
sensors

Review

Comparison and Feasibility of Various RFID
Authentication Methods Using ECC

Pagán Alexander Jr., Rania Baashirah and Abdelshakour Abuzneid *

Department of Computer Science and Engineering; University of Bridgeport; Bridgeport, CT 06604, USA;
apagan@my.bridgeport.edu (A.P.J.); rbaashir@my.bridgeport.edu (R.B.)
* Correspondence: abuzneid@bridgeport.edu; Tel.: +1-203-576-4113

Received: 9 July 2018; Accepted: 30 August 2018; Published: 1 September 2018
����������
�������

Abstract: Radio frequency identification (RFID) is a technology that has grown in popularity and
in the applications of use. However, there are major issues regarding security and privacy with
respect to RFID technology which have caught the interest of many researchers. There are significant
challenges which must be overcome to resolve RFID security and privacy issues. One reason is the
constraints attached to the provision of security and privacy in RFID systems. Along with meeting
the security and privacy needs of RFID technology, solutions must be inexpensive, practical, reliable,
scalable, flexible, inter-organizational, and long-lasting. To make RFID identifiers effective and
efficient they must identify the item(s) while resisting attacks aimed at obtaining the tag’s information
and compromising the system or making it possible to bypass the protection RFID tags are supposed
to provide. Different authentication methods have been proposed, researched, and evaluated in the
literature. In this work, we proposed our methodology in evaluating RFID authentication, and a few
of the most promising authentication methods are reviewed, compared, and ranked in order to arrive
at a possible best choice of protocol to use.

Keywords: authentication; RFID; elliptic curve cryptography; Random Access Control; security;
privacy; IoT; lightweight protocol

1. Introduction

RFID wireless technology uses radio frequency signals to communicate between the tags which
are attached to objects, and the readers, that identify the objects and are connected to a back-end
server. RFID is a technology that has grown in popularity and has found many applications across
multiple industries. Most people have seen RFID tags used in their everyday lives but may not have
realized what the technology behind them is. Every time we go shopping we see RFID tags, they are
on the items we are trying to purchase, from clothing to books to games, and even medicines. Many
companies have been using RFID technology to maintain and track their inventory, while others have
recently been experimenting with its use for secure entry and access control.

RFID systems have three main parts, the tag, the reader, and the server, as depicted in Figure 1.
The server contains the database housing all of the identification information for the tags and the
objects to which they are attached. The reader is the part of the system that plays the middleman
between the tags and the server. It reads the tags’ information and confirms it against what is held
on the database of the server. The reader and server in the majority of cases have a wired connection
which is considered secure. The tag is the most populous part of the system. There will be numerous
tags in a system communicating with multiple readers, all running off of one database. The allure of
using RFID is that it does not require line of sight in order to communicate between tag and reader,
and multiple tags can be read simultaneously.

Sensors 2018, 18, 2902; doi:10.3390/s18092902 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/9/2902?type=check_update&version=1
http://dx.doi.org/10.3390/s18092902
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2902 2 of 17
Sensors 2018, 18, x 2 of 17

Figure 1. Basic RFID Model.

One use of RFID systems is in loss prevention, where the tags are used to uniquely identify the

object they are attached to while providing a measure of security to that object against theft. This

makes it a great optional for many Internet of things (IoT) and AI applications. When someone tries

to remove the object with an RFID tag from the vicinity, readers near the exit sound an alert if the tag

has not been deactivated, only to mention some of the most common applications of RFID.

Another use of the RFID tags has been in stock and inventory control. RFID technology

communicates using wireless radio signals, therefore line of sight is not needed for a tag and reader

to communicate, unlike barcodes, that require line of sight with a laser reader. Another tremendous

advantage over the barcoding is that barcoding requires scanning one item at a time, which is tedious

and time-consuming and can also be greatly influenced by human error. RFID tags can

simultaneously communicate with a reader that is within range and the reader can read and identify

multiple tags simultaneously. As long as each object has been properly tagged, the reader can quickly

and easily identify the tagged objects, saving time and lowering the possibility of human error in

inventory tracking.

In recent years, the use of RFID technology, specifically in the High Frequency (HF) 13.56 MHz

range has received quite a bit of attention. In this range particularly, the NFC standard has been

developed and improved. There are five NFC types, each corresponding to different ISO/IEC and JIS

standards. Types 1, 2, and 4 are covered under ISO/IEC 14443-A while only Type 4 is covered under

both ISO/IEC 14443 A/B. Type 3 NFC is covered by JIS X 6319, and Type 5 by ISO/IEC 15693 (18000-

3) [1]. Manufacturers, such as NXP Semiconductor (Newburyport, MA, USA), have pushed NFC

forward with their ntag213/215/216 products. Each is Type 2 ISO/IEC 1443 A compliant with memory

capacities of 144, 504, and 888 bytes and a data rate of 106 kbps. These NFC cards are ideal for use in

access control to improve secure access for enterprises.

However, RFID systems, since they broadcast wirelessly, have downfalls; securing any kind of

a wireless system is always a huge concern. Radio signals are omnidirectional and can be picked up

by an antenna that can operate on the same frequency. We see this kind of interference all the time.

If you have ever listened to the radio and heard walkie-talkie or closed band (CB) radio interference

at odd moments, more common nowadays are cell phones near speakers that will produce a static

(white noise) type of sound. Even with wireless networks, the signal broadcast goes out in every

direction (on most standard antennae). Due to the susceptibility of wireless communications to

interference, thus possible security weaknesses, securing RFID communications has become

paramount.

In the years of its various industry applications, RFID security has been studied, researched,

improved, and the process shall continue. Many authentication protocols for RFID have evolved over

the years, but many have failed to accomplish the security goals needed for the application, and some

have not only met but surpassed these same security goals. For those that have met the security goals,

the biggest question in application comes in the form of cost. What would it cost for this technology

to be used? Not that the monetary cost for the system is not a concern, but more so the cost in time of

running the system and the cost of the tags needed to secure the system. It would matter more to any

organization if the RFID system were affordable, but took a long time to authenticate and identify

the tagged objects, in such a case a company can lose customers, due to wait time and incur more

Request

Respond

Database RFID Reader RFID Tag

Figure 1. Basic RFID Model.

One use of RFID systems is in loss prevention, where the tags are used to uniquely identify the
object they are attached to while providing a measure of security to that object against theft. This makes
it a great optional for many Internet of things (IoT) and AI applications. When someone tries to remove
the object with an RFID tag from the vicinity, readers near the exit sound an alert if the tag has not
been deactivated, only to mention some of the most common applications of RFID.

Another use of the RFID tags has been in stock and inventory control. RFID technology
communicates using wireless radio signals, therefore line of sight is not needed for a tag and reader
to communicate, unlike barcodes, that require line of sight with a laser reader. Another tremendous
advantage over the barcoding is that barcoding requires scanning one item at a time, which is
tedious and time-consuming and can also be greatly influenced by human error. RFID tags can
simultaneously communicate with a reader that is within range and the reader can read and identify
multiple tags simultaneously. As long as each object has been properly tagged, the reader can quickly
and easily identify the tagged objects, saving time and lowering the possibility of human error in
inventory tracking.

