization processes we make a few assumptions.
First, we assume that all capture events happen instantaneously at a given rate without
changing the phosphorus spin state and independently of earlier capture events, i.e., the
capture is a Poisson process. We denote kpo_,pox as the rate of free exciton capture,
Kpox_p+ as the rate of Auger recombination and kp+_,po as the rate of photoionization,
the assumptions above are valid as long as kKpo_,pox < Kpox_sp+Kp+_po/(Kkpox_sp+ +
Kp+_spo), and the electrostatically driven capture processes happen much faster than the
characteristic nuclear spin evolution time scale (wsip)~'. We ignore the ~10*-fold weaker
radiative recombination channel [100] and assume that every free exciton capture is followed
by Auger recombination. We assume that the bound exciton hole spin state is thermalized
[65], which at our temperature and magnetic field configuration implies that the hole
occupies its spin ground state.

Each step in the photoionization and neutralization cycle yields a distinct effective
Hamiltonian and relaxation process operators on the 3'P nuclear spin. With the following
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Figure 6.1: Photoionization and neutralization cycle taking place inside the silicon crystal
illuminated with above band gap light. (a) Initially, the donor defect is in a neutral state
D with a single electron at the 3'P site. At a rate of kpo_pox a free exciton is captured
yielding a bound exciton DX that comprises a localized hole and two electrons in a spin
singlet. The bound exciton recombines via Auger mechanism at a rate of Kpox_p+ leaving
behind an ionized defect site DT. Photoneutralization returns the defect to its neutral state
at a rate of kp+_po. (b) The 3'P nuclear spin experiences a distinct energy level splitting
for each step of the photoionization and neutralization cycle shown in (a). Given that the
DY electron and the DX hole are thermalized to their spin ground states with probability
close to unity, such splittings are given by a combination of bare Zeeman frequency wsip
and either the electron hyperfine term A., the hole hyperfine term A;, or the paramagnetic
shift 4.
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we detail all of these reduced Hamiltonians and relaxation processes and derive the steady
state magnetization uZDO =mp ’ (t — o0) for neutral donor spins under RF saturation drive
of strength €2 in the limit of Kpox_p+ > Kpo_poyx, provided that Kpox_p+ > Kp+_po,
Kpoxop+ > 2 and kKp+_po > €.

We say that the reduced nuclear spin density matrix pp, D € {D° D°X, D"}, during
each stage of the free exciton capture and recombination process evolves under the Lindblad
equation

0 .
a0 = Lo lop] = —i[Hp, pp] (6.14)
L
oD

1/ 1 1 ( )
- 5 7D armD - O-Z O-Z I

where the reduced nuclear Hamiltonian Hp, effective dephasing time T3 and effective lon-
gitudinal relaxation time TP are specific to the particular stage of the process denoted
by D. Here, we will write all Hamiltonians in the frame of the continuous saturation RF
drive; the difference between the bare phosphorus frequency wsip and the drive frequency
will be denoted by Av. The raising and lowering operators are given as o, = |1) (|| and
o_ = |}) (T]. Because our experimental polarization measurements were relative measure-
ments, blind to the absolute polarization of the 3'P spins, we have defined Equation (6.14)
such that the terminal polarization is equal to one, i.e., the term on the second line of
Equation (6.14) acts to make pp = |1) (1| over a characteristic time scale T}”, while the
term on the third line ensures that the off-diagonal terms of pp decay with a time constant
TP

(0-04pp + ppo_o, — 20, ppo_)

We now introduce a (Bloch) basis {C;} for the reduced nuclear density matrix such that
pp =y, mPC;, where i € {z,y, z,I} and m? denotes the ith element of the magnetization
vector mP = (mf, mé), sz, m?) The basis elements are given as C; = ai/\/ﬁ, or being a
shorthand for two-dimensional identity matrix 1,. The time evolution of pp can then be

found by exponentiating a four-dimensional generator matrix Ap, the elements of which
are given as (Ap), ; = Tr (C’ZT -Lp [C’j]). In the subsequent subsections, we will evaluate
the particular Ap for each of the three stages of the free exciton capture process.

Given the assumption that the photoneutralization, photoionization and bound exciton
recombination are all instantaneous and do not affect the nuclear spin state, we proceed

by adapting a method developed for modelling chemical exchange processes [78]. Accord-
ingly, we combine the time evolution of all three magnetization vectors {m? TomPX mDO}
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and describe this evolution by a set of coupled Bloch equations. We define a combined
magnetization vector m € R3*%:

mP*
m= mP"X |, (6.15)
mP’
which evolves under coupled Bloch equations determined by T € M3(My):
o Ap+ — kp+opoP3 Kpox—p+P3 0
ET?LZTW_:L: 0 ADOX—KJDOX_,D+P3 IiD0_>DOXp3 'T?L,
Kp+poPs3 0 Apo — kpo_,poxPs3
(6.16)

where P3 = diag(1,1,1,0). The generator matrices {Ap} will be explicitly evaluated in
the next three subsections for the particular effective Hp, TP and T” in Equation (6.14).
It should be noted that we set up the coupled equations in Equation (6.16) such that
the nuclear spin polarization is measured relative to the full polarization of DY nuclei in
the absence free exciton capture events, i.e., if kpoy_p+ = 0 then mP’(t — oo) = 1 and
mP"X(t) = mP" (t) = 0 for all t > 0.

z

6.2.1 Neutral Donor Defect D"

The reduced 3'P Hamiltonian Hpo for a neutral donor defect, with the electron spin in its
ground state, is given by

Oy A.(0) o,
where A.(0)/(27) = 117.52 MHz is the hyperfine constant at our temperature [107]. As

we always operate in the the regime of A.(0) > Av and A.(0) > €, Equation (6.17)
is well approximated by Hpo =~ (A.(0)/2 — Av) 0,/2, where the RF drive term has been
dropped after making the secular approximation. In addition to the Hamiltonian evolution,
we also have the phononic DNP process acting to increase the nuclear spin polarization
with a characteristic time scale TlDO, as well as a dephasing T: QDO process, hence, the Bloch
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generator for the nuclear density matrix ppo becomes

Ac(0
— A0 A 00
Ac(0) A 1
Apo= | 2 Y " 01 ? (6.18)
O 0 _TIDO TlDO
0 0 0 0

6.2.2 Bound Exciton DX

Because the two bound exciton electrons have identical spatial wave-functions, they have
to be in a spin singlet state, which leads to a vanishing hyperfine interaction between
the nucleus and the electrons [111]. The hyperfine interaction between the localized hole
and the nucleus is in many experiments assumed to be insignificant, however, it could
potentially be of influence to our results. It is hard to estimate its size, a reasonable upper
bound would be ~27 x 20 MHz from photoluminescence excitation experiments [125], while
27 x 2 MHz has been suggested in the literature [28]. Here, we denote the hole hyperfine
strength by A,. Assuming that the hole is thermalized to its spin ground state, the reduced
31P Hamiltonian for a bound exciton becomes

Hpox = 022 + (— - Ay) EEY (6.19)

Since the lifetime of bound excitons has been measured to be extremely short — kpox_p+ =
3.7 MHz, corresponding to a lifetime of 272 ns [100] — we assume there to be no appreciable
T} mechanism acting on the bound exciton nuclear state ppox, yet the short T} time of the
hole itself will introduce dephasing effects with time constant 72°X on the 3'P. Accordingly,
the Bloch generator for the nucleus becomes

—T2Dl<>x —3 4t Ay 0 0
Ay 1 Q0

ADOX - 2 v T2D0X 1 (620)
0 0 0 0

6.2.3 Ionized Donor Defect DT

The ionized defect is modeled as a bare phosphorus spin with Zeeman splitting wsip that
could be shifted away from wsip in the presence of a paramagnetic shift §. Including this
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term in our Hamiltonian for DT gives
Hpi = Q% +(5— Av) % (6.21)

Again, we ignore any T; effects due to the very short time the donors spend in this state.
Furthermore, because the ionized defects see a very small local magnetic field we will also
ignore any 15 effects in this stage and write the evolution as purely unitary, such that

0 —-0+Av 0 0
0 — Av 0 - 0

Ap+ = ) o A (6.22)
0 0 0 0

The long T, assumption is supported by experimental results in [95].

6.2.4 Magnetization Dynamics

The only experimentally accessible quantity in m is mZDO, hence, we are interested in its
behaviour in time under different saturation conditions determined by {2 and Av. Even
though numerical simulations of evolution under Equation (6.16) are straight forward to
carry out for any set of parameters, it is somewhat more illuminating to derive a few results
analytically.

To approximate the steady state solution m(t — oo) we first notice that

0 0
0 _ Q
kp0.pox AR
Kp+_.po0
0 0
0 0
T N 9
- - HD09DOX _ Fpo-pox fpox—or |, (6.23)
Kpox-D+ | ko ox.pt Kpox-D+ 0
0 0
0 0
0 0
1 0
1/u?” 0
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where 0 = 92/ [Q? + (2 + (kp+.po)?], ( = — Av,

-1
0
DO QQ TlD KRpo_,pox

+
& 2+ (2 + (Kp+opo)?

(6.24)

and Y is defined by Equation (6.16). It can be seen from Equation (6.23) that, if Kpoy . p+ >
Kp+-po, Kpoxop+ = £, Kp+,po > 2 and Kpox_p+ > Kpo_pox, the vector on the left hand
side of the equation is an approximate fixed point of Equation (6.16). For the relatively
low Rabi strengths (< 4 kHz) used in this work we expect all such approximations to hold.
Given that m?o (t) = 1, for all t > 0, we see that the steady state magnetization under
Equation (6.16) for the stated parameter range is m?’(t — oo) ~ pP°. Furthermore,
inspecting Equation (6.16) for m?’(0) = 0 under the same approximations reveals that
9/t mP"(t)],—o = 1/TP", hence, the time dependent behaviour of mP?’ for mP"(0) = 0 is
very close to an exponential rise

1 ¢
DY DY

t) ~ 1-— — — . 6.25
mz () :uz |: exp( ,UDOTl):| ( )

z

The experimentally controllable parameters in Equation (6.24) are the Rabi strength
(Q) of the RF saturation drive and its detuning (Av) from the bare phosphorus Larmor
frequency wsip. It is apparent that pfo is an inverted Lorentzian in ( for constant 2.
Importantly, the initial growth of mZD0 is always independent of the saturation drive as
%mZDO (t)|s—o = 1/TP". This feature appears because in our model the polarization growth
happens for neutral donor defects independently of the free exciton capture events. Con-
versely, it will be shown in the next section that when the polarization transfer to the
nucleus happens during the free exciton capture, which is always followed by ionization

and hence saturation, the initial slopes of m?"(t) for different x2° would vary.

Owing to the design of our experiment, we have appreciable variation of light intensity
within our sample on length scales that exceed the mean free path of free electrons and
excitons in silicon at cryogenic temperatures [25, 16]. Therefore, we have to account for
local variations of kKpo_,pox and kp+_,po within our sample. Because we attribute the
DNP to a phononic process, which would be non-local in nature [15], contrary to the
photoionaization and photoneutralization processes, we take TlDO to be independent of
local light intensity. Introducing a distribution for the light intensity n(/), normalized
such that [ dI n(I) = 1, we deduce an expression for overall nuclear magnetization for
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neutral donor defects starting from a uniform M ZDO(O) across the sample:
A%D%t):g/}U7ﬂI)uD%]) 1= oxp [~ b (6.26)
: : W (DT

+/d1 n(I) MP"(0) exp (_/LD();(I)%)

where

-1
02 TP kpo_pox (I
1 Kpo DOX( >]2] , (6.27)

024+ 2+ [kp+-po(])

(1) = [1+

Kpo_pox (I) being the local light intensity dependent free exciton capture rate and kp+_ po(I)
being the local light intensity dependent photoneutralization rate. All of our experiments

were performed over time scales for which the free electron and free exciton densities in the

sample have reached their equilibrium values, hence, we take kp+_po(I) = ap+_ povV/ T and

Kpo_pox = apo_poxl, with ap+_po and apo_poyxy being proportionality constants. Such

proportionality relations are derived under the same assumptions as in [1 18] — free electrons

and holes are generated at the same rate, the predominant recombination channel for free

electrons and holes is the formation of free excitons, free excitons recombine independently

of one another and the number of bound excitons is proportional to the number of free

excitons in a particular volume of the crystal.

6.3 Free Exciton Capture Dependent Hyperpolariza-
tion Model

In this section, we construct a model that describes the generation of nuclear hyperpolar-
ization through free exciton capture events. We do this using the tools of open quantum
systems theory [120, 10]; our reason for building the model is to enable us to contrast the
phononic and the exciton capture induced nuclear hyperpolarization mechanisms in the
light of our experimental data and to quantitatively investigate the correlation between
the photoionization events and the polarization transfer to the 3'P nucleus. We keep the
model as general as possible and only make a handful of assumptions that are listed below.

e Free exciton capture is a ' P spin state dependent Poisson process — the capture events
happen independently from each other and are on average separated by some fixed
time 7, which represents the effective lifetime of the neutral donor state averaged
over the two nuclear spin states.
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e Polarization transfer occurs instantaneously and only during free exciton capture
events, meaning that there is some 3!P spin state dependent probability for the
nuclear spin to flip when an exciton is captured. Assuming this also implies that
there are no other competing DNP mechanisms and that the thermal relaxation of
31P is negligible over the duration of the experiment. The > 5 h long longitudinal
spin relaxation time measured in our previous experiments [38] completely justifies
the latter assumption.

e Every free exciton capture is followed by Auger ionization, and every D° ionization
event is due to free exciton capture.

e Photoneutralization is a nuclear spin state independent Poisson process, such that
the average time a donor spends in the ionized state is some fixed 7;. Furthermore,
ionization events resulting from free exciton capture are relatively infrequent as com-
pared to the photoneutralization events, i.e., 7, < 7,.

e The Rabi strength (Q2) of the saturation drive is low enough, and 7; is long enough,
that the polarization loss during bound exciton lifetime is negligible as compared to
the saturation effects during the ionized state.

Even though the assumptions above are idealized, they can be taken to be approximately
true if the polarization transfer onto 'P is indeed resulting from the free exciton capture
events, and the number of donor ionization events other than Auger ionization does not
substantially outnumber the Auger events.

