electronics m\py

Article

Features Dimensionality Reduction Approaches
for Machine Learning Based Network

Intrusion Detection

Razan Abdulhammed 17, Hassan Musafer 17, Ali Alessa 1, Miad Faezipour »>*{© and
Abdelshakour Abuzneid !

1 Department of Computer Science & Engineering, University of Bridgeport, Bridgeport, CT 06604, USA;

rabdulha@my.bridgeport.edu (R.A.); hmusafer@my.bridgeport.edu (H.M.);
aalessa@my.bridgeport.edu (A.A.); abuzneid@bridgeport.edu (A.A.)

Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
* Correspondence: mfaezipo@bridgeport.edu; Tel.: +1-203-576-4702

check for
Received: 11 February 2019; Accepted: 11 March 2019; Published: 14 March 2019 updates

Abstract: The security of networked systems has become a critical universal issue that influences
individuals, enterprises and governments. The rate of attacks against networked systems
has increased dramatically, and the tactics used by the attackers are continuing to evolve.
Intrusion detection is one of the solutions against these attacks. A common and effective approach
for designing Intrusion Detection Systems (IDS) is Machine Learning. The performance of an IDS
is significantly improved when the features are more discriminative and representative. This study
uses two feature dimensionality reduction approaches: (i) Auto-Encoder (AE): an instance of deep
learning, for dimensionality reduction, and (ii) Principle Component Analysis (PCA). The resulting
low-dimensional features from both techniques are then used to build various classifiers such
as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional
features in binary and multi-class classification show better performance in terms of Detection Rate
(DR), F-Measure, False Alarm Rate (FAR), and Accuracy. This research effort is able to reduce the
CICIDS2017 dataset’s feature dimensions from 81 to 10, while maintaining a high accuracy of 99.6% in
multi-class and binary classification. Furthermore, in this paper, we propose a Multi-Class Combined
performance metric Combined ;. with respect to class distribution to compare various multi-class
and binary classification systems through incorporating FAR, DR, Accuracy, and class distribution
parameters. In addition, we developed a uniform distribution based balancing approach to handle the
imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset.

Keywords: Dimensionality Reduction; Intrusion Detection System (IDS); Sparse Auto Encoder (SAE);
Principle Component Analysis (PCA); Uniform Distribution Based Balancing (UDBB)

1. Introduction

Network Intrusion Detection System (IDS) is a software-based application or a hardware device
that is used to identify malicious behavior in the network [1,2]. Based on the detection technique,
intrusion detection is classified into anomaly-based and signature-based. IDS developers employ
various techniques for intrusion detection. One of these techniques is based on machine learning.
Machine learning (ML) techniques can predict and detect threats before they result in major security
incidents [3]. Classifying instances into two classes is called binary classification. On the other hand,
multi-class classification refers to classifying instances into three or more classes. In this research,
we adopt both classifications. For the multi-class classification, there are 15 classes, where each class

Electronics 2019, 8, 322; d0i:10.3390/ electronics8030322 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5939-6009
https://orcid.org/0000-0003-1939-0224
https://orcid.org/0000-0002-0426-7445
https://orcid.org/0000-0003-2684-0887
https://orcid.org/0000-0001-5416-0315
http://www.mdpi.com/2079-9292/8/3/322?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8030322
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 322 2 of 27

represents either normal network flow traffic or one of 14 types of attacks. For the binary case, the
network flow traffic is being classified into either normal or anomaly (attack) traffic.

An Artificial Neural Network (ANN) is a self-adaptive mathematical and computational model
that is composed of an interconnected group of artificial neurons. There are multiple types of
ANNSs such as Deep Convolution Neural Networks (DCNN), Recurrent Neural Networks (RNN) and
Auto-Encoder (AE) neural networks, each of which come with their own specific applications and
levels of complexity. Deep learning is a promising machine learning-based approach that can address
the challenges associated with the design of intrusion detection systems as a result of its outstanding
performance in dealing with complex, large-scale data.

This study accustoms Auto-Encoder (AE) and Principle Component Analysis (PCA) for
dimensionality reduction. As a proof-of-concept and to verify the feature dimensionality reduction
ideas, the paper used the up-to-date CICIDS2017 intrusion detection and prevention dataset [4],
which consists of five separated data files. Each file represents the network traffic flow and specific
types of attacks for a certain period of time. To be more specific, the dataset was collected based on a
total of 5 days, Monday through Friday. The traffic flow on Monday includes the benign network traffic,
whereas the implemented attacks in the dataset were executed on Tuesday, Wednesday, Thursday
and Friday. In this paper, we combined all CICIDS2017’s files together and fed them through the AE
and PCA units for a compressed and lower dimensional representation of all the fused data. Figure 1
displays the overall idea of the proposed framework.

Classification and Evaluation
Data Initialization (CICIDS2017) Dimensionality Reduction

‘ Random Forest (RF) ‘

Preprocessing - Auto-Encoder (AE) - Bayesian Network (BN) ‘

‘ Linear discriminant analysis (LDA) ‘

Unity-Based Normalization Principle Component Analysis (PCA)
L ’7Quadratic discriminant analysis (QDA) ‘
Uniform Distribution Based Balancing (UDBB)

Figure 1. Proposed Framework.

1.1. Problem Statement

In machine learning problems, the high-dimensional features lead to prolonged classification
processes. This is while low-dimensional features can reduce these processes. Moreover, classification
of network traffic data with imbalanced class distributions has posed a significant drawback on
the performance attainable by most well-known classifiers, which assume relatively balanced class
distributions and equal miss-classification costs. The frequent occurrence and issues associated with
imbalanced class distributions indicate the need for extra research efforts. Previous studies of intrusion
detection systems have not dealt with classification of network traffic data with imbalanced class
distributions. Furthermore, with the presence of imbalanced data, the known performance metrics
may fail to provide adequate information about the performance of the classifier.

1.2. Key Contributions and Paper Organization

The key contributions of this paper include the development of a framework for machine
learning-based network intrusion detection. The proposed anomaly-based intrusion detection system
uses AE as well as PCA for dimensionality reduction and well-tested classifiers such as Random
Forest (RF), Bayesian Network (BN), Linear Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA). In summary, the main contributions of this work are as follows:

1. We achieved effective pattern representation and dimensionality reduction of features in the
CICIDS2017 dataset using AE and PCA.

Electronics 2019, 8, 322 3of 27

2. We used the CICIDS2017 dataset to compare the efficiency of the dimensionality reduction
approaches with different classification algorithms, such as Random Forest, Bayesian Network,
LDA and QDA in binary and multi-class classification.

3. We developed a combined metric with respect to class distribution to compare various multi-class
classification systems through incorporating the False Alarm Rate (FAR), Detection Rate (DR),
Accuracy and class distribution parameters.

4. We developed a Uniform Distribution Based Balancing (UDBB) approach for imbalanced classes.

The overall structure of the remainder of this paper is organized as follows. An overview of
the dimensionality reduction approaches selection criteria and related work is provided in Section 2.
Next, in Section 3, the paper gives a brief review of the CICIDS2017 dataset, describes the attack types
embedded in the dataset, and further explains the preprocessing and unity-based normalization steps.
In Section 4, the paper explains in detail, the dimensionality reduction approaches based on AE as
well as PCA. Afterwards, the performance evaluation metrics are introduced in Section 5. Section 6
elaborates on the Uniform Distribution Based Balancing (UDBB) approach. Next, in Section 7, the
paper summarizes the principal findings of the experiments and discusses the results. The challenges
and limitations are discussed in Section 8. Finally, the conclusions and future directions are discussed
in Section 9.

2. Dimensionality Reduction Approaches Selection Criteria and Related work

This section aims to review the published related work in the past recent years that used features
dimensionality reduction approaches to design an intrusion detection system. The selection process
was based on certain criteria such as:

1. Being relevant to the CICIDS2017 dataset
Being relevant to dimensionality reduction approaches; precisely, the auto-encoder and the PCA
3. Being relevant to machine learning-based intrusion detection

For decades, researchers used dimensionality reduction approaches [5,6] for different reasons
such as to reduce the computational processing overhead, reduce noise in the data, and for better
data visualization and interpretation. One common dimensionality reduction approach is the Missing
Value Ratio (MVR) approach [7]. The MVR approach is efficient when the number of missing
values is high. For the CICIDS2017 dataset, the number of missing values is near zero. Therefore,
we excluded the Missing Value Ratio approach. Other common approaches include the Forward
Feature Construction (FFC) and Backward Feature Elimination (BFE) approaches [7]. Both FFC
and BFE are prohibitively slow on high dimensional datasets, which is the case for CICIDS2017
(>2,500,500 instances). As a result, we did not discuss these approaches. The PCA technique, on the
other hand, is relatively computationally cost efficient, can deal with large datasets, and is widely
used as a linear dimensionality reduction approach [5,8]. The auto-encoder dimensionality reduction
approach is an instance of deep learning, which is also suitable for large datasets with high dimensional
features and complex data representations [9].

This paper adopts AE as well as PCA for features dimensionality reduction. One of the
most fundamental differences between AE and PCA in terms of dimensionality reduction is that
in the auto-encoder approach, there is no assumption of linearity in the data. The auto-encoder
optimizer figures out the function through the weights that best encode the data under the specified
reconstruction error metric. This is while the PCA assumes linearity in the set of reduced data.
Moreover, the computational complexity of a dimensionality reduction approach depends on the
number of datapoints n as well as their dimensionality P, and w which is the number of weights in the
auto-encoder. Table 1 shows the properties of AE and PCA for dimensionality reduction and lists the
pros and cons of each.

Electronics 2019, 8, 322 4 of 27

Table 1. Properties of analyzed approaches for dimensionality reduction [8,9].