In recent years, the use of RFID technology, specifically in the High Frequency (HF) 13.56 MHz
range has received quite a bit of attention. In this range particularly, the NFC standard has been
developed and improved. There are five NFC types, each corresponding to different ISO/IEC and
JIS standards. Types 1, 2, and 4 are covered under ISO/IEC 14443-A while only Type 4 is covered
under both ISO/IEC 14443 A/B. Type 3 NFC is covered by JIS X 6319, and Type 5 by ISO/IEC 15693
(18000-3) [1]. Manufacturers, such as NXP Semiconductor (Newburyport, MA, USA), have pushed
NFC forward with their ntag213/215/216 products. Each is Type 2 ISO/IEC 1443 A compliant with
memory capacities of 144, 504, and 888 bytes and a data rate of 106 kbps. These NFC cards are ideal
for use in access control to improve secure access for enterprises.

However, RFID systems, since they broadcast wirelessly, have downfalls; securing any kind of a
wireless system is always a huge concern. Radio signals are omnidirectional and can be picked up by
an antenna that can operate on the same frequency. We see this kind of interference all the time. If you
have ever listened to the radio and heard walkie-talkie or closed band (CB) radio interference at odd
moments, more common nowadays are cell phones near speakers that will produce a static (white
noise) type of sound. Even with wireless networks, the signal broadcast goes out in every direction
(on most standard antennae). Due to the susceptibility of wireless communications to interference,
thus possible security weaknesses, securing RFID communications has become paramount.

In the years of its various industry applications, RFID security has been studied, researched,
improved, and the process shall continue. Many authentication protocols for RFID have evolved over
the years, but many have failed to accomplish the security goals needed for the application, and some
have not only met but surpassed these same security goals. For those that have met the security goals,
the biggest question in application comes in the form of cost. What would it cost for this technology to
be used? Not that the monetary cost for the system is not a concern, but more so the cost in time of
running the system and the cost of the tags needed to secure the system. It would matter more to any
organization if the RFID system were affordable, but took a long time to authenticate and identify the

Sensors 2018, 18, 2902 3 of 17

tagged objects, in such a case a company can lose customers, due to wait time and incur more costs
due to employee productivity, or lack thereof. However, an organization may be willing to pay a little
more for an RFID system that is secure and runs quickly enough to not disrupt the natural flow of
business. One more concern is the size of tags. The more sophisticated circuit we use the bigger the
tag is. The types of RFID tags used will vary based on company needs, if the company is looking to
use low frequency (LF) low capacity RFID tags, the use of elliptic curve cryptography protocols may
well exceed the available memory capacity on the tags. In those instances, other lightweight protocols
that can preserve anonymity while providing secure authentication such as those proposed by Gope
in [2,3] may be a more feasible choice. For use with NFC cards, such as the ntag21x’s mentioned above,
which include ECC for originality signatures, and can be programmed as needed, exploring multiple
ECC authentication protocols for use in secure authentication for access control is a natural approach.

For the purposes of this paper, we focus on public key cryptography, specifically Elliptic
Curve Cryptography (ECC). Our goal in this paper is to survey and compare seven different RFID
ECC authentication protocols based on their computational costs, communication costs, storage
costs, security features, and ability to resist various attacks. A successful RFID protocol must be
lightweight, secure, easy to implement, and able to be scaled up or down based on company needs.
In all the research for secure communications, many methods have been developed. The seven
protocols compared in this paper were selected because they each incorporate randomization, secure
authentication, and are lightweight. All of the studied protocols use Elliptic Curve Cryptography to
secure the communication between tag and reader, though each takes a slightly different approach.
To compare each protocol on the even ground we make the following assumptions:

1. The connection between the reader and server is wired and secure, so the focus is on
communication between tag and reader.

2. NIST secp160R1 a 160-bit ECC base is used for each protocol.
3. Scalar multiplication speed, the time needed to perform a 160-bit ECC calculation on a 5 MHz tag

is 0.064 s.
4. Any XOR or Scalar addition calculation time is negligible and therefore not factored into

cost calculations.
5. Storage rank comparisons are based on 1000 tags.
6. The RFID tags have a memory capacity of 504 bytes.

The testing of each protocol compared in this paper is based on the original authors’ testing
methodology and results, which were then taken and applied using the NIST secp160R1 standard and
recalculated to compare each protocol on equal terms. With these assumptions in place, the rest of the
paper is organized as follows:

• In Section 2, related work on ECC studies is reviewed.
• In Section 3, the various methods studied will be summarized.
• In Section 4, each of the methods will be compared in three cost areas: computational,

communication, and storage cost; and two security areas: security features and attack resistance.
• In Section 5, each of the reviewed protocols will be ranked based on the 5 criteria covered

in Section 4.
• In Section 6, we discuss the results of the data comparisons and provide an overall rank of the

protocols. We will conclude and determine which of the studied methods provide the best-case
implementation for RFID authentication.

2. Related Work

Many studies have been conducted over the last decade on the use of RFID over standard barcodes.
The advantages of using RFID tags in place of barcodes greatly outweighed their shortcomings.
However, with the advancement of technology over the last 10 years and its forward progress,

Sensors 2018, 18, 2902 4 of 17

the weaknesses inherent in RFID have become more problematic. Some of these weaknesses as
stated in [4] are replay attacks, impersonation attacks, brute-force attacks, denial-of-service attacks,
man-in-the-middle attacks, and tracking attacks. To address these weaknesses various methods of
encryption and authentication have been researched. All the studies researched are conclusive in the
use of elliptic curve cryptography (ECC) in providing the most effective base for RFID authentication.
Each covers different ECC application methods to meet their goal.

ECC protocols, such as elliptic curve discrete logarithm problem (ECDLP) and elliptic curve
factorization problem (ECFP), with random numbers generated to produce keys by both the tag
and receiver are investigated in [4–18]. These random numbers are included in the calculations to
create a key and send it to the receiving device that responds with its own challenge based on the
information received to provide mutual authentication. Zheng et al. [5] use an ECC protocol similar to
the others but with an elliptic curve Diffie-Hellman (ECDH) key agreement protocol used between the
tag and reader. Each study demonstrates that using only one ECC protocol will provide only one-way
authentication and leaves the overall system vulnerable. With the addition of a second ECC protocol,
two-way authentication has been proven to be established and therefore providing better security
to the system overall. The differences in the coupling of the protocols lead to different efficiency
and security improvements in the system. For this survey, we will compare the protocols suggested
by Alamr et al. [4], Liao et al. [18], Zheng et al. [5], Zhang et al. [13], Zhoa [15], Jin et al. [16], and
Dinarvand [17]. While surveying the literature, we believe these articles have provided the top seven
methods for RFID authentication using ECC. In addition, we were able to set up a similar test-bed
for all the proposed methods so we can have accurate comparisons. Our proposed test-bed could be
applied to many other methods as well.