Given our assumptions, we can say that the short time evolution of the nuclear spin
density matrix p over a period At, 7; < At < 7, happens under an effective map ® (At),
such that

e+ 80 =0 @0 0] = (1= 21) 00+ Zoue o (1], (6.28)
where ®pg is a map acting on p upon the capture of a free exciton. ®pg encapsulates
the effects of both the polarization transfer and the saturation in the ionized state. It can
be seen that ® (At) inherits all of its properties from ®gg. Specifically, they share the
same steady-state density matrix pg, which satisfies ® (At) (pss) = PpE (pss) = pss, and
the difference quotient [p (t + At) — p(t)] /At = [Pgr[p (t)] — p(t)] /7 is only a function
of q)BE and Tn-

We proceed by constructing the map ®gg from its constituents, starting with the effect
of the saturation drive in the ionized state that we model as a pure polarization damping
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process ®g,¢, with no coherences being left after the application of ®g,. Assuming that
photoneutralization is a Poisson process with a characteristic time constant 7;, the amount
of polarization destroyed by saturation drive with amplitude €2 applied off resonance by ¢
is quantified by

o0 —t/Ti 3 o oz . ox oz
0 Ti Q ¢

where pgy = 72Q%/ [1 + 72 (¢* + Q2)]. Accordingly, we can write ®g,; for the nuclear spin
density matrix p as

Do = (1= E2Y 1) (110 1) (11 + 252 1) (41 1) (U + (6.30)
(1= 52) 1 Mol + p““ 1) (el (11

Next, we say that over some short time At there are two possibly distinct nuclear spin
state dependent probabilities — pgrr and pgg; — to catch a free exciton for states 1) and
|1), respectively. Only if a free exciton is captured is the 3P spin flipped with either of
the nuclear state dependent probabilities ppy or pry, followed by polarization loss due to
... Hence, we write ®pg in Equation (6.28) as

Ppg [p] =peEr@sat [prr [4) (T2 [1) (L + (1= pee) [1) (Mo [1) (1] + (6.31)
PBE @aar [Pry [1) (U p ) (T + (1= pey) 1) (H e ) (T +
(1= pset) [1) (T 11 (T + (1= poey) 1) (Lo ) (-

Substituting the definition of ®, into the above, and evaluating ® (At) [p] gives
@ (AL) [p] = [1) (Mo 1) (M1 + ) e [4) (U = (6.32)

BOXBE1 e (1~ ) + b 1) (1 2 11) (1] -
% 2pr) (1 = psa) + Psae] [4) (L o [9) (U +
251 [ (1= ) + ] 1) (1 11) 41+
BLXEEL 311 (11— ) + B 11 4101441

where Xpr+ = pprt/7n and xpr, = ppry/T. are spin state dependent rates for exciton
capture. It is rather easy to check, given 0 < xggs, 0 < xBry, 0 <ppp < 1,0 <pp; <1
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and At < 7, that ® is indeed a completely positive trace preserving linear map [120] for
all values of (,Q and 7; < 7,. The steady state density matrix pg (€2, () of ® is given by

1 2(xsrpry — XBEtPF) (14 72C%) + (XBR, — XBEt) T2Q% 0

s (2,0) ==+ —, 6.33
(810 2 2(xsrpry T xBErPFR) (14 77C%) + (XBEY + XBEY) 7702 2 (6.33)
whereas the initial rate of polarization build up evaluates to
1 1
7 (Trlozp (At)] = Tr[ozp (0)]) = 5 Tr o=@ (At) [1/2]] (6.34)
_ 12(xsrpry — xserpry) (1+77¢%) + (xBEL — XBE) 776
2 1477 (¢2+Q2) ’

for p(0) = 1/2. It is clear that, in the absence of very particular model conditions, the
initial 2 and ¢ dependent slopes are always different.

Combining the above, we see that the build up of magnetization starting from m,(0)
under 2 strong Rabi drive applied ¢ off resonance has the following behaviour in time:

m.(t) = p [1 —exp (—32 (xseupry + Xeepet) (1+ 77¢%) + (XBEL + XBEY) szz)]

z z 9 1+72(¢2+Q?)
t 2 (xBmipry + xBErPEt) (14 77°C7) + (XBEY + XBEY) 71292) (6.35)
5 1+ 72(C2+ ) L

+m. (0) exp (—

where

fhe = 2 (xmeypry — Xserprer) (14 7°C%) + (Xim) — XBEY) 770 (6.36)
© 2 (xsEwpr, + xBErPEr) (14 72C2) + (XBEL + XBEY) 7792

It can be seen that the general form of Equation (6.36) and Equation (6.35) is quite different
from the steady state magnetization, and build up behaviour, derived for the phononic
model in Equations (6.24) and (6.25), respectively. Again, in the absence of particular
values for xBg|, XBEt, PFy, Prt and 7;, the model predictions would differ. Specifically,
for terminal polarization equalling one in the absence of saturation drive p,(2 = 0) = 1
the equations are in agreement if and only if xpg, = kpo_poy + 2/T ° XBEt = KDo-pox,
pr, = 1/ (2 + /-@DoﬁDoXTlDO), prr = 0 and 7, = 1/kp+_po. These particular parameters
can be interpreted as describing a combined effect of spin state independent ionization

events that also result no spin flips at a rate of kKpo_ pox and exciton capture events at the
rate of 2/TP° that only happen for nuclear spin state ||) with probability one.

Again, as in the previous section, we have to allow for variations in xgg;, xBr, and
7; due to local light intensity variations within our sample. Using the same arguments as

146



before we say that xpg| (/) = apr !, xBet+({) = app! and 7,(1) = 1/(0%\/7), where apg,
appy and «; are constants, and the overall nuclear magnetization of the sample is given as

w0 = [t w0 |1-ew (- g7 )| (6.37)

Tee(Q,(, 1)
t
+ /d[ n(I) M.(0,1I)exp <—m> :
where
(1) = 2Dcmma(Dpr, = Xowy (Dper] [L+ 72106 + Deoma(D) = xom (DI (DR o)
Z 2 [xpry (Dpry + xBer(Dpry] [1+ 721 + Dxpry (1) + xper(D] 72102
and
Tye($.C. 1) = 2[1 4 72(1) (¢2 + 02

2 [xsey(Dpry + xsEr(Dpey] [+ 721 + [xse () + XBEA ()] 77(1)Q22
(6.39)

and the initial polarization M, (0, ) is dependent on the local light intensity I. The
key difference between Equation (6.37) and the overall magnetization evolution equations
derived for the phononic model in Equation (6.26) is that for the phonic model the constant
T1DO does not depend on the local light intensity. Hence, for any non-uniform light intensity
distribution the two models cannot perfectly agree as the parameter matching shown above
can only happen for the average local light intensity value (I).

6.4 Experimental Setup

In this section, we will introduce the low temperature NMR experimental setup that was
used for validating the phononic hyperpolarization mechanism introduced in Section 6.1.
The setup is illustrated by Figure 6.2, and can be divided into six main parts: a 6.7 T
superconducting magnet, an NMR console, a liquid helium (LHe) dewar along with the
pumping lines and pumps, cryogenic NMR probe insert, a room temperature optical setup
and the single crystal silicon sample. The first three parts of the setup are commercial
units and will be described only briefly, whereas the last three parts are not commercially
available, so we will dedicate the next three subsections on discussing those. In the last
subsection, we describe particular experimental configuration for all experiments to be
introduced in this chapter along with our ray tracing simulations that account for the light
intensity simulations inside the silicon crystal.
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6.7 T superconducting
- magnet

Room temperature
optical setup

Figure 6.2:  Experimental setup including the room temperature optical breadboard,
Bruker superconducting magnet, Janis liquid helium dewar along with the pumping lines
and the low temperature probe insert
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The superconducting magnet is a 89 mm bore Bruker magnet, designed for NMR
applications that has been energized to By = 6.7 T. The NMR console is a Bruker
Avance 300 spectrometer which combines an RF pulse generation unit and a 300 W Bruker
BLAX300RS high power amplifier on the transmission side and a broadband preamplifier
and a spectrometer unit on the receiver side. The cryostat is a wet Janis SCNDT system
with an 8 1 bath space for LHe and an exterior liquid nitrogen shield. The cryostat is
made mostly made of stainless steel and has an exterior tail of 3.375” diameter which is
inserted into the superconducting magnet bore, and extends past the sweet spot of the
magnet. The inner tail of the cryostat has a 1.88” diameter and fits the low temperature
NMR probe insert, the inner tail is custom manufactured out of aluminium in order to
reduce the presence of magnetic materials in the near vicinity of the sample. Both of the
tails, as well as the middle radiation shield of the dewar, have sapphire windows mounted
at the bottom to enable optical access to the sample from below. The bath space of the
cryostat is built to withstand a vacuum of 0.1 Torr, which provided us with an ability
to access temperature ranges between 1.3 K to 4.2 K by pumping on the helium space.
The cold time of the cryostat was ~28 h at atmospheric pressure, or 4.2 K, and ~10 h
at 1 Torr or 1.3 K. The pumping system was a RUVAC WS1001 roots pump backed by
a TRIVAC B D 65 B rotary vane vacuum pump. The inside pressure of the dewar was
monitored with a Granville-Phillips 275 Mini-Convectron pressure sensor, while the bath
space temperature was monitored with a LakeShore 370 AC resistance bridge connected to
a calibrated Cernox 1050-CU-1.4L thermometer designed for high magnetic field cryogenic
applications.

6.4.1 Cryogenic NMR Probe Insert!

The cryogenic NMR probe insert is designed to fit inside the 1.88” inner diameter tail
of the dewar. It consists of three main sections: the room temperature top of the probe
insert that can be seen in Figure 6.2, mid-section of the insert, and the NMR probe head
at the bottom. The entire probe insert is built around a 1/2” thin walled stainless steel
tube, the inside of which is used for guiding the liquid helium fill line when cooling down
the experiment. Stainless steel is used for construction due to its low heat conduction
properties. At the top of the tube is a vacuum feed trough for the helium fill line which
can be sealed with a brass plug after the fill is completed. The bottom 40 cm of the
central tube is made from a brass tube of matching dimensions that is silver brazed to
the stainless section, this is necessary because the weak magnetism of stainless steel could
otherwise broaden the NMR spectra.

!The author designed and built the cryogenic probe insert with Rahul Deshpande.
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The top of the probe insert accommodates: (i) four custom made vacuum feed-throughs
for tuning rods of the probe head capacitors, (ii) two vacuum feed-throughs for 50 Q
impedance transmission lines for the probe head circuit and for a pick-up coil, (iii) a four-
pin vacuum feed-trough for a thermometer. The top of the probe insert is clamped onto the
cryostat neck with an o-ring vacuum seal between the two. The mid-section of the probe
insert guides the two coaxial semi-rigid transmission lines along with the four tuning rods
to the probe head through a serious of equally placed, ~25 cm apart, copper baffles. The
baffles are concentric with the central stainless steel tube, and are silver brazed onto it, the
baffles are necessary to reduce the room temperature radiative heat load onto liquid helium
and to break the convection path of helium vapour when the dewar is kept at atmospheric
pressure. The walls of the central tube are perforated over the mid-section of the probe
insert at equal lengths of ~15 cm to prevent the formation of Taconis oscillations during
or after liquid helium fills. The coaxial cable for the pick-up coil has a stainless steel outer
conductor and a beryllium copper inner conductor to reduce the heat load on the liquid
helium. The coaxial cable for the probe head has copper inner and outer conductors for
all but the last ~35 cm-long section closest to the probe top, that is done to minimize
the signal attenuation from the probe head to the spectrometer pre-amplifier, whereas the
last ~35 c¢m section is again made from stainless steel/beryllium copper semi-rigid coaxial
cable. The mid-section of the probe insert also houses a Cernox 1050-CU-1.4L thermometer
that is mounted just above the probe head circuit to ensure accurate temperature readings
throughout the whole cool-down period.

At the bottom of the probe insert lies the resonant NMR probe head circuit, which is
used for delivering high power RF pulses to the *1P nuclear spins and also for the inductive
signal detection of the same spins. This circuit incorporates an inductive coil that houses
the sample and is adjusted to be located at the sweet spot of the superconducting magnet.
In order to study the photoionization and photoneutralization processes happening under
above gap light, we needed an NMR probe head that enabled us to drive, and possibly
detect, both of the resonance frequencies wsip and wpo. Given that we were dealing with
the same nuclei, we did not, however, need an ability to address both of the resonances at
the same time. This simplified the circuit design, and we opted for a single channel split
resonance probe rather than a dual channel NMR probe. The lumped element circuit for
the probe head is given in [10], and is illustrated by Figure 6.3. The only drawback of such
a circuit is that the presence of two inductive coils doubles the effective mode volume of
the resonator and therefore reduces the sensitivity of the probe if only one of the coils is
used for spin detection, as it is in our case.

The circuit consist of two LC oscillators formed by Ciy, L; and Cis, Lo, that have
nearly equal resonance frequencies and are coupled through a coupling capacitor C.. Such
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Figure 6.3: Circuit for the NMR probehead proposed in [10], and utilized for measurements
here. The circuit consists of four variable capacitors Ci;, Cio, Cp and C,, two inductor
coils L; and Ly with respective resistances of Ry and Ry. L is dedicated as the sample or
detection coil while Ly is housed in a grounded copper shield in order to minimize mutual
inductance between the two inductors.

a circuit has two nearby resonance frequencies, which can be made to coincide with wsip
and wpo with the right choice for Ciy, Li, Cio, Ly and C.. For maximum signal transfer,
the whole circuit is impedance matched to Z; = 50 2 with a matching capacitor C,,.

Both of the inductors are wound from rhodium flashed silver plated 0.7 mm gauge
copper wire manufactured for NMR purposes. The coils have 7 turns and an identical
inner diameter of 5.2 mm and pitch of 1.2 mm, which resulted L; = Ly = ~125 nH and
Ry = Ry = 0.1 Q. As it can be seen in Figure 6.3, only one of the coils is designated
for housing the sample during experiments, that detection coil is held in place with a coil
holder machined from PTFE. Mutual inductance between the two coils alters the desired
circuit behaviour and has to be mitigated, hence, the coils are physically separated as far
as possible within the probe head volume, and their axis are aligned to be perpendicular
to each other. Nevertheless, this does not completely remove their mutual inductance, and
therefore, a grounded copper shielding is added around L, as is indicated in Figure 6.3.

