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Abstract
Can we efficiently compute optimal solutions to instances of a hard problem from optimal solutions
to neighboring (i.e., locally modified) instances? For example, can we efficiently compute an optimal
coloring for a graph from optimal colorings for all one-edge-deleted subgraphs? Studying such
questions not only gives detailed insight into the structure of the problem itself, but also into the
complexity of related problems; most notably graph theory’s core notion of critical graphs (e.g.,
graphs whose chromatic number decreases under deletion of an arbitrary edge) and the complexity-
theoretic notion of minimality problems (also called criticality problems, e.g., recognizing graphs
that become 3-colorable when an arbitrary edge is deleted).

We focus on two prototypical graph problems, Colorability and Vertex Cover. For example, we
show that it is NP-hard to compute an optimal coloring for a graph from optimal colorings for all
its one-vertex-deleted subgraphs, and that this remains true even when optimal solutions for all
one-edge-deleted subgraphs are given. In contrast, computing an optimal coloring from all (or even
just two) one-edge-added supergraphs is in P. We observe that Vertex Cover exhibits a remarkably
different behavior, demonstrating the power of our model to delineate problems from each other
more precisely on a structural level.

Moreover, we provide a number of new complexity results for minimality and criticality problems.
For example, we prove that Minimal-3-UnColorability is complete for DP (differences of NP
sets), which was previously known only for the more amenable case of deleting vertices rather than
edges. For Vertex Cover, we show that recognizing β-vertex-critical graphs is complete for Θp

2
(parallel access to NP), obtaining the first completeness result for a criticality problem for this class.
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1 Introduction and Related Work

In Subsection 1.1, we introduce and motivate our new model, which we then compare and
contrast to related notions in Subsection 1.2. Finally, we present in Subsection 1.3 an overview
of our most interesting results and place them into the context of the wider literature.

1.1 Our Model

In view of the almost complete absence of progress in the question of P versus NP, it is
natural to wonder just how far and in what way these sets may differ. For example, how
much additional information enables us to design an algorithm that solves an otherwise
NP-hard problem in polynomial time? We are specifically interested in the case where
this additional information takes the form of optimal solutions to neighboring (i.e., locally
modified) instances. This models situations such as that of a newcomer who may ask
experienced peers for advice on how to solve a difficult problem, for instance finding an
optimal work route. Similar circumstances arise when new servers join a computer network.
Formally, we consider the following oracle model: An algorithm may, on any given input,
repeatedly select an arbitrary instance neighboring the given one and query the oracle for an
optimal solution to it. Occasionally, it will be interesting to limit the number of queries that
we grant the algorithm. In general, we do not impose such a restriction, however.

What precisely constitutes a local modification and thus a neighbor depends on the specific
problem, of course. We examine the prototypical graph problems Colorability and Vertex
Cover, considering the following four local modifications, which are arguably the most natural
choices: deleting an edge, adding an edge, deleting a vertex (including adjacent edges), and
adding a vertex (including an arbitrary, possibly empty, set of edges from the added vertex
to the existing ones). For example, we ask whether there is a polynomial-time algorithm that
computes a minimum vertex cover for an input graph G if it has access to minimum vertex
covers for all one-edge-deleted subgraphs of G. We will show that questions of this sort are
closely connected to and yet clearly distinct from research in other areas, in particular the
study of critical graphs, minimality problems, self-reducibility, and reoptimization.

1.2 Related Concepts

Criticality. The notion of criticality was introduced into the field of graph theory by Dirac [7]
in 1952 in the context of Colorability with respect to vertex deletion. Thirty years later,
Wessel [19] generalized the concept to arbitrary graph properties and modification operations.
Nevertheless, Colorability has remained a central focus of the extensive research on critical
graphs. Indeed, a graph G is called critical without any further specification if it is χ-critical
under edge deletion, that is, if its chromatic number χ(G) (the number of colors used in an
optimal coloring of G) changes when an arbitrary edge is deleted. Besides Colorability, one
other problem has received a comparable amount of attention and thorough analysis in three
different manifestations: Independent Set, Vertex Cover, and Clique. The corresponding
notions are α-criticality, β-criticality, and ω-criticality, where α is the independence number
(size of a maximum independent set), β is the vertex cover number (size of a minimum
vertex cover), and ω is the clique number (size of a maximum clique). Note that these graph
numbers are all monotone – either nondecreasing or nonincreasing – with respect to each of
the local modifications examined in this paper.
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Minimality. Another strongly related notion is that of minimality problems. An instance
is called minimal with respect to a property if only the instance itself but none of its
neighbors has this property; that is, it inevitably loses the property under the considered
local modification. The corresponding minimality problem is to decide whether an instance
is minimal in the described sense. For example, a graph G is minimally 3-uncolorable (with
respect to edge deletion) if it is not 3-colorable, yet all its one-edge-deleted neighbors are. The
minimality problem Minimal-3-UnColorability is the set of all minimally 3-uncolorable
graphs. Note that a graph is critical exactly if it is minimally k-uncolorable for some k.

