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Abstract: Face recognition is a popular and efficient form of biometric authentication used in many
software applications. One drawback of this technique is that it is prone to face spoofing attacks,
where an impostor can gain access to the system by presenting a photograph of a valid user to the
sensor. Thus, face liveness detection is a necessary step before granting authentication to the user. In
this paper, we have developed deep architectures for face liveness detection that use a combination of
texture analysis and a convolutional neural network (CNN) to classify the captured image as real or
fake. Our development greatly improved upon a recent approach that applies nonlinear diffusion
based on an additive operator splitting scheme and a tridiagonal matrix block-solver algorithm
to the image, which enhances the edges and surface texture in the real image. We then fed the
diffused image to a deep CNN to identify the complex and deep features for classification. We
obtained 100% accuracy on the NUAA Photograph Impostor dataset for face liveness detection using
one of our enhanced architectures. Further, we gained insight into the enhancement of the face
liveness detection architecture by evaluating three different deep architectures, which included deep
CNN, residual network, and the inception network version 4. We evaluated the performance of
each of these architectures on the NUAA dataset and present here the experimental results showing
under what conditions an architecture would be better suited for face liveness detection. While the
residual network gave us competitive results, the inception network version 4 produced the optimal
accuracy of 100% in liveness detection (with nonlinear anisotropic diffused images with a smoothness
parameter of 15). Our approach outperformed all current state-of-the-art methods.

Keywords: face liveness detection; nonlinear diffusion; NUAA dataset; CNN-5; ResNet50;
Inception v4

1. Introduction

Biometric authentication is a well-known security process used to ensure secure access to digital
computing devices. The authentication system determines the individual’s identity based on biological
characteristics that are unique to the individual. Some of the popular authentication schemes include
fingerprint scan, retina scan, iris recognition, speaker recognition, hand and finger geometry, vein
geometry, voice identification, and so forth.

Face recognition is a popular biometric authentication technique used for identity management
and secure access control for many web- and mobile-related software applications. It is more convenient
to deploy than other biometric techniques. However, despite its advantage as a nonintrusive form
of access, the security system might not be able to distinguish between a real person and his or her
photograph. An impostor can gain access to the system by presenting a copy of the image to the
camera. Therefore, prior to face recognition authentication, face liveness detection is important to detect
whether the captured face is live or fake. To address face spoofing attacks, researchers have proposed
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different methods for face liveness detection, for example, based on enhanced local binary pattern
(LBP), motion analysis, texture analysis, quality of captured images, and so forth. Recent research has
focused on using deep convolutional neural network (CNN) architectures for face liveness detection.

In this paper, we present different CNN architectures that perform face liveness detection on
images captured through a webcam by first diffusing the images and then feeding them to the CNN
architectures. We evaluated the performance of each of these architectures on the NUAA Photograph
Impostor dataset to determine an optimal architecture for liveness detection. We determined that the
level of smoothness of the diffused images played a significant role in determining the liveness of the
captured images. We experimented with various values of the parameter param. alpha, which defines
the smoothness of diffusion, and observed that a reasonably low value of 15 or 25 enhanced the edges
and boundaries of the image and gave better results, whereas higher values blurred out important
information from the image. With a param. alpha value of 15, the inception network version 4
(Inception v4) outperformed the residual network and a simple five-layer CNN (CNN-5). With a
param. alpha value of 25, the CNN-5 and residual network performed slightly better than the inception
network. We also performed a comparison of our proposed approach with previous state-of-the-art
approaches, as well as other deep architectures for face liveness detection, and demonstrated that
the Inception v4, when applied to processed images with nonlinear diffusion, results in optimal
performance in the detection of image liveness to counteract face spoofing.

The rest of the paper is organized as follows: Section 2 discusses previous work related to face
liveness detection. Our proposed method of using CNN architectures on nonlinear diffused images is
discussed in Section 3. Section 4 presents a performance evaluation of the different CNN architectures
we used for face antispoofing. The concluding remarks are mentioned in Section 5.