All four capacitors Cip, Cio, Cy, C, are picked to be Voltronics NMCB10-5CKE trimmer
capacitors with a 1 — 10 pF capacitance range that are designed specifically for cryogenic
NMR applications. The capacitors are manufactured out of strictly non-magnetic metals,
which includes all platings, and made with low temperature compatible dielectric sapphire.
All capacitors are connected axially to 1/8” G10 rods which are fed through vacuum fittings
at the top of the probe insert. This allows for tuning and matching the probe circuit at
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cryogenic temperatures, the upper and lower resonances of the circuit have tuning ranges
of 165-190 MHz and 110-122 MHz, respectively, while maintaining good matching — < 1%
reflections in power — to the external electronics.

Spin detection for this work was carried out only on the hyperfine shifted 3'P spins at
the wpo/(27) ~ 174.1 MHz frequency. Upon transmitting an RF pulse resonant with wpo to
the probe head circuit, the nuclear spins are nutated to the xy plane that is perpendicular
to the direction of the external field By. The zy plane component of the spin magnetization
in the sample will then precess around the z-axis at the Larmor frequency wpo/(27). The
oscillating magnetic moment along the detection coil axis induces an AC electromotive force
(emf) in the coil [51]. This emf resonantly drives the LC oscillator that is tuned to match
the Larmor frequency, thereby generating a current that is guided to the Bruker Avance 300
preamplifier through the same coaxial transmission line that is used for delivering the RF
excitation pulse. The preamplifier output is transmitted to the phase sensitive detection
unit of the Bruker Avance 300 spectrometer which splits the signal from the probe and
mixes the split signal down with reference and quadrature reference signals, respectively.
The reference signal frequency corresponds to that of the RF excitation pulses, delivered
by the spectrometer. Finally, the two mixed down signals are digitalized into two arrays of
time dependent data. For all measurements in this work the digitalization time step was
1 us and a total of 32,768 points for both the in-phase and quadrature components were
recorded in each experiment.

The spin signal that is detected immediately after applying the RF excitation pulse
is called the free induction decay (FID), since it always displays a decaying character
with some characteristic time constant 7. Frequently, this signal decay happens in an
exponential or close to exponential fashion. It should be noted here that the spin signal
detection always lags the RF excitation pulse end by an interval called the dead time, that
happens because the resonant LC circuit dissipates the excitation energy over some finite
time — immediately after the RF excitation one would only detect such probe ring-down
rather than the spin signal. For the data presented in this chapter we used a dead time of
40 ps. The discrete Fourier transform of the FID is often referred to as the NMR spectrum,
a representative NMR spectrum from the 3P nuclei in the 2*Si sample is given in Figure 6.4.
The 930 Hz linewidth seen in the figure is due inhomogeneous line broadening from silicon
magnetic susceptibility and B, inhomogeneities, the 3'P nuclear spin TQDO in the same
material has been measured to be 0.421 s at 1.7 K [38] with a Hahn echo experiment.
All data points in the coming sections of this chapter correspond to various integrated
amplitudes of the NMR spectra collected. The mean magnetization, or polarization, of
nuclear spins is proportional to such integrals provided that the RF excitation pulses used
are identical. Nevertheless, our inductive spin signal detection on its own does not enable
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Figure 6.4: A sample NMR spectrum for the 3'P nuclei in the isotopically enriched silicon-
28 crystal. Zero frequency in the figure corresponds to 174.10462 MHz, the FWHM of the
spectrum is 930 Hz, the data was collected over 16 scans by applying a 2.5 us excitation
pulse after 400 s long illumination with above gap light.

quantifying the absolute magnitude nor the direction of the 3'P spin polarization.

In order to study the photoionization and neutralization processes, we needed to cal-
ibrate the Rabi field strengths at both wpo and wsip. At wpo frequency, we needed the
calibration to maximize the FID signal amplitude and thereby the signal to noise ratio
(SNR) of our detection scheme. At wsip frequency, the calibration was necessary to test
the model introduced in Section 6.3. For our probe circuit in Figure 6.3, both of the Rabi
strengths depend a lot on the particular tuning configuration, and had to be measured
before each experiment. wpo can be calibrated simply by carrying out a Rabi experiment.
For that, RF excitation pulses of different duration are applied at some certain fixed ampli-
tude, and the resulting integrated signal amplitude is recoded. Plotting out the integrals
as a function of pulse durations will reveal a decaying sinusoidal shape the inverse period
of which corresponds to the Rabi frequency at wpo. In practice, we usually searched for
the first zero crossing of the Rabi curve, which happens at half the Rabi period.

Direct inductive detection of 3'P nuclei at wsip frequency was impossible since the
number of ionized defect sites under illumination is very low, and the duration of the
ionized state is around a few microseconds. Therefore, the Rabi field strength at that
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frequency could not be calibrated like the one at wpo. In order to calibrate the Rabi field
strength at wsip frequency we used a pick up coil device that was weakly coupled to the
NMR detection coil. This device is a single 3 mm loop of 1 mm gauge copper wire that is
connected in series with a 50 €2 thin film resistor. The relatively low inductance of the wire
loop ensures a relatively similar frequency response at both of these frequencies, as the
complex impedance of the device is close to Zy = 50 2 real impedance at both frequencies.
The thin film resistor, on the other hand, ensures that the resistance of the device, and
hence its RF properties, are not much different between room temperature and cryogenic
temperatures.

The pick up coil device enabled us to measure the relative voltage amplitudes generated
in the detection coil at wpo and wsi1p with a Tektronix DPO 4104 digital oscilloscope for any
given RF excitation pulse amplitude and frequency. Thereby, we could convert the Rabi
field strength at wpo to that at wsip. When doing so, we accounted for two factors that
alter the conversion from plainly equating the pulse amplitudes for yielding equal Rabi
strengths. First, the transmission properties from the pick up coil device to the digital
oscilloscope were not exactly the same at both of these frequencies, this was corrected
for by measuring the S;; transmission properties of the device with a vector network
analyser. Secondly, and much more importantly, when converting the Rabi strength from
wpo to wsip, we had to account for the difference in the effective gyromagnetic ratios
for the ionized phosphorus nucleus and the hyperfine coupled 3'P. The ionized 3!'P nuclei
have a gyromagnetic ratio that is very close to that of the bare nuclei, i.e., ys1p/(27) =
17.2515 MHz/T [103]. Nevertheless, the hyperfine coupled 3P nuclei experience an effective
increased gyromagnetic ratio, which appears because the time-dependent magnetic field
generated by the RF excitation pulse also adiabatically alters the spin state of the defect
electron. This electronic spin state evolution translates to an extra effective Rabi field for
the nuclear spin through an effective time-dependent modulation of the hyperfine coupling
by the electron spin. Such enhanced gyromagnetic ratio is well known and exploited in
electron nuclear double resonance experiments [03], the effective gyromagnetic ratio for 3'P
at wpo is then given by

A:(0)

2(,(}31}3

Ypo = (1 + ) Ysip = 1.5107ys1p (640)

for our values of A.(0) = 117.52 MHz and wsip = 115.3 MHz. This factor of 1.510 was
accounted for when we calibrated the Rabi field strengths at wsip through the ones at wpo.
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Figure 6.5: Room temperature optical assembly configuration used for this work compris-
ing two lasers and a flip mirror to switch between them, a variable optical attenuator, two
irises, two lenses and a mirror to guide the laser beams onto the silicon sample inside the
helium bath space of the cryostat.

6.4.2 Optical Setup?

The room temperature optical setup can be seen at the bottom of the photograph in
Figure 6.2, and the schematic configuration of it is shown in Figure 6.5. Since most
of the parts for the optical setup have been purchased from Thorlabs, we specify their
part numbers as (TL: #), where # stands for Thorlabs part number. The entire room
temperature optical setup is mounted onto an aluminium optical breadboard (TL: MB648)
that measures 6” x48” x1/2” and stands on five 5”-tall stainless steel posts (TL: P5) that
have been epoxied onto the floor underneath the magnet, to ensure that the breadboard
does not shift with respect to the magnet bore during, or in between, the experiments.

Here, we list all of the optical components shown in Figure 6.5, and describe their
respective function.

e The 1047 nm above band gap laser is a LRS-1047 DPSS Laserglow laser with output
power of 429.6 mW in a 2 mm (1/e* width) laser beam [59]. This laser is used
for providing the optical excitation of the silicon sample, and is mounted onto a
4”7 %67 x1/2” aluminium breadboard (TL: MB4) in order to provide the laser with a
necessary heat sink. The breadboard is, in turn, mounted onto a two-axis translation

2The author designed the optical setup described in this subsection. The assembly was done by the
author and Natsumi Komatsu.
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stage (TL: PT102 & PT1) which enables aligning the laser beam path precisely
through the irises.

The 532 nm green alignment laser is a LBS-532 Laserglow laser with output power
of 5 mW in a 4 mm (1/e? width) laser beam. The beam width of the alignment laser
can be changed with iris #1 in Figure 6.5 during the alignment procedure.

The two irises (TL: ID36) are used for aligning the optical paths of the alignment
laser and the 1047 nm laser. Once the optical paths of the two lasers are aligned,
we can use the visible alignment laser for adjusting the laser spot position after the
NMR probe head and the sample have been cooled down.

The periscope (TL: RS99) that includes two silver mirrors (TL: PF10-03-P01) is
used for setting the alignment laser beam height to be exactly the same as the
1047 nm beam height. One of the periscope mirrors can be positioned with three-
axis adjustment screws.

The flip mirror (TL: FM90, POLARIS-K1 & PF10-03-P01) is used for switching
between the alignment laser and the 1047 nm laser, and can also be positioned with
three-axis adjustment screws. The combination of the adjustable periscope mirror
and the flip mirror makes guiding the alignment laser through the irises a rather
simple task.

The variable laser beam attenuator that is aligned perpendicular to the laser beam
and comprises four neutral density filters — (TL: NE03B-B, NE06B-B, NE10B-B &
NE13B-B) with respective optical densities of 0.3, 0.6, 1.0 and 1.3 — that are mounted
within a filter wheel station (TL: FW1A).

The two convex lenses (TL: LA1708-B & LA1131-B) with focal lengths of 20 cm and
5 cm are mounted perpendicular to the laser beam path, such that their focal points
coincide. The lenses are used in the telescope configuration for magnifying the laser
beam width four times. Lens #1 is mounted onto a linear translation stage (TL:
PT1) which greatly simplifies the task of setting up the telescope. The collimation
of the laser beams is carefully checked four meters away from the lenses because this
is critical for our light distribution modelling that will be described in one of the
following sections.

The mirror (TL: PF10-03-P01) and its adjustable three-axis mount (TL: POLARIS-
K1) are used to direct the horizontal laser beam through the three sapphire windows
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at the bottom of the cryostat onto the sample. The mirror lies below the supercon-
ducting magnet on the axis of its bore. The three-axis adjustment screws are used for
precise positioning of the laser spot before every experiment. It should be noted that
the alignment laser spot on the sample is easily visible through the sapphire windows,
both when the setup is at room temperature or when at cryogenic temperatures.

The alignment laser is not crucial, however, it is incredibly useful for two reasons. First,
aligning the laser beam with the optical axes of the lenses is extremely tedious with an
infrared laser, the spot of which is not visible. Secondly, since the interior tails of the
liquid helium cryostat and the probe insert tend to move during the cool down process,
sometimes as much as a few mm, it is extremely useful to be able to align the laser beam
once the setup has reached its base temperature. Without a visible alignment laser this
would not be possible. Before each experiment, we first check that both the 532 nm and
the 1047 nm laser are perfectly aligned through the centres of the two irises. We then
use the green laser to align the laser spot exactly on the sample and finally switch to the
1047 nm laser to perform the experiments.

6.4.3 Silicon-28 Sample®

The material is a float-zone grown, extremely pure, dislocation free, isotopically enriched
28Si single crystal produced as part of the Avogadro project [3]. The 28Si concentration in
the material is 99.9954%, the residual 46 ppm is expected to be mostly 2°Si [1]. The crystal
is doped with phosphorus at Nasip = 1.5 x 10'® cm ™3, which was introduced as phosphine
gas during the final growth run. Such doping method should ensure that the phosphorus
donor defects are distributed uniformly inside the material. The material also contains a
residual boron acceptor concentration of 10'* ecm™ making it an n-type semiconductor.
Assuming uniform distribution of defects, and ignoring the silicon lattice effects due to
their much shorter length, the nearest neighbour pair distribution is given by

4
w(r) = 47 Na1pr? exp (—gﬂr?’Nglp) , (6.41)

corresponding to the most likely nearest neighbour distance of (27 Nsip)~!/3 = 47 nm. Our
sample was cut to its rectangular 2.12 x 2.22 x 8 mm? size from the material roughly along
the three crystallographic axis with a diamond saw. The cutting procedure creates surface
damage, mechanical strain and electronic surface defects [241] — all of which would affect

3The sample was provided through a collaboration by Professor Micheal L. W. Thewalt.
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our studies — therefore, the sample was etched in a 1 : 10 solution of HF /HNOj to remove
such surface effects.

6.4.4 Experimental Configuration and Light Distribution®

All experiments were performed at 1.340.05 K in a superfluid *He bath, this ensured that
the sample remained well thermalized throughout the experiments, as well as the absence
of bubbles that the laser beam would otherwise scatter off of. The latter is especially
important to be able to accurately model the light deposition in the crystal. We measured
the bare phosphorus Zeeman splitting to be wsip/(27) = 115.31163 MHz at room tem-
perature with a liquid state trisodium phosphate water solution sample. This yields an
wpo/(2m) = (wsip + Ac/2) /(2m) = 174.10462 MHz resonance frequency for the hyperfine
coupled phosphorus nuclear spin in the ground state manifold of the electron spin [107] as
is seen in Figure 6.4. The resulting electron Larmor frequency of w./(27) = 188 GHz im-
plies that at 1.3 K the electron occupies its spin ground state with 99.9% probability. The
same liquid state sample was also used for adjusting the cryostat and the dewar position
inside the magnet bore, to precisely locate the sweet spot of the magnet by minimizing the
spectral linewidth from that sample. Once the configuration yielding the narrowest and the
most symmetric Lorentzian line shape was located, the dewar was fixed onto the magnet
with double sided tape to prevent it from moving during and between the experiments.