While minimality problems tend to be in DP (i.e., differences of two NP sets, the second
level of the Boolean hierarchy), DP-hardness is so difficult to prove for them that only a few
have been shown to be DP-complete so far; see for instance Papadimitriou and Wolfe [14].
Note that the notion of minimality is not restricted to graph problems. Indeed, minimally
unsatisfiable formulas figure prominently in many of our proofs.

Auto-Reducibility. Our model provides a refinement of the notion of functional auto-
reducibility; see Faliszewski and Ogihara [8]. An algorithm solves a function problem
R ⊆ Σ∗1 × Σ∗2 if on input x ∈ Σ∗1 it outputs some y ∈ Σ∗2 with (x, y) ∈ R. The problem
R is auto-reducible if there is a polynomial-time algorithm with unrestricted access to an
oracle that provides solutions to all instances except x itself. The task of finding an optimal
solution to a given instance is a special kind of function problem. Defining all instances to
be neighbors (local modifications) of each other lets the two concepts coincide.

Self-Reducibility. Self-reducibility is auto-reducibility with the additional restriction that
the algorithm may query the oracle only on instances that are smaller in a certain way. There
are a multitude of definitions of self-reducibility that differ in what exactly is considered
to be “smaller,” the two seminal ones stemming from Schnorr [15] and from Meyer and
Paterson [13]. For Schnorr, an instance is smaller than another one if its encoding input
string is strictly shorter. While his definition does allow for functional problems (i.e., more
than mere decision problems, in particular the problem of finding an optimal solution), it is
too restrictive for self-reducibility to encompass our model since not all neighboring graphs
have shorter strings under natural encodings.

Meyer and Paterson are less rigid and allow instead any partial order having short
downward chains to determine which instances are considered smaller than the given one.1
The partial orders induced by deleting vertices, by deleting edges, and by adding edges all
have short downward chains. The definition by Meyer and Paterson is thus sufficient for our
model to become part of functional self-reducibility for all local modifications considered in
this paper but one, namely, the case of adding a vertex, which is too generous a modification
to display any particularly interesting behavior.

As an example, consider the graph decision problem Colorability = {(G, k) | χ(G) ≤
k}, which is self-reducible by the following observation. Any graph G with at least two
vertices that is not a clique is k-colorable exactly if at least one of the polynomially many
graphs that result from merging two non-adjacent vertices in G is k-colorable. This works
for the optimization variant of the problem as well. Any optimal coloring of G assigns at

1 Formally, a partial order is said to have short downward chains if the following condition is satisfied:
There is a polynomial p such that every chain decreasing with respect to the considered partial order
and starting with some string x is shorter than p(|x|) and such that all strings preceding x in that order
are bounded in length by p(|x|).
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least two vertices the same color, except in the trivial case of G being a clique. An optimal
coloring for the graph that has two such vertices merged then yields an optimal coloring for
G. This contrasts well with the findings for Colorability’s behavior under our new model
discussed below.

Reoptimization. Reoptimization examines optimization problems under a model that is
tightly connected to ours. The notion of reoptimization was coined by Schäffter [16] and
first applied by Archetti et al. [1]. The reoptimization model sets the following task for an
optimization problem:

Given an instance, an optimal solution to it, and a local modification of this instance,
compute an optimal solution to the modified instance.

The proximity to our model becomes clearer after a change of perspective. We reformulate
the reoptimization task by reversing the roles of the given and the modified instance.

Given an instance, a local modification of it, and an optimal solution to the modified
instance, compute an optimal solution to the original instance.

Note that this perspective switch flips the definition of local modification; for example, edge
deletion turns into edge addition. Aside from this, the task now reads almost identical to
that demanded in our model. The sole but crucial difference is that in reoptimization, the
neighboring instance and the optimal solution to it are given as part of the input, whereas
in our model, the algorithm may select any number of neighboring instances and query the
oracle for optimal solutions to them. Even if we limit the number of queries to just one,
our model is still more generous since the algorithm is choosing (instead of being given) the
neighboring instance to which the oracle will supply an optimal solution. Thus, hardness in
our model always implies hardness for reoptimization, but not vice versa. In fact, all problems
examined under the reoptimization model so far remain NP-hard. Only for some of them
could an improvement of the approximation ratio be achieved after extensive studies, the
first discovered examples being tsp under edge-weight changes [4] and addition or deletion
of vertices [2]. This stands in stark contrast to the results for our model, as outlined in the
next section.

1.3 Results
We shed a new light on two of the most prominent and well-examined graph problems,
Colorability and Vertex Cover. Our results come in two different types.