2. Related Work

Many methods have been used to address face spoofing attacks to determine the liveness of a
captured image. Liu et al. [1] presented the extraction of an enhanced local binary pattern of a face
map that served as the classification features. These features, when fed to a Support Vector Machine
(SVM) classifier, can identify whether the face map is real or fake. Das et al. [2] described an approach
based on frequency and texture analyses for differentiating between live and fake faces. The frequency
analysis is performed by transforming the images into the frequency domain using Fourier transform
and then calculating the frequency descriptor to determine the temporal changes in the face. The
texture analysis is done using LBP, and the resulting feature vector is fed to an SVM classifier with a
radial basis function kernel for classification. In the proposed method by Kim et al. [3], the difference
in surface properties between live and fake faces is estimated by computing the diffusion speed and
extracting antispoofing features based on the local patterns of diffusion speeds. These features are fed
to a linear SVM classifier to determine the liveness of the image.

Yeh et al. [4] proposed an algorithm that relies on the property of digital focus with various
depths of field. Preprocessing is done by analyzing the nose and bottom right part of the cheek. The
level of blurriness is shown to be different in live and fake images due to the effect of the depth of
field. Classification is then done using the k-nearest-neighbor algorithm. A method that uses a flash
against 2D spoofing attack was described by Chan et al. [5]. In this method, two images per person
are captured—one using flash and the other without using flash. The textural information from the
face is measured using a descriptor based on uniform LBP, and three other descriptors are used to
capture the structural information of the face using the standard deviation and mean of the grayscale
difference between the two captured images of a person. Classification is based on the difference
between the images with and without flash measured by the four descriptors. Luan et al. [6] proposed
a method where three types of features are extracted, which are specular reflection ratio, hue channel
distribution features, and blurriness. Classification of the images is done based on these three features
using an SVM. Tan et al. [7] presented a method where the antispoofing task was formulated as a
binary classification problem. They analyzed the 2D Fourier spectra by Difference of Gaussian (DoG)



Entropy 2019, 21, 423 3 of 16

filtering to remove noise and extended the sparse logistic regression classifier nonlinearly and spatially
for classification. The authors of [8] introduced a texture descriptor known as the dynamic local ternary
pattern, where the textural properties of facial skin are explored using a dynamic threshold setting,
and the support vector machine with a linear kernel is used for classification. Matta et al. [9] analyzed
the texture of facial images using multiscale local binary patterns. The microtexture patterns were then
encoded into an enhanced feature histogram, which was fed to an SVM classifier.

Recent work in face liveness detection has been based on the use of deep CNN architectures [10,11]
as these provide better liveness detection accuracy than the previously mentioned approaches. The
work proposed in [10] focused on training deep CNNs for liveness detection by employing data
randomization on small minibatches. The research proposed in [11] utilized a combination of diffusion
of the input face followed by only a three-layer CNN architecture. None of the existing works has
employed deeper architectures such as the ResNet and the Inception v4 that we employed in this paper.

3. Proposed Method

In our method, we proposed a solution where we first applied nonlinear diffusion based on an
additive operator splitting scheme and an efficient block-solver called the tridiagonal matrix algorithm
to the captured image in order to enhance the edges and preserve the boundary locations of the image
(similar to the work proposed in [11] but also with deeper architectures). These diffused input images
were then fed to the CNN architecture to extract the complex and deep features and to finally classify
the image as real or fake. We used three different CNN architectures and performed a comparative
evaluation of their performance, thus gaining insight into why a particular architecture is better suited
for face liveness detection. Additionally, we compared our proposed method with previous approaches
that have been proposed for liveness detection to determine how well it performed with regard to
current state-of-the-art methods.

3.1. Nonlinear Diffusion

Nonlinear diffusion is a powerful denoising technique which denoises an image by preserving the
edges. The denoised image is a solution of the diffusion equation with a diffusion coefficient that varies
spatially. The information contained in high-spatial-frequency components of the image is preserved by
the diffusion process [12]. Nonlinear diffusion applied to face liveness detection helps in distinguishing
a fake from a real image by diffusing the input image quickly. The edges obtained from a fake image
will be faded, while those obtained from a real image will remain clear [13]. Nonlinear diffusion based
on a partial differential equation, called anisotropic diffusion, helps prevent the problem of blurring
important features and localization issues associated with linear diffusion. According to Perona and
Malik [14], anisotropic diffusion is used to improve the scale-space technique, where the diffusion
coefficient is chosen to vary spatially such that inter-region smoothing is encouraged in preference to
intraregion smoothing, thereby enhancing the boundaries.