The saturation drive at frequencies near wsip at high Rabi strengths /(27) = 4 kHz
was delivered directly by the Bruker Avance 300 spectrometer, and amplified by its 300 W
amplifier. Conversely, low Rabi strength €2/(27) < 1 kHz saturation drive was delivered by
amplifying a clean RF tone generated by the spectrometer signal generation unit (SGU)
with a Mini Circuits ZHL-32A low noise amplifier, the output of which was filtered by a
K&L tunable bandpass filter and fed to the probe circuitry through the reverse port J4
of a Werlatone C5964 30dB dual directional coupler. The latter configuration provides a
much less noisy saturation drive, which is necessary for experiments that have a longer du-
ration over which the broadband noise outputted by the power amplifier had a measurable
saturation effect on its own.

The sample was mounted inside a 4 mm ID polished sapphire tube in a strain free
manner, this provided electrical isolation from the NMR coil wound tightly around the
sapphire tube. An illustration of the sample mounting configuration, along with the laser
beam can be seen in Figure 6.6(a). The laser beam was passed through the optical access

4The COMSOL light deposition simulations described in this subsection were carried out by Thomas
Alexander, the data analysis was conducted by the author.
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windows of the cryostat and hit the sample tube perpendicular to its axis. We measured
the total laser power entering the “He bath space to be 218 mW. To adjust the laser power
we used either absorptive neutral density filters or the power variation feature of the laser;
in all cases, we characterized the output power and its drift with a power meter.

The reflective, silver plated, copper coil created a periodic grating of light intensity
across the length of the sample. We simulated this three-dimensional pattern with COM-
SOL by tracing 200,000 rays in a 8 mm (1/e* width) Gaussian beam profile through the
coil-sapphire tube-sample assembly and recording the laser power deposited in each roughly
100 pm x 100 pm x 100 pm-sized volume element of the Si crystal. The simulation tracked
each ray until it excited the coil-tube-sample region of space. The mesh dimensions for
the ray tracing simulations were picked to be four times greater than our upper bound
for the diffusion length of free excitons and at least an order of magnitude shorter than
the mean free path of 100 GHz phonons. Chen and Lyon [16] have measured the free
exciton diffusion length for 5 x 107!% cm =2 phosphorus doped silicon at 12 K to be 24 um.
We expect the free electron diffusion length to be shorter than that of the free excitons’.
Electron mobility measurements at 1.25 K for 7 x 107 cm™ estimate these lengths to
be on the order of 10 pm [25]. On the other hand, Hao and Maris [15] quoted 100 GHz
phonons to have a mean free path of 3.3 mm at 30 K in natural abundance silicon.

We show an image of the resulting surface light intensity pattern superimposed on the
sample in Figure 6.6(a). This tracking included all reflections from any surface of the coil
and any refraction due to the sapphire tube and the sample. For the ray tracing simulations
we assumed the coil surface to be perfectly reflective; for silicon and sapphire we used their
respective refractive indices ng; = 3.41 [27] and ngappnire = 1.75 [21] for 1047 nm wavelength
at cryogenic temperatures. For silicon we used a penetration depth A = 26.9 cm quoted
by Macfarlane et al [09] for 1047 nm light in intrinsic silicon at 4.2 K, which was used to
calculate the laser power absorbed in each mesh element. We estimated the aggregate laser
power deposited in the sample at full laser power to be 0.232 mW, which would correspond
to uniform illumination with light intensity at 166 mW cm™2. This would be a reasonable
estimate even if the penetration depth is somewhat incorrect.

6.5 Data, Modelling, Results’

In this section, we first introduce the experiments performed along with the data collected,
followed by the analysis and precise descriptions of our modelling and fits. All experiments

5The author collected the data presented in this section with Rahul Deshpande and Thomas Alexander.
The modelling and analysis was conducted by the author.
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Figure 6.6: (a) The RF-coil, sapphire sample tube, silicon sample and laser beam config-
uration. The sample dimensions are 2 x 2 x 8 mm?®. The coil blocks and reflects part of the
light and the sample tube acts as a lens, this generates a highly non-uniform distribution
of light across the sample. We have superimposed surface light intensity patterns from
COMSOL ray tracing simulations on the surface of the sample, and we also include an
identical copy of the sample outside of the tube to better illustrate the non-uniform nature
of the light intensity. (b) The probability 1 of finding a 100 x 100 x 100 zm? volume element
inside the sample with a given light intensity I extracted from the ray tracing simulations
illustrated above.
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that we undertook followed the sequences given either in Figure 6.8(a) or Figure 6.9(a).
In both cases, the experiment starts with a train of 7/2 pulses resonant with D° nuclei
to zero the 3!'P spin polarization while the laser is off. This is followed by a period of
laser illumination and simultaneous RF saturation drive near the resonance of the Dt
nuclei. Finally, the laser is switched off and a FID signal is collected after applying a
readout 7/2-pulse on the D nuclei. All data points presented correspond to integrated
FID spectra, the number of averages for each measurement was chosen to yield roughly the
same SNR for all data points. In each case, we turned the laser off 500 ms before collecting
the FID to ensure that transient effects of the photoexcitation, such as shortening of TQDO,
would not affect the measurement. Because thermal relaxation time scales of 3P spins
under no laser illumination exceed 5 hours [38], the signal decay over the delay period is
negligible. Our first experiment followed the sequence in Figure 6.8(a). We measured the
3P spin polarization build up in time at four different laser powers Plase: while applying
no saturation pulse, i.e., {2 = 0. The data collected is displayed in Figure 6.7 and exhibits
exponential behaviour with the time constant 7; IDO(Plaser) inversely proportional to Pjager,
whereas the final polarization is independent of Pjaecr.

To minimize the experiment time, we performed the rest of the experiments at full
laser power. Our second experiment again followed the sequence in Figure 6.8(a). This
time we varied Av of the saturation drive at two distinct drive strengths Q/(27) =
{120 Hz,240 Hz}, and measured the resulting spin polarization at the end of a 160 s
long lasing period. The resulting data is given in Figure 6.8(b). Importantly, we ob-
served a paramagnetic shift in the D% phosphorus resonance frequency, measured from
ws1p, which can be seen as a horizontal offset from the origin, denoted by 9, for the dips
in Figure 6.8(b). We used this value for § in both of the subsequent experiments.

We also measured build up data at three different saturation drive strengths 2/(27) =
{0 Hz, 120 Hz, 240 Hz} applied on resonance Av = § with the ionized nuclei. This experi-
ment employed the protocol in Figure 6.8(a) by varying the lasing duration, the resulting
data is shown in Figure 6.8(c).

Finally, we designed an experiment, illustrated by Figure 6.9(a), to test our model at
saturation drive strengths an order of magnitude stronger than the ones used for the exper-
iments in Figure 6.8. For such high saturation drives, the terminal nuclear polarizations are
very low and experiments of Figure 6.8(a) kind become impractical due to their low SNR.
Consequently, we performed a measurement that involved first bringing the nuclei close to
their terminal spin polarization by lasing the sample for 160 s, thereafter, we turned on a
strong €2/(2m) = 4 kHz resonant Av = § saturation drive, which for half of the runs was
preceded by a 7 pulse at the D resonance to flip the spin orientation. The spin flip was
performed in order to investigate whether the polarization decay starting from 3'P spin
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Figure 6.7: 3!'P polarization build up data measured at four laser output powers as a
function of lasing time. The relative laser power corresponding to a particular data set,
denoted by a unique marker and color, is indicated on the horizontal axis of the inset. All
build up curves are well described by exponentials that have been fitted to the data, and
reach the same plateau value. We have extracted the build up time TlD ’ (Plaser) for each
curve, and show that the inverse of TlD0 is linearly proportional to the laser power in the
inset.
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Figure 6.8: (a) Experimental sequence used for collecting the data in Figures 6.7, 6.8(b)
and 6.8(c). (b) 3'P spin polarization at the end of a 160 s lasing/saturation period for
Q/(2r) = {0 Hz,120 Hz, 240 Hz} for various Av values. The horizontal axis origin is at
the 3P spin resonance wsip/(27) = 115.3116 MHz, while the gray vertical line denotes
our best estimate for the paramagnetic shift 6. The Q/(27) = {120 Hz,240 Hz} data
have been fitted to Equation 6.26, and the fits are presented in the figure. (c) 3P spin
polarization at the end of various lasing/saturation periods for Av = ¢ and Q/(27) =
{0 Hz, 120 Hz,240 Hz}. The vertical dash dotted line marks the 160 s lasing/saturation
period used for collecting the data in (b). The Q/(27) = 0 Hz data has been fitted with
an exponential, the time constant of which is TIDO, while the dashed lines laid over the
Q/(2m) = {120 Hz, 240 Hz} data sets are our model predictions for the signal. The inset
displays the 3P spin polarization measurements at short lasing periods. (d) The same data
as the Q/(2m) = 0 Hz measurements in (c) fitted with a single exponential (solid line) and
local light intensity dependent integrated signal [ dI n(I) (1 — e #'*) (dotted line), where
[ has been adjusted to yield the best least squares fit to the data.
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Table 6.1: Parameter estimates extracted from the data presented in Figures 6.8(b) and
6.8(c)

Parameter Estimate ‘ Parameter Mean value!
TP(I) 8540 +£250 s ™% TP’ 515+ 1.5s
apo.pox  T2£0.7Hz 9% | kpo.poy  1.24£0.1 kHz
O p+_.po 36 + 2 kHz M;LW Kp+_.po 470 £+ 30 kHz

d/(2m) —17 £ 2 kHz

Calculated for mean light intensity of (I) = 166 mW cm™ >,

state [1,,) is the same as it is for the spin state ||,). We present the data collected in
Figure 6.9(b).

For the analysis, we converted the laser power deposition data from COMSOL simula-
tions into local light intensity I by assuming that the power deposited in each mesh element
with area A and thickness Az could be approximated by I A (1 — e‘Az/A) ~ [AAz/\, where
A is the penetration depth. As we argued earlier, given that A is two orders of magnitude
longer than the sample thickness, our values for I should be good estimates even if the
value we used for A is not exact. We binned the light intensities for all mesh elements
yielding the light intensity distribution n(/) displayed in Figure 6.6(b).

To extract apo_, pox and ap+_, po that determine the free exciton capture rate xpo_, pox (1)
and the photoneutralization rate kp+_po(I), we first found TP ° by fitting an exponential
to the Q = 0 Hz dataset in Figure 6.8(c). Given T”° = 51.5 s and the simulated 7(I),
we searched for 0, apo_pox and ap+_po that would best fit Equation 6.26 to the data in
Figure 6.8(b) as a function Av, simultaneously for ©/(27) = 120 Hz and Q/(27) = 240 Hz,
while having set ¢t = 160 s and M”" = 0. We note that our *'P FID spectra always had
linewidths < 1 kHz, hence, we justifiably ignored any B, inhomogeneities in our model.
The resulting values for §, apo_pox and ap+_po are quoted in Table 6.1, along with the
light intensity dependent value for TlDO, the latter is given as a function of average light
intensity (I) = [ dI n(I)I. In the same table, we also quote the rates £po_ pox and Kp+_ po
corresponding to the average light intensity within our sample. It was stated in [101] that
a free exciton capture should occur over a time period between 10 ps to 100 us at their
laser intensity of 400 mW and beam diameter of 3 mm. For such beam intensity our value
for apo_pox predicts an average capture time of 25 us, which lies perfectly within that
range.

We used the parameters given in Table 6.1 along with n(/) to simulate the magnetiza-
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Figure 6.9: (a) Experimental sequence used for collecting the data in (b). The 160 s
lasing period brought the spin polarization to 96% of its terminal value. For half of the
measurements a m-pulse resonant with D nuclear spins was included at the end of the lasing
period to flip the spin orientation. The 7 pulse length was ~13 us, hence, its inclusion did
not affect the effective experiment time. (b) *'P spin polarization as a function of saturation
time, the round /blue (square/yellow) markers correspond to measurements without (with)
the application of the 7 pulse. The dashed lines correspond to our model prediction for
the signal decay.
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tion dynamics, as predicted by Equation (6.26), for build up curves that used MZD0 =0,
Av = § and Q/(27) = {120 Hz,240 Hz}. We present the model predictions with ex-
perimental data in Figure 6.8(c), both of the simulations follow the data very accurately
providing a self-consistency check for our model. We also simulated the spin polarization
decays in Figure 6.9(b) as predicted by Equation (6.26) for 2/(27) = 4 kHz, Av = §
and MZD0 =+ [1 — exp (—160 S/T1D0>] Again, our predictions closely follow the data,

the slight discrepancy present could result from finite kpox_ p+ effects that may become
important at higher saturation drives or small deviations between the simulated and ex-
perimental light intensity distributions within the sample.

In deriving Equation (6.26), we used an approximation Kpox_p+ > Kpo_poy and
Kpox_p+ > Kp+_po. From physical considerations we expect Kp+_po > Kpo_pox since
the former rate arises due to electrostatic attraction between an ionized nucleus and an
electron, whereas the latter rate involves an effective attraction between two neutral objects
— a neutral donor defect and a free exciton. This assumption was also reinforced by
the absence of measurable signal difference between detecting an FID with or without
the laser on. Furthermore, it was reasonable to assume kKpox_p+ > Kp+_po since the
data presented in Figure 6.8(b) did not show any qualitative evidence of hole hyperfine
couplings. The parameter estimates in Table 6.1 are self-consistent with the aforementioned
approximations. We also verified that full simulations with the finite kpox_p+ = 3.7 MHz
[100], and a range of values for Aj, and T)”"X | yielded almost the same simulated curves as
seen in Figures 6.8(b), 6.8(c) and 6.9(b). Consequently, we cannot rule out A, values even
within the frequency range displayed in Figure 6.8(b), that would require an experiment
employing higher Rabi strengths or light intensities.

So far, in this section, we have presented our data and verified its consistency with
our model. We will now highlight its features which support the argument for a phonon
mediated hyperpolarization mechanism acting in our experiments. Our data shows two
separate pieces of evidence for such a mechanism: the exponential nature of the build up
curves in Figure 6.7 and the short time behaviour of the build up curves shown in the inset
of Figure 6.8(c).