The first type concerns the hardness of the two problems in our model for the most
common local modifications; Table 1 summarizes the main results of this type. In addition,
Corollaries 2 and 14 show that Satisfiability and Vertex Cover remain NP-hard for any number
of queries if the local modification is the deletion of a clause or a triangle, respectively. The
results for the vertex-addition columns are trivial since we can just query an optimal solution
for the graph with an added isolated vertex; see Theorem 16 in Appendix A [3]. The hardness
results for the one-query case all follow from the same simple Theorem 17, variations of
which appear in the study of self-reducibility and many other fields; see Appendix B [3].
The findings of Theorems 10, 12, and 19 in Appendix F [3] clearly delineate our model
from that in reoptimization, where the NP-hard problems examined in the literature remain
NP-hard despite the significant amount of advice in form of the provided optimal solution;
see Böckenhauer et al. [5].
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Table 1 An overview of our results regarding the hardness of Colorability and Vertex Cover in
our model for the most common definitions of a local modification. The v stands for a vertex and the
e stands for an edge. The question mark indicates an interesting open problem. The results in the
vertex-addition columns are trivial; see Theorem 16 in Appendix A [3]. The NP-hardness results for
the 1-query case all follow from rather simple Turing reductions; see Theorem 17 in Appendix B [3].

No. of
Queries

Colorability Vertex Cover

Add v Delete v Add e Delete e Add v Delete v Add e Delete e

1 P NP-hard NP-hard NP-hard P NP-hard NP-hard NP-hard

2 or
more

P NP-hard P NP-hard P P P ?
[Thm. 16] [Thm. 4] [Thm. 10] [Thm. 6] [Thm. 16] [Thm. 12] [Thm. 19]

The results of the second type locate criticality problems in relation to the complexity
classes DP and Θp

2 . The class Θp
2 was introduced by Wagner [17] and represents the languages

that can be decided in polynomial time by an algorithm that has access to an NP oracle
under the restriction that all queries are submitted at the same time. The definitions of the
classes immediately yield the inclusions NP ∪ coNP ⊆ DP ⊆ Θp

2 .
Papadimitriou and Wolfe [14] have shown that Minimal-UnSat (the set of unsatisfiable

formulas that become satisfiable when an arbitrary clause is deleted) is DP-complete. Cai
and Meyer [6] built upon this to prove DP-completeness of VertexMinimal-k-UnColor-
ability (the set of graphs that are not k-colorable but become k-colorable when an arbitrary
vertex is deleted), for all k ≥ 3. With Theorems 7 and 8, we were able to extend this result to
classes that are analogously defined for the much smaller local modification of edge deletion,
which is considered the default setting; namely, we prove DP-completeness of Minimal-
k-UnColorability, for all k ≥ 3.

In Theorem 9, we show that recognizing criticality and vertex-criticality are in Θp
2 and

DP-hard. As Joret [12] points out, a construction by Papadimitriou and Wolfe [14] proves
the DP-hardness of recognizing β-critical graphs. This problem also lies in Θp

2 , but no finer
classification has been achieved so far. In Theorem 15, we show that this problem is in fact
Θp

2-hard, yielding the first known Θp
2-completeness result for a criticality problem.

2 Preprocessing 3-SAT

Our main technique for proving the nontrivial hardness results in our model is the following:
We build in polynomial-time computable solutions for each locally modified problem instance.
That way, the solutions to the locally modified problem instances do not give away any
information about the instance to be solved. A similar approach is taken in some proofs of
DP-completeness for minimality problems. Indeed, we can occasionally combine the proof of
DP-hardness with that of the NP-hardness of computing an optimal solution from optimal
solutions to locally modified instances. Denote by 3-CNF the set of nonempty CNF-formulas
with exactly three distinct literals per clause.2 We begin by showing in Theorem 1 that there
is a reduction from 3-Sat (the set of satisfiable 3-CNF-formulas) to 3-Sat that builds in
polynomial-time computable solutions for all one-clause-deleted subformulas of the resulting
3-CNF-formula. At first glance, this very surprising result may seem dangerously close to

2 This set is often denoted E3-CNF in the literature.

MFCS 2019
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proving P = NP; Corollary 2 will make explicit where the hardness remains. We will then
use the reduction of Theorem 1 as a preprocessing step in reductions from 3-Sat to other
problems.

I Theorem 1. There is a polynomial-time many-one reduction f from 3-Sat to 3-Sat and
a polynomial-time computable function s such that, for every 3-CNF-formula Φ and for
every clause C in f(Φ), s(f(Φ)− C) is a satisfying assignment for f(Φ)− C.