During the diffusion process, the nonlinear diffusion filter detects the edges and preserves the
locations using explicit schemes. A semi-implicit scheme proposed in [15] addressed the problem
of regularization associated with anisotropic diffusion. This is the additive operator splitting (AOS)
scheme, which is stable for all time steps and guarantees equal treatment of all coordinate axes, defined
by Equation (1) [16]. This scheme enables fast diffusion, smooths out the edges in fake images, and
preserves them in real ones. Image information inside objects will be blended, while image information
along edges will be left intact.

(Ik)
t+1 =

m∑
l=1

(
mId− τm2Al

)−1
It
k (1)
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where m is the number of dimensions, k represents the channel, Id is the identity matrix, Al is
the diffusion, and τ is the time steps (referred to as param. alpha in our implementation). For a
two-dimensional case, m = 2, and the equation becomes

(Ik)
t+1 = (2Id− 4τA1)

−1It
k + (2Id− 4τA2)

−1It
k (2)

where A1 and A2 denote the diffusion in the horizontal and vertical directions.
AOS, together with a block-solver tridiagonal matrix algorithm (TDMA), can be used to efficiently

solve the nonlinear, scalar valued diffusion equation [16]. The TDMA is a simplified form of Gaussian
elimination, useful for solving tridiagonal systems of equations.

3.2. CNN Architectures

CNNs have proved successful in many machine learning tasks such as handwriting recognition [17],
natural language processing [18], text classification [19], image classification [17], face recognition [20],
face detection [21], object detection [22], video classification [23], object tracking [24], super
resolution [25], human pose estimation [26], and so forth. CNNs, introduced by Lecun et al. [17],
combine three architectural concepts of local receptive fields, shared weights, and spatial or temporal
subsampling in order to ensure some degree of shift, scale, and distortion invariance. They eliminate
the need for hand-crafted feature extraction and extract local features by restricting the receptive fields
of hidden units to be local.

The CNN architecture takes an image as input, performs the required number of convolutions and
subsampling, and then feeds the outputs obtained to the required number of fully connected layers.

The CNN architectures used in our experiments are described below.

3.2.1. CNN-5

This consisted of a total of five layers, which included two convolutional layers, one subsampling
layer, and two fully connected layers. The inputs to the network were the 64 × 64 size nonlinear
diffused counterparts of the captured original images. The first layer was the convolutional layer C1
that consisted of 12 feature maps, each of size 56 × 56, where each unit in a feature map was the result
of the convolution of the local receptive field of the input image with a 9 × 9 kernel. The kernel used in
the convolution was the set of connection weights used by the units in the feature map. Each unit
in a feature map shared the same set of weights and bias, so they detected the same feature at all
possible locations in the input. Other feature maps in the layer used different sets of weights and biases,
extracting different local features [17]. The next layer was also a convolutional layer, C2, consisting of
18 feature maps, each of size 50 × 50, obtained by the convolution of the feature maps in C1 with 7 × 7
kernels. C2 was followed by a subsampling layer S2 of 18 feature maps, each of size 25 × 25, obtained
by applying a pooling of size (2, 2) to the corresponding C2 layer feature maps, thereby reducing the
resolution of the feature maps in the C2 layer by half. The next layer was a fully connected hidden
layer of 50 neurons, followed by a fully connected output layer of 2 neurons. Dropout of probability
0.25 was applied to the pooling layer, and dropout of 0.4 was applied to the hidden layer. The complete
architecture is illustrated in Figure 1.