As we compare each protocol we will focus on the aspects of computational costs, storage costs,
communication costs (traffic), security features, and attack resistance. The security features we are
looking for are mutual authentication, confidentiality, anonymity, availability, scalability, forward
security, location privacy, and data integrity. Additionally, we are comparing resistance to the following
types of attacks: man-in-the-middle (MIMA), replay, impersonation, key compromise, location tracking,
denial-of-service (DoS), cloning, server spoofing, and desynchronization. A comparison of how each of
these studied protocols has met the requirements and aspects has been conducted to draw a conclusion
as to which ECC protocol combination will be most effective and efficient in providing a low-cost,
lightweight, secure RFID system.

3. ECC Methods

Each of the protocols uses the same base elements through their calculations, however,
authentications vary. The list below describes the common variables and values of each protocol:

P: base point on elliptical curve (320-bits)
SS: secret key of the server/reader (160-bits)
SP: public key of the server/reader (320-bits)
TS: secret key of the tag (160-bits)
TP: public key of the tag (320-bits)
AS: authentication value of server/reader (320-bits)
AT: authentication value of tag (320-bits)
r1, r2, r3: randomly generated numbers (160-bits each)
T: 1000, the sample number of tags in the system for comparison.

In the Alamr et al. [4] protocol the server chooses a random number for SS and TS and calculates
SP and TP, respectively. From here, the protocol takes five steps to authenticate between the tag and
reader undergoing four scalar multiplications on the tag side and five on the reader/server side, see
Figure 2 below. In step 1, the server generates a random number r1, then calculates R1 = r1×P and
sends R1 to the tag. In step 2, the tag receives R1 from the server. The tag then generates a random

Sensors 2018, 18, 2902 5 of 17

number r2 and calculates R2 = r2×P. The tag also calculates two secret keys SK1T = TP×R1 and SK2T =
r2×R1, then encrypts the key as C1 = SK1T + SK2T and sends R2 and C1 to the server. The server in
step 3 receives R2 and C1 then calculates two secret keys of its own, SK1S = r1×TP and SK2S = r1×R2

then calculates X = SK1S + SK2S. The server then compares X and C1, if they are not equal the tag
is not authenticated, and the session stops, otherwise, the server calculates C2 = R2×SS, generates
another random number r3 and calculates R3 = r3×P to be used for key agreement. The server then
sends C2 and R3 to the tag. The tag receives C2 and R3 in step 4 then computes Y = r2×SP. The tag
then compares Y and C2, if they are not equal the server is not authenticated, and the session stops,
otherwise, the server is authenticated, and both the tag and server set their key agreement in step 5.
In step 5 both the tag and the server set their key agreements as TKAG = r2×R3 and SKAG = r3×R2.
These steps require communicating two scalar products from tag to reader and three scalar products
from reader to tag. The tag stores its key pair and the system parameters for a total of 1920-bits, the
reader/server stores its key pair, the system parameters, and the TP for each tag. This equates to 1120 +
320T bits.

Sensors 2018, 18, x 5 of 17

random number r3 and calculates R3 = r3P to be used for key agreement. The server then sends C2

and R3 to the tag. The tag receives C2 and R3 in step 4 then computes Y = r2SP. The tag then compares

Y and C2, if they are not equal the server is not authenticated, and the session stops, otherwise, the

server is authenticated, and both the tag and server set their key agreement in step 5. In step 5 both

the tag and the server set their key agreements as TKAG = r2R3 and SKAG = r3R2. These steps require

communicating two scalar products from tag to reader and three scalar products from reader to tag.

The tag stores its key pair and the system parameters for a total of 1920-bits, the reader/server stores

its key pair, the system parameters, and the TP for each tag. This equates to 1120 + 320T bits.

Figure 2. Authentication phases for Alamr et al. [4].

The Liao et al. [18] protocol has the server set the domain parameters for both the server/reader

and the tag. It chooses random numbers for SS and TS and calculates SP and TP respectively. It has a

4-step authentication process consisting of five scalar multiplications for each the tag and the

reader/server, see Figure 3 below. In step 1 the server generates a random number r1, calculates R1 =

r1P, and sends R1 to the tag. In step 2 the tag receives R1, generates a random number r2, calculates

R2 = r2P, calculates two temporary secret keys: TKT1 = r2R1 and TKT2 = r2SP, and sets its authenticator

AT = TP + TKT1 + TkT2. The tag then sends AT and R2 to the server. For step 3 the server receives AT and

R2 from the tag, computes two temporary secret keys of its own: TKS1 = r1R2 and TKS2 = SSR2, and

then computes TP as AT − TKS1 − TKS2. If TP is in the server’s database then the tag is authenticated,

otherwise, the session stops. If the tag is authenticated, then the server sets its authenticator AS =

Figure 2. Authentication phases for Alamr et al. [4].

The Liao et al. [18] protocol has the server set the domain parameters for both the server/reader
and the tag. It chooses random numbers for SS and TS and calculates SP and TP respectively. It has

Sensors 2018, 18, 2902 6 of 17

a 4-step authentication process consisting of five scalar multiplications for each the tag and the
reader/server, see Figure 3 below. In step 1 the server generates a random number r1, calculates
R1 = r1×P, and sends R1 to the tag. In step 2 the tag receives R1, generates a random number r2,
calculates R2 = r2×P, calculates two temporary secret keys: TKT1 = r2×R1 and TKT2 = r2×SP, and sets
its authenticator AT = TP + TKT1 + TkT2. The tag then sends AT and R2 to the server. For step 3 the
server receives AT and R2 from the tag, computes two temporary secret keys of its own: TKS1 = r1×R2

and TKS2 = SS×R2, and then computes TP as AT − TKS1 − TKS2. If TP is in the server’s database
then the tag is authenticated, otherwise, the session stops. If the tag is authenticated, then the server
sets its authenticator AS = TS×R2 + r1×TP and sends AS to the tag. Finally, in step 4 the tag receives
AS and compares AS to r2×TP + TS×R1, if they are equal the server is authenticated, otherwise the
session stops. For this protocol, there are two scalar products each, communicated from the tag to the
reader/server and from the reader/server to the tag. In this protocol the tag stores its key pair, the
reader/server’s public key, and the domain parameters totaling 1920-bits, whereas, the reader/server
stores its key pair, the system parameters, and the key pair for each tag, equaling 1280 + 800T bits.

Sensors 2018, 18, x 6 of 17

TSR2 + r1TP and sends AS to the tag. Finally, in step 4 the tag receives AS and compares AS to r2TP +

TSR1, if they are equal the server is authenticated, otherwise the session stops. For this protocol, there

are two scalar products each, communicated from the tag to the reader/server and from the

reader/server to the tag. In this protocol the tag stores its key pair, the reader/server’s public key, and

the domain parameters totaling 1920-bits, whereas, the reader/server stores its key pair, the system

parameters, and the key pair for each tag, equaling 1280 + 800T bits.

Figure 3. Authentication phases for Liao et al. [18].