Technique Computational Memory Pros Cons

Complexity Complexity
PCA Oo(P3) 0o(P?) Can deal with large datasets; fast run time ~ Hard to model nonlinear structures
AE o(n?) O(w) Can model linear and nonlinear structures ~ Slow run time; prone to overfitting

2.1. CICIDS2017 Related Work

Sharafaldin et al. [4] used a Random Forest Regressor to determine the best set of features to
detect each attack family. The authors examined the performance of these features with different
algorithms that included K-Nearest Neighbor (KNN), Adaboost, Multi-Layer Perceptron (MLP), Naive
Bayes, Random Forest (RF), Iterative Dichotomiser 3 (ID3) and Quadratic Discriminant Analysis
(QDA). The highest precision value was 0.98 with RF and ID3 [4]. The execution time (time to build
the model) was 74.39 s. This is while the execution time for our proposed system using Random Forest
is 21.52 s with a comparable processor. Furthermore, our proposed intrusion detection system targets
a combined detection process of all the attack families.

In wireless mesh environments, Vijayan et al. [10] proposed an intrusion detection system that
used the genetic algorithm (GA) as a feature selection method and multiple Support Vector Machines
(SVM) for classification. Their system was based on a linear combination of multiple SVM classifiers,
which were ordered based on the severity of the attacks. Each classifier was trained to detect a
certain attack category using selected features by the GA. A small portion of the CICIDS2017 dataset
instances were used to evaluate their system. Conversely, in this paper, we use all the instances of the
CICIDS2017 dataset.

Moreover, authors in [11] compared and contrasted a frequency-based model from five sequence
of aggregation rules with sequence-based modeling of the Long Short-Term Memory (LSTM) recurrent
neural network. The investigation concluded that the frequency-based model tends to perform similar
or better than the LSTM models in detecting the attacks.

Additionally, the researchers in [12] analyzed the CICIDS2017 dataset using digital wavelets.
Their method efficiently detected service denial attacks of both Slow Loris and HTTP Denial of
Service (DoS).

Furthermore, the authors of [13] applied the Multi-Layer Perceptron (MLP) classifier algorithm
and a Convolutional Neural Network (CNN) classifier that used the Packet CAPture (PCAP) file of
CICIDS2017. The authors selected specified network packet header features for the purpose of their
study. Conversely, in our paper, we used the corresponding profiles and the labeled flows for machine
and deep learning purposes. According to [13], the results demonstrated that the payload classification
algorithm was judged to be inferior to MLP. However, it showed significant ability to distinguish
network intrusion from benign traffic with an average true positive rate of 94.5% and an average false
positive rate of 4.68%.

The authors in [14] proposed a denial of service intrusion detection system that used the Fisher
Score algorithm for features selection and Support Vector Machine (SVM), K-Nearest Neighbor (KNN)
and Decision Tree (DT) as the classification algorithm. Their IDS achieved 99.7%, 57.76% and 99%
success rates using SVM, KNN and DT, respectively. In contrast, our research proposes an IDS to
detect all types of attacks embedded in CICIDS2017, and as shown in the confusion matrix results,
achieves 100% accuracy for DDoS attacks using (PCA — RF) p.—10 with UDBB.

The authors in [15] used a distributed Deep Belief Network (DBN) as the the dimensionality
reduction approach. The obtained features were then fed to a multi-layer ensemble SVM. The ensemble
SVM was accomplished in an iterative reduce paradigm based on Spark (which is a general distributed
in-memory computing framework developed at AMP Lab, UC Berkeley), to serve as a Real Time
Cluster Computing Framework that can be used in big data analysis [16]. Their proposed approach
achieved an F-measure value equal to 0.921.

Electronics 2019, 8, 322 5o0f 27

The authors in [17] proposed a Data Dimensionality Reduction (DDR) method for network
intrusion detection. Their proposed scheme was evaluated by XGBoost (Extreme Gradient
Boosting) [18], SVM (Support Vector Machine), CTree (Conditional inference Trees) [19] and Neural
network (Nnet) classifiers. The number of selected features was 36 and the highest achieved accuracy
was 98.93% with XGboost. Furthermore, the authors excluded Monday network traffic of the
CICIDS2017 dataset, which is only benign traffic in their system. This is while our work was able
to achieve accuracy of 99.6% with 10 features. In addition, we kept all the files of the dataset that
represent different classes of the network traffic.

2.2. Auto-Encoder Related Work

Regarding using Auto-Encoder for dimensionality reduction, authors in [20] proposed a
framework for IDS using a Stacked Auto Encoder (SAE), which is an unsupervised learning method
for attribute selection. Their framework used regression layer, a supervised learning technique, with
SoftMax activation function for the classification process.

The authors in [21] developed an intrusion detection system for wireless sensor networks using
Deep Auto-Encoder (DAE) as the basic classifier to the detect attack type. The authors used a
cross-entropy loss function and back-propagation algorithm in an attempt to prevail over the slow
update of the weights in the case of traditional varying cost functions with exponential costs [21].

The authors in [22] used Sparse Auto-Encoder (SAE) for feature learning and dimensionality
reduction on the NSL-KDD dataset [23], which is an enhanced version of KDD-CUP99 [24]; an old,
outdated synthetic netflow dataset. The authors used Support Vector Machines (SVM) and achieved
an accuracy of 84.96% in binary classification and 99.39% in multi-class classification of five classes.
In our work, we used CICIDS2017, which is an up-to-date dataset that accommodates new attacks
and intruder strategies. Moreover, the total instances of the NSL-KDD is 125,923 in training and
22,544 instances in testing. This is while CICIDS2017 has 2,830,108 instances and is generated based on
real network traffic.

In the same manner, ref. [25] proposed a system based on the same methodology of [22].
The authors in [25] used SAE with SVM on the NSL-KDD dataset. The framework of [25] achieved
88.39% accuracy in binary classification and 79.10% in five class classification.

The authors in [26] proposed SU-IDS; a semi-supervised and unsupervised network intrusion
detection system that used an auto-encoder-based framework. The framework augments the usual
clustering (or classification) loss with an auxiliary loss of auto-encoder, and thus achieves a better
performance. A comparison between the experimental results of the classic NSL-KDD dataset and the
modern CICIDS2017 dataset show the superiority of our proposed models.

2.3. PCA Related Work

The authors in [27] implemented an IDS that used Principal Component Analysis (PCA) as the
feature reduction approach and Grey Neural Networks (GNN) as the classifier on the KDD-99 dataset.

In the same context, ref. [27] used PCA for features reduction and decision tree and Nearest
Neighbor as classifiers on KDD-99.

The researchers in [28] defined the reduction rate and studied the efficiency of PCA for intrusion
detection. The authors fulfilled their experiments using Random Forest and C4.5 on KDD-CUP [24]
and UNB-ISCX [29].

3. CICIDS2017 Dataset

The CICIDS2017 dataset consists of realistic background traffic that represents the network events
produced by the abstract behavior of a total of 25 users. The users’ profiles were determined to include
specific protocols such as HTTP, HTTPS, FTP, SSH and email protocols. The developers used statistical
metrics such as minimum, maximum, mean and standard deviation to encapsulate the network events
into a set of certain features which include:

Electronics 2019, 8, 322 6 of 27

The distribution of the packet size

The number of packets per flow

The size of the payload

The request time distribution of the protocols
Certain patterns in the payload

Gl L=

Moreover, CICIDS2017 covers various attack scenarios that represent common attack families.
The attacks include Brute Force Attack, HeartBleed Attack, Botnet, DoS Attack, Distributed DoS (DDoS)
Attack, Web Attack, and Infiltration Attack.

The dataset is publicly available by the authors in two formats:

1. The full packet payloads in Packet CAPture (PCAP) format
2. The corresponding profiles and labeled flows as CSV files for machine and deep learning purposes

CICIDS2017 was collected based on real traces of benign and malicious activities of the network
traffic. The total number of records in the dataset is 2,830,108. The benign traffic encompasses 2,358,036
records (83.3% of the data), while the malicious records are 471,454 (16.7% of the data). CICIDS2017 is
one of the unique datasets that includes up-to-date attacks. Furthermore, the features are exclusive and
matchless in comparison with other datasets such as UNSW-NB15 [30,31], AWID [32], GPRS [33], and
CIDD-001 [34]. For this reason, CICIDS2017 was selected as the most comprehensive IDS benchmark
to test and validate the proposed ideas. Table 2 highlights the characteristics and distribution of the
attacks in the CICIDS2017 dataset and provides a brief description of each type of attack. CICIDS2017
is a labeled dataset with a total number of 84 features including the last column corresponding to
the traffic status (class label). The features were extracted by CICFlowMeter-V3 [35]. The output of
CICFlowMeter-V3 is a CSV file that includes: Flow ID (1), Source IP (2) and Destination IP (4), Time
stamp (7) and Label (84). The Flow ID (1) includes the four tuples : Source IP, Source Port, Destination
IP, and Destination Port. Time stamp represents the timing. To the best of our knowledge, all previous
studies that used CICIDS2017 neglect Flow ID (1), Source IP (2), Destination IP (4), and Time stamp (7).
In this paper, we used CICIDS2017 with respect to the listed features except the Flow ID (1) and Time
Stamp (7). Thus, in our study, the total number of used features encompasses 82 features including the
Label (84). These features are listed in Table 3. The extracted traffic features are explained in [36].

Table 2. CICIDS2017 attack distribution and description.

Traffic Type Size Description
Benign 2,358,036 Normal traffic behavior
DoS Hulk 231,073 The attacker employs the HULK tool to carry out a denial of service attack on a web server through generating

volumes of unique and obfuscated traffic. Moreover, the generated traffic can bypass caching engines and strike
a server’s direct resource pool

Port Scan 158,930 The attacker tries to gather information related to the victim machine such as type of operating system
and running service by sending packets with varying destination ports
DDoS 41,835 The attacker uses multiple machines that operate together to attack one victim machine
DoS GoldenEye 10,293 The attacker uses the GoldenEye tool to perform a denial of service attack
FTP Patator 7938 The attacker uses FTP Patator in an attempt to perform a brute force attack to guess the FTP login password
SSH Patator 5897 The attacker uses SSH Patator in an attempt to perform a brute force attack to guess the SSH login Password
DoS Slow Loris 5796 The attacker uses the Slow Loris tool to execute a denial of service attack
DoS Slow HTTP Test 5499 The attacker exploits the HTTP Get request to exceed the number of HTTP connections allowed on

a server, preventing other clients from accessing and giving the attacker the opportunity to open multiple
HTTP connections to the same server

Botnet 1966 The attacker uses trojans to breach the security of several victim machines, taking control of these machines
and organizes all machines in the network of Bot that can be exploited and managed remotely by the attacker
Web Attack: Brute Force 1507 The attacker tries to obtain privilege information such as password and Personal Identification Number (PIN)
using trial-and-error
Web Attack: XSS 625 The attacker injects into otherwise benign and trusted websites using a web application that sends malicious scripts
Infiltration 36 The attacker uses infiltration methods and tools to infiltrate and gain full unauthorized access to the networked

system data

Web Attack: SQL Injection 21 SQL injection is a code injection technique, used to attack data-driven applications,
in which nefarious SQL statements are inserted into an entry field for execution

HeartBleed 11 The attacker exploits the OpenSSL protocol to insert malicious information into OpenSSL memory,
enabling the attacker with unauthorized access to valuable information

Electronics 2019, 8, 322 7 of 27

Table 3. Listed features of network traffic in CICIDS2017.