To introduce nonlinearity into the model, the rectified linear unit activation function was applied
to the outputs of C1, C2, and the hidden layer of 50 neurons, restricting the outputs of these layers to
be 0 or x, where x is the output of the neuron before the activation function is applied. The sigmoid
activation function was applied to the output layer, giving an output in the range of 0 to 1. The
network was trained by backpropagation using the Adam optimization algorithm, with mean squared
error as the loss function. The diffusion block was implemented via direct implementation of the
diffusion equations.
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3.2.2. ResNet50

As the depth of a deep network increases, the accuracy becomes saturated and the network
degrades rapidly. The deep residual learning framework improves the degradation problem and eases
the training of the network [27]. In a residual network, there are shortcut connections which skip
one or more layers. To the standard CNN, skip connections are added that bypass a few convolution
layers. Each bypass produces a residual block where the convolution layers predict a residual that is
added to the block’s input. Therefore, these shortcut connections simply perform identity mapping,
and their outputs are added to the outputs of the stacked layers. This gives rise to a shallower
architecture, and the entire network can still be trained end-to-end. The identity connections add
neither extra parameters nor computational complexity to the network. Residual networks have been
used successfully in age and gender estimation [28], for hyperspectral image classification [29], and
other classification tasks. Even though very deep residual networks (152 layers) have been used, in
this work, we only used 50 layers, as our focus was on a comparative evaluation of architectures.

The ResNet50 is a residual network of 50 layers, which consists of identity residual blocks and
convolutional residual blocks stacked together. The shortcut connections allow the gradient to be
back-propagated to earlier layers, preventing the vanishing gradient problem associated with very
deep networks. The central idea of residual networks (ResNets) is to learn the additive residual
function, using an identity mapping realized through identity skip connections [30]. The shortcut
connections parallel to the main path of convolutional layers allow the gradient to back-propagate
through them, resulting in faster training.

Figure 2 shows the basic residual block, and Figure 3 shows the ResNet50 architecture used in
this paper.

The architecture consisted of identity blocks and convolutional blocks stacked together in stages
2–5. The identity residual block was used when the input and output dimensions were same before the
addition, whereas the convolutional residual block was used when the input and output dimensions
were different before the addition.

The inputs to the network were the 64 × 64 nonlinear diffused images. The network was trained
using the Adam optimization algorithm, with categorical cross-entropy as the loss function and softmax
as the classifier. Cross-entropy measures the performance of a classification model where the output is
a probability distribution, giving a value between 0 and 1. Since our targets were in categorical format
with two classes (fake, real), we used the categorical_crossentropy as the loss function.
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3.2.3. Inception v4

Inception architectures have been shown to achieve very good performance at relatively low
computational cost [31]. The inception network’s architecture provides improved utilization of the
computing resources inside the network through a design that increases the depth and width of the
network while keeping the computational budget constant. The network consists of inception modules
stacked upon each other, with occasional pooling layers to reduce the resolution of the grid. Information
is processed at various scales by applying filters of different sizes to the same layer, which are then
aggregated so that the following stage can abstract features from different scales simultaneously [32].

The basic inception module (Figure 4) used filter sizes 1 × 1, 3 × 3, and 5 × 5, the convolution
outputs and a max pooling output of which were concatenated into a single output vector forming
the input to the next stage. Instead of using a filter of an appropriate size at a level, filters of multiple
sizes were used, making the network wider than deeper, so that features at different scales could be
recognized. The resulting feature maps were then concatenated before going to the next layer. This
was further refined by incorporating dimensionality reductions by applying 1 × 1 convolutions before
the 3 × 3 and 5 × 5 convolutions. Auxiliary classifiers were also included to prevent the vanishing
gradient problem. Later versions incorporated factorization of filters into smaller convolutions by
replacing the 5 × 5 filters with two 3 × 3 filters [33]. This reduced the computational cost, resulting in a
reduced number of parameters and faster training. Additionally, the nxn convolutions were replaced
by a 1xn convolution followed by a nx1 convolution, which further increased the computational cost
savings. Also, filter banks were expanded to avoid representational bottleneck. Batch normalization
was applied to the fully connected layer of auxiliary classifiers for additional regularization, and label
smoothing was added as regularization to the loss formula to make the model more adaptable and
prevent overfitting. Deep CNN with inception modules has been used for person reidentification [34],
inception network version 3 has been used for Next Generation Sequencing (NGS)-based pathogen
detection [35], and a residual inception network has been used in multimedia classification [36].
Figure 4 below shows the basic inception module.
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In our experiments, we used the Inception v4 architecture, which is a more uniform simplified
structure compared with the earlier versions. This model consisted of three different inception blocks,
where each was used repeatedly a certain number of times, and two reduction blocks for changing the
width and height of the grid. The inputs to the network were the 64 × 64 nonlinear diffused images.
The complete network consisted of an inception stem, 4 x inception A blocks, 1 x reduction A block,
7 x inception B blocks, 1 x reduction B block, and 3 x inception C blocks, followed by average pooling,
dropout, and softmax layers. Figure 5 shows the Inception v4 network.
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4. Performance Evaluation