The Zheng et al. [5] protocol includes an ID in addition to the common variables listed above. In

this protocol, the server and tag each choose a random number on their own that is assigned as their

private keys, the tag’s ID is the same as its TP. There is a 5-step authentication process in this protocol

with three scalar multiplications for the tag and four for the reader/server, see Figure 4 below. In step

1 the server generates a random number r1, calculates R1 = r1P, and sends R1 to the tag. In step 2 the

tag receives R1, generates a random number r2, and calculates R2 = r2P. The tag also computes two

authenticators AT = TP + r2SP and AT’ = TS*R1 − r2R1, then sends R2, AT, and AT’ to the server. In step

3 the server receives R2, AT, and AT’. The server then calculates TP from AT − SSR2 and finds the

corresponding TP in its database. Then the server compares AT’ to TSr1 − R2r1, if they are equal then

the tag is authenticated, and the protocol continues, otherwise, the session stops. In step 4 the server

calculates its authenticator AS = SSR2 − r1*R2 and sends AS to the tag. For step 5 the tag receives AS

and compares it to r2SP − r2R1, if they are equal the server is authenticated, otherwise, the session

stops. There are two scalar products each exchanged between the reader/server and the tag in this

Figure 3. Authentication phases for Liao et al. [18].

The Zheng et al. [5] protocol includes an ID in addition to the common variables listed above.
In this protocol, the server and tag each choose a random number on their own that is assigned as their
private keys, the tag’s ID is the same as its TP. There is a 5-step authentication process in this protocol

Sensors 2018, 18, 2902 7 of 17

with three scalar multiplications for the tag and four for the reader/server, see Figure 4 below. In step
1 the server generates a random number r1, calculates R1 = r1×P, and sends R1 to the tag. In step 2 the
tag receives R1, generates a random number r2, and calculates R2 = r2×P. The tag also computes two
authenticators AT = TP + r2×SP and AT’ = TS*R1 − r2×R1, then sends R2, AT, and AT’ to the server.
In step 3 the server receives R2, AT, and AT’. The server then calculates TP from AT − SS×R2 and
finds the corresponding TP in its database. Then the server compares AT’ to TS×r1 − R2r1, if they are
equal then the tag is authenticated, and the protocol continues, otherwise, the session stops. In step 4
the server calculates its authenticator AS = SS×R2 − r1*R2 and sends AS to the tag. For step 5 the tag
receives AS and compares it to r2×SP − r2×R1, if they are equal the server is authenticated, otherwise,
the session stops. There are two scalar products each exchanged between the reader/server and the
tag in this protocol. The tag stores the system parameters along with the tag’s key pair and ID and the
server/reader’s public key totaling 2080-bits, while the reader/server stores the system parameters,
the reader/server’s key pair, and the ID for each tag which equates to 1760 + 320T bits.

Sensors 2018, 18, x 7 of 17

protocol. The tag stores the system parameters along with the tag’s key pair and ID and the

server/reader’s public key totaling 2080-bits, while the reader/server stores the system parameters,

the reader/server’s key pair, and the ID for each tag which equates to 1760 + 320T bits.

Figure 4. Authentication phases for Zheng et al. [5]

The Zhang et al. [13] protocol was an improvement on ECDLP-based Random Access Control

(EC-RAC) proposed by Lee et al. [14]. This protocol, like the original, has two steps for authentication.

Both the server/reader and tag generate random numbers, the tag performs four scalar

multiplications through the authentication process while the reader/server performs two, see Figure

5 below. In step 1 the server generates a random number r1 and sends r1 to the tag. In step 2 the tag

receives r1, generates two random numbers r2 and r3, then checks r1. If r1 = 0 then the session stops,

otherwise the tag computes X1’ = x1 + r3, where x1 and x2 are the tags secret keys. The tag also computes

three authenticators: AT1 = r2P, AT2 = (r2 + X1’) Y, and AT3 = r2x1 + r1x2, then sends AT1, AT2, AT3, and r3

to the server. For step 3, the server receives AT1, AT2, AT3, and r3 then calculates y−1AT2 − AT1 = X1’P,

remembering that X1’P = (x1 + r3). The server then searches its database for x1 and x2 paired with X1’

and retrieves the corresponding tag information. Finally, the server compares (AT3P − x1*AT1) x2−1

to X2, if they are equal the tag is authenticated, otherwise the session is stopped. In this protocol, the

communication between the reader/server and the tag is a 160-bit randomly-generated-number,

while the tag sends back two scalar products and two 160-bit number values. The tag stores the

system parameters along with the tag’s key pair, and the reader/server’s public key for a total of 1600-

bits, while the reader/server stores the system parameters, its key pair, and the key pair of each tag

equating to 1440 + 480T.

Figure 4. Authentication phases for Zheng et al. [5]

The Zhang et al. [13] protocol was an improvement on ECDLP-based Random Access Control
(EC-RAC) proposed by Lee et al. [14]. This protocol, like the original, has two steps for authentication.
Both the server/reader and tag generate random numbers, the tag performs four scalar multiplications
through the authentication process while the reader/server performs two, see Figure 5 below. In step 1
the server generates a random number r1 and sends r1 to the tag. In step 2 the tag receives r1,
generates two random numbers r2 and r3, then checks r1. If r1 = 0 then the session stops, otherwise
the tag computes X1’ = x1 + r3, where x1 and x2 are the tags secret keys. The tag also computes three
authenticators: AT1 = r2×P, AT2 = (r2 + X1’) ×Y, and AT3 = r2x1 + r1x2, then sends AT1, AT2, AT3,
and r3 to the server. For step 3, the server receives AT1, AT2, AT3, and r3 then calculates y−1×AT2

Sensors 2018, 18, 2902 8 of 17

− AT1 = X1’×P, remembering that X1’×P = (x1 + r3). The server then searches its database for x1

and x2 paired with X1’ and retrieves the corresponding tag information. Finally, the server compares
(AT3×P − x1*AT1) ×x2

−1 to X2, if they are equal the tag is authenticated, otherwise the session is
stopped. In this protocol, the communication between the reader/server and the tag is a 160-bit
randomly-generated-number, while the tag sends back two scalar products and two 160-bit number
values. The tag stores the system parameters along with the tag’s key pair, and the reader/server’s
public key for a total of 1600-bits, while the reader/server stores the system parameters, its key pair,
and the key pair of each tag equating to 1440 + 480T.Sensors 2018, 18, x 8 of 17

Figure 5. Authentication phases for Zhang et al. [13].

Zhao’s [15] protocol has the reader/server select the domain parameters along with a random

number to be used as its private key, while also selecting random numbers for each tag to be used as

the tag’s private key; from these the public keys are calculated. Throughout its 4-step authentication

process, the tag and reader/server perform five scalar multiplications each, see Figure 6 below. In

step 1 the server generates a random number r1, calculates R1 = r1P, and sends R1 to the tag. In step

2 the tag receives R1, generates a random number r2, and calculates R2 = r2P, which it also sees as

(kx,ky). The tag calculates two temporary keys: TKT1 = (r2kx) R1 and TKT2 = (r2ky) SP, from these the

tag’s authenticator is computed as AT = TP + TKT1 + TKT2, and the tag sends AT and R2 to the server.