Proof. Papadimitriou and Wolfe [14, Lemma 1] give a reduction from 3-UnSat to Minimal-
UnSat (the set of CNF-formulas that are unsatisfiable but that become satisfiable with the
removal of an arbitrary clause). In Appendix C [3], we show how to enhance this reduction
such that it has all properties of our theorem. First, we carefully prove that there is a
function s that together with the original reduction satisfies all properties of our theorem,
except that we may output a formula that is not in 3-CNF. In order to rectify this, we
show that the standard reduction from Sat to Sat that decreases the number of literals per
clause to at most three maintains all the required properties. The same is then shown for
the standard reduction that transforms CNF-formulas with at most three literals per clause
into 3-CNF-formulas that have exactly three distinct literals per clause. Combining these
three reductions, we can therefore satisfy all requirements of our theorem. J

I Corollary 2. Computing a satisfying assignment for a 3-CNF-formula whose one-clause-
deleted subformulas all have a satisfying assignment from these assignments is NP-hard.

Proof. Given a 3-CNF-formula Φ, compute f(Φ), where f is the reduction from Theorem 1.
Now compute s(f(Φ)− C) for every clause C in f(Φ) and compute a satisfying assignment
for f(Φ) from these solutions. Use this assignment to determine whether Φ is satisfiable. J

3 Colorability

As mentioned in the previous section, the constructions of some DP-completeness results
for minimality problems can be adapted to obtain NP-hardness for computing optimal
solutions from optimal solutions to locally modified instances. There are remarkably few
complexity results for minimality problems; fortunately, however, VertexMinimal-3-Un-
Colorability (the graphs that are not 3-colorable but that are 3-colorable after deleting
any vertex)3 is DP-complete by reduction from Minimal-3-UnSat [6]. We will show how
to extract from said reduction a proof of the fact that computing an optimal coloring for a
graph from optimal colorings for its one-vertex-deleted subgraphs is NP-hard (Theorem 4).
However, the standard notion of criticality is χ-criticality under edge deletion, and the
construction by Cai and Meyer [6] does unfortunately not yield the analogous result for
deleting edges. This was to be expected, since working with edge deletion is much harder.
Surprisingly, however, a targeted modification of the constructed graph allows us to establish,
through a far more elaborate case distinction, that computing an optimal coloring for a
graph from optimal colorings for its one-edge-deleted subgraphs is NP-hard (Theorem 6) as
well as that the related minimality problem Minimal-3-UnColorability is DP-complete
(Theorem 7).

3 It should be noted that VertexMinimal-3-UnColorability is denoted by Minimal-3-UnColor-
ability by Cai and Meyer [6] despite the fact that minimality problems usually refer to the case of
edge deletion.
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I Lemma 3. There is a polynomial-time many-one reduction g from 3-Sat to 3-Color-
ability and a polynomial-time computable function opt such that, for every 3-CNF-formula
Φ and for every vertex v in g(Φ), opt(g(Φ)− v) is an optimal coloring for g(Φ)− v.

Proof. Given a 3-CNF-formula Φ, let g(Φ) = h(f(Φ)), where f is the reduction from
Theorem 1 and h is the reduction from Minimal-3-UnSat to VertexMinimal-3-Un-
Colorability by Cai and Meyer [6]. Since h also reduces 3-Sat to 3-Colorability [6,
Lemma 2.2], so does g. A careful inspection of the reduction g reveals that there is a
polynomial-time computable function opt such that, for every vertex v in g(Φ), opt(g(Φ)− v)
is a 3-coloring of g(Φ) − v. We can also verify that g(Φ) − v does not have a 2-coloring,
hence opt(g(Φ)− v) is an optimal coloring. We do not dive into the details as this lemma
immediately follows from the proof of the analogous result for edge deletion (Lemma 5), as
explained in Appendix D [3]. J

I Theorem 4. Computing an optimal coloring for a graph from optimal colorings for its
one-vertex-deleted subgraphs is NP-hard.

Proof. Given a 3-CNF-formula Φ, compute g(Φ), where g is the reduction from Lemma 3,
compute opt(g(Φ)− v) for every vertex v in g(Φ), and from these optimal solutions compute
one for g(Φ). This determines whether g(Φ) is 3-colorable and thus whether Φ is satisfiable.

J

I Lemma 5. There is a polynomial-time many-one reduction g from 3-Sat to 3-Color-
ability and a polynomial-time computable function opt such that, for every 3-CNF-formula
Φ and for every edge e in g(Φ), opt(g(Φ)− e) is an optimal coloring of g(Φ)− e.

Proof. Given a 3-CNF-formula Φ, let g(Φ) = h(f(Φ))− e, where f is the reduction from
Theorem 1, h is the reduction to VertexMinimal-3-UnColorability by Cai and Meyer [6],
and e is the edge {vc, vs}, with vc being the unique vertex adjacent to all variable-setting
vertices and vs being the only remaining neighbor vertex of vc. We prove in detail that g has
all the desired properties in Appendix D [3]. See Figure 1 in Appendix D [3] for an example
of the construction. J

I Theorem 6. Computing an optimal coloring for a graph from optimal colorings for its
one-edge-deleted subgraphs is NP-hard.