We performed experimental evaluations using the three CNN architectures (CNN-5, ResNet50,
and Inception v4) on the NUAA dataset. In this section, we describe the experimental results and the
hyperparameter settings used with each of the architectures in the experiments. We compare the three
architectures in terms of performance and, further, compare their performance with other existing
liveness detection methods.
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4.1. Dataset

The NUAA Photograph Impostor database [7] contains images of 15 subjects and is publicly
available. It contains both live and photographed faces of the subjects, captured using a webcam in
three sessions, with each session at a different place with different illumination conditions. There is
a total of 12,614 images in the dataset, with 3491 training images and 9123 test images, as shown in
Table 1. Each image is 64 × 64 in size and in gray-scaled representation. There is no overlap between
the training set and test set images. The training set images were taken during sessions 1 and 2, and
the test images were taken during session 3. The training set contain images of subjects 1–9, whereas
the test set contains images of subjects 1–15.

Table 1. NUAA dataset.

Training Images Test Images Total

Real (Client) 1743 3362 5105
Fake (Imposter) 1748 5761 7509

Total 3491 9123 12,614

4.2. Experimental Setup

We created nonlinear diffused images using the MATLAB implementation code by the author
of [16]. Most of our experiments were implemented on a 32GB RAM PC. The code was written in
Python, using the Keras library with the TensorFlow backend, for all the three architectures.

4.3. Experimental Results

We conducted numerous experiments with the three CNN architectures on the NUAA dataset.
We performed several tests by changing the hyperparameters during the learning phase.

From all the experiments we conducted, we figured out that the smoothness of the nonlinear
diffused images played a significant role in determining the liveness of the image. A high value of
50/75/100 for the smoothness parameter param. alpha blurred out important edges from the images, as
depicted in Figure 6. A value of 15 or 25 produced better diffused images with highlighted edges and
enhanced boundaries.Entropy 2019, 21, x FOR PEER REVIEW 9 of 17 
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4.3.1. CNN-5

With the CNN-5 architecture, we used diffused images created by setting the parameter that
defines smoothness of diffusion (param. alpha) to 25. We obtained a test accuracy of 95.99% after
training for 30 epochs using the Adam optimizer and mean-squared-error loss function. The learning
rate was set to 0.001, which is the default of the Adam optimizer, and the batch size was set to 32. The
activation functions used were ReLU for the convolutional layers and hidden layer, and sigmoid for
the output layer. Average pooling was applied to the C2 layer for down-sampling. Table 2 shows the
test accuracies obtained with CNN-5 after training for various epochs.

Table 2. Test results obtained with the CNN-5 architecture.

Epochs 10 15 20 25 30 35 40

% Test Accuracy 62.30 69.04 65.77 79.14 95.99 81.15 76.47

A slightly lower accuracy of 94.78% was obtained when max pooling was used after the C2 layer,
categorical cross-entropy as the loss function, and softmax as the classifier. This accuracy was obtained
after training for 35 epochs, with Adadelta as the optimizer at its default learning rate and with the
batch size set to 32.

4.3.2. ResNet50

With the ResNet50 architecture, various combinations of kernel initialization, loss functions,
activation functions, and classifiers were tested. We used diffused images created by setting the
smoothness of diffusion (param. alpha) to 25.

We obtained a test accuracy of 95.85% after training for 20 epochs using the Adam optimizer,
categorical cross-entropy loss function, and softmax classifier. The learning rate was kept at the default
of the Adam optimizer, which is 0.001, and the batch size was set to 32. Table 3 shows the accuracies
obtained with ResNet50 for various epochs.

Table 3. Test results obtained with the ResNet50 architecture.