The server receives AT and R2 in step 3 then calculates two temporary keys of its own: TKS1 = (r1kx)

R2 and TKS2 = (SSky). The server uses these to determine TP from AT − TKS1 − TKS2 and searches its

database for TP. If TP is not in the database the session is stopped, otherwise, the tag is authenticated,

the server retrieves the tag’s corresponding information and calculates its authenticator AS = TSR2 +

r1TP and sends AS to the tag. In step 4 the tag receives AS and compares it to r2TP + TSR2, if they are

equal, the server is authenticated, otherwise, the session is terminated. The tag communicates two

scalar products to the reader/server and the reader/server communicates two scalar products to the

tag. The tag in this protocol stores the system parameters, its public and private keys, and the

reader/server’s public key totaling 1760-bits. The reader/server stores the system parameters, its own

public, and private keys, along with the key pair for each tag, which is 1120 + 480T bits.

In the Jin et al. [16] protocol, like many of the other protocols, the reader/server selects the

domain parameters and chooses random numbers to be used as the reader/server’s private key and

the private keys for each of the tags. This 4-step authentication process yields four scalar

multiplications from the tag and three scalar multiplications from the reader/server, see Figure 7

below. In step 1 the server generates a random number r1, calculates R1 = r1P, and sends R1 to the

tag. In step 2 the tag receives R1, generates a random number r2, calculates R2 = r2P, sets a temporary

key TTK = r2SP, and uses these values with a predetermined hash function, H1, to calculate its

authenticator, AT = TID ⊕ H1(R1,TTK) and sends AT and R2 to the server.

Figure 5. Authentication phases for Zhang et al. [13].

Zhao’s [15] protocol has the reader/server select the domain parameters along with a random
number to be used as its private key, while also selecting random numbers for each tag to be used as
the tag’s private key; from these the public keys are calculated. Throughout its 4-step authentication
process, the tag and reader/server perform five scalar multiplications each, see Figure 6 below. In step 1
the server generates a random number r1, calculates R1 = r1×P, and sends R1 to the tag. In step 2
the tag receives R1, generates a random number r2, and calculates R2 = r2×P, which it also sees as
(kx,ky). The tag calculates two temporary keys: TKT1 = (r2×kx) ×R1 and TKT2 = (r2×ky) ×SP, from
these the tag’s authenticator is computed as AT = TP + TKT1 + TKT2, and the tag sends AT and R2 to
the server. The server receives AT and R2 in step 3 then calculates two temporary keys of its own:
TKS1 = (r1×kx) ×R2 and TKS2 = (SS×ky). The server uses these to determine TP from AT − TKS1 −
TKS2 and searches its database for TP. If TP is not in the database the session is stopped, otherwise,
the tag is authenticated, the server retrieves the tag’s corresponding information and calculates its
authenticator AS = TS×R2 + r1×TP and sends AS to the tag. In step 4 the tag receives AS and compares
it to r2×TP + TS×R2, if they are equal, the server is authenticated, otherwise, the session is terminated.
The tag communicates two scalar products to the reader/server and the reader/server communicates
two scalar products to the tag. The tag in this protocol stores the system parameters, its public and
private keys, and the reader/server’s public key totaling 1760-bits. The reader/server stores the system

Sensors 2018, 18, 2902 9 of 17

parameters, its own public, and private keys, along with the key pair for each tag, which is 1120 +
480T bits.Sensors 2018, 18, x 9 of 17

Figure 6. Authentication phases for Zhao [15].

The server receives AT and R2 in step 3, sets its temporary key as STK = SSR2, then compares TID

to AT ⊕ H1(R1,STK). If TID is not in the server’s database the session is terminated, otherwise, the tag is

authenticated and the server uses another predetermined hash function, H2, to calculate e =

H2(R1,R2,TID) and s ≡ SSe + r1 mod n. The server then sends s to the tag. In the 4th and final step the

tag receives s from the server, calculates e = H2(R1,R2,TID) and checks if sP ≡ SPe + R1 mod n if they

are not the session is stopped, otherwise, the server is authenticated. In this protocol, the tag sends

two scalar products to the reader/server throughout the authentication process and the reader/server

sends two scalar products to the tag. The tags store the domain parameters along with its key pair

and the reader/server’s public key for 1600-bits of storage; the reader/server stores the domain

parameters, its key pair, and the identifier for each tag leading to 1120 + 320T bits of storage.

The Dinarvand et al. [17] protocol has a more complex approach. The reader/server selects the

domain parameters and a random number for the reader/server’s private key. It also selects random

points on the elliptic for each tag to serve as the tag’s unique ID, it also selects two random numbers

for each tag to serve as the tag’s pseudonym and the shared secret key between the tag and

reader/server respectively. Throughout the five authentication steps, there are three scalar

multiplications for each the tag and reader/server, see Figure 8 below.

Figure 6. Authentication phases for Zhao [15].

In the Jin et al. [16] protocol, like many of the other protocols, the reader/server selects the domain
parameters and chooses random numbers to be used as the reader/server’s private key and the private
keys for each of the tags. This 4-step authentication process yields four scalar multiplications from
the tag and three scalar multiplications from the reader/server, see Figure 7 below. In step 1 the
server generates a random number r1, calculates R1 = r1×P, and sends R1 to the tag. In step 2 the tag
receives R1, generates a random number r2, calculates R2 = r2×P, sets a temporary key TTK = r2×SP,
and uses these values with a predetermined hash function, H1, to calculate its authenticator, AT = TID

⊕ H1(R1,TTK) and sends AT and R2 to the server.
The server receives AT and R2 in step 3, sets its temporary key as STK = SS×R2, then compares

TID to AT ⊕ H1(R1,STK). If TID is not in the server’s database the session is terminated, otherwise,
the tag is authenticated and the server uses another predetermined hash function, H2, to calculate
e = H2(R1,R2,TID) and s ≡ SS×e + r1 mod n. The server then sends s to the tag. In the 4th and final
step the tag receives s from the server, calculates e = H2(R1,R2,TID) and checks if s×P ≡ SP×e + R1

mod n if they are not the session is stopped, otherwise, the server is authenticated. In this protocol,
the tag sends two scalar products to the reader/server throughout the authentication process and the

Sensors 2018, 18, 2902 10 of 17

reader/server sends two scalar products to the tag. The tags store the domain parameters along with
its key pair and the reader/server’s public key for 1600-bits of storage; the reader/server stores the
domain parameters, its key pair, and the identifier for each tag leading to 1120 + 320T bits of storage.Sensors 2018, 18, x 10 of 17

Figure 7. Authentication phases for Jin et al. [16].

In step 1 the server generates a random number r1, calculates R1 = r1P, and sends R1 to the tag.