Our simulations of n(/) in Figure 6.6(b) indicate that the local light intensity within
our sample was highly inhomogeneous. Because the mean free path of free excitons in our
crystal is likely of order 10 pm [16], we would expect a DNP process involving the formation
of bound excitons to yield very different local polarization build up rates inside the sample.
In such a case, the signal build up in Figure 6.7 should follow some non-trivial rather than
the simple exponential trend observed. That is because nuclear spin diffusion cannot be
assumed to average out the spatial variations in spin polarization over our experimental
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time scales, given that the most likely nearest neighbour 3'P 3! P dipolar coupling at
our donor concentration is ~0.1 mHz. As discussed in Section 6.2, the number of bound
excitons present in some portion of the sample is linearly proportional to the local light
intensity /. Consequently, we expect the local light intensity dependent polarization build
up to follow a trend [ dI n(I) (1 — 6*5”), where [ is some proportionality constant. We
searched for the § that yielded the best least squares fit to the Q/(27) = 0 Hz data in
Figure 6.8(c), we display that fit along with the data in Figure 6.8(d). It can be seen
that such integrated signal deviates considerably from the data. Meanwhile, sub-terahertz
phonon mean free paths in silicon at 30 K have been measured to be several mm [15], almost
equalling the dimensions of our sample. Phononic process would therefore be insensitive
to the local light intensity within our sample, and result in a simple exponential build up
curve as observed.

Furthermore, In Section 6.2 we showed that, if the polarization transfer happens for
neutral donor defects D, the Rabi drive 2 dependent build up curves should all have equal
) independent initial slopes, the experimental data shown in the inset of Figure 6.8(c) is
consistent with that. Such behaviour is expected to appear whenever the DNP mechanism
is largely uncorrelated with the exciton capture events since it implies that there exists a
finite time, for which the number of defect sites that have experienced a capture is low
enough, such that the polarization growth is fully determined by TIDO.

In Section 6.3, we constructed a free exciton capture dependent hyperpolarization model
under very general assumptions. It is clear from Equation (6.37) that M,(t) — the overall
nuclear polarization of the sample — is fully specified by 5 independent parameters apgy,
QBEY, Prl, PR, and ;. We pointed out that for uniform light intensity within the sample the
there exist a particular choice for these parameters which yields the same model predictions
as the phonic model. For that parameter choice the process could be interpreted as a
combined effect of spin state independent ionization events that result no spin flips at
a rate of Kpo_poyx, and exciton capture events at the rate of 2/T1DO, that only happen
for nuclear spin state ||) with probability one. Under that interpretation the quantity
2/(TP" kpo_poy) gives us a ratio of spin flipping ionization events versus ionization events
that do not alter the nuclear spin state. For the TIDO, and the mean kpo_ pox values, given
in Table 6.1 that ratio is 3.2 x 10~°, which implies that the correlation between these events
can only be very weak.

Nevertheless, for non-uniform light intensity distribution the two model predictions
given by Equation (6.26) and Equation (6.37) cannot be made to agree due to the local light
intensity independent polarization mechanism acting in the case of the phononic model.
We searched for apgy, aggt, pry, prr, and o; that would best fit the data presented in
Figure 6.8(b) and 6.8(c) to Equation (6.37), as a function of ¢, Q and ¢ for MP’(0) = 0 and
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Figure 6.10: (a) Build up data from Figure 6.8(c) and our best fits to Equation (6.37) for
Q/(27) = {0 Hz, 120 Hz, 240 Hz}, Av = § and MP’(0) = 0. (b) Data from Figure 6.8(b)
and our best fits to Equation (6.37) for ¢ = 160 s, ©/(27) = {0 Hz, 120 Hz, 240 Hz} and
MP’(0) = 0.

the ¢ value given in Table 6.1. We used this particular data set for our fits because the two

experiments involved were guaranteed to start from uniform initial nuclear magnetization
. . . 2

equalling zero; the parameters yielding the best fit to the data were aggy = 9 +8 Hz I3,

cm

appr = 65 Hz €2 pry = 0.00002740.000025, pr = 041075, and a; = 33416 kHz 22,

our best fits along with the data are given in Figure 6.10(a) and 6.10(b). It is eminent
that the fits to our data are rather poor, which is also reflected in the huge error bars for

the parameters.
We also simulated the predicted magnetization dynamics for the experimental data
presented in Figure 6.9(b), given the parameter values for agg|, apgr, prj, pre, and «;

quoted above. For this simulation the initial light intensity dependent polarization M, (0, I)
in Equation (6.37) was taken to be the polarization generated by 160 s of irradiation under

above gap light, i.e.,

20:BE|PFy )
M,(0,1) = — 1) (1 —exp|[—ti(«a — 7 6.42

where t = 160 s. We present our predictions for the polarization dynamics along with the
experimental data in Figure 6.11. The starkest discrepancies between our experimental
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Figure 6.11: Data from Figure 6.9(b) and the predictions by Equation (6.37) for Q/(27) =
4 kHz, Av = 0, given the parameters extracted from the fits in Figure 6.10.

data and the dynamics predicted by the free exciton capture dependent hyperpolarization
model seen in Figures 6.10 and 6.11 arise because of the local light intensity I dependent
nature of the that model. The @ = 0 build up curve, shown in Figure 6.10(a), reflects
the same deviation from an exponential build up as was already shown in Figure 6.8(d),
this is, of course, because Equation (6.42) matches the functional form of the I dependent
build up dynamics used for produce the latter.

6.6 Conclusions and Discussion

We have demonstrated fast hyperpolarization of 3'P donor nuclei in silicon. Our polariza-
tion build up time constant of 51.5 s is a factor of three shorter than previously reported
results under a very similar optical DNP scheme [77]. We have also shown that local light
intensity dependent polarization mechanism is not consistent with our data and that our
results would allow only for a very small ~107 correlation between nuclear spin flip and
photoionization events.

It has to be said that the 3'P spin probe, that we used for characterizing the free
exciton capture events, detects only the rate of transitions into a donor state with vanishing
hyperfine interaction, along with the average time spent in such state. Hence, we must
rule out other mechanisms that would yield similar experimental signatures. There are
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two distinct types of such processes: ionizations events of other origin and events that
transform the electronic state of the donor to one with no hyperfine interaction, such as
excitation into higher orbital states through phonon absorption or the formation of D~
states by trapping of free electrons. Ionization events other than D°X Auger events could
potentially arise from direct ionization of donor electrons with 1047 nm photons — a highly
non-resonant process, as it requires electronic states 1139 meV above the conduction band
minimum [127] — or impact ionization events that involve Auger electrons or high energy
phonons, which could both have up to 1100 meV of energy.

In this paragraph, we will rule out processes that produce electronic states that have a
vanishing hyperfine interaction with the 3'P nucleus. Excited orbital states of the defect
electron have vanishing Fermi contact hyperfine interaction with the 3'P nucleus, and the
electron could theoretically be driven into these states by the absorption of specific THz
phonons. Nevertheless, the lifetime of 2py state in isotopically purified 28Si at ~5 K has
been measured to be 235 ps [53], while the rest of the orbital states are expected to have
shorter lifetimes [119, ]. These lifetimes would be at least three orders of magnitude
shorter than the 1/kp+_po measured. We can also ignore the trapping of free electrons
at the phosphorus defect sites discussed and utilised in previously reported measurements
by [112, 80], even though the two-electron D~ electronic state of the donor has near zero
hyperfine interaction with the defect nucleus. The results in [30], carried out at very
similar temperatures and magnetic fields as ours, indicate that in the presence of above
band gap light the lifetimes of D~ states are up to two orders of magnitude longer than
the 1/kp+_po in our experiments. Therefore, we are justified to conclude that the events
that result vanishing hyperfine interaction for the 3'P nuclei are indeed ionization events.

It is reasonable to assume that for n-type silicon crystals, irradiated with above gap light
at low temperatures, almost every free electron-hole pair generated will end up forming a
free exciton [1 18] and almost every free exciton ends up bound to a defect site [16, 11],
such bound exciton complexes do in turn almost always recombine through the Auger
ionization process [100, |. Hence, we can safely assume that the direct photoionization
events will be greatly outnumbered by the Auger ionization events. We are also justified
to ignore the generation of bound multiexciton complexes, which do themselves lead to
Auger ionization events, because such events are rather infrequent at our laser intensities
and should not constitute more than 5% of the events even for the brightest spots in our
sample [111]. Nevertheless, since the Auger electrons have to dissipate around 1100 meV
of kinetic energy in the crystal it could theoretically lead to impact ionization events that
accompany the Auger ionization events.

In order to conclusively attribute the photoionization observed to D°X Auger events,
we will now compare the photon absorption rate in our sample with our estimate for the
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total rate of phosphorus donor defect photoionization events integrated across the sample.
From the data we presented in the previous section we can estimate the rate of donor
ionizations events integrated across the sample at full laser power as

oox
N / Al (1) 22D N Ve apopox ] = 2.3 x 10 H, (6.43)
OéD+_)D0\/T

where n(I)apo_,poxI/(ap+_po VI )Ns1p Vaample stands for the number of ionized donors at
a given light intensity I, while the sample volume Vigmple = 2.12 X 2.22 X 8 mm? and the
donor defect concentration Naip = 1.5 x 10 cm™ are the ones given in Section 6.4.3.
Here, we have ignored the rate kpx_p+, since it is much greater than kp+_po for all
values of I. At the same time, the photon absorption rate in our sample can be estimated
from the total laser power deposited 0.232 mW, that was given in Section 6.4.4, and a
single photon energy of 1184 meV for 1047 nm wavelength. The photon absorption rate
evaluates to 0.232 mW /(1184 meV) = 1.2 x 10'® Hz. The fact that these estimates are
reasonably close, and most importantly, that the estimated photon absorption count does
not outnumber the estimated ionization events makes a very strong case for assuming that
the principal D photoionization process observed converts a single photon absorbed into
no more than a single ionization event. Finally, combining the arguments in this and
the preceding paragraph imply that we can indeed attribute the photoionization events
observed to D°X Auger recombination events. In addition, the photoionization rate we
have measured agrees with the expected free exciton capture times quoted in [101] when
adjusted for the light intensity difference.

Of course, we cannot rule out the nuclear spin state dependent free exciton capture at
some (< 107°) level, however, the fact that the free exciton capture proceeds relatively
independently of the 3P spin state is not necessarily a surprise. It was shown in [101]
that 2°°Bi donor bound exciton photoluminescence line does not disappear when nuclear
hyperpolarization levels reach 79% at 6 T and 1.5 K, the same manuscript also suggests
a pathway for the free exciton capture when the two electrons involved are both in their
spin ground states. DX in its excited orbital state 1sI'35 has a parallel electron spin
configuration and this orbital state could serve as an intermediate step for the formation
of a bound exciton in its electron spin singlet orbital ground state 1sI'; [L01]. The spin
angular momentum could then be lost through spin-orbit coupling.

We believe that this makes a strong case for the dominant DNP mechanism being the
phononic mechanism, that was proposed in [77], and detailed in this chapter, for the non-
resonant optical pumping protocol with 1047 nm light at high magnetic fields and low
temperatures. The resulting precise understanding of the hyperpolarization mechanism
enables optimization of devices and experiments which exploit the protocol for nuclear
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spin signal enhancement, and could be especially useful for magnetometry applications
given the extremely long coherence times of 3P defect nuclei in isotopically enriched *Si
crystals.

Finally, our experimental approach equips us with a novel technique for direct charac-
terization of donor defect specific ionization events. We utilized this ability to measure the
free exciton capture and photoneutralization rates. These rates play an important role for
numerous experimental protocols that utilise above band gap light during measurement
process [98, (7], as well as experiments that might suffer from exciton induced decoherence.
We also measured the paramagnetic shift for ionized phosphorus donor defects which has
not been previously reported. We will discuss other potential uses of our experimental
technique in the next section.

6.7 Outlook

At first glance, it might seem that the phononic hyperpolarization mechanism and the free
exciton capture mechanism would prescribe rather similar steps for device optimization.
For both models the DNP time scales inversely with light intensity and they both require
high electron spin polarization which, in the case of thermal polarization, implies having
|hyeBo®| > 1, where 7, is the electron gyromagnetic ratio and © is inverse temperature.
Nevertheless, there are some important differences between them. Most obviously the ex-
citon capture mechanism requires high and reasonably uniform light intensities throughout
the sample of interest, which the phononic mechanism does not. Secondly, and less ob-
viously, the phononic mechanism is much more dependent on the particular values of ©
and By than the exciton capture model, the latter being largely determined by their prod-
uct. Specifically, the exciton capture mechanism does not rely on the short Tl(e) at high B,
quite like the phononic mechanism. Lastly, the phononic mechanism could be substantially
enhanced by increasing the strain induced modulation of the electron-nuclear hyperfine in-
teraction, which could be achieved by engineering phononic resonator structures.

There exist an ever-increasing effort for improving the understanding and modelling ac-
curacy of low temperature properties of isotopically enriched ultra-pure silicon and shallow
donor defects within it, this is brought about by accelerating attempts to use this system as
a platform for quantum computing [0, , 92, , , 11, 52]. Excitonic and phononic
properties are certainly ones that matter for device engineering. It could prove to be very
valuable to harness the tremendously powerful aspects magnetic resonance — its element
selectivity and an ability to sense very weak interactions and rare events — for investigating
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processes and interactions that are conventionally outside of the typical domain of NMR
or ESR.

In this section, we discuss some neat opportunities that appear as natural extensions of
the theoretical and experimental work presented in this chapter. First, our experimental
technique for directly characterizing phosphorus donor ionization events in silicon at low
temperatures could be used for measuring quantities such as the cross section for direct D°
ionization with below gap light. Such quantities are often extracted from photoconductivity
experiments [127], which are not defect specific, and also only characterize the resulting
photocarrier densities rather than the photoionization and photoneutralization rates. One
convenient aspect about below band gap light is that sufficiently below gap light is not
expected to produce many ionization events other than the direct ionization, as it is unlikely
to create electron-hole pairs and the accompanying Auger events. Although the expected
ionization rates for below gap light can be very small, the very long T'? * at low temperatures
provides a very long measurement window. For the average photoneutralization rate of
470 kHz, that we quote in Table 6.1, the average loss of nuclear spin polarization under
2/(2r) = 4 kHz strong resonant saturation drive from a single ionization event can be
calculated from Equation 6.29 and evaluates to 0.003. 72 photoionization events would
reduce the spin polarization to (1—0.003)™ = 0.8 of its initial value, if the 20% polarization
reduction is detected over a period of 2 h — a period over which the thermal relaxation of 3'P
spins does not reduce their polarization by more than 10% [38] — photoionization rates of
0.01 Hz are possible to detect. This rate is 10° times lower than the photoionization rates we
have measured here. Furthermore, it is reasonable to expect that the photoneutralization
rates under below gap irradiation are also substantially lower from the above gap values,
this fact would serve to boost the sensitivity of the measurement described even further.