Epochs 10 15 20 25 30 35 40

% Test Accuracy 86.75 73.21 95.85 76.25 82.96 75.32 88.61

We also tested for liveness detection by reducing the number of feature maps in the convolutions
by a quarter. We tested the architecture with Adam, Adadelta, RMSprop, and SGD optimizers, and
the best results were obtained with the Adam optimizer. We also experimented with two different
kernel initializers: glorot-uniform() and random-uniform(). It was observed that, on average, the
glorot-uniform() initializer gave better results than the random-uniform() initializer. We further
observed that the network with the original number of feature maps in the convolutions gave better
results than the network with a reduced number of feature maps.

4.3.3. Inception v4

With the Inception v4 architecture, we achieved the highest test accuracy of 100%, something
which has not been reported by any previous approach for face liveness detection on the NUAA
dataset. This high accuracy was obtained after training for various epochs, ranging from 10 to 40,
using the Adam optimizer, categorical cross-entropy loss function, and softmax classifier. The learning
rate used was the default of the Adam optimizer, which is 0.001, and the batch size was set to 32. We
used diffused images created by setting the smoothness of diffusion (param. alpha) to 15. Table 4
shows the summary of the results obtained with Inception v4 for various epochs.
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Table 4. Test results obtained with the Inception v4 architecture.

Epochs 10 15 20 25 30 35 40

% Test Accuracy 100 100 100 100 100 100 100

We initially used diffused images created by setting the smoothness of diffusion (param. alpha)
to 25 and experimented with different combinations of the number of inception A–C blocks, with
the batch size set to 32. It was observed that the default of four inception A blocks, seven inception
B blocks, and three inception C blocks gave better results. The results obtained are summarized in
Table 5.

Table 5. Evaluation with various numbers of inception A–C blocks (param. alpha = 25).

Number of Blocks Used Epochs Test Accuracy

4A, 7B, 3C 10 95.04%
3A, 5B, 2C 10 74.29%
7A, 9B, 5C 10 86.53%

We also conducted experiments by keeping only parts of the architecture. We experimented with
using only the inception stem, the inception A blocks, and reduction A block, eliminating blocks B and
C. We further tried using only the inception stem followed by blocks A and B, leaving out block C, and
also inception stem followed by blocks A and C, leaving out block B. The results in these cases were
not as accurate. By using only the inception stem, inception A blocks, and reduction A block, the test
accuracies obtained with various numbers of inception A blocks are summarized in Table 6 below.

Table 6. Evaluation using only inception stem, inception A blocks, and reduction A block (param.
alpha = 25).

Number of Inception A Blocks Epochs Test Accuracy

4 10 89.07%
5 10 91.17%
6 10 90.91%
7 10 91.59%

With the diffused images created by setting the smoothness parameter (param. alpha) to 15, we
also performed experiments by using a sample of the training images as a validation dataset. Out of
the 3491 training images, we used 3000 images for training and 491 images for validation. When the
validation set was incorporated after each epoch during the training process, the model was evaluated
on the validation set, which provided an estimate of the skill of the model. Table 7 shows the validation
accuracy after each epoch, when the Inception v4 network was trained for 25 epochs, and Figure 7
shows the corresponding plot of epoch versus validation accuracy.

Table 7. Validation accuracy (%) obtained after each epoch (param. alpha = 15).

Epoch Accuracy Epoch Accuracy Epoch Accuracy

1 85.13 11 99.39 21 99.19
2 97.76 12 99.19 22 98.17
3 97.15 13 98.98 23 98.37
4 96.74 14 99.19 24 99.59
5 99.19 15 98.98 25 99.19
6 99.19 16 99.59
7 98.57 17 99.39
8 99.19 18 98.57
9 99.19 19 98.98
10 98.57 20 98.78
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4.4. Comparison of the Three Architectures

An overall comparison of the three architectures showed that the Inception v4 had superior
performance for face liveness detection compared with ResNet50 and CNN-5. The accuracies of
ResNet50 and CNN-5 differed only by a slight amount, and though their accuracies were not as high
as the Inception v4 network, they still provided competitive results, showing that they too can be used
for face liveness detection of anisotropic diffused captured images. Table 8 shows the summary of the
obtained results.

Table 8. Comparison of the three architectures.

Architecture Epochs Optimizer Loss Function Test Accuracy

CNN-5 30 Adam mean squared error 95.99%
ResNet50 20 Adam categorical cross-entropy 95.85%

Inception v4 10 Adam categorical cross-entropy 100%

Figure 8 shows the plot of epochs versus accuracy for each architecture, using the results in
Tables 2–4.