Proof. The same argument as for Theorem 4 can be applied here. J

I Theorem 7. Minimal-3-UnColorability is DP-complete.

Proof. Membership in DP is immediate, since given a graph G = (V,E), determining
whether G − e is 3-colorable for every e ∈ E is in NP and so is determining whether G
is 3-colorable. As for DP-hardness, the argument from the proof of Lemma 5 shows that
mapping Φ to h(Φ)−{vc, vs}, where h is the reduction from Minimal-3-UnSat to Vertex-
Minimal-3-UnColorability by Cai and Meyer [6], gives a reduction from Minimal-
3-UnSat to Minimal-3-UnColorability (and to VertexMinimal-3-UnColorability
as well). Recall that Minimal-3-UnSat is DP-hard [14]. J

Cai and Meyer [6] show DP-completeness for VertexMinimal-k-UnColorability, for
all k ≥ 3. We now prove that the analogous result for deletion of edges holds as well.

I Theorem 8. Minimal-k-UnColorability is DP-complete, for every k ≥ 3.

MFCS 2019



78:8 Finding Optimal Solutions With Neighborly Help

Proof. Membership in DP is again immediate. To show hardness for k ≥ 4, we reduce
Minimal-3-UnColorability to Minimal-k-UnColorability. We use the construction
for deleting vertices [6, Theorem 3.1] and map graph G to G+Kk−3.4 Note that χ(Kk−3) =
k− 3 and χ(H +H ′) = χ(H) +χ(H ′) for any two graphs H and H ′. First suppose G+Kk−3
is in Minimal-k-UnColorability. Then G + Kk−3 is not k-colorable, and so G is not
3-colorable. Let e be an edge in G. Then (G− e) +Kk−3 = (G+Kk−3)− e is k-colorable,
and thus G− e is 3-colorable. It follows that G is in Minimal-3-UnColorability.

Now suppose G is in Minimal-3-UnColorability. Then G+Kk−3 is not k-colorable.
Let e be an edge in G + Kk−3. If e is an edge in G, then G − e is 3-colorable and so
(G + Kk−3) − e = (G − e) + Kk−3 is k-colorable. If e is an edge in Kk−3, then Kk−3 − e
is (k − 4)-colorable and G is 4-colorable (let ê be any edge in G, take a 3-coloring of
G− ê, and change the color of one of the vertices incident to ê to the remaining color), so
(G+Kk−3)− e = G+ (Kk−3 − e) is k-colorable. Finally, if e = {v, w} for a vertex v in G
and a vertex w in Kk−3, let ê be an edge in G incident to v, take a 3-coloring of G− ê, take
a disjoint (k − 3)-coloring of Kk−3, and change the color of v to the color of w. As a result,
for all edges e in G+Kk−3, (G+Kk−3)− e is k-colorable. It follows that G+Kk−3 is in
Minimal-k-UnColorability. J

The construction above does not prove the analogues of Lemmas 3 and 5: Note that G
is 3-colorable if and only if (G+Kk−3)− v and (G+Kk−3)− e are both (k − 1)-colorable
for every vertex v in Kk−3 and for every edge e in Kk−3, and so we can certainly determine
whether a graph is 3-colorable from the optimal solutions to the one-vertex-deleted subgraphs
and one-edge-deleted subgraphs of G+Kk−3 in polynomial time. Turning to criticality and
vertex-criticality, we can bound their complexity as follows.

I Theorem 9. The two problems of determining whether a graph is critical and whether it
is vertex-critical are both in Θp

2 and DP-hard.

Proof. For the Θp
2-membership of the two problems, we observe that the relevant chromatic

numbers of a graph G = (V,E) and its neighbors can be computed by querying the NP
oracle Colorability = {(G, k) | χ(G) ≤ k} for every (G, k), (G− e, k), and (G− v, k) for
every e ∈ E, v ∈ V , and k ≤ ‖V (G)‖ in parallel.

For the DP-hardness of the two problems, we prove that h(Φ)− {vc, vs} is a reduction
from Minimal-3-UnSat to both of them. We have already seen that it reduces Minimal-
3-UnSat to Minimal-3-UnColorability. Hence, for every Φ ∈Minimal-3-UnSat, the
graph h(Φ)−{vc, vs} is in Minimal-3-UnColorability ⊆ VertexMinimal-3-UnColor-
ability and thus both critical and vertex-critical. For the converse it suffices to note that,
for every Φ ∈ CNF with clauses of size at most 3, h(Φ) − {vc, vs} is 4-colorable and thus
in Minimal-3-UnColorability (in VertexMinimal-3-UnColorability, respectively)
if and only if it is critical (vertex-critical, respectively). J