Our experimental protocol could also enable measuring other unreported quantities
such as the bound exciton’s hole hyperfine coupling to the donor nucleus, which would
serve to improve fundamental understanding of silicon physics. An experiment for mea-
suring that quantity will be outlined in the next subsection. Finally, it will be shown in
Subsections 6.7.2, 6.7.3 and 6.7.4 that the effective Hamiltonian analysis carried out in Sec-
tion 6.1 can be extended to analyse the interplay between external electric fields and strain
fields in electron-nuclear Hamiltonians. Such interplay could potentially be harnessed to
measure frequency specific properties of sub-terahertz phonons.

6.7.1 Hole hyperfine

Here, we outline how an experiment similar to the ones described in Section 6.5 can be used
to measure the hyperfine coupling A;, between the 3'P nuclear spin and the bound exciton
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hole. This quantity has never been reported as it is much too small to be able to quantify
it in photoluminescence experiments that have been used to characterize the gyromagnetic
ratios of the hole [55, 67]. Direct magnetic resonance detection of the hyperfine constant
is also impossible due to the short 272 ns lifetime of the bound excitons. The knowledge
of Aj; would, nevertheless, be both of fundamental and practical interest as it could lead
to a refined understanding of the hole wave function as well as help to quantify nuclear
decoherence processes under exciton creation.

Because the lifetime of the bound excitons is extremely short, it is necessary to use
high saturation drive strengths to measure the hole hyperfine coupling. For that we can
use the same experimental protocol as in Figure 6.9(a) — first polarizing the nuclear spins
with 160 s laser irradiation to near terminal 96% polarization and then applying the RF
drive simultaneously with the laser for different frequency offsets Av, for some fixed period
t. Plotting the 3'P polarization at the end of the saturation period as a function of Av
would produce dip plots similar to Figure 6.8(b) with an extra dip at the value of —3A,,/2.

We now explore the feasibility and the resolution of such an experiment by simu-
lating its outcome for various values of Aj,. To simulate the result of such an experi-
ment we can use the full rate equations model given in Section 6.2 under the generator
Y (kpopox,Kp+-po, Kp+_po, Av, Ap) defined by Equation (6.16). To fix the other parame-
ters appearing in T we assume the saturation drive Rabi strength to be the same as that for
the experiment in Figure 6.9, i.e, Q/(27) = 4 kHz, we also use A.(0)/(27) = 117.52 MHz,
TP ® and 0 that are stated in Table 6.1 and TP ’ = 5.4 ms under 1047 nm laser light illumi-
nation reported in [33]. Lastly, we need to estimate T3 X _ the *'P nuclear spin dephasing
time during the bound exciton stage in Figure 6.1. In Appendix D we derive the electron
Tl(e) induced effective TZD0 for the nuclear spin, the same calculation is also applicable for
hole T induced TP°X. Because it is known that the holes thermalize within their lifetime
[65], i.e., T; fh) < 272 ns, and that the hole hyperfine interaction Aj/(27) cannot exceed
~20 MHz we can assume that Tl(h)Ah < 1. Therefore, the hole induced T>"X can be
ignored, and in our simulations we set T2*X = 10 x 272 ns.

In order to calculate the resulting nuclear magnetization ]\/[ZD0 after a t-long lasing
and saturation period for various A, values, we have to account for the light intensity
distribution in the sample. Accounting for that gives

MP"(Av, Ay, t) = (6.44)

</ n(l) exp |:T(O{DO_)D0XI, K:DJr_)DO,aDJr_)DO\/T’ Av, Ap) t} -Tﬁg) ,

11

where mo = (0,0,0,0,0,0,0,0,0,0,0.96,1) and the subscript denotes the 11th element of
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Figure 6.12:  (a) Simulation of MP’(Av, Ay, t) in Equation 6.44 for ¢ = 100 s and
An/(27) = {0.5 MHz,1 MHz,1.5 MHz}. (b) Simulation of MP’(Av, Ay, t) for t = 1 s
and Ap/(27) = {0.5 MHz, 1 MHz, 1.5 MHz}.

the integrated magnetization vector, kp+_,po = 1/(272 ns) and the values apo_pox and
ap+po are given in Table 6.1. We simulate the integrated magnetization MP"(Av, Ay, t)
for two separate saturation periods ¢t = {1 s,100 s} and three distinct hyperfine constants
An/(2m) = {0.5 MHz, 1 MHz, 1.5 MHz} over a range of —6 MHz < Av/(27) < 4 MHz and

display our results in Figure 6.12.

It is evident from Figure 6.12 that hyperfine values of A;, > 1 MHz should be observable
under our experimental protocol for a 100 s-long lasing and saturation period, even in the
presence of our typical error bars of ~5% for the terminal magnetization, whereas 1 s-long
saturation period is too short to yield measurable features. Unfortunately, conducting
such experiment was not feasible with our current apparatus due to the tuning range of
our NMR probe head, and the fact that measuring MZD0 for different Av values would
have required retuning the probe and, hence, recalibrating the {2 value for each data point.
Nevertheless, with an extra ability to sweep the external magnetic field By between the
saturation period and the signal read out step, while keeping the probe configuration the
same, the experiment would have certainly become practical.
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6.7.2 Strain and Electric Field

In the next two subsections, we point out two novel experimental opportunities stemming
from the fact that Stark shifts due to external electric fields and crystal strain enter the
electron-nuclear Hamiltonians in rather similar ways, since they both deform the electron
wave function, and hence, affect both the hyperfine interaction strength and the electron
g-tensor. Such interplay between crystal strain and electric fields has so far only been sys-
tematically studied by computational methods in [115], nevertheless, several experimental
results [0, 90] have strongly hinted at the existence of an observable combined effect on
the hyperfine constant. We highlight that the stated interplay could be incorporated into
new device designs, or harnessed for measuring frequency specific phonon properties for
sub-terahertz phonons in bulk silicon at currently unexplored temperatures.

Here, we do not assume any specific means for generating elastic waves that give rise
to time varying crystal strain inside the device, as there is a multitude of ways that could
be used for that, although care should be taken to eliminate other complementing, yet
unwanted, effects of such phonon generation, e.g., free carrier and exciton creation with the
use of above band gap light. We do, however, note that since we are dealing with effective
electron-nuclear cross relaxation just like in Section 6.1, we do not necessarily assume such
waves to have spatial nor temporal coherence. We treat the hyperfine interaction in the
presence of crystal strain € and external electric field E = (E., E,, E,) in Appendix E by
extending the symmetry analysis in [73]. Taylor expanding up to second order in E and €
we find that

5 5 5 512
A, (E g) — A,(0) (1 (VA @+ & Hy e+ UE-£439 4y ‘E‘ + ) . (6.45)

where VA, and H,, are the same rescaled gradient vector and Hessian matrix as in Sec-

tion 6.1, while € 420 = @56 (&) = (2¢,., 2¢,.,2¢,,) is a vector containing only the
off-diagonal elements of the strain tensor evaluated in the crystallographic coordinate sys-
tem. The value of V = —2.7 x 107'® m?/V? has been determined experimentally [102],

while U, which represents the Stark shifts arising from the combined effect of strain and
electric field, is unknown because the only current study dealing with the interplay of €
and E [115] only simulated uniaxial stresses for which & (+>6) = 0.

Again, we make the adiabatic approximation discussed in Section 6.1, along with the
assumption that the wavelength of phonons under consideration is sufficiently long, such
that the strain dependent hyperfine modulation inherits all of its properties from static
strains. Additionally, we once more ignore all strain and electric field dependent changes
to the electron g-tensor, partly because such changes can be suppressed by working at
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sufficiently low external fields, but more importantly, since here we are solely focused
on the nuclear spin polarization, and the accompanying electron spin dynamics is rather
irrelevant for us, this as long as the time dependent € and E do not appreciably saturate
the electron spin transition w.

We now concentrate on a single phosphorus defect in silicon in the presence of strain
field €= ), € cos(w;t+ ¢;), where €; denotes the amplitude of elastic waves with frequency
and phase w; and ¢;, respectively. Furthermore, if that defect site is also experiencing an
external AC electric field with frequency wg and amplitude EO, such that E = EO cos (wgt),
then the secular part of

H= %ag@ - %ai") + AeT(m (1 4 (VA) e+ Hy, - z) OO (6.46)
+ AeT(O) (UE @S0 L v IE 2> o . g™
with respect to Hy = %aze) - “%a,&") becomes
HsecwqueTm)age)agn) + AeT(O) Z (5w8+w31P_wi(§Ae) - € Hiip-iop (6.47)

AB(O) — —

wi—l-w]-: W;—w;=
wetw3lp  Wetw3sip
Ae(0) 5~ 5 U . 2459
We+W31p—WE—W; 0 € flip-flop
)

8

A 0 =4 —
68( ) Z §we+w3lp+wE*wiUE0 : ei (4’5,6) Hﬁip-ﬁ()p

Ae(o) n
1—65we+w31P—2wEV ‘ EO

where 9; is the Kronecker delta function, ie., 6o = 1 and ¢; = 0 for all j # 0. In

Equation (6.47), we have omitted all corrections to the 95" part of the Hamiltonian

since they will always be much smaller than A.(0)/4.

_l_

+

2
H, flip-flop»

6.7.3 DNP via Electric Field Modulation

In this subsection, we assume all physical properties of the donor defect to be bulk prop-
erties, hence, we assume the envisioned devices to work with a sizeable ensemble of donor

177



defects in contrast to devices that utilize a single near-surface defect as in [92]. While
single defect devices have several truly novel uses, ensemble devices are likely more fitting
for some applications such as efficient high accuracy, high sensitivity magnetometry, where
the incredibly long coherence times of ionized bulk 3'P nuclear spins in isotopically purified
silicon [98] could be suitably employed.

All electric control of phosphorus donor nuclear spins in silicon was proposed not so
long ago [19, 113], and has very recently been experimentally demonstrated for an ensemble
of phosphorus defects [103]. This experiment relies on electron g-tensor modulation - by
periodically tilting the axis of quantization for the electron spin with respect to that of the
31P an effective Rabi field on the nucleus is realized, this is in essence equivalent to the
hyperfine mediated Rabi field that was discussed in Section 6.4.1. While this technique does
allow for universal control of the electron-nuclear system, it would require multiple pulse
or optimal control methods over multiple transmitter frequencies to wholly transfer the
electron polarization over onto the 3P, such approach could be rather inefficient, especially
in the presence of control field variations over the sample.

Nevertheless, one observes from the last line of Equation (6.47) that it is possible to
directly drive the |[lc1,) <> [Tedn) transition with AC electric fields that modulate the
hyperfine coupling at frequency W™ = (w, + wsip) /2. Electric field induced perturba-
tions to the hyperfine tensor, in contrast to the electron g-tensor perturbations, have the
advantage of being Bj independent, the maximum effective Rabi strength QF** for driv-
ing the [}e1T,) <> [Tedn) transition is limited only by the ionization voltage predicted to
be 1.55 - 10¢ V/m [90]. Assuming that the shift in the hyperfine strength remains pre-
dominantly quadratic in the electric field magnitude up to the ionization point, we would
estimate that Qp** = 95 kHz. Furthermore, if the objective is to merely transfer electron
polarization onto the 3!P, electric fields only at a single frequency wR™F are required and
field inhomogeneities become irrelevant because in the presence of Tl(e) they only affect the
rate at which the electron and nuclear polarizations are equalized. We note that QF* is
four orders of magnitude faster than the fastest reported hyperpolarization scheme for bulk
31P nuclei [120], and is as fast as the incredibly rapid hyperpolarization rates reported in
[19], the latter did, however, require introducing oxygen vacancy defects into the sample
which come at the cost of reduced 'P coherence time.

This method would be particularly useful for devices and experiments at relatively low
(< 1 T) magnetic fields at which the frequency wi™" is not prohibitive and AC electric
fields can be generated with relative ease. High electron polarization, necessary for prac-
tical DNP, could under such conditions be achieved either via cooling the system down
to dilution fridge temperatures, where optical DNP schemes could be severely constrained
due to input power limitations, or by hyperpolarizing the defect electrons at higher tem-
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peratures, e.g., through resonant optical pumping [126] or spin injection [99].

6.7.4 Electric Field Assisted Phonon Detection

The fourth and the fifth line in Equation (6.47) have extremely interesting and potentially
rather useful implications. We observe that by applying AC electric fields of sufficiently
large amplitude E%, for which wg # (we + wsip) /2, one can eclipse all other terms in
Equation (6.47), and make the polarization transfer rate from the electron to the nucleus
dependent only on

- A0) = /. 5
Hel-phonon <E07 gka E’l) = 8( )PEO ' (614(47576) + € (475’6)> ) (648)

where wy = we+wsip—wg and w; = we+wsip+wg. This is significant because it provides a lo-
cal frequency selective probe for elastic wave amplitudes inside silicon crystals, furthermore,
rotating the direction of E, yields information about the polarization of such waves. We
note that, since € (4>9) contains only the off-diagonal elements of the strain tensor evaluated
in the crystallographic coordinate system, € (4*% = 0 for longitudinal phonons travelling
along any of the three crystal axes, nevertheless, for transverse phonons or for longitudinal
phonons along other directions € 459 is non-zero. For this combined effect to serve as

a means for elastic wave amplitude detection one needs Hejphonon (Eg,é},é) > 1 /TlDO,

where TP ° is the *'P nuclear longitudinal relaxation time, encouragingly, these time scales
have been measured to be ~700 s at 4.2 K and > 10* s at 1.7 K for isotopically purified
28Si samples [35].