Entropy 2019, 21, x FOR PEER REVIEW 12 of 17 

 

 

 

 

 

 

 

Figure 8. Plot showing epochs vs. accuracy for each architecture. 

We further observed from our experiments using the three networks that the best optimizer 
was the Adam optimizer. We tried various values of learning rates for this optimizer to see if 
increasing or decreasing the learning rate from the default value of 0.001 would improve the test 
accuracy, but it was observed that the default learning rate gave higher accuracy for ResNet50 and 
CNN-5. The Inception v4 still had 100% accuracy despite changing the learning rate. Table 9 
summarizes the observations made. 

Table 9. Accuracies obtained for various values of learning rates. 

Architecture Learning Rate Epochs Accuracy 
CNN-5 0.001 30 95.99% 
CNN-5 0.002 30 88.97% 
CNN-5 0.005 30 63.14% 
CNN-5 0.0008 30 72.83% 

ResNet50 0.001 20 95.85% 
ResNet50 0.002 20 62.74% 
ResNet50 0.005 20 64.80% 
ResNet50 0.0008 20 66.76% 

Inception v4 0.001 10 100% 
Inception v4 0.002 10 100% 
Inception v4 0.005 10 100% 
Inception v4 0.0008 10 100% 

We created five sets of diffused images for our experiments, with different values of the 
parameter param. alpha, which defines the smoothness of the diffused image, as shown in Figure 6. 
We tested each architecture with each of these sets of diffused images.  

Table 10 summarizes the results obtained with each architecture using each set of diffused 
images. The entries in parentheses indicate the number of epochs we trained the network to achieve 
that accuracy. Figure 9 shows the corresponding plot of param. alpha of the diffused images versus 
the test accuracies obtained with each architecture. 

40
50
60
70

80
90

100

10 15 20 25 30 35 40 45

%
 A

cc
ur

ac
y

Epochs

Epochs vs Test Accuracy

CNN-5

ResNet50

Inception v4

Figure 8. Plot showing epochs vs. accuracy for each architecture.

We further observed from our experiments using the three networks that the best optimizer was
the Adam optimizer. We tried various values of learning rates for this optimizer to see if increasing
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or decreasing the learning rate from the default value of 0.001 would improve the test accuracy, but
it was observed that the default learning rate gave higher accuracy for ResNet50 and CNN-5. The
Inception v4 still had 100% accuracy despite changing the learning rate. Table 9 summarizes the
observations made.

Table 9. Accuracies obtained for various values of learning rates.

Architecture Learning Rate Epochs Accuracy

CNN-5 0.001 30 95.99%
CNN-5 0.002 30 88.97%
CNN-5 0.005 30 63.14%
CNN-5 0.0008 30 72.83%

ResNet50 0.001 20 95.85%
ResNet50 0.002 20 62.74%
ResNet50 0.005 20 64.80%
ResNet50 0.0008 20 66.76%

Inception v4 0.001 10 100%
Inception v4 0.002 10 100%
Inception v4 0.005 10 100%
Inception v4 0.0008 10 100%

We created five sets of diffused images for our experiments, with different values of the parameter
param. alpha, which defines the smoothness of the diffused image, as shown in Figure 6. We tested
each architecture with each of these sets of diffused images.

Table 10 summarizes the results obtained with each architecture using each set of diffused images.
The entries in parentheses indicate the number of epochs we trained the network to achieve that
accuracy. Figure 9 shows the corresponding plot of param. alpha of the diffused images versus the test
accuracies obtained with each architecture.

Table 10. Accuracies obtained with each set of diffused images (the epochs are shown in parentheses).