No. Feature No. Feature No. Feature

1 Flow ID 29 Fwd IAT Std 57 ECE Flag Count

2 Source IP 30 Fwd IAT Max 58 Down/Up Ratio

3 Source Port 31 Fwd IAT Min 59 Average Packet Size

4 Destination IP 32 Bwd IAT Total 60 Avg Fwd Segment Size
5 Destination Port 33 Bwd IAT Mean 61 Avg Bwd Segment Size
6 Protocol 34 BwdIAT Std 62 Fwd Avg Bytes/Bulk

7 Time stamp 35 Bwd IAT Max 63 Fwd Avg Packets/Bulk
8 Flow Duration 36 Bwd IAT Min 64 Fwd Avg Bulk Rate

9 Total Fwd Packets 37 Fwd PSH Flags 65 Bwd Avg Bytes/Bulk
10 Total Backward Packets 38 Bwd PSH Flags 66 Bwd Avg Packets/Bulk
11 Total Length of Fwd Pck 39 ~ Fwd URG Flags 67 Bwd Avg Bulk Rate

12 Total Length of Bwd Pck 40 Bwd URG Flags 68 Subflow Fwd Packets
13 Fwd Packet Length Max 41 Fwd Header Length 69 Subflow Fwd Bytes

14 Fwd Packet Length Min 42 Bwd Header Length 70 Subflow Bwd Packets
15 Fwd Pck Length Mean 43 Fwd Packets/s 71 Subflow Bwd Bytes

16 Fwd Packet Length Std 44 Bwd Packets/s 72 Init_Win_bytes_fwd

17 Bwd Packet Length Max 45 Min Packet Length 73 Act_data_pkt_fwd

18 Bwd Packet Length Min 46 Max Packet Length 74 Min_seg_size_fwd

19 Bwd Packet Length Mean 47 Packet Length Mean 75 Active Mean

20 Bwd Packet Length Std 48 Packet Length Std 76 Active Std

21 Flow Bytes/s 49 Packet Len. Variance 77 Active Max

22 Flow Packets/s 50 FIN Flag Count 78 Active Min

23 Flow IAT Mean 51 SYN Flag Count 79 Idle Mean

24 Flow IAT Std 52 RST Flag Count 80 Idle Packet

25 Flow IAT Max 53 PSH Flag Count 81 Idle Std

26 Flow IAT Min 54 ACK Flag Count 82 Idle Max

27 FwdIAT Total 55 URG Flag Count 83 Idle Min

28 Fwd IAT Mean 56 CWE Flag Count 84 Label

3.1. Preprocessing

In this study, a preprocessing function is applied to the CICIDS2017 dataset by mapping the IP
(Internet Protocol) address to an integer representation. The mapped IP includes the Source IP Address
(Src IP) as well as the Destination IP Address (Dst IP). These two are converted to an integer number
representation. This study splits the data into training set and testing set with a ratio of 70:30.

3.2. Unity-Based Normalization

In this step, we use Equation (1) to re-scale the features in the dataset based on the minimum
and maximum values of each feature. Some features in the original dataset vary between [0, 1] while
other features vary between [0, c0). Therefore, these features are normalized to restrict the range of the
values between 0 and 1, which are then processed by the auto-encoder for feature reduction.

X; — Xpi
xl — 1 min (1)

Xmax — Xmin

where x; is the value of a particular feature, x,,;, is the minimum value, and Xy is the maximum value.
4. Features Dimensionality Reduction

4.1. Auto-Encoder (AE) Based Dimensionality Reduction

In this section, we present the sparse auto-encoder learning algorithm [37,38], which is one
approach to automatically learn feature reduction in unsupervised settings. Figure 2 shows the
structure of the auto-encoder. The input vector x = (x1,x2,...,X;) is first compressed to a lower
dimensional hidden representation that consists of one or more hidden layers a = (aj,4ay, ..., am).

Electronics 2019, 8, 322 8 of 27

The hidden representation 4 is then mapped to reproduce the output £ = (¥, 43, ..., Xy). Let j be the
counter parameter for the neurons in the current layer /, and i be the counter parameter for the neurons
in the previous hidden layer / — 1. The output of a neuron in the hidden layer can be represented by
the following formula.

) = f=0)

] w’ Va7V 7Y)

Jt

NMS

X ~
1 7
3 a4 &
X [~
2 X2
x A a2 A
3 A .X'3
- y am ¥
n—1 uxn71
+1 f
XV \ /=
n ' xn
+1/

Figure 2. The structure of an AE.

The size of the weight matrix of the hidden layer is represented by W € R™*" and the bias is
b € R™. A sigmoid function is chosen as the activation function, such that f(z) = (Helm Parameters
W and b are optimized using back propagation, by minimizing the cost function | for all the training

instances [39], as follows:

R
GlIE=xIP)+ 5 ; W) ®3)

u Ms
) M:

Parameter A is chosen to control the regularization term of all the weights in a particular layer, and
Is denotes the total number of layers. To impose a sparsity constraint on the hidden units, one strategy
is to add an additional term in the loss function during training to penalize the Kullback-Leibler (KL)
divergence between a Bernoulli random variable with mean p and a desired sparsity mean ;.

1k L
b =2 L |a)] @
where a](»i) denotes the activation of hidden unit j in the auto-encoder and k is the training sample [40].

]sparse (W/b) :](W/b/'f/x)"’_ﬁZKL (p”ﬁ]) ©)
j=1

This sparsity is guaranteed to have the effect of causing g; to be close to p, because it ensures
that the sparse activations are achieved on the training data for any given units in the hidden layer.
The value of B is chosen to control the weight of the sparsity penalty term.

The computational complexity of executing the designed auto-encoder with a single hidden layer
depends on the dimensionality of the input vector 1, and the Reduction ratio R € (0,1) [41].

O(n. (R x n) + (R x n) .n) = O(Rn* + Rn?) = O(n?) (6)

Electronics 2019, 8, 322 9 of 27

In this paper, a two hidden-layer sparse auto-encoder is used with sigmoid activation functions
and tied weights. The input layer has 81 neurons which equals the total number of features in the
CICIDS2017 dataset. The first hidden layer of the sparse auto-encoder was able to successfully reduce
the dimensions to 70 features with a good error approximation. Further, the features were reduced to
64 in the second hidden layer. Once the weights are trained, the resulting sparse auto-encoder can be
used to perform the classification in the final stage. The parameters of the sparse representation are set
as follows: the weight decay A = 0.0008. The weights are multiplied by A to prevent the weights from
growing too large. The sparsity parameter p = 0.05, and the sparsity penalty term § = 6. The sparsity
parameters and penalty are designed to restrict the activation of the hidden units, which reduces the
dependency between the features. The algorithm is summarized in Table 4 and the design principles
are presented in Table 5.

Table 4. Pseudo-code for the proposed Auto-Encoder.

Dimensionality Reduction Using AE

Training:
1. Perform the feedforward pass on all the training
instances and compute
a™,q@ Equation (2)
2. Compute the output, sparsity mean,
and the error of the cost function
J(W,b;%,x) Equation (3)
g; Equation (4)
3. Compute the cost function of the sparse auto-encoder
Jsparse(W,b) Equation (5)
4. Backpropagate the error to update the weights and
the bias for all the layers
Dimensionality Reduction:
Compute the reduced features from the hidden layer
a® Equation (2)

Table 5. Design Principles.

Parameters Value Description

A 0.0008 Weight decay
B 6 Sparsity penalty
0 0.05 Sparsity parameter

4.2. Principle Component Analysis (PCA) Based Dimensionality Reduction

In this section, we present the Principle Component Analysis (PCA) algorithm. The objective
of PCA is to perform dimensionality reduction. PCA finds a transformation that reduces the
dimensionality of the data while accounting for as much variance as possible. PCA is the oldest
technique in multivariate analysis. The fundamental concept of the PCA is the projection-based
mechanism. Here, the original dataset X € R" with n columns (features) is projected into a subspace
with k or lower dimensions representation X € RX (fewer columns), while retaining the essence of the
original data. The algorithm works as follows:

To reduce the features dimensionality from n-dimensions to k-dimensions, two phases are
implemented; the preprocessing phase and the dimensionality reduction phase. In the preprocessing
phase, (steps 1 through 4 below), the data is preprocessed to normalize its mean and variance using
Equations (7) and (8). In the second phase (steps 5 through 8), which represent the reduction phase, the
covariance matrix Covys, Eigen-vectors and Eigen-values are calculated from Equations (9) and (10).

Electronics 2019, 8, 322 10 of 27

1. Normalize the the original feature values of data by its mean and variance using Equation (7),
where m is the number of instances in the dataset and X|;) are the data points.

1
p=_ Z X 7)

2. Replace X(;) with X(;) — p.
3. Rescale each vector X; ;) to have unit variance using Equation (8).

of =3 (Xj»)® ®

X/
4. Replace each X;(;) with meiuy
5. Compute the Covariance Matrix Covps as follows:

Coon = - Y (X)) (X()T ©)

6. Calculate the Eigen-vectors and corresponding Eigen-values of Covy,.

7. Sort the Eigen-vectors by decreasing the Eigen-values and choose k Eigen-vectors with the largest
Eigen-values to form W.

8. Use W to transform the samples onto the new subspace using Equation (10).

y=WIxX (10)

where X is a d x 1 dimensional vector representing one sample, and y is the transformed k x 1
dimensional sample in the new subspace.