In step 2 the tag receives R1, generates a random number r2, calculates R2 = r2P, then sends R2 and its

IDS (tag pseudonym) to the server. In step 3 the server receives R2 and IDS from the tag and searches

its database for the IDS. If the IDS is not in its database the session is terminated, otherwise, the server

retrieves the corresponding shared secret key, K, and tag ID, TID. The server then calculates two

temporary secret keys: STK1 = r1KR2 and STK2 = SSKR2. These are used to set its authenticator AS =

STK1 ⊕ STK2 ⊕ TID and then send AS to the tag. In step 4 the tag receives AS, calculates two temporary

secret keys: TTK1 = r2KR1 and TTK2 = r2KSP. The tag then compares TID’ to TTK1 ⊕ TTK2 ⊕ AS. If they

are not equal the session is stopped, otherwise, the server is authenticated. The tag then calculates its

authenticator, AT = TID’ ⊕ 2TTK1 ⊕ 2TTK2 and sends AT to the server. In the 5th and final step, the

server receives AT and compares it to TID ⊕ 2STK1 ⊕ 2STK2. If they are not equal the session is

terminated, otherwise, the tag is authenticated. The tag sends two scalar products to the

reader/server; the reader/server sends two scalar products and a randomly generated 160-bit number

to the tag in this protocol. The tag stores the system parameters, its unique ID, the reader/server’s

public key, and their shared secret key for 1760-bits of storage. The reader/server stores the system

parameters, its key pair, each tag’s unique ID, pseudonym, and shared secret key totaling 1120 + 800T

bits of storage.

Figure 7. Authentication phases for Jin et al. [16].

The Dinarvand et al. [17] protocol has a more complex approach. The reader/server selects the
domain parameters and a random number for the reader/server’s private key. It also selects random
points on the elliptic for each tag to serve as the tag’s unique ID, it also selects two random numbers for
each tag to serve as the tag’s pseudonym and the shared secret key between the tag and reader/server
respectively. Throughout the five authentication steps, there are three scalar multiplications for each
the tag and reader/server, see Figure 8 below.

In step 1 the server generates a random number r1, calculates R1 = r1×P, and sends R1 to the tag.
In step 2 the tag receives R1, generates a random number r2, calculates R2 = r2×P, then sends R2 and its
IDS (tag pseudonym) to the server. In step 3 the server receives R2 and IDS from the tag and searches
its database for the IDS. If the IDS is not in its database the session is terminated, otherwise, the server
retrieves the corresponding shared secret key, K, and tag ID, TID. The server then calculates two
temporary secret keys: STK1 = r1×K×R2 and STK2 = SS×K×R2. These are used to set its authenticator
AS = STK1 ⊕ STK2 ⊕ TID and then send AS to the tag. In step 4 the tag receives AS, calculates two
temporary secret keys: TTK1 = r2×K×R1 and TTK2 = r2×K×SP. The tag then compares TID’ to TTK1 ⊕
TTK2 ⊕ AS. If they are not equal the session is stopped, otherwise, the server is authenticated. The tag
then calculates its authenticator, AT = TID’ ⊕ 2×TTK1 ⊕ 2×TTK2 and sends AT to the server. In the 5th
and final step, the server receives AT and compares it to TID ⊕ 2×STK1 ⊕ 2×STK2. If they are not equal

Sensors 2018, 18, 2902 11 of 17

the session is terminated, otherwise, the tag is authenticated. The tag sends two scalar products to the
reader/server; the reader/server sends two scalar products and a randomly generated 160-bit number
to the tag in this protocol. The tag stores the system parameters, its unique ID, the reader/server’s
public key, and their shared secret key for 1760-bits of storage. The reader/server stores the system
parameters, its key pair, each tag’s unique ID, pseudonym, and shared secret key totaling 1120 + 800T
bits of storage.Sensors 2018, 18, x 11 of 17

Figure 8. Authentication phases for Dinarvand et al. [17].

4. ECC Comparisons

In this section, we provide various comparisons between each of the seven protocols. Table 1

shows the number of scalar multiplications for the tag and reader for each protocol and calculates the

total computation time based on the aforementioned assumption of 64 ms per scalar multiplication.

Table 1. Comparison of scalar multiplication costs in each protocol.

Elliptic Scalar Multiplication Costs

Protocol Tag Reader
Calculation Speed on 5

MHz Tag (ms)

Total Tag Calculation

Time (ms)

Total Reader

Calculation Time (ms)

Alamr et al. [4] 4 5 64 256 320

Liao et al. [18] 5 5 64 320 320

Zheng et al. [5] 3 4 64 192 256

Zhang et al. [13] 4 2 64 256 128

Zhao [15] 5 5 64 320 320

Jin et al. [16] 4 3 64 256 192

Dinarvand et al. [17] 3 3 64 192 192

Figure 8. Authentication phases for Dinarvand et al. [17].

4. ECC Comparisons

In this section, we provide various comparisons between each of the seven protocols. Table 1
shows the number of scalar multiplications for the tag and reader for each protocol and calculates the
total computation time based on the aforementioned assumption of 64 ms per scalar multiplication.

Sensors 2018, 18, 2902 12 of 17

Table 1. Comparison of scalar multiplication costs in each protocol.

Elliptic Scalar Multiplication Costs

Protocol Tag Reader
Calculation
Speed on 5

MHz Tag (ms)

Total Tag
Calculation
Time (ms)

Total Reader
Calculation
Time (ms)

Alamr et al. [4] 4 5 64 256 320
Liao et al. [18] 5 5 64 320 320
Zheng et al. [5] 3 4 64 192 256

Zhang et al. [13] 4 2 64 256 128
Zhao [15] 5 5 64 320 320

Jin et al. [16] 4 3 64 256 192
Dinarvand et al. [17] 3 3 64 192 192

Table 2 shows the total communication cost of the tag and reader based on the sizes of the
messages exchanged in the protocol in bits. For example, if the tag sends a scalar product and a
number to the reader, the message size would be 320-bits for the scalar product plus 160-bits for the
number, so the communication cost for that message would be 480-bits. Each protocol summarized
above has different message sizes compared in Table 2.

Table 2. Cost of communications between tag and reader.

Communication Cost (bits)

Protocol Tag Reader

Alamr et al. [4] 640 960
Liao et al. [18] 640 640
Zheng et al. [5] 640 640

Zhang et al. [13] 960 160
Zhao [15] 640 640

Jin et al. [16] 640 640
Dinarvand et al. [17] 800 640

In addition to computation and communication, storage is another factor for comparing the
various protocols. If the protocol requires too much storage on either the tag or reader then it would
not be scalable nor would it be feasible for use. Table 3 below shows the total storage cost for the tag
based on the parameters that are stored on each tag for each protocol, also the storage required for the
reader/server is also shown. On the reader/server an additional term, T, is shown; T represents the
number of tags in the system, for the purposes of this comparison T = 1000, to provide an example of
the possible number of tags that a system may have.

Table 3. Comparison of storage needed in tag and reader/server.

Parameter Storage Cost (bits)

Protocol Tag Reader

Alamr et al. [4] 1920 1120 + 320T
Liao et al. [18] 1920 1280 + 800T
Zheng et al. [5] 2080 1760 + 320T

Zhang et al. [13] 1600 1440 + 480T
Zhao [15] 1760 1120 + 480T

Jin et al. [16] 1600 1120 + 320T
Dinarvand et al. [17] 1760 1120 + 800T

Sensors 2018, 18, 2902 13 of 17

Security features are vital to any authentication protocol. Table 4 shows each protocol and which
security features are provided by the protocol. The security features were verified based on the original
authors’ proofs and comparisons made in some of the other researched studies. Only 3 of the 7 protocols
provide all the listed security features, Liao et al. [18], Zheng et al. [5], and Dinarvand et al. [17].