Param. alpha CNN-5 ResNet50 Inception v4

15 88.69% (25) 78.76% (40) 100% (10)
25 95.99% (30) 95.85% (20) 95.04% (10)
50 79.41% (20) 70.21% (30) 91.76% (5)
75 76.35% (20) 78.77% (30) 87.56% (1)
100 75.77% (30) 74.47% (30) 86.04% (5)
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As we have mentioned in our experimental results, with a lower value of the smoothness parameter
(param. alpha = 15), Inception v4 had superior performance compared with CNN-5 and ResNet50.
Since filters of multiple sizes operate at a level in an inception network, features at different scales



Entropy 2019, 21, 423 13 of 16

can be recognized. Therefore, even with a smoothness parameter of 15, Inception v4 recognized the
important features that highlighted the edges and boundary locations to differentiate between a live
and fake image. With a higher value of the smoothness parameter (param. alpha = 25), CNN-5 and
ResNet50 performed slightly better than the Inception v4 network. However, for still higher values of
param. alpha (50, 75, and 100), Inception v4 outperformed CNN-5 and ResNet50.

In terms of computation speed, ResNet50 was faster than Inception v4 due to the skip connections
that allow propagation of the gradients through the shortcut paths by skipping a few convolutional
layers. Inception v4 took approximately 20 min to achieve 100% accuracy in 15 epochs, whereas
ResNet50 took 20 min to achieve 95.85% accuracy in 20 epochs. CNN-5 took approximately 5 min
to achieve the 95.99% accuracy after 30 epochs. This CNN, being only five layers deep and with the
added advantage of a reduced number of parameters due to the shared weights concept in CNNs,
achieved faster training.

4.5. Comparison with State-of-the-Art Methods

We compared the performance of our approach with other state-of-the-art approaches on the
NUAA dataset, such as methods that make use of enhanced local binary patterns [1], dynamic local
ternary patterns [8], difference of Gaussian filtered images [7], local speed patterns [3], multiscale local
binary patterns [9], and a deep CNN proposed in [13]. Compared with these methods, our Inception
v4 model achieved 100% accuracy on the test set, making it highly suitable for the classification of a
two-dimensional image as being real or fake.

The Inception v4 network outperformed other state-of-the-art methods in the literature, proving
that it is indeed a successful method for use in face recognition applications that use liveness detection
as a precursor. The ResNet50 and CNN-5 networks proposed by us did not achieve accuracies as high
as the Inception v4 network, but these architectures still gave competitive results when compared to
the rest of the methods. Table 11 and Figure 10 confirm these findings.

Table 11. Comparison of our proposed method with other state-of-the-art methods on the NUAA dataset.

Method Test Accuracy

ELBP [1] 95.1%
DLTP [8] 94.5%
DoG [7] 87.5%
LSP [3] 98.5%

MLBP [9] 98%
CNN [13] 99%

CNN-5 (proposed method) 95.99%
ResNet50 (proposed method) 95.85%

Inception v4 (proposed method) 100%Entropy 2019, 21, x FOR PEER REVIEW 15 of 17 
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5. Conclusions

In this paper, we developed an optimal solution to the face liveness detection problem. We
first applied nonlinear diffusion based on an additive operator splitting scheme and a block-solver
tridiagonal matrix algorithm to the captured images. This generated diffused images, with the edge
information and surface texture of the real images being more pronounced than fake ones. These
diffused images were then fed to a CNN to extract the complex and deep features to classify the
images as real or fake. Our implementation with the deep CNN architecture, Inception v4, on the
NUAA dataset gave excellent results of 100% accuracy, showing that it can efficiently classify a
two-dimensional diffused image as real or fake. Though the CNN-5 and ResNet50 did not give results
as good as those of the Inception v4 network, they still returned promising results. A comparative
analysis of the three architectures showed that the smoothness of a diffused image is an important
factor in determining the liveness of a captured image. We determined that with a low value of this
smoothness parameter, the Inception v4 network outperformed the 5-layer CNN and the 50-layer
residual network due to its capability of recognizing features at different scales. With a higher value of
this smoothness parameter, the 50-layer residual network and the 5-layer CNN performed slightly
better than the Inception v4. However, for still higher values of the smoothness parameter, Inception v4
showed better performance. Not only did the Inception v4 outperform the 50-layer residual network
and the 5-layer CNN, it also outperformed other state-of-the-art approaches used for face liveness
detection. Compared with the Inception v4 network, faster performance was obtained with ResNet50
due to the shortcut paths incorporated in it, and CNN-5 performed still faster because it has fewer
layers. Our future work will consist of using recurrent neural networks based on Long Short-Term
Memory (LSTM) for face liveness detection on video streams.
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