The computational complexity of executing the designed PCA depends on the number of features
P that represent each data point [42].
O(P?) (11)

According to [28], the Reduction Ratio (RR) of PCA can be defined as the ratio of the number
of target dimensions to the number of original dimensions. The lower the value of RR, the higher
is the efficiency of PCA. The RR of our proposed framework is equal to 10:81 which outperformed
previous related work. Our final RR of 2:81 is also able to represent the data with low error and provide
high accuracies.

5. Performance Evaluation Metrics

This study used various performance metrics to evaluate the performance of the proposed
system, including False Alarm Rate (FAR), F-Measure [43], Detection Rate (DR), and Accuracy (Acc)
as well as the processing time. The definitions of these metrics are provided below. The metrics
are a function of True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).

(1) False Alarm Rate (FAR) is a common term which encompasses the number of normal instances
incorrectly classified by the classifier as an attack, and can be estimated through Equation (12).

FpP

FAR:TN+PP

(12)
(2) Accuracy (Acc) is defined as the ability measure of the classifier to correctly classify an object as
either normal or attack. The Accuracy can be defined using Equation (13).

TP+ TN

A = T T TN EP T EN (13)

Electronics 2019, 8, 322 11 of 27

(3) Detection Rate (DR) indicates the number of attacks detected divided by the total number of attack
instances in the dataset. DR can be estimated by Equation (14).

TP

DR=TpTEN

(14)
(4) The F-measure (F-M) is a score of a classifier’s accuracy and is defined as the weighted harmonic
mean of the Precision and Recall measures of the classifier. F-Measure is calculated using Equation (15).

Precision x Recall
F- =2 1
Measure % Precision + Recall (15)

(5) Precision represents the number of positive predictions divided by the total number of positive
class values predicted. It is considered as a measure for the classifier exactness. A low value indicates
large number of False Positives. The precision is calculated using Equation (16).
TP
Precision = ———— 16

recision TP+ FP (16)
(6) Recall is the number of True Positives divided by the number of True Positives and the number of
False Negatives. Recall is considered as a measure of a classifier completeness such that a low value of
recall realizes many False Negatives [44]. Recall is estimated through Equation (17).

TP

Recall - m

(17)

5.1. Proposed Multi-Class Combined Performance Metric with Respect to Class Distribution

In general, the overall accuracy is used to measure the effectiveness of a classifier. Unfortunately,
in presence of imbalanced data, this metric may fail to provide adequate information about the
performance of the classifier. Furthermore, the method is very sensitive to the class distribution and
might be misleading in some way. Hamed et al. [45] proposed a combined performance metric to
compare various binary classifier systems. However, their solution neglects class distribution and can
work only for binary classifications.

In this paper, we propose the multi-class combined performance metric Combined . with respect
to class distribution to compare various multi-class classification systems as well as binary class systems
through incorporating four metrics together (FAR Equation (12), Accuracy Equation (13), Detection
Rate Equation (14), and class distribution Equation (19). The multi-class Combined performance metric
can be estimated using the following equation.

(18)

1

C . ,
Combinedpy. =) Ay (ACCZ;I_DR’ — FAR,)
=1

where C is number of classes, and A; is the class distribution (dist), which can be estimated using the

following formula.
Number of instances in class i

= Number of instances in the dataset

dist = A; (19)

The result of this metric will be a real value between —1 and 1; that is Combined . € [—1, +1];
where —1 corresponds to the worst overall system performance and 1 corresponds to the best overall
system performance. Table 6 illustrates the pseudo-code for calculating this proposed combined metric.

Electronics 2019, 8, 322 12 of 27

Table 6. Pseudo-code for the proposed Combined . metric calculation.

Calculate Combinedp;. with respect to Class Distribution

Feed Confusion Matrix CM
Fori=1to C
Calculate the total number of FP for C; as the sum of values in the i column excluding TP
Calculate the total number of EN for C; as the sum of values in the it" row excluding TP
Calculate the total number of TN for C; as the sum of all columns and rows excluding the i row and column
Calculate the total number of TP for C; as the diagonal of the it cell of CM
Calculate the total number of instances for C; as the sum of the it" row
Calculate the total number of instances in the dataset as the sum of all rows
Calculate Acc using Equation (13), DR using Equation (14), and FAR using Equation (12) for each class C;
Calculate the distribution of each C; using Equation (19)
i++
Calculate Combined). using Equation (18)

6. Uniform Distribution Based Balancing (UDBB)

The problem of learning from skewed multi-class datasets is an important topic that arises very
often in practice in classification problems. In such problems, almost all the instances are labeled as one
class (called the majority, or negative class), while far fewer instances are labeled as the other class or
classes (often called the minority class(es), or positive class(es)); usually the more important class(es).
This section provides a glance at the Uniform Distribution Based Balancing (UDBB) technique. UDBB is
based on learning and sampling probability distributions [46]. In this technique, the sampling of
instances is performed following a distribution learned for each pair example of feature and class label.
More specifically, the user determines the uniform distribution balancing to learn in order to re-sample
new instances.

According to [44], the Imbalance Ratio (IR) can be defined as the ratio of the number of instances
in the majority class to the number of instances in the minority class, as presented in Equation (20).

Majority Class Instances
Minority Class Instances

Imbalance Ratio = (20)
For the CICIDS2017 dataset, IR is 5:1 and the total number of classes is 15 classes. To apply UDBB,
a uniform number of instances (Iresample) for each class is calculated from Equation (21).

Number of Instances in the dataset

! _ 21
Resample Number of Classes in the dataset -

The literature indicates that imbalanced class distribution is a major hurdle. If the IR value in the
data is high, classifiers will be lower in accuracy and reliability; i.e., they do not truly reflect the classes
accurately. Furthermore, imbalanced class distributions is an inevitable problem in real network traffic
due to the large size of traffic and low frequency of certain types of anomalies. One of the recent
attempts to address this problem appears in [47]. The authors used sampling approaches to combat
imbalanced class distributions for network intrusion detection.

Previous developers that used CICIDS2017, used files that were relevant to Tuesday through
Friday. In this paper, we use these along with the data of Monday by merging all files together in a
single combined file. The motivation behind this step is to acquire a large volume of both data size
and number of instances with skewed data towards normal traffic and up-to-date attack patterns.
Table 7 presents a pseudo-code for the UDBB technique. In addition, our study compares between
the imbalanced case (with original distribution of CICIDS2017) and balanced class distribution (after
applying the uniform distribution-based balancing approach).

Electronics 2019, 8, 322 13 of 27

Table 7. UDBB pseudo-code.

Input Training Set: Dy,

Set Distribution to Uniform

C : Number of Classes

Fr : Total number of features in Dy, Training Set

I,14 : Total number of Instances in Dy,

Calculate the required number of Instances in each class: Igesqmple

Training Set Dryaiy,,, = ©
For each class C; Do
While i # IResample
For each feature Fy, ..., Fr
Generate new sample using uniform distribution
Assign Class label
Return Dryyjp,,,,,

7. Results and Discussion

In this section, we present the principal findings of the proposed framework.Extensive simulations
have been performed.

7.1. Preliminary Assumptions and Requirements

All the simulations were carried out using an Intel-Core i7 with 3.30 GHz and 32 GB RAM,
running Windows 10. Our main hypothesis is that reduced features dimensions representation in
machine learning-based IDS will reduce the time and memory complexity compared to the original
features dimensions, while still maintaining high performance (not negatively impacting the achieved
accuracy). Another hypothesis claim is that the proposed balancing technique improves the data
representation of imbalanced classes and thus, improves the classification performance compared to the
original class distributions. The results highlight the advantages of feature dimensionality reduction
on CICIDS2017 as well as the effectiveness of the balancing approach to prove the hypothesis claims.

From the research efforts in this work, we were able to reduce the dimensionality of the features
in CICIDS2017 from 81 features to 10 features while maintaining a high accuracy in multi-class
and binary class classification using the Random Forest classifier. The findings are discussed in
following subsections.

7.2. Binary class Classification

The study evaluates the performance of binary classification in terms of Acc, FAR, DR and F-M.
Tables 8 and 9 display the summary of the results obtained. Table 8 highlights the results of the
dimensionality reduction of the features in CICIDS2017 from 81 features to 10 features obtained using
PCA, whereas Table 9 displays the results of the dimensionality reduction of the features in CICIDS2017
from 81 features to 59 features using AE.

The DR metric revealed that (PCA — RF)p._19 is able to detect 98.8% of the attacks. In the same
manner, (PCA — RF)p._19 achieved an F-Measure of 0.997. Moreover, (AE — RF)p._59 is able to detect
98.5% of the attacks.

Figure 3 highlights the achieved detection rates resulted from the dimensionality reduction
using PCA, whereas, Figure 4 shows the achieved detection rate using the reduced features set by
AE. From Figures 3 and 4, it is apparent that Random forest, QDA and Bayesian Network reported
significantly higher detection rates than the LDA for the reduced feature dimensionality of CICIDS2017
using the PCA approach. The results from the classification using different classifiers assures that our
reconstructing of new feature representation was good enough to achieve an overall accuracy of 98.5%
with 59 features in binary classification using Random Forest from AE.

Electronics 2019, 8, 322

Detection Rate Vs number of PCA components plot

Number of PCA components

- = o - - — -9 —
- * - - -
08| h ™
!
o 1
o7k 1 |
- !
£ !
Q
1
3 4l N
3 0.6
e I
I
05 1 |
1
I —--- Random Forest
04l 4 —0— Bayesian Network | |
-
-~ s | DA
@ QDA
0.3 1 L L L L L L
10 20 30 40 50 60 70 80

90

14 of 27

Figure 3. Binary Class Classification: Detection Rate in terms of number of components using PCA.

Detection Rate

Detection Rate Vs number of features plot
T T T

1 T T
0.98 - 8
0.96 - =
0.94 - .
0.92 - S

RN === Random Forest

sl /I > —O0— Bayesian Network | |

) / v |—* LDA

AT -
088 L ’ QDA i
\
! \
0.86 - ’ N .
’ .
. ’ s
0.84 - S 7 N 8
~ \
~ / N
~
0.82 ~ \ .
.