Observing the 3'P polarization build up time constant inside a 2*Si sample, as a function
of the direction, frequency and amplitude of the external AC electric field applied, gives
one a time-resolved, frequency and polarization selective probe for low-frequency phonons
at cryogenic temperatures. Conveniently, all of the listed parameters can be chosen and
changed rather easily with an appropriate experimental apparatus. Such a probe could, for
example, be used for characterizing the density of states or non-linear effects in phononic
processes. Moreover, the local nature of donor defects, and the fact that inter-defect nuclear
spin diffusion rates can be controlled by varying doping concentrations, could enable a new
and unique way for measuring location specific phonon properties inside silicon crystals.
For this, the AC electric field modified phononic DNP scheme could be paired with MRI
so to spatially resolve the 3'P polarization time constants. The dephasing time limited

spatial encoding resolution for MRI is given by K = 7/ (731p 0By TP 0) [72], where ~sip
is the gyromagentic ratio of phosphorus, 0By is the static field gradient and TzDO is the
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nuclear dephasing time. Importantly, TQDO is not necessarily the dephasing time during the
DNP process, since the polarization transfer and MRI encoding periods can be separated.
The measured TP’ = 1.75 s at 5.5 K for By ~ 0.3 T [21] would yield K = 0.17 pm even
for rather modest field gradients of 9By = 0.1 T m™!, which would certainly be sufficient
resolution to enable the measurement of phonon attenuation lengths and possibly phonon
scattering off surfaces or boundaries in heterostructures.
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Chapter 7

Conclusion

The sensitivity and efficiency of experiments, as well as technologies, based on the phe-
nomenon of magnetic resonance are intimately linked to the coherence time and polariza-
tion of the spins that are being detected. Therefore, increasing spin coherence time and
polarization are paramount for advancing the scope and limitations of magnetic resonance
applications. With this thesis we have made significant progress in addressing both of
these aspects critical for magnetic resonance through effective Hamiltonian engineering.

We have developed tools for numerical effective Hamiltonian engineering, which can
be used to engineer arbitrary spin dynamics with much fewer constraints than analyti-
cal Hamiltonian engineering would pose. This involved developing the Van Loan block
matrix differential equation framework, that enables easy and numerically efficient evalu-
ation of various perturbation expressions appearing in effective Hamiltonian engineering
problems. Furthermore, we have demonstrated that, in the case of piecewise constant con-
trol amplitudes, the Van Loan differential equation framework provides a straight-forward
way for calculating gradients of these perturbation expressions with respect to the con-
trol amplitudes, which in turn enabled us to use efficient numerical control optimization
schemes for engineering effective Hamiltonians. Numerical Hamiltonian engineering is not
specific to any specific Hilbert space dimension, and does not require any particular as-
sumptions about the form of the control and drift Hamiltonians; it is also naturally suited
for handling ensemble effects and deterministic control waveform distortions due to con-
trol hardware, that are both difficult to account for in analytic protocols. We expect our
effective Hamiltonian engineering tools to be useful for a great range of settings including
sensing, spectroscopy and quantum computing, and not necessarily limited to magnetic
resonance applications, since the main requirements for employing the framework are a
finite-dimensional first-order linear matrix differential equation description for the sys-
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tem dynamics and sufficiently well characterized control amplitudes that can be efficiently
modulated.

We put our effective Hamiltonian engineering tools into action in designing control se-
quences for force detected magnetic resonance experiments that worked with nuclear spin
ensembles on the nanometre scale, and posed a very challenging control setting due to
the short spin coherence time and great Rabi field dispersion across the spin ensemble.
Our numerically engineered control sequences lead to 500 times increase in nuclear spin
coherence time, a factor that directly translates to maximum achievable spatial resolution
for MRI experiments. We demonstrated experimentally that control sequences, which are
designed to coherently average unwanted Hamiltonian Dyson terms to near-zero values, ap-
proximate infinitesimally short spin rotations, as they suspend the unwanted Hamiltonian
terms for the duration of the sequence. This fact unlocks the ability to use the immense
wealth of various NMR sequences, developed for a wide range of applications, including
imaging and multi-dimensional spectroscopy, also for unconventional and challenging con-
trol settings, just by swapping out the rotations within the sequences with numerically
engineered controls. We expect this ability to be extremely useful in future experiments on
the same force detected magnetic resonance setup in investigating nanoscale nuclear spin
ensembles; as well as for other non-standard magnetic resonance experiments. Finally, the
tools developed are not only useful for suspending the unwanted Hamiltonian evolution
and thereby enhancing spin coherence times, it is conceivable that they could also aid with
the second important challenge pertaining to magnetic resonance, that is spin polarization
enhancement. By engineering effective Hamiltonians for multi-body systems polarization
transfer schemes can potentially be implemented, which could lead to improved sensitivity
in magnetic resonance experiments.

With the second half of this thesis we used a combination of theoretical modelling and
experiments to demonstrate how effective spin Hamiltonians lead to nuclear spin hyper-
polarization. The physical platform for our experiments were phosphorus donor nuclei in
high-purity isotopically enriched silicon-28 crystals, which are known to have incredibly
long coherence times in their ionized state, and are therefore an excellent candidate for
sensing, and specifically for magnetometry applications. The non-resonant optical hyper-
polarization scheme used for the work in this thesis is an attractive method for enhancing
spin detection sensitivity by several orders of magnitude due to its particularly simple and
relatively fast nature. Our detailed microscopic effective Hamiltonian model could enable
optimizing experiments and devices making use of the defect nuclei.
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Appendix A

Proof of Theorem 1!

In this appendix, we give a proof for Theorem 1 given in Section 3.2 of the main text.
The theorem states that, for B;; : [0,7] — M, and for 1 < i < j < m, we define
Ci; +[0,T] — M, implicitly through the following expression:

Ca(t) Cualt) ... Cimlt)
R (A1)
0 0 . Con®)
Bia(t) Bis(h) ... Bim(h)
e /tdtl 0 Baalt) o Banlts)
0 0 0 . Bun(t)

!The theorem and its proof appearing in this appendix was shown to the author by Daniel Puzzuoli.
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Therefore, by differentiating both sides of Equation (A.1), and using the definition of the
time-ordered exponential we arrive at

Cra(t) Cuia(t) ... Cim(t)
Q 02'72(t) 027,:1(15) _ (A2)
0 0 : Cm,;n(t)
Bi(t) Bia(t) Bin(t) Cia(t) Cia(t) Crn(t)
0 By a(t) By (1) 0 Coo(t) Com(t)
(3 (‘)' Bm;n(t) (:) (‘)' Cm,;n(t)

The above implies that Cy 4, for 1 <k < m and 0 < j < m — k, satisfy the following
differential equations:

J
Clogorj (8) = Z Bie i (1) Cropi o5 (), (A.3)
i=0
with initial conditions
1, if j =0,
Chye5(0) = ’ (A.4)
0 else.
From Equations (A.3) and (A.4) it is immediately clear that
t
0
To show that the recursion relations
Chets(t) Z Us(t / dty U (1) Bre i (t1) i oty (1) (A.6)

hold for any 1 < j < m — k, we first note that Cj ;4;(0) = 0, for any 1 < j < m — k,
hence, satisfying the initial conditions in Equation (A.4). In order to complete the proof,
we differentiate Equation (A.6):

j
Crpri(t) = Z B jotvi(t) Crgi ot (1) + Bioie( Z Us(t / dt U (t1) Breeri(t1) i ot (t1)

=1

J
= Z By jori(t) Crriyj(t) + Brp(t)Crprs(t) = Z Bipyi(t) Crpinyi(t), (A7)
i=1 1=0
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which coincides with Equation (A.3) implying that solutions obtained through Equa-
tion (A.6) satisfy the system of differential equations.
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Appendix B

Magnetic Field Values Above the
CFFGS Device!

Magnetic fields and field gradients generated by the CFFGS, that were used for analysing
the data in the main text of this thesis, were simulated using COMSOL Multiphysics
finite element software. The simulations used CFFGS dimensions that were taken from
the scanning electron micrograph image of the device shown in Figure 4.1(b). The B; and
dBy/dz values were calculated for 50 mA peak current, whereas the dB,/dx values were
calculated for 70 mA peak current through the device. We present the simulation results
below in Figure B.1.

'The COMSOL simulations presented in this appendix were carried out by Raffi Budakian and William
Rose.

197



70 nm 80 nm

] > > ———— >

-50 S50 100

dBl/dz (G/nm)

1=t

100dB /dx (/nm
B

0

) \
7100
-100 -50

100 -50 0 50 100

\

=

—

)

- - 100
100

100 -100  -50 0 50 100 -100  -50 0 50 100

X (nm)

Figure B.1: Magnetic field and magnetic field gradients in the zy plane at constant heights
z around the centre of the CFFGS constriction as indicated in Figure 4.1(a). The four
heights picked for finite element simulations were z € {50 nm, 60 nm, 70 nm, 80 nm}. In

the top row, we display the Rabi fields By (r) = \/ B2(7) + BZ(r)/2 at various locations

in the horizontal plane of a fixed z-coordinate, as well as a vector plot that indicates the
relative magnitudes of B,(r) and B,(r) at these locations. In the middle row, we give
dB;/dz values, and in the bottom row, we give dB,/dx values at the four heights above
the CFFGS top surface. The black regions in the contour plots denote the outside contours
of the CFFGS near its centre.
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Appendix C

Bloch Sphere Trajectories!

In order to visually illustrate how the numerically engineered control sequences achieve
the same final unitary operation for a number of different Rabi strength parameters v € '
simultaneously, we simulate the Bloch sphere trajectories for spins starting in the |1) state
for three different  values: v = {0.7 MHz, 0.9 MHz, 1.1 MHz} for pulse #1 and pulse #3,
that were introduced in Section 4.2.1 and 4.2.3 of the main text. We present the trajectories
by plotting Bloch vector projections onto z, y and z-axis as a function of time ¢ over the

pulse duration 0 < ¢+ < T. The Bloch vector m ) (t) = (mg’) (1), mg(ﬂ) (t),m,(ﬂ) (t)) has its

elements given as

mO(t) = %Tr o [0 )] 0.0 1) (1)
for i € {z,y,2}. It is shown in Figures C.1 and C.2 that m()(¢) traces out a unique
trajectory for each 7 value, nevertheless, the initial 7 (¢t = 0) = (0,0,1) and the final
m(t = T) = (0,1,0) Bloch vectors coincide for all three v values pictured. From the
number of oscillations in these trajectories it is evident that the spins experiencing higher
Rabi strengths end up completing a greater number of laps around the Bloch sphere.
Although, we do not present plots for the Bloch vector trajectories for spins starting in the
xy plane they would possess all the same characteristics.

By decomposing [U(T)] f Dy (o) = fOT dt [UD(t)] fo U™ (t) into a sum of traceless

operator basis elements: {o;}, for i € {z,y,z2}, it is easy to show that \IJ((,Z) defined in

IThe simulations presented in this appendix were conducted by the author and are published as part
of Supplementary Materials for [96].
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(a)

m, (1)

(d)

M, (t)

o 2 4 6 8 10 12 o 2 4 6 8 10 12 0 2 4 6 8 10 12
to(ps) i (ps) t (ps)

Figure C.1: Bloch sphere trajectories {mgw)(t)}, defined by Equation (C.1), and their
integrals {M" (1)} defined by Equation (C.3) for spins evolving under pulse #1 with three
distinct Rabi strengths: v = 0.7 MHz (blue), v = 0.9 MHz (red), v = 1.1 MHz (orange).
(2) mi?(t), (b) my” (1), (¢) m” (1), (@) M (1), (&) My”'(1), (£) M (#) for 0 < ¢ < T
with T = 12.95 ps.
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(a)

m, (1)

o 1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7 01 2 3 4 5 6 7
t (ps) i (ps) t (us)

Figure C.2: Bloch sphere trajectories {mgw)(t)}, defined by Equation (C.1), and their
integrals { M (1)} defined by Equation (C.3) for spins evolving under pulse #3 with three
distinct Rabi strengths: v = 0.7 MHz (blue), v = 0.9 MHz (red), v = 1.1 MHz (orange).
(2) mi(t), (b) my” (1), (¢) m” (1), () M (1), (&) My”'(1), () M (#) for 0 < ¢ < T
with T'=7.24 us.
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Equation (4.28) can be written as

2

o - Z(%Tr[ai[U<v><T>]*DU<7><az>])2= > (3 [ an0) . ©2)

% 7

Therefore, the o, averaging property of the pulses can conveniently be demonstrated by
integrating the trajectories of the individual components of the Bloch vector m(. We
define

Mi(v)@) _ %/ dy mz(v)(tl) — it/ dt, Tr [ai [U(V)(tl)]TazU(’Y)(tl)] (C.3)

0 2 0

as a normalized integral of m!” (t), and note that U5 = 0 if and only if M(T) = 0, for
all i € {z,y,2}. We evaluate these integrals for the three v values mentioned, and present
them in Figure C.1 and Figure C.2 for pulse #1 and pulse #3, respectively. It can be seen
that the integrated trajectories in Figure C.1 are again unique for each Rabi strength, yet
they all yield MZ-(W)(T) =0, for all i € {x,y, z}. On the other hand, pulse #3 results non-
Z€ero Mi(v) (T') values, as is shown in Figure C.2; since it was optimized without the ¢, Dyson
term target. Lastly, we remark that the dipolar integral [U(V)(T) QUM (T)]T Dynguen (D)

could have been decomposed and visualized entirely analogously to [U (T )}TDUM(UZ).
Nevertheless, the six operator basis elements required would have made the presentation
rather cumbersome.
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Appendix D

Nuclear spin 75 due to electron spin
undergoing T} relaxation!

The spin Hamiltonian that was given in Equation (6.1), and dictates the dynamics of
our electron-nuclear spin system can, for high By-values and negligible strain fields, be
approximated as

We ws1ip
H="6,21-
5 7= 2

where w. = V.By, wsip = 7, By. Here, we consider a situation where the nuclear spin
thermal relaxation time is much longer than the duration of the experiments carried out
on the spin system. In such case, the combined electron-nuclear density matrix p evolves
under Lindblad equation introduced by Equation (1.16):

Ae
]1®0Z+IO'Z®UZ, (D.1)

d

—p(t) = —ilH, p(t)] + (L. ® 1)[p(1)], (D-2)

Le[pe] corresponding to the action of T relaxation on the electron spin only:

1
Le[pe] = _2_1—11 (1 - S) [U+J—pe + P00 — 20'_/)60'4_} (D3)
1

~or (004 pe + ped_01 — 20 peo_].