Table 4. Comparison of security features met by the various protocols.

Security Features Comparison

Feature Alamr et al.
[4]

Liao et al.
[18]

Zheng et al.
[5]

Zhang et al.
[13]

Zhao
[15]

Jin et al.
[16]

Dinarvand et al.
[17]

Mutual
Authentication Y Y Y N Y Y Y

Confidentiality Y Y Y Y Y Y Y

Anonymity Y Y Y Y Y Y Y

Availability N Y Y Y Y Y Y

Scalability N Y Y N Y Y Y

Forward
Security Y Y Y Y Y Y Y

Location
Privacy Y Y Y Y Y Y Y

Data Integrity N Y Y Y N N Y

In addition to the security features, the protocol must be able to resist multiple types of attacks so
that the system will not be compromised. The attack resistances were verified based on the original
authors’ proofs and comparisons made in the other researched studies. Table 5 shows each protocol
and which types of attack they can resist. In this table a yes means that the protocol can resist that
specified attack type.

Table 5. Comparison of each protocol’s resistance to various attacks.

Attack Resistance Comparison

Feature Alamr et al.
[4]

Liao et al.
[18]

Zheng et al.
[5]

Zhang et al.
[13]

Zhao
[15]

Jin et al.
[16]

Dinarvand et al.
[17]

MIMA Y Y Y Y Y Y Y

Replay Y Y Y Y Y Y Y

Impersonation Y N Y Y Y Y Y

Key
Compromise Y N Y Y Y Y Y

Location
Tracking Y Y Y Y Y Y Y

DoS N Y Y N Y Y Y

Cloning Y Y Y Y Y Y Y

Server Spoofing Y Y Y N Y Y Y

Desynchronization N Y Y NA Y Y Y

Based on the comparisons made in Tables 1–5 the next section ranks each of the protocols; there are
rankings for each protocol based on costs and security.

Sensors 2018, 18, 2902 14 of 17

5. ECC Rankings

All of the rankings in this section look at the tables covered in Section 4 and sort orders the
protocols based on their computational, communication, and storage costs on both the tag and the
reader/server. Additionally, the ranking has been done based on the number of security features met
and the number of attacks the protocol can resist.

Tables 6 and 7 below show the total computational time for each protocol and rank them from
lowest computational time to highest; Table 6 shows the rankings for the tag while Table 7 shows the
rankings for the reader/server computational costs.

Table 6. Ranking based on tag computational cost.

Computational Ranking

Protocol Total Tag Calculation Time (ms) Rank Order

Zheng et al. [5] 192 1
Dinarvand et al. [17] 192 1

Alamr et al. [4] 256 2
Zhang et al. [13] 256 2

Jin et al. [16] 256 2
Liao et al. [18] 320 3

Zhao [15] 320 3

Table 7. Ranking based on reader/server computational cost.

Computational Ranking

Protocol Total Tag Calculation Time (ms) Rank Order

Zhang et al. [13] 128 1
Jin et al. [16] 192 2

Dinarvand et al. [17] 192 2
Zheng et al. [5] 256 3
Alamr et al. [4] 320 4
Liao et al. [18] 320 4

Zhao [15] 320 4

Communication is also a very important protocol factor if the messages take too long to be
exchanged that can lead to availability delays which are more hurtful than helpful to the system.
Tables 8 and 9 below rank each protocol based on the communication cost of the messages sent by both
the tag and the reader. The cost is in bits, for example, a protocol whose tag sends 2 scalar products to
the reader/server would have a message size of 320-bits times 2 for a total message size of 640-bits,
based on the 160-bit base for the ECC.

Table 8. Ranking based on tag to reader/server communication cost.

Communication Ranking

Protocol Tag Rank Order

Alamr et al. [4] 640 1
Liao et al. [18] 640 1
Zheng et al. [5] 640 1

Zhao [15] 640 1
Jin et al. [16] 640 1

Dinarvand et al. [17] 800 2
Zhang et al. [13] 960 3

Sensors 2018, 18, 2902 15 of 17

Table 9. Ranking based on reader/server to tag communication cost.

Communication Ranking

Protocol Reader Rank Order

Zhang et al. [13] 160 1
Liao et al. [18] 640 2
Zheng et al. [5] 640 2

Zhao [15] 640 2
Jin et al. [16] 640 2

Dinarvand et al. [17] 640 2
Alamr et al. [4] 960 3

Storage space is another concern for each protocol. The protocol must be able to accomplish
its goals of low computational and communication cost while maintaining a reasonable amount of
required storage space on the already capacity limited tags. Each protocol stores the system parameters
on both the tag and reader/server, what varies are the additional parameters that are stored on the tag
and server. With storage, the concern is more on the tag than the reader/server as the reader/server’s
memory can be upgraded, that option does not exist with a tag. Tables 10 and 11 show the storage
costs in bits for both the tag and reader/server. Note that the reader/server shows an additional
term, T, which represents the number of tags in the system. Those terms with a T, refer to what
the reader/server stores for each tag. All amounts are in bits and T was set to 1000 for purposes of
numerical comparison and ranking.

Table 10. Ranking based on tag storage of required protocol parameters.

Storage Ranking

Protocol Tag Rank Order

Zhang et al. [13] 1600 1
Jin et al. [16] 1600 1

Zhao [15] 1760 2
Dinarvand et al. [17] 1760 2

Alamr et al. [4] 1920 3
Liao et al. [18] 1920 3
Zheng et al. [5] 2080 4

Table 11. Ranking based on reader/server storage of required protocol parameters.

Storage Ranking

Protocol Tag Rank Order

Alamr et al. [4] 1120 + 320T 1
Jin et al. [16] 1120 + 320T 1

Zheng et al. [5] 1760 + 320T 2
Zhao [15] 1120 + 480T 3

Zhang et al. [13] 1440 + 480T 4
Dinarvand et al. [17] 1120 + 800T 5

Liao et al. [18] 1280 + 800T 6

Security features such as mutual authentication, confidentiality, data integrity, and so on, are
very important when deciding which protocol to use. Table 12 ranks each protocol based on the total
number of security features the protocol meets from Table 4. As shown, only three protocols meet all
eight features.

Finally, to go along with the provided security features, the protocol must also be able to resist
multiple types of attacks. Based on Table 5, each protocol was ranked according to the number of
attacks it can resist.

Sensors 2018, 18, 2902 16 of 17

Table 12. Ranking based on the number of security features each protocol provides.

Security Features Ranking

Protocol Number of Features Met Rank Order

Liao et al. [18] 8 1
Zheng et al. [5] 8 1

Dinarvand et al. [17] 8 1
Zhao [15] 7 2

Jin et al. [16] 7 2
Zhang et al. [13] 6 3
Alamr et al. [4] 5 4

6. Data Discussion and Conclusion

With all of the cost comparisons: computational, communication, and storage, coupled with the
comparisons of the security features and attack resistances, the rankings were produced. However,
individual category rankings do not allow us to determine which protocol would perform best. To make
this determination, an average rank value was calculated from each protocol’s rank in Tables 6–13.
Based on this average rank value, the protocols were resorted and are listed in rank order in Table 14.
Keep in mind that all ranks were handled equally and no category rank was weighted differently.
Due to this, the highest-ranking protocol turns out to be Jin et al. [16], which despite having the best
average rank score, has what I consider to be a major failing, it does not provide data integrity. The
next two protocols on the list do provide all of the security features in addition to attack resistance.