08 1 Il Il Il Il

55 60 65 70 75 80

Number of features

85

Figure 4. Binary Class Classification: Detection Rate in terms of number of features using Auto-Encoder.

Table 8. Performance evaluation of the proposed framework in binary classification using PCA.

(PCA — RF)pc—x

(PCA — BN)pc—x

(PCA — LDA)p._x

(PCA — QDA)pc—x

Acc FAR DR FM CMg Acc FAR DR F-M CMp, Acc FAR DR FM CMp. Acc FAR DR FM CMpg,
81 0995 0002 0984 099 0987 0975 0025 0976 0976 0951 0937 0254 0811 0937 0846 0782 0237 0978 0807 0.632
70 0997 0001 0989 0997 0991 0970 0029 0966 0970 0938 0947 0274 0821 0947 0856 0792 0247 0988 0817 0.642
64 0996 0002 098 099 0988 0969 0029 0966 0970 0968 0947 0027 0820 0947 0466 0793 0245 0988 0818 0.891
59 0997 0.0017 0989 0997 0991 0968 0030 0963 0969 0934 0947 0027 0823 0947 0858 0794 0244 0988 0819 0.646
50 0996 0.0017 0989 0997 0991 0971 0025 0959 0972 0939 0945 0028 0814 0945 0880 0809 0226 0988 0.832 0.898
40 0997 0001 0990 0997 0991 0974 0021 0953 0974 0941 0944 0032 0829 0945 0856 0808 0226 0981 0.831 0.646
30 0997 0001 0989 0997 0990 0979 0.026 0956 0971 0703 0944 0030 0821 0945 0852 0830 0198 0974 0.849 0.703
20 099 0001 0989 0997 0991 0965 0031 0948 0966 0926 0878 0025 039 0862 0612 0717 0332 0969 0754 0511
10 0996 0001 0988 0997 0991 0952 0036 0897 0953 0889 0869 0028 0363 0852 0588 0712 0.048 0966 0749 0911

Electronics 2019, 8, 322 15 of 27

Table 9. Performance evaluation of the proposed framework in binary classification using AE.

(AE — RF)p._x (AE — BN)pe_x (AE — LDA)p._x (AE — QDA)p._x
Acc FAR DR FM CMg. Acc FAR DR FM CMg, Acc FAR DR FM CMg. Acc FAR DR FM CMp,
81 0995 0002 0984 0996 0987 0975 0025 0976 0976 0951 0937 0254 0811 0937 0846 0782 0237 0978 0807 0.632
70 0997 0001 0989 0997 0991 0970 0029 0966 0970 0938 0947 0274 0921 0947 0856 0792 0247 0988 0817 0.642

64 099 0.002 0987 099 0973 0974 0.026 0980 0975 0948 0947 0.027 0816 0946 0.854 0935 0.070 0964 0939 0.894
59 0995 0.002 0985 0996 0988 0975 0.027 0989 0976 0955 0948 0.030 0.844 0949 0866 0.942 0.063 0964 0944 0.890

7.3. Multi-Class Classification

The study used the Acc, F-M, FPR, TPR, Precision, Recall, and the Combined multi-class metrics
to evaluate the performance of multi-class classification. Tables 10 and 11 display the summary of the
results obtained for the dimensionality reduction of the features for CICIDS2017 from 81 to 10 using
PCA, and from 81 to 59 using AE, respectively.

Table 10. Performance evaluation of the proposed framework in multi-class classification using PCA.

(PCA — RF) pMc—x (PCA — BN)pe—x (PCA — LDA) pe—x (PCA — QDA)pmce—x
Acc F-M CMpe Acc F-M CMp, Acc F-M CMpe Acc F-M CMpc

81 0985 0.995 0.986 0930 0953 0.925 0901 0914 0.801 0972 0974 0.961
70 0996 0.988 0.988 0948 0964 0.942 0.894 0906 0.735 0.967 0975 0.967
64 099 0997 0.986 0949 0966 0.955 0.893 0906 0.745 0.967 0975 0.985
59 099 0995 0.987 0952 0967 0917 0.893 0906 0.677 0.967 0975 0.880
50 0.996 0.996 0.987 0924 0941 0916 0.859 0.880 0.679 0.927 0946 0.885
40 0996 0997 09884 0964 0974 0.954 0.890 0546 0.727 0966 0974 0.967
30 099 0997 0.988 0960 0971 0.897 0.643 0.643 0.720 0964 0972 0.965
20 0996 NAN 0.987 0987 0952 0.855 0.859 NAN 04805 0.892 0.886 0.886
10 0996 NAN 0.986 0953 0964 0.946 0.850 NAN 0.363 0.856 0.886 0.886

Table 11. Performance evaluation of the proposed framework in multi-class classification using AE.

(AE — RF)pMc—x (AE — BN)pc—x (AE — LDA)pc—x (AE — QDA)pmc—x

Acc F-M CMpe Acc F-M CMyp. Acc F-M CMp. Acc F-M CMpc
81 0985 0.995 0.983 0930 0.953 0.895 0912 0.922 0.908 0968 0.969 0.920
70 0996 099 0.959 0953 0.99% 0913 0.894 0.906 0.875 0960 0.970 0.931

64 099 099 0.985 0.955 0.968 0.954 0.900 0908 0.743 0960 0.969 0.963
59 0995 0995 0.983 0956 0.969 0.958 0.849 0906 0.737 0961 0.969 0.963

Figure 5 presents the resulting accuracies in terms of the number of principle components. What is
striking about the resulting accuracies in Figure 5 is that the Random Forest classifier shows a constantly
high accuracy for reduced features from 81 through 10. In contrast, the resulting accuracies of LDA
and QDA cases were oscillatory. For QDA, the accuracy is wobbling between 66% with 10 features
and 96.7% with 60 features. For LDA with 10 and 40 features, the accuracy is fluctuating between 85%
and 96.6%, respectively.

The results of the AE dimensionalty reduction approach are displayed in Figure 6. The observed
accuracy for Random Forest is significant compared to LDA, QDA and the Bayesian Network classifiers.
Furthermore, what stands out in this Figure 6, is the increase of the resulting accuracy for LDA for the
reduced dimensionality from 81 through 59 features. Here, the AE reconstructed a new and reduced
feature representation pattern that reflects the original data with minimum error. Unlike features
selection techniques where the set of features made by feature selection is a subset of the original set of
features that can be identified precisely, AE generated new features pattern with reduced dimensions.

Electronics 2019, 8, 322 16 of 27

Accuracy Vs number of features plot

L RSY LLLIL TEE LD SEETIIL e E SEETE TR STLL S
~-
[-JERE. TOR. o
0.95 - .
(-]
097 o . s - --" i
~ r'd
1 ~ - ”
- »

085w — 8- - "% I" 1
o \
O \ 1
o !
> 08 \ |
3 \ !
< \ I

075 \ ! —

\ I
\ |
0.7+ v ! i
\ | =4==Random Forest
| =0—Bayesian Network
0.65 1 -# LDA i
o QDA
06 | | | 1 | 1 | 1
0 10 20 30 40 50 60 70 80 90

Number of features

Figure 5. Multi Class Classification: Accuracy in terms of number of components using PCA.

Accuracy Vs number of features plot

o o e o e e e e e e —|-—.___~
——— —_—
~-—t
0.98 - g
o
0.96 o o o |
0.94 - -
>
Q
g
3 0.92 4
Q
g e
- - - -
09 P _ - i
- -
7 -
’
0.88 ’ -
’ —=+-- Random Forest
’ \
’ —O— Bayesian Network
0.86 [g
’ —# DA
4 o QDA
084 L L L 1 L
55 60 65 70 75 80 85

Number of features

Figure 6. Multi Class Classification: Accuracy in terms of number of features using AE.

A detailed analysis summary of the proposed framework in terms of False Positive Rate (FPR),
True Positive Rate (TPR), Precision and Recall are tabulated in Tables 12 and 13. Table 12 depicts the
results with 10 features (before applying UDBB), while Table 13 shows the results using 10 features
(after applying UDBB). The weighted average result for all the attacks are presented in bold.

Electronics 2019, 8, 322 17 of 27

Table 12. Performance evaluation before applying UDBB.

(PCA — RF) pr.—19 Original Distribution
Recall Precision FP Rate TP Rate

Benign 0.998 0.998 0.012 0.998
FTP-Patator 1.000 1.000 0.000 1.000
SSH-Patator 0.996 0.996 0.000 0.996
DDoS 0.877 0.900 0.001 0.877
HeartBleed NAN NAN 0.000 0.000
PortScan 1.000 0.998 0.000 1.000
DoSHulk 1.000 1.000 0.000 1.000
DoSGoldenEye 0.979 0.995 0.000 0.979
WebAttack: Brute Force 0.813 0.878 0.000 0.814
WebAttack:XSS 0.750 0.665 0.000 0.750
Infiltration 0.250 1.000 0.000 0.250
WebAttack:SQL 0.000 0.000 0.000 0.000
Botnet 0.960 0.991 0.000 0.960
Dos Slow HTTP Test 0.993 0.996 0.000 0.993
DoS Slow Loris 0.991 0.999 0.000 0.991
Weighted Average 0.996 0.965 0.010 0.996

Table 13. Performance evaluation after applying UDBB.