The equilibrium electron spin density matrix of L¢[p.] is peg = s |1) (1| + (1 —5) 1) (-

IThe treatment presented in this appendix was conducted by the author and is published as part of
Supplementary Materials for [38].
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As we said in Chapter 5, we performed our experiments in the electron spin state |J)
manifold due to the negligible s values at our magnetic fields and temperatures. Conse-
quently, we go into an interaction frame of nuclear spin Hamiltonian — (W?’Z1 E+ %) 1®o,
and arrive at an effective Hamiltonian

I7 e Ae
H:%az®ﬂ+z(ﬂ®az+az®az) (D.4)
we

Ae
— 1+ — .

It can be seen that in this interaction frame we can interpret the nuclear spin Hamiltonian
as a Hamiltonian conditional on the electron spin state: for electron spin state [|), the
Hamiltonian is equal to zero, and for electron spin state |1) the Hamiltonian is %Jz.
Lindblad operators in Equation (D.3) commute with the interaction frame, hence, the
electron-nuclear density matrix in the frame p evolves according to

(1) = il ()] + (Lo ® 1) [5(0)] (D.5)

Evolution under Equation (D.5) cannot create coherences between electron spin states
[4) and |1). If we assume that the initial electron-nuclear density matrix has no electron
coherences, we only need to solve dynamics for density matrices of the following form:
p=pH M ®@pr+ 1 —p))) | ®p,, where 0 < p < 1, and p; and p; are conditional
nuclear spin density matrices for electron spin states |]) and |1), respectively. We solve
the dynamics by using a particular vectorization of such density matrices. First, we define
a vector 7(t) € R¥*, 7(t) = (F(t),7 (1)), With ) = (71,4, Tay0ys Tyyays Tzuey) SUCh that
p(t) = \% ) @7 (t) - (1,04, 0y 0,) + \/Li 1) (Tl @ 7 (t) - (1,04, 04,0,). We now rewrite
Equation (D.5) in this basis:

7= 0 0 0 IT—IS 0 0 0
0 7 0 0 0 IT——j 0 0
00 7 0 0 0 IT—IS 10
d. .. | 0 0 0 7 0 0 0 1 .
%r(t) = Til 0 0 0 % 0 0 0 -7 (). (D.6)
0 # 0 0 0 % _ﬁe 0
0 0 £ 0 0 A = 91
00 0 % 0 0 0

The equation above can be easily solved in either of the regimes: T1 A, > 1 and T1 A, < 1,
in the former case, we can approximate 7(t) ~ S;(¢) - 7(0), whereas in the latter, we can
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say 7(t) &~ Sy(t) - 7(0). The respective propagators — S; and Sy — are given as

72 0 0 0 lT;f 0 0 0
0 7 0 0 0 0 0 0
0 0 7 0 0 0 0 0
B 00 0 & 0 0 0 %8
Si(t) = exp Til 0 0 0O % 0 0 0 t (D.7)
0O 0 0 0 © % —A. 0
0O 0 0 0 0 A % 0
N0 0 0 &% 0 0 0 =%t/ |
and
i 7 9 0 0 1T——j 19 0 0 i
0 7 _0 0 0 & 19 0
0 0 7 0 0 0 Iz 10
B o 0 0 7 0 0 0 I
Sa(t) = exp Til 0 0 0 % 0 0 0 t (D.8)
0 %S 19 0 0 % 91 0
0 0 = 0 0 0 = 91
\0o 0 0 £ 0 0 0 /)|

Hence, an initial electron-nuclear density matrix p;(0) = [{) ({|®@ (31 + 40, + ryoy, +1.02),
i € {1,2}, evolves like

i) = 1) (U@ (¢ Froe + e Fing) (D.9)

_t _t 1
+ ([1 —s (1 s Tlﬂ 11 (] + (1 _e T1> ) m) ® (511 —|—7"ZJZ)
for T1 A, > 1, whereas for T1 A, < 1 it evolves as
pa(t) = (D.10)

_t _t 1
([1 —s(l—e Tl)} 1) (I +s (1—6 Tl) 1) <T|> ® <§]l+7”xax+7’yay+rzaz) .
Tracing out the electron state for p;(f) and ps(t) above reveals that for 73 A, > 1, the
electron spin 7T} process yields an effective nuclear spin 75 process with time constant

T = %, and for T1A., < 1 there is no effective decoherence of the nucleus due to the
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electron spin. Finally, if we assume the equilibrium electron density matrix p., to be a

exp [~ 2= ) and
e

thermal state, at inverse temperature ©, then p., =

1
Tr [exp (— Lljg@ =

weh®
s:1/<1+ekB )
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Appendix E

Symmetry Analysis

Since the ground state of the donor electron wave function, that was introduced in Sec-
tion 5.1.1 of the main text, is non-degenerate, it has the full tetrahedral point symmetry
of a cubic diamond lattice site in silicon crystals. A group that corresponds to the symme-
try is called the tetrahedral point group, or Ty group, which is a finite group of order 24
[110]. In this appendix, we construct a number of T, group representations, and explicitly
demonstrate the group properties that are relevant for the arguments in Chapter 5 and
Chapter 6. For a silicon lattice its with crystallographic axes given as (1,0,0), (0,1,0) and
(0,0,1), the elements O; € M3(R), i € {1, ...,24}, of a three-dimensional representation for
the T; group can be divided into the following five conjugacy classes:

e identity,

e cight rotations by 27/3 around: (1,1,1), (—=1,—1,-1), (—=1,1,1), (1,-1,—1),
(1,-1,1), (=1,1,-1), (—1,—1,1) and (1,1, 1),

e three rotations by = around: (1,0,0), (0,1,0) and (0,0, 1),

e six reflections in a mirror normal to (1,1,0), (1,-1,0), (1,0,1), (1,0,—1), (0,1,1)
and (0,1, —1),

e six rotoreflections by 7/2 around (-1, 0,0), (1,0,0), (0,1,0), (0,—1,0), (0,0, —1) and
0,0, 1).

The explicit matrix representations of the above are easily evaluated using Mathematica’s
functions: IdentityMatrix, RotationMatrix and ReflectionMatrix, and have the following
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form

100 001 010
oW=lo10],0%=(1001|,09=001], (E.1)

001 010 100

0 —1 0 0 0 —1 0 -1 0
ow= o0 o 1|,09=| 10 0 |,09={0 0 -1/,

~1 0 0 1 0 1 0 0

0 0 1 0 0 -1 0 1
o= -1 0 0l]|,09=11 0 0 |,09=| 0 0 -1 |,

0 -1 0 0 -1 0 -10 0

1 0 0 -10 0 -1 0 0
o= o -1 0 |,0oOW=( 0 1 0 |,0®=| 0 -10 |,

0 0 -1 0 0 —1 0 0 1

0 -1 0 010 0 0 —1
o= -1 0 o, 0W=100],09=[0 1 0 |,

0 0 1 001 -10 0

001 1 0 0 100
oW—=1010]|,o0M 00 -1 |,0®=1001]/[,

100 0 -1 0 010

-1 0 0 -10 0 0 0 1
o= 0 0 1},0%= 0 0~-1],0%=| 0 -10

-1 0 0 1 0 -1 0 0

0 0 -1 0 1 0 0 -1 0
o 0 -1 0 J],0®=|-10 0 |,0®=|1 0 0

1 0 0 0 0 —1 0 0 -1

Let {0} be a matrix representation of the T, group, such that (0( ) € {o®™}, for all 4,
and 0o € {o®}, for all i and j. Throughout this appendix, we are generally concerned
with finding eigenvalue-one mutual eigenvectors for every element of a particular T, group
matrix representation, i.e., finding a vector ¥ such that o - & = @, for all i. These vectors
represent partlcular invariants under the tetrahedral pomt symmetry It easy to see that
P = L3> 00 is a projector since P! = P and P? = ;% Z” Loold) = LS k) =
P. We now show that a vector ¥ satisfies 0 - 7/ = v for all 7, if and only if P v=1. It is
trivial to show if 7 is a mutual eigenvector of all o) then P - = 4 Z @) . ¢ = 4. For
the other direction, one needs to note that if ¥ = P - ¥/ then o )U = 0(1)P v=P- -0 =1,
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for all . Hence, the problem of finding mutual eigenvalue-one eigenvectors for all o
reduces to finding the eigenvectors of P. As the simplest example, we could consider
P = i Z?il 0" = 0, where O are the matrices given in Equation (E.1), therefore, the
set {OM} has no mutual eigenvalue-one eigenvectors.

In Chapter 6, we used a particular vectorization of the strain tensor € at the site of the
phosphorus defect, evaluated in the crystallographic coordinate system. Because € is a real
symmetric tensor, we only need a 6-dimensional vector € = (€4, €4y, €225 26, 2642, 2€4y) tO
represent €. It is easy to check that the elements of € are given as €; = Tr[BiT €], where

Bl = ) BQ = ’ B3 = ) (E2>

B4: 7B5: 7B6:

S OO O o
o O O O O
O =R O OO O
_ o o O oo
SO O OO
OO~ OO O
o= O OO O
OO = OO O
SO OO = OO

The strain tensor transforms like e — O®e (O(i))T under the T, group elements, equiv-
alently, the vectorized strain tensor transforms like € — O - € where {0} is a six-
dimensional faithful matrix representation of the T, group. The matrix elements of O®) ¢

Mg(R) are given as (O(k))“ =Tr [CJO(’“)B]- (O(k))q, for 1 <i,j < 6, where C; = B;, for
i€{1,2,3}, and C; = B;/2, for i € {4,5,6).

In Section 6.1 of Chapter 6, we said that the hyperfine constant for the 3P donor nucleus
and the electron localized to the nuclear site can be Taylor expanded in the strain tensor

e at the site of the donor, such that A, (€) = A. (€= 0) [1 + <6A6> c€4+€-Ha, -+ ...

We now derive the result given in [73], where it was shown that VA, and H,, can only take
certain symmetry-restricted forms. Because the defect site has tetrahedral point symmetry,
the application of any strain € must perturb A, the same way as the application of OW¢,
for all 7, i.e.,

(6,46) O = (6,46) L OWE, (E.3)

for any € and all {7, j}. Because ((’)(i))T c {OW}, for all i, and OW) = I, the equation
above is equivalent to

P <6A6> = VA., (E.4)
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ie., VA, must be a linear combination of P eigenvectors, where P = 21—4 Z?il O, Given
the construction for {O®} above, it easy to check with Mathematica that P is a rank-one
projector with its only eigenvalue-one eigenvector being (1,1,1,0,0,0). This implies that

the only symmetry-allowed first order perturbation to A, (€) in € is proportional to the
trace of e, i.e., (ﬁAe) -€=W (€4 + €yy + €.2) /3, where W is a constant.

For second order perturbation of A, (€) it has to hold that
. OVH, 00 . ¢=¢. OVH, OV . ¢ (E.5)

for any € and all {7, j}. This, in turn, implies that the vectorized Hessian matrix H4, has
to be a linear combination of P eigenvectors, where P = i Z?ﬁl 0" @ OO and where
{00 @ O} is a 36-dimesnional faithful representation of the T; group. Again, it is easy
to check with Mathematica that P is a rank-three projector, which means that there are
three independent symmetry allowed terms such that €- Hy, - € = X (efm + Ezy + egz) +

Y (€yy€ss + €xataz + €nayy) + Z (€2, + €2, + €2,), where X, Y and Z are constants.

In Section 6.7 of Chapter 6, we said that by extending the analysis in [73], we can look
at the symmetry allowed terms for perturbations of A, under both strain € and external
electric field E = (Ey, Ey, E.), evaluated in the crystallographic coordinate system. This
time the symmetry sets a requirement that

A, (Ou) LB, 0. g) — A, (00’) B0 . g) 7 (E.6)
for any E and € and all {i,j}. Consequently, we need to look at projectors P constructed

of 9-dimensional faithful matrix representations of the T; group that have a direct sum
structure, and correspond to the simultaneous transformations of £ and € seen above:

Q) — < Oo(i) o )}, (E.7)

It is easy to see that

24 24 i
1 . 1 > 00 0 0 0
24 ; 24 0 >, 00 0 55252, 0%

meaning that there are no symmetry allowed perturbations to A, (E , €> that are linear in

E, the only symmetry allowed linear term is the trace of the strain tensor as we showed
above. For second order perturbations in F and €, we need to look at P = i Z?il QOO0
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like before. It is easy to check with Mathematica that the eigenvalue-one eigenspace of
such P introduces two extra second order symmetry allowed perturbations of A, (E , 5):
one purely from the electric field, that is proportional to E-E , and one from the interplay
of the strain and the electric field that is proportional to Ey¢,, + Eye,, + E.€,,,. Denoting
€ 456 = (2¢,,, 2¢,., 2¢,,), We can now write

A (E €) = A (0,0) {1 + o (Cor+ ey +€2) +UE -9 1V ‘E‘ ]

3
+ Ae (07 0) |:X (Eim + 632;y + Egz) + Y (Eyyezz + €xa€zz + meeyyﬂ
+ A (0,0) [Z (6], + €2 +ex,) + -], (E.9)

where U, V, W, X, Y and Z are constants.

Finally, the symmetry analysis presented in this appendix also fixes the Hamiltonian
form of the hyperfine interaction between the 3'P nuclear spin and the localized defect
electron spin in the presence of no strain or electric field. Most general hyperfine interaction
Hamiltonian between two spin 1/2 particles can be written as

1
HHF:Z Z A jo; ®oj, (E.10)

i,je{z,y,2}

where the hyperfine tensor A is a real symmetric tensor. In the case of a phosphorus donor
defect located in a perfect diamond cubic lattice, the hyperfine tensor A has to be invariant
under all 24 tetrahedral group symmetry transformations, i.e., o®) A (o("))T =o0WA (o(j))T,
for all {i,j}, where {0} is a matrix representation of the Ty group evaluated in the same
coordinate system as the hyperfine tensor. As we showed before, the only real symmetric
tensor that is invariant under all of these transformations is proportional to the identity
operator such that

A,

ic{z,y,z}

where A, is the hyperfine constant.
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