Table 13. Ranking based on the number of different types of attacks each protocol can resist.

Attack Resistance Ranking

Protocol Number of Attacks Able to Resist Rank Order

Zheng et al. [5] 9 1
Zhao [15] 9 1

Jin et al. [16] 9 1
Dinarvand et al. [17] 9 1

Alamr et al. [4] 7 2
Liao et al. [18] 7 2

Zhang et al. [13] 6 3

Table 14. Sorted rank of each protocol based on the average of all their rankings.

Overall Protocol Rank

Protocol Average Rank

Jin et al. [16] 1.5
Zheng et al. [5] 1.875

Dinarvand et al. [17] 2
Zhang et al. [13] 2.25

Zhao [15] 2.25
Alamr et al. [4] 2.5
Liao et al. [18] 2.75

Author Contributions: Conceptualization, A.P.J. and R.B.; Methodology, A.P.J. and R.B.; Formal Analysis, A.P.J.
and R.B.; Writing-Original Draft Preparation, A.P.J.; Writing-Review & Editing, A.A., and R.B.; Supervision, A.A.;
Project Administration, A.A.

Conflicts of Interest: The authors declare no conflicts of interest.

Sensors 2018, 18, 2902 17 of 17

References

1. Bhattacharyya, M.; Gruenwald, W.; Jansen, D.; Reindl, L.; Aghassi-Hagmann, J. An Ultra-Low-Power
RFID/NFC Frontend IC Using 0.18 µm CMOS Technology for Passive Tag Applications. Sensors 2018,
18, 1452. [CrossRef] [PubMed]

2. Gope, P.; Hwang, T. A realistic lightweight authentication protocol preserving strong anonymity for securing
RFID system. Comput. Secur. 2015, 55, 271–280. [CrossRef]

3. Gope, P.; Lee, J.; Quek, T.Q.S. Lightweight and Practical Anonymous Authentication Protocol for RFID Systems
Using Physically Unclonable Functions. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2831–2843. [CrossRef]

4. Alamr, A.A.; Kausar, F.; Kim, J.S. Secure mutual authentication protocol for RFID based on elliptic curve
cryptography. In Proceedings of the 2016 International Conference on Platform Technology and Service
(PlatCon), Jeju, Korea, 15–17 February 2016; pp. 1–7.

5. Zheng, L.; Xue, Y.; Zhang, L.; Zhang, R. Mutual Authentication Protocol for RFID based on ECC.
In Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE)
and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China,
21–24 July 2017; pp. 320–323.

6. Langheinrich, M. A survey of RFID privacy approaches. Pers. Ubiquit. Comput. 2008, 13, 413–421. [CrossRef]
7. Kim, S.; Kim, Y.; Park, S. RFID Security Protocol by Lightweight ECC Algorithm. In Proceedings of the

IEEE 6th International Conference on Advanced Language Processing and Web Information Technology
(ALPIT 2007), Luoyang, China, 22–24 August 2007; pp. 323–328.

8. Ko, W.; Chiou, S.; Lu, E.; Chang, H.K. An Improvement of Privacy-Preserving ECC-Based Grouping Proof
for RFID. In Proceedings of the IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology
Conference, Harbin, China, 26–30 July 2011; pp. 1062–1064.

9. Wu, C.; Yang, F.; Tan, X.; Wang, C.; Chen, F.; Wang, J. An ECC Crypto Engine based on Binary Edwards
Elliptic Curve for Low-cost RFID Tag Chip. In Proceedings of the 2015 IEEE 11th International Conference
on ASIC (ASICON), Chengdu, China, 3–6 November 2015; pp. 1–4.

10. Benssalah, M.; Djeddou, M.; Drouiche, K. Design and Implementation of a New Active RFID Authentication
Protocol Based on Elliptic Curve Encryption. In Proceedings of the IEEE SAI Computing Conference,
London, UK, 13–15 July 2016; pp. 1076–1081.

11. Benssalah, M.; Djeddou, M.; Drouiche, K. RFID Authentication Protocols Based on ECC Encryption Schemes.
In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA),
Nice, France, 5–7 November 2012; pp. 97–100.

12. Batina, L.; Guajardo, J.; Kerins, T.; Mentens, N.; Tuyls, P.; Verbauwhede, I. Public-Key Cryptography for
RFID-Tags. In Proceedings of the 5th Annual IEEE International Conference on Pervasive Computing and
Communications Workshops (PerComW’07), White Plains, NY, USA, 19–23 March 2007; pp. 217–222.

13. Zhang, X.; Linsen, L.; Wu, Y.; Zhang, Q. An ECDLP-Based Randomized Key RFID Authentication Protocol.
In Proceedings of the 2011 International Conference on Network Computing and Information Security,
Guilin, China, 14–15 May 2011; pp. 146–149.

14. Lee, Y.K.; Batina, L.; Verbauwhede, I. EC-RAC (ECDLP Based Randomized Access Control): Provably Secure
RFID Authentication Protocol. In Proceedings of the 2008 IEEE International Conference on RFID, Las Vegas,
NV, USA, 16–17 April 2008; pp. 97–104.

15. Zhao, Z. A secure RFID authentication protocol for healthcare environments using elliptic curve
cryptosystem. J. Med. Syst. 2014, 38, 46. [CrossRef] [PubMed]

16. Jin, C.; Xu, C.; Zhang, X.; Li, F. A secure ECC-based RFID mutual authentication protocol to enhance patient
medication safety. J. Med. Syst. 2016, 40, 12. [CrossRef] [PubMed]

17. Dinarvand, N.; Barati, H. An efficient and secure RFID authentication protocol using elliptic curve
cryptography. Wirel. Netw. 2017. [CrossRef]

18. Liao, Y.P.; Hsiao, C.M. A secure ECC-based RFID authentication scheme integrated with ID-verifier transfer
protocol. Ad Hoc Netw. 2014, 18, 133–146. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18051452
http://www.ncbi.nlm.nih.gov/pubmed/29735939
http://dx.doi.org/10.1016/j.cose.2015.05.004
http://dx.doi.org/10.1109/TIFS.2018.2832849
http://dx.doi.org/10.1007/s00779-008-0213-4
http://dx.doi.org/10.1007/s10916-014-0046-9
http://www.ncbi.nlm.nih.gov/pubmed/24756871
http://dx.doi.org/10.1007/s10916-015-0362-8
http://www.ncbi.nlm.nih.gov/pubmed/26573649
http://dx.doi.org/10.1007/s11276-017-1565-3
http://dx.doi.org/10.1016/j.adhoc.2013.02.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	ECC Methods
	ECC Comparisons
	ECC Rankings
	Data Discussion and Conclusion
	References