(PCA — RF)pc—10 UDBB
Recall Precision FP Rate TP Rate

Benign 1.000 1.000 0.000 1.000
FTP-Patator 1.000 1.000 0.000 1.000
SSH-Patator 1.000 1.000 0.000 1.000
DDoS 1.000 1.000 0.000 1.000
HeartBleed 1.000 1.000 0.000 1.000
PortScan 1.000 0.999 0.000 1.000
DoSHulk 0.999 1.000 0.000 0.999
DoSGoldenEye 1.000 1.000 0.000 1.000
WebAttack: Brute Force 0.945 0.891 0.008 0.945
WebAttack:XSS 0.884 0.943 0.004 0.884
Infiltration 1.000 1.000 0.000 1.000
WebAttack:SQL 1.000 0.998 0.000 1.000
Botnet 1.000 1.000 0.000 1.000
Dos Slow HTTP Test 0.999 0.999 0.000 0.999
DoS Slow Loris 0.999 0.999 0.000 0.999
Weighted Average 0.988 0.989 0.001 0.988

The results confirmed that the proposed framework with the reduced feature dimensionality
achieved a maximum precision value of 0.996 and an FPR of 0.010, confirming the efficiency and
effectiveness of the intrusion detection process. However, (PCA — RF)10 is unable to detect the
HeartBleed attacks (noted as NAN in Table 12). In this Table, the Recall and Precision values for
HeartBleed and WebAttack:SQL are 0.00, 0.000 and 0.000, 0.000, respectively. A justification of such
outcome could be due to the fact that the number of instances of HeartBleed and WebAttack:SQL
originally embedded in CICIDS2017 is equal to 11 and 21, respectively. This is expected, since the
total number of HeartBleed instances in the original dataset is 11 instances. Thus, these instances were
miss-classified by the classifier. To resolve this issue and to assure that the achieved accuracy is reflected
due to the effective reduction approach, this paper applies the uniform distribution-based balancing
technique to overcome the imbalanced class distributions of certain attacks in CICIDS2017. Table 14
shows the performance before and after applying the UDBB approach. As observed, (PCA — RF)pc—10
achieved 99.6% and 98.8% before and after applying UDBB, respectively. In the same manner, (PCA —

Electronics 2019, 8, 322 18 of 27

QDA) pc—10 achieved 85.6% and 98.9% before and after applying UDBB, respectively. The highest
achieved F-M was obtained by (PCA — QDA).—10. However, the highest CMpme) achieved was
98.6% by (PCA — RF) pjc—10-

The performance evaluation of (PCA — X) .10 and (PCA — X)p1c—10 in terms of the time to
build and test the model is presented in Table 15 (X represents the classifier). The lowest times to test
the model were achieved by LDA with 2.96 s for multi-class and 5.56 s for binary class classification.

Here, the Random Forest classifier that has the best detection performance, comes with the highest
overhead in terms of the time to build and test the model. The fundamental notion behind Random
Forest is that it combines many decision trees into a single model and specifically in this work, the
dataset has over 2.5 million instances in total. This is expected since the worst case time complexity of
Random Forest is estimated using Equation (22) [48].

O(MKN?logN) (22)

where K is the number of trees, M is the number of variables used in each split, and N is the number
of training samples.

Table 14. Performance evaluation of (PCA — X) p1c—10-

Classifier Acc F-M CM 1)
Before applying UDBB

PCA-Random Forest (PCA — RF) pc—10 0996 NAN 0.9866

PCA-Bayesian Network (PCA — BN)pe—19 0.953 0964 0.9464

PCA-LDA (PCA — LDA) pe—10 0.850 NAN 0.3626

PCA-QDA (PCA — QDA) pme—10 0.856 0.886 0.8862
After applying UDBB

PCA-Random Forest (PCA — RF) p1c—10 0.988 0.988 0.9882

PCA-Bayesian Network (PCA — BN)pc—10 0976 0.977 0.9839

PCA-LDA (PCA — LDA) mc—10 0.957 0957 0.6791

PCA-QDA (PCA — QDA) pme—10 0.989 0.990 0.8851

Table 15. Time to build and test the models.

Classifier Time to Build the Model (Sec.) Time to Test the Model (Sec.)

Binary-class Classification

LDA 12.16 5.56
QDA 12.84 6.57
RF 752.67 21.52
BN 199.17 11.07
Multi-class Classification
LDA 17.5 2.96
QDA 15.35 3.16
RF 502.81 41.66
BN 175.17 10.07

Moreover, a visualization of the dataset with two PCA components before and after applying the
distribution-based balancing approach is displayed in Figures 7 and 8.

This observation of the CICIDS2017 dataset visually represents how the instances are set apart.
As displayed in Figure 8, the same type of instances were positioned (clustered) together in groups.
This shows a significant improvement over the PCA visualization before applying UDBB. Here, the
normal instances are very clearly clustered in their own group. This is applied for other types of
instances as well.

Electronics 2019, 8, 322

Figure 7. 2D Visualization of PCA on CICIDS2017 with original distribution.

Principal Component 2

-7

-4 4

-

-8

2 Component PCA

BOO 4
L
700 4
/.
00 1 L ‘ L Y
~
2 o
4 500 4 = @
c L
2
€ 4o ‘ : @ BENIGN
.;3 [] @ FTP-Patator
— @ 55H-Patator
1] .
o Do5 slowloris
' 3004 o Da5 slowhttptest
= b ® Dos Hulk
o @ Do5 GoldenEye
200 1 @ Heartbleed
» Web Attack Brute Farce
- o @ Web Attack XS5
100 = @ Web Attack Sql Injection
[] Infiltration
L @ GBot
0 o ® ® DDos
® PortScan
0 10 20 0 a0 50 &0

Principal Component 1

2 Component PCA

BENIGN

FTP-Patator
55H-Patatar

Do5 slowloris

DoS slowhttptest

Dos Hulk

DoS GoldenEye
Hearthleed

Web Attack Brute Force
Web Attack XS5

Web Attack Sql Injection
Infiltration

299 00 o900 0dee

-5

Principal Component 1

Figure 8. 2D Visualization of PCA on CICIDS2017 with UDBB.

19 of 27

Electronics 2019, 8, 322

The confusion matrix for the PCA — RFy._19 is shown in Figure 9. The value for HeartBleed
is reported as NAN (Not A Number). These values result from operations which have undefined
numerical values. The classifier PCA — RFy.—19 fails to classify HeartBleed attacks. In contrast, as a
result of applying the UDBB technique, the PCA — RFyj._1 is able to detect 100% of HeartBleed

attacks, as indicated from the confusion matrix in Figure 10.

A comparison between the proposed framework and related work is highlighted in Table 16.
The authors in [17,49,50] reported the accuracy. Our proposed framework outperforms previous

studies in terms of F-Measure and accuracy.

Table 16. A comparison of the proposed framework and previous studies.

Reference Classifier Name F-Measure Feature
Selection/Extraction
(Features Count)
[4] KNN 0.96 Random Forest
RF 0.97 Regressor (54)
1D3 0.98
Adaboost 0.77
MLP 0.76
Naive Bayes 0.04
QDA 0.92
[13] MLP 0.948 Payload related
features
[15] SVM 0.921 DBN
[14] KNN 0.997 Fisher Scoring (30)
[51] XGBoost 0.995 (80)
for DoS Attacks
[49] Deep Learning Accuracy (80)
for Port Scan Attacks 97.80
[49] SVM Accuracy (80)
for Port Scan Attacks 69.79
[17] XGBoost Accuracy DDR Features
98.93 Selections (36)
[50] Deep Multi Layer Accuracy Recursive feature
Perceptron (DMLP) 91.00 elimination
for DDoS Attacks with Random Forest
Proposed
Framework Random Forest 0.995 Auto-encoder (59)
Proposed PCA with Original
Framework Random Forest 0.996 Distribution (10)
Proposed PCA With
Framework Random Forest 0.988 UDBB(10)

Electronics 2019, 8, 322 21 of 27

Accuracy: 99.64%

BENIGN 99.8% NaN% 0.5% 0.0% 0.0% 0.0% 0.9% 1.9% 0.2%
706388 0 2 0 0 0 5 1229 92
P NaN% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0 0 0 0 0 0 0 0
s NaN% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0 0 0 0 0 0 0 0
owlori NaN% 0.0% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0%
slowloris 0 0 2 0 0 0 0 0
Slowhtiptest NaN% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0%
owHliptes! 0 3 0 0 0 0 0
Hulk NaN% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Y 0 1 0 0 0 0 0 2
SGoldentve NaN% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
@ 4 0 0 0 0 0 0 1 0
@
© eatbleed 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S
o BruteForest 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 1.4% NaN% 0.0% 0.0% 0.0% 0.0%
ulerores 3 0 6 0 0 0 3 0 0 0 0 0
s 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.5% NaN% 0.0% 0.0% 0.0% 0.0%
3 0 2 0 0 0 1 0 0 0 0 1
Sallniedti 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% NaN% 0.0% 0.0% 0.0% 0.0%
qlinjection 1 0 0 0 0 0 1 0 0 0 0 0
) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0.0% 0.0% 0.0%
Infiltration
9 0 0 0 0 0 0 0 0 0 0
Bt 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0.0% 0.0% 0.0%
© 24 0 0 0 0 0 0 0 0 0 0
- 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0.0% 0.0% 0.0%
° 1541 0 0 0 0 9 0 0 0 0 0
PortScan 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NaN% 0.5% 0.9% 0.0% 0.0%
onsea 10 0 0 0 0 6 0 0 2 2 0 0 0 0
BENIGN FTP SSH slowloris SlowHttptest Hulk SGoldenEye Heartbleed BruteForest XSS Sgqlinjection Infiltration Bot DDoS PortScan

Target Class

Figure 9. Confusion Matrix for (PCA — RF) .19 with original class distribution.

Electronics 2019, 8, 322 22 of 27

Accuracy: 98.97%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

BENIGN

FTP

SSH

slowloris

SlowHttptest

Hulk

SGoldenEye

Heartbleed

Output Class

BruteForest

XSS

Sqlinjection

Infiltration

DDoS
PortS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
ortsean 0 0 0 13 1 6 2 0 0 0 0 0 0 0 156373
BENIGN FTP SSH slowloris SlowHttptest Hulk SGoldenEye Heartbleed BruteForest XSS Sqlinjection Infiltration Bot DDoS PortScan

Target Class

Figure 10. Confusion Matrix for (PCA — RF) .10 with UDBB.

Electronics 2019, 8, 322 23 of 27

8. Challenges and Limitations

Although this study has successfully demonstrated the significance of the feature dimensionality
reduction techniques which led to better results in terms of several performance metrics as well
classification speeds for an IDS, it has certain limitations and challenges which are summarized
as follows.