The exact complexity of these problems remains open, however. In particular, it is
unknown whether they are Θp

2-hard. This contrasts with the case of Vertex Cover, for which
we prove in Theorem 15 that recognizing β-vertex-criticality is indeed Θp

2-complete.
Before that, however, we return to our model and consider Colorability under the local

modification of adding an edge. If we allow only one query, the problem stays NP-hard via a
simple Turing reduction: Iteratively adding edges to the given instance eventually leads to

4 For two graphs G1 and G2, the graph join G1 +G2 is the disjoint union G1 ∪G2 plus a join edge added
from every vertex of G1 to every vertex of G2; see, e.g., Harary’s textbook on graph theory [10, p. 21].
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a clique as a trivial instance, see Theorem 17 in Appendix B [3]. Note that the restriction
to one query is crucial for this reduction to work; without it, the branching may lead to an
exponential blowup in the number of instances that need to be considered. The following
theorem shows that this breakdown of the hardness proof is inevitable unless P = NP since
the problem becomes in fact polynomial-time solvable if just one more oracle call is granted.

I Theorem 10. There is a polynomial-time algorithm that computes an optimal coloring for
a graph from optimal colorings of all its one-edge-added supergraphs; in fact, two optimal
colorings, one for each of two specific one-edge-added supergraphs, suffice.

For the proof of this theorem, we naturally extend the notion of universal vertices as follows.

I Definition 11. An edge {u, v} ∈ E of a graph G = (V,E) is called universal if, for every
vertex x ∈ V − {u, v}, we have {x, u} ∈ E or {x, v} ∈ E. A graph is called universal-edged
if all its edges are universal.

Additionally, we denote, for any given graph G = (V,E) and any vertex x ∈ V , the open
neighborhood of x in G by N(x) := {y | {x, y} ∈ E} and the closed neighborhood of x in G
by N [x] := N(x) ∪ {x}. We are now ready to give the proof of Theorem 10.

Proof of Theorem 10. We show that Colorer (Algorithm 1), which uses the oracle of our
model and Subcol (Algorithm 2) as subroutines, has the desired properties.

Algorithm 1 Colorer.
Input: An undirected graph G = (V,E).
Output: An optimal coloring for G.
Description: Optimizes universal-edged graphs with two queries to Oracle, which provides
optimal solutions to one-edge-added supergraphs; other graphs are optimized via Subcol.
1: for every edge {u, v} ∈ E do
2: for every vertex x ∈ V − {u, v} do
3: if {u, x} /∈ E ∧ {v, x} /∈ E then
4: f1 ← Oracle(G ∪ {u, x})
5: f2 ← Oracle(G ∪ {v, x})
6: if f1 uses fewer colors on G than f2 then
7: return f1
8: else
9: return f2

10: k ← 1
11: while Subcol(G, k) = NO do
12: k ← k + 1
13: return Subcol(G, k)

We begin by proving that Colorer is correct. Assume first that the input graph
G = (V,E) is not universal-edged. Then Colorer can find an edge {u, v} ∈ E with a
non-neighboring vertex x ∈ V and query the oracle on G ∪ {u, x} and G ∪ {v, x} for optimal
colorings f1 and f2. We argue that at least one of them is also optimal for G. Let f be
any optimal coloring of G. Since u and v are connected by an edge, we have f(u) 6= f(v)
and hence f(x) 6= f(u) or f(x) 6= f(v); see Figure 2in Appendix E [3]. Thus, f is also
an optimal coloring of G ∪ {x, u} or G ∪ {x, v}, and so we have χ(G) = χ(G ∪ {x, u}) or
χ(G) = χ(G ∪ {x, v}). Therefore, f1 or f2 is an optimal coloring for G as well and returned
on line 7 or 9, respectively.
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Algorithm 2 Subcol.
Input: An undirected, universal-edged graph G = (V,E) and a positive integer k.
Output: A k-coloring f for G if there is one; NO if there is none.
Description: Works by recursion on k, with k = 1 and k = 2 serving as the base cases.
1: if G has no edge then
2: return the constant 1-coloring with f(x) = 1 for all x ∈ V .
3: else if k = 1 then
4: return NO.
5: if G has bipartition {A,B} then
6: return the 2-coloring f(x) =

{
1 for x ∈ A and
2 for x ∈ B.7: else if k=2 then

8: return NO.
9: Choose an arbitrary edge {`, r} ∈ E.

10: L← N(`)−N [r]; R← N(r)−N [`]; M ← N(`) ∩N(r)
11: g ← Subcol(G[M ], k − 2)
12: if g = NO then
13: return NO
14: return the k-coloring f(x) =


g(x) for x ∈M ,
k − 1 for x ∈ L ∪ {r}, and
k for x ∈ R ∪ {`}.