8.1. Fault Tolerance

Fault tolerance enables a system to continue operating properly in the event of failure or faults
within any of its components. Fault tolerance can be achieved through several techniques. One aspect
of fault tolerance in our system is the ability of the designed approach to detect a large set of
well-known attacks. Our models have been trained to detect the 14 up-to-date and well-known
type of attacks. Furthermore, fault tolerance can be achieved by adopting the majority voting
technique [52]. The trained models of Random Forest, Bayesian Network, and LDA can be used
in a majority voting-based intrusion detection system that can adapt fault tolerance. Moreover, the
deployment of distributed intrusion detection systems in the network can enable fault tolerance.

8.2. Adaption to Non-Stationary Traffic/Nonlinear Models

The AE has the ability to represent models that are linear and nonlinear. Moreover, once the
model is trained, it can be used for non-stationary traffic. We intend to further extend our work in the
future with an online anomaly-based intrusion detection system.

8.3. Model Resilience

As presented in Tables 12 and 13, the achieved FP rate is 0.010 and 0.001 respectively, which may
reflect a built-in attack resiliency. Moreover, our models were trained in an offline manner. This ensures
that an adversary cannot inject misclassified instances during the training phase. On the contrary, such
case could occur with online-trained models. Therefore, it is essential for the machine learning system
employed in intrusion detection to be resilient to adversarial attacks [53]. An approach to quantify the
resilience of machine learning classifiers was introduced in [53]. The association of these factors will
be investigated in future studies.

8.4. Ease of Dataset Acquisition/Model Building

The data used for our IDS model was acquired from the CICIDS2017 dataset which is a publicly
available dataset provided by the Canadian Institute for Cybersecurity [35,36]. The dataset is open
source and available for download and sharing.

8.5. Quality of Experience

According to [54], the Quality of Experience is used to measure and express, preferably as
numerical values, the experience and perception of the users with a service or application software.
The current research was not specifically designed to evaluate factors related to Quality of Experience.
Future directions of this research may include such investigations.

9. Conclusion and Future Work

The aim of this research was to examine incorporating auto-encoder and PCA for dimensionality
reduction and the use of classifiers towards designing an efficient network intrusion detection system
on the CICIDS2017 dataset. The experimental analysis confirmed the significance of the feature
dimensionality reduction techniques which led to better results in terms of several performance metrics
as well as classification speeds. These findings highlight the potential usefulness of auto-encoder
and PCA in dimensionality reduction for IDS. From our experiments, we found that PCA is superior,
faster, more interpretable and can reduce the dimensionality of the data to as few as two components.

Electronics 2019, 8, 322 24 of 27

The long training time and limited computational resources formed a barrier towards reducing the
dimensionality beyond 59 features representation for the AE approach. This study suggests that AE
can be used when the data necessitates a highly non-linear feature representation.

The large number of decision trees that the Random Forest classifier produced by randomly
selecting a subset of training samples and a subset of variables for splitting at each tree node, makes
the Random Forest classifier less sensitive to both the quality of training instances as well as the
overfitting issue. Moreover, Random Forest is suitable, robust, and stable to classify high dimensional
and correlated data. These explanations provide a justification as to why Random Forest yielded better
results in comparison with other classifiers [55].

As exemplified by the obtained results, the PCA approach is able to preserve important
information in CICIDS2017, while efficiently reducing the features dimensions in the used dataset, as
well as presenting a reasonable visualization model of the data. Features such as Subflow Fwd Bytes,
Flow Duration, Flow Inter arrival time (IAT), PSH Flag Count, SYN Flag Count, Average Packet Size,
Total Len Fwd Pck, Active Mean and Min, ACK Flag Count, and Init_Win_bytes_fwd are observed
to be the discriminating features embedded in CICIDS2017 [4]. Regarding this study, PCA was very
efficient and produced better results than AE. In comparison with AE, the PCA approach is restricted
to a linear mapping, whereas the AE can have a nonlinear encoder/decoder architecture.

As a future direction, this research will also serve as a base for further studies and investigations
towards developing efficient IDS’s from various intrusion detection datasets. Furthermore, the trained
models could be extended to implement an IDS for online anomaly-based detection.

Author Contributions: Supervision, M.F. and A.A. (Abdelshakour Abuzneid); Writing—original draft, R.A.;
Writing—review & editing, M.E,, A.A. (Abdelshakour Abuzneid) and R.A.; Data Preprocessing, R.A. and A.A.
(Ali Alessa); Software, R.A. and H.M.; Methodology, R.A.; Project Administration A.A. (Abdelshakour Abuzneid)
and M.E.

Funding: This research was funded by the University of Bridgeport Seed Money Grant UB-SMG-2018.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IDS Intrusion Detection System

CICIDS2017 Canadian Institute for Cybersecurity Intrusion Detection System 2017 dataset
AE Auto-Encoder

PCA Principle Component Analysis

LDA Linear Discriminant Analysis

QDA Quadratic Discriminant analysis

UDBB Uniform Distribution-Based Balancing
KNN K-Nearest Neighbors

RF Random Forest

SVM Support Vector Machine

XGBoost eXtreme Gradient Boosting

MLP Multi Layer Perceptron

FEC Forward Feature Construction

BFE Backward Feature Elimination

Acc Accuracy

FAR False Alarm Rate

F-M F-Measure

MCC Matthews Correlation Coefficient

DR Detection Rate

RR Reduction Rate

(AE — RF) pec Auto-Encoder-Random Forest-Multi-Class
(AE—LDA)p: Auto-Encoder-Linear Discriminant Analysis-Multi-Class

Electronics 2019, 8, 322 25 of 27

(AE — QDA) pmc Auto-Encoder-Quadratic Discriminant Analysis-Multi-Class

(AE — BN) p1c Auto-Encoder-Bayesian Network-Multi-Class

(AE — RF)p, Auto-Encoder-Random Forest-Binary-Class

(AE —LDA)g, Auto-Encoder-Linear Discriminant Analysis-Binary-Class

(AE— QDA)g, Auto-Encoder-Quadratic Discriminant Analysis-Binary-Class

(AE — BN)pg, Auto-Encoder-Bayesian Network-Binary-Class

(PCA — RF) e Principle Components Analysis-Random Forest-Multi-Class

(PCA—LDA)p,. Principle Components Analysis-Linear Discriminant Analysis-Multi-Class
(PCA—QDA)pM. Principle Components Analysis-Quadratic Discriminant Analysis-Multi-Class
(PCA — BN) e Principle Components Analysis-Bayesian Network-Multi-Class

(PCA — RF)p, Principle Components Analysis-Random Forest-Binary-Class
(PCA—LDA)p. Principle Components Analysis-Linear Discriminant Analysis-Binary-Class
(PCA—QDA)p. Principle Components Analysis-Quadratic Discriminant Analysis-Binary-Class
(PCA — BN)p, Principle Components Analysis-Bayesian Network-Binary-Class

CMpe) Combined Metrics for Binary Class

CM(ame) Combined Metrics for MultiClass

References

1. Albanese, M.; Erbacher, R.F,; Jajodia, S.; Molinaro, C.; Persia, F.; Picariello, A.; Sperli, G.; Subrahmanian, V.

10.

11.

12.

13.

14.

Recognizing unexplained behavior in network traffic. In Network Science and Cybersecurity; Springer: Berlin,
Germany, 2014; pp. 39-62.

Abdulhammed, R.; Faezipour, M.; Elleithy, K. Intrusion Detection in Self organizing Network: A Survey.
In Intrusion Detection and Prevention for Mobile Ecosystems; Kambourakis, G., Shabtai, A., Kolias, C.,
Damopoulos, D., Eds.; CRC Press Taylor & Francis Group: New York, NY, USA, 2017; Chapter 13,
pp- 393-449.

Lee, C.H.; Su, Y.Y,; Lin, Y.C.; Lee, S.J. Machine learning based network intrusion detection. In Proceedings
of the 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA),
Beijing, China, 8-11 September 2017; pp. 79-83.

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and
intrusion traffic characterization. In Proceedings of the Fourth International Conference on Information
Systems Security and Privacy, ICISSP, Funchal, Madeira, Portugal, 22-24 January 2018.

Sorzano, C.O.S.; Vargas, J.; Montano, A.P. A survey of dimensionality reduction techniques. arXiv 2014,
arXiv:1403.2877.

Fodor, LK. A Survey of Dimension Reduction Techniques; Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory: Livermore, CA, USA, 2002; Volume 9, pp. 1-18.

Rosaria, S.; Adae, I.; Aaron, H.; Michael, B. Seven Techniques for Dimensionality Reduction; KNIME: Zurich
Switzerland, 2014.

Van Der Maaten, L.; Postma, E.; Van den Herik,]. Dimensionality reduction: A comparative review. J. Mach.
Learn. Res. 2009, 10, 66-71.

Bertens, P. Rank Ordered Autoencoders. arXiv 2016, arXiv:1605.01749.

Vijayan and, R.; Devaraj, D.; Kannapiran, B. Intrusion detection system for wireless mesh network using
multiple support vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur.
2018, 77,304-314. [CrossRef]

Radford, B.J.; Richardson, B.D. Sequence Aggregation Rules for Anomaly Detection in Computer Network
Traffic. arXiv 2018, arXiv:1805.03735.

Lavrova, D.; Semyanov, P.; Shtyrkina, A.; Zegzhda, P. Wavelet-analysis of network traffic time-series for
detection of attacks on digital production infrastructure. SHS Web Conf. EDP Sci. 2018, 44, 00052. [CrossRef]
Watson, G. A Comparison of Header and Deep Packet Features When Detecting Network Intrusions; Technical
Report; University of Maryland: College Park, MD, USA, 2018.

Aksu, D.; Ustebay, S.; Aydin, M.A.; Atmaca, T. Intrusion Detection with Comparative Analysis of Supervised
Learning Techniques and Fisher Score Feature Selection Algorithm. In International Symposium on Computer
and Information Sciences; Springer: Berlin, Germany, 2018; pp. 141-149.

http://dx.doi.org/10.1016/j.cose.2018.04.010
http://dx.doi.org/10.1051/shsconf/20184400052

Electronics 2019, 8, 322 26 of 27

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Marir, N.; Wang, H.; Feng, G.; Li, B.; Jia, M. Distributed Abnormal Behavior Detection Approach based on
Deep Belief Network and Ensemble SVM using Spark. IEEE Access 2018. [CrossRef]

Spark, A. PySpark 2.4.0 Documentation. 2018. Available online: https:/ /spark.apache.org/docs/latest/api/
python/index.html (accessed on 10 November 2018).

Bansal, A. DDR Scheme and LSTM RNN Algorithm for Building an Efficient IDS. Master’s Thesis,
Thapar Institute of Engineering and Technology, Punjab, India, 2018.

Chen, T.; He, T, Benesty, M. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2;
2015; pp. 1-4. Available online: http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf
(accessed on 11 March 2019).

Hothorn, T.; Hornik, K.; Zeileis, A. Ctree: Conditional Inference Trees. The Comprehensive R Archive
Network. 2015. Available online: https://cran.r-project.org/web/packages/partykit/vignettes /ctree.pdf
(accessed on 23 January 2019).

Aminanto, M.E.; Choi, R.; Tanuwidjaja, H.C.; Yoo, P.D.; Kim, K. Deep abstraction and weighted feature
selection for Wi-Fi impersonation detection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 621-636. [CrossRef]
Zhu,].; Ming, Y,; Song, Y.; Wang, S. Mechanism of situation element acquisition based on deep auto-encoder
network in wireless sensor networks. Int. . Distrib. Sens. Netw. 2017, 13. [CrossRef]

Al-Qatf, M.; Alhabib, M.; Al-Sabahi, K.; others. Deep Learning Approach Combining Sparse Autoen-coder
with SVM for Network Intrusion Detection. IEEE Access 2018, 6, 52843-52856. [CrossRef]

Tavallaece, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. Nsl-Kdd Dataset. 2012. Available online: http:
//www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html (accessed on 28 February 2016).

Bay, S.D.; Kibler, D.; Pazzani, M.J.; Smyth, P. The UCI KDD archive of large data sets for data mining research
and experimentation. ACM SIGKDD Explor. Newsl. 2000, 2, 81-85. [CrossRef]

Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system.
In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS), ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Cotonou, Benin, 24 May 2016; pp. 21-26.

Min, E.; Long, J.; Liu, Q.; Cui, J.; Cai, Z.; Ma, J. SU-IDS: A Semi-supervised and Unsupervised Framework for
Network Intrusion Detection. In International Conference on Cloud Computing and Security; Springer: Cham,
Switzerland, 2018; pp. 322-334.

Xia, D.; Yang, S.; Li, C. Intrusion Detection System Based on Principal Component Analysis and Grey Neural
Networks. In Proceedings of the 2010 Second International Conference on Networks Security, Wireless
Communications and Trusted Computing, Wuhan, Hubei, China, 24-25 April 2010; Volume 2, pp. 142-145.
[CrossRef]

Vasan, K.K.; Surendiran, B. Dimensionality reduction using Principal Component Analysis for network
intrusion detection. Perspect. Sci. 2016, 8, 510-512. [CrossRef]

Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. Comput. Secur. 2012, 31, 357-374. [CrossRef]

Aminanto, M.E.; Kim, K. Improving Detection of Wi-Fi Impersonation by Fully Unsupervised Deep Learning.
In Proceedings of the Information Security Applications: 18th International Workshop (WISA 2017),
Jeju Island, Korea, 24-26 August 2017.

Aminanto, M.E.; Kim, K. Detecting Active Attacks in WiFi Network by Semi-supervised Deep Learning.
In Proceedings of the Conference on Information Security and Cryptography 2017 Winter, Sochi, Russian
Federation, 8-10 September 2017.

Kolias, Constantinos and Kambourakis, Georgios and Stavrou, Angelos and Gritzalis, Stefanos. Intrusion
detection in 802.11 networks: Empirical evaluation of threats and a public dataset. IEEE Commun. Surv. Tutor.
2016, 18, 184-208. [CrossRef]

Vilela, D.W.; Ed’Wilson, T.E; Shinoda, A.A.; de Souza Araujo, N.V.; de Oliveira, R.; Nascimento, V.E.
A dataset for evaluating intrusion detection systems in IEEE 802.11 wireless networks. In Proceedings of
the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia ,
4-6 June 2014; pp. 1-5.

Ring, M.; Wunderlich, S.; Griidl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion
detection. In Proceedings of the 16th European Conference on Cyber Warfare and Security, Dublin, Ireland,
29-30 June 2017; pp. 361-369.

http://dx.doi.org/10.1109/ACCESS.2018.2875045
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/python/index.html
http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf
https://cran.r-project.org/web/packages/partykit/vignettes/ctree.pdf
http://dx.doi.org/10.1109/TIFS.2017.2762828
http://dx.doi.org/10.1177/1550147717699625
http://dx.doi.org/10.1109/ACCESS.2018.2869577
http://www. unb. ca/research/iscx/dataset/iscx-NSL-KDD-dataset. html
http://www. unb. ca/research/iscx/dataset/iscx-NSL-KDD-dataset. html
http://dx.doi.org/10.1145/380995.381030
http://dx.doi.org/10.1109/NSWCTC.2010.169
http://dx.doi.org/10.1016/j.pisc.2016.05.010
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.1109/COMST.2015.2402161

Electronics 2019, 8, 322 27 of 27

35.

36.

37.
38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Canadian Institute of Cybersecurity, University of New Brunswick. CICFlowMeter. 2017. Available online:
https:/ /www.unb.ca/cic/research/applications. htmI#CICFlowMeter (accessed on 23 January 2019).

CIC. Canadian Institute of Cybersecurity. List of Extracted Traffic Features by CICFlowMeter-V3. 2017.
Available online: https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 23 January 2019).
Kingma, D.P,; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.

Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic backpropagation and approximate inference in deep
generative models. arXiv 2014, arXiv:1401.4082.

Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction.
In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis,
Gold Coast, QLD, Australia, 2 December 2014; p. 4.

Makhzani, A. Unsupervised Representation Learning with Autoencoders. Ph.D. Thesis, University of
Toronto, Toronto, ON, Canada, 2018.

Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network
intrusion detection. arXiv 2018, arXiv:1802.09089.

Johnstone, LM.; Lu, A.Y. Sparse principal components analysis. arXiv 2009, arXiv:0901.4392.

Espindola, R.; Ebecken, N. On extending f-measure and g-mean metrics to multi-class problems. WIT Trans.
Inf. Commun. Technol. 2005, 35. [CrossRef]

Garcfa, V.; Sanchez,].S.; Mollineda, R.A. On the effectiveness of preprocessing methods when dealing with
different levels of class imbalance. Knowl.-Based Syst. 2012, 25, 13-21. [CrossRef]

Hamed, T.; Dara, R.; Kremer, S.C. Network intrusion detection system based on recursive feature addition
and bigram technique. Comput. Secur. 2018, 73, 137-155. [CrossRef]

Bermejo, P.; Gdmez, J.A.; Puerta,].M. Improving the performance of Naive Bayes multinomial in e-mail
foldering by introducing distribution-based balance of datasets. Expert Syst. Appl. 2011, 38, 2072-2080.
[CrossRef]

Abdulhammed, R; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and Machine Learning Approaches
for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic. IEEE Sens. Lett. 2019, 3, 7101404.
[CrossRef]

Louppe, G. Understanding Random Forests: From Theory to Practice. Ph.D. Thesis, University of Liege,
Belgium, 2014.

Aksu, D.; Aydin, M.A. Detecting Port Scan Attempts with Comparative Analysis of Deep Learning and
Support Vector Machine Algorithms. In Proceedings of the 2018 International Congress on Big Data, Deep
Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3—4 December 2018; pp. 77-80.
Ustebay, S.; Turgut, Z.; Aydin, M.A. Intrusion Detection System with Recursive Feature Elimination by
Using Random Forest and Deep Learning Classifier. In Proceedings of the 2018 International Congress on
Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3-4 December 2018;
pp- 71-76.

Bansal, A.; Kaur, S. Extreme Gradient Boosting Based Tuning for Classification in Intrusion Detection
Systems. In International Conference on Advances in Computing and Data Sciences; Springer: Singapore, 2018;
pp- 372-380.

Kaur, P; Rattan, D.; Bhardwaj, A K. An analysis of mechanisms for making ids fault tolerant. Int. J.
Comput. Appl. 2010, 1, 22-25. [CrossRef]

Viegas, E.; Santin, A.; Neves, N.; Bessani, A.; Abreu, V. A Resilient Stream Learning Intrusion Detection
Mechanism for Real-time Analysis of Network Traffic. In Proceedings of the GLOBECOM 2017—2017 IEEE
Global Communications Conference. Singapore, 4-8 December 2017; pp. 1-6.

Al-Shehri, S.M.; Loskot, P.; Numanoglu, T.; Mert, M. Common Metrics for Analyzing, Developing and
Managing Telecommunication Networks. arXiv 2017, arXiv:1707.03290.

Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions.
ISPRS]. Photogramm. Remote Sens. 2016, 114, 24-31. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://www.unb.ca/cic/datasets/ids-2017.html
http://dx.doi.org/10.2495/DATA050031
http://dx.doi.org/10.1016/j.knosys.2011.06.013
http://dx.doi.org/10.1016/j.cose.2017.10.011
http://dx.doi.org/10.1016/j.eswa.2010.07.146
http://dx.doi.org/10.1109/LSENS.2018.2879990
http://dx.doi.org/10.5120/563-745
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Key Contributions and Paper Organization

	Dimensionality Reduction Approaches Selection Criteria and Related work
	CICIDS2017 Related Work
	Auto-Encoder Related Work
	PCA Related Work

	CICIDS2017 Dataset
	Preprocessing
	Unity-Based Normalization

	Features Dimensionality Reduction
	Auto-Encoder (AE) Based Dimensionality Reduction
	Principle Component Analysis (PCA) Based Dimensionality Reduction

	Performance Evaluation Metrics
	Proposed Multi-Class Combined Performance Metric with Respect to Class Distribution

	Uniform Distribution Based Balancing (UDBB)
	Results and Discussion
	Preliminary Assumptions and Requirements
	Binary class Classification
	Multi-Class Classification

	Challenges and Limitations
	Fault Tolerance
	 Adaption to Non-Stationary Traffic/Nonlinear Models
	Model Resilience
	Ease of Dataset Acquisition/Model Building
	Quality of Experience

	Conclusion and Future Work
	References