The while loop can be entered only if the graph G is universal-edged. This allows us to
compute an optimal solution to G with no queries at all by using Subcol (Algorithm 2).
We will show that Subcol is a polynomial-time algorithm that computes, for any universal-
edged graph G and any positive integer k, a k-coloring of G if there is one, and outputs NO
otherwise. The while loop of Colorer thus searches the smallest integer k such that G has
a k-coloring, that is, k = χ(G). Hence, an optimal coloring of G is returned on line 13. Due
to k = χ(G) ≤ ‖V ‖, Colorer has polynomial time complexity.

It remains to prove the correctness and polynomial time complexity of Subcol. This
can be done by bounding its recursion depth and verifying the correctness for each of the
six return statements; this is hardest for the last two. The proof relies on the properties
of the partition M ∪ L ∪ R ∪ {`} ∪ {r} as illustrated in Figure 3 in Appendix E [3]; see
Appendix E [3] for all details. J

In this section, we have proven that Minimal-k-UnColorability is complete for DP
for every k ≥ 3 and demonstrated that Colorability remains NP-hard in our model for
deletion of vertices or edges, whereas it becomes polynomial-time solvable when the local
modification is the addition of an edge. In the next section, we turn our attention to Vertex
Cover.

4 Vertex Cover

This section will show that the behavior of Vertex Cover in our model is distinctly different
from the one that we demonstrated for Colorability in the previous section. In particular,
Theorem 12 proves that computing an optimal vertex cover from optimal solutions of one-
vertex-deleted subgraphs can be done in polynomial time, which is impossible for optimal
colorings according to Theorem 4 unless P = NP.



E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:11

First, we note that the NP-hardness proof for our most restricted case with only one
query still works (i.e., Theorem 17 in Appendix B [3] is applicable): Deleting vertices, adding
edges, or deleting edges repeatedly will always lead to the null graph, an edgeless graph, or a
clique through polynomially many instances. As we have seen for Colorability in the previous
section, hardness proofs of this type may fail due to exponential branching as soon as multiple
queries are allowed. We can show that, unless P = NP, this is necessarily the case for edge
addition and vertex deletion since two granted queries suffice to obtain a polynomial-time
algorithm.

I Theorem 12. There is a polynomial-time algorithm that computes an optimal vertex cover
for a graph from two optimal vertex covers for some one-vertex-deleted subgraphs.

Proof. Observe what can happen when a vertex v is removed from a graph G with an
optimal vertex cover of size k. If v is part of any optimal vertex cover of G, then the size of
an optimal vertex cover for G− v is k− 1. Given any graph G, pick any two adjacent vertices
v1 and v2. Since there is an edge between them, one of them is always part of an optimal
vertex cover, thus either G− v1 or G− v2 or both will have an optimal vertex cover of size
k − 1. Two queries to the oracle return optimal vertex covers for G− v1 and G− v2. The
algorithm chooses the smaller of these two covers (or any, if they are the same size) and adds
the corresponding vi. The resulting vertex cover has size k and is thus optimal for G. J

Theorem 19 in Appendix F [3] proves that the analogous result for adding an edge holds as
well.

At this point, we would like to prove either an analogue to Theorem 6, showing that
computing an optimal vertex cover is NP-hard even if we get access to a solution for every
one-edge-deleted subgraph, or an analogue to Theorem 19 in Appendix F [3], showing that the
problem is in P if we have access to a solution for more than one one-edge-deleted subgraph.
We were unable to prove either, however. The latter is easy to do for many restricted graph
classes (e.g., graphs with bridges), yet we suspect that the problem is NP-hard in general.
We will detail a few reasons for the apparent difficulty of proving this statement after the
following theorem and corollary, which look at deleting a triangle as the local modification.

I Theorem 13. There is a reduction g from 3-Sat to VertexCover such that, for every
3-CNF-formula Φ and for every triangle T in g(Φ), there is a polynomial-time computable
optimal vertex cover of g(Φ)− T .

The proof of Theorem 13 relies on the standard reduction from 3-Sat to VertexCover;
see [9], where clauses correspond to triangles; see Appendix G [3] for the details. Applying
the same argument as in the proof of Theorem 4 yields the following corollary.

I Corollary 14. Computing an optimal vertex cover for a graph from optimal vertex covers
for the one-triangle-deleted subgraphs is NP-hard.

What can we say about optimal vertex covers for one-edge-deleted graphs? Papadimitriou
and Wolfe show [14, Theorem 4] that there is a reduction g from Minimal-3-UnSat to
Minimal-k-NoVertexCover (called Critical-VertexCover in [14]; asking, given a
graph G and an integer k, whether G does not have a vertex cover of size k but all one-
edge-deleted subgraphs do). The reduction builds in a polynomial-time computable vertex
cover of size k for every one-edge-deleted subgraph. And so g is a reduction from 3-Sat
to VertexCover such that there exists a polynomial-time computable function opt such
that for every 3-CNF-formula Φ and g(Φ) = (G, k), it holds, for every edge e in G, that
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opt(G− e) is a vertex cover of size k. Unfortunately, it may happen that an optimal vertex
cover of G−e has size k−1; namely, if e is an edge connecting two triangles, an edge between
two variable-setting vertices, or any edge of the clause triangles. The function opt does thus
not give us an optimal vertex cover, thwarting the proof attempt. This shows that we cannot
always get results for our model from the constructions for criticality problems.

The following would be one approach to design a polynomial-time algorithm that computes
an optimal vertex cover from optimal vertex covers for all one-edge-deleted subgraphs: It is
clear that deleting an edge does not increase the size of an optimal vertex cover and decreases
it by at most one. If, for any two neighbor graphs, the provided vertex covers differ in size,
then we can take the smaller one, restore the deleted edge, and add any one of the two
incident vertices to the vertex cover; this gives us the desired optimal vertex cover. If the
optimal vertex cover size decreases for all deletions of a single edge, we can do the same with
any of them. Thus, it is sufficient to design a polynomial-time algorithm that solves the
problem on graphs whose one-edge-deleted subgraphs all have optimal vertex covers of the
same size as an optimal vertex cover of the original graph. One might suspect that only very
few and simple graphs can be of this kind. However, we obtain infinitely many such graphs
by the removal of any edge from different cliques, as already mentioned in the introduction.
In fact, there is a far larger class of graphs with this property and no apparent communality
to be exploited for the efficient construction of an optimal vertex cover.

We now turn to our complexity results of β-(vertex-)criticality. The reduction from
Minimal-3-UnSat to Minimal-k-NoVertexCover by Papadimitriou and Wolfe [14] es-
tablishes the DP-hardness of deciding whether a graph is β-critical. However, it seems
unlikely that β-criticality is in DP. The obvious upper bound is Θp

2 , since a polynomial
number of queries to a VertexCover oracle, namely (G, k) and (G− e, k) for all edges e
in G and all k ≤ ‖V (G)‖, in parallel allows us to determine β(G) and β(G− e) for all edges
e in polynomial time, and thus allows us to determine whether G is β-critical. While we
have not succeeded in proving a matching lower bound, or even any lower bound beyond
DP-hardness, we do get this lower bound for β-vertex-criticality, thereby obtaining the first
Θp

2-completeness result for a criticality problem.

I Theorem 15. Determining whether a graph is β-vertex-critical is Θp
2-complete.

Proof. Membership follows with the same argument as above, this time querying the oracle
VertexCover in parallel for all (G, k) and (G − v, k) for all vertices v in G and all
k ≤ ‖V (G)‖. To show that this problem is Θp

2-hard, we use a similar reduction as the
one by Hemaspaandra et al. [11, Lemma 4.12] to prove that it is Θp

2-hard to determine
whether a given vertex is a member of a minimum vertex cover. We reduce from the Θp

2-
complete problem VC= = {(G,H) | β(G) = β(H)} [18]. Let n = max(‖V (G)‖, ‖V (H)‖),
let G′ consist of n+ 1− ‖V (G)‖ isolated vertices, let H ′ consist of n+ 1− ‖V (H)‖ isolated
vertices, and let F = (G ∪ G′) + (H ∪H ′). Note that β(F ) = (n + 1) + min(β(G), β(H)).
If β(G) = β(H), then β(F ) = (n + 1) + β(G) = (n + 1) + β(H) and for every vertex v

in F , β(F − v) = n + β(G). Thus, F is critical. If β(G) 6= β(H), assume without loss of
generality that β(G) < β(H). Then β(F ) = n+ 1 + β(G). Let v be a vertex in G′. Then
β(F − v) = min(n+ 1 + β(G), n+ β(H)) = n+ 1 + β(G), and therefore F is not critical. J

5 Conclusion and Future Research

We defined a natural model that provides new insights into the structural properties of NP-
hard problems. Specifically, we revealed interesting differences in the behavior of Colorability
and Vertex Cover under different types of local modifications. While Colorability remains
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NP-hard when the local modification is the deletion of either a vertex or an edge, there is an
algorithm that finds an optimal coloring by querying the oracle on at most two edge-added
supergraphs. Vertex Cover, in contrast, becomes easy in our model for both deleting vertices
and adding edges, as soon as two queries are granted. The question of what happens for the
local modification of deleting an edge remains as an intriguing open problem that defies any
simple approach, as briefly outlined above. Moreover, examples of problems where one can
prove a jump from membership in P to NP-hardness at a given number of queries greater
than 2 might be especially instructive.

With its close connections to many distinct research areas, most notably the study of
self-reducibility and critical graphs, our model can serve as a tool for new discoveries. In
particular, we were able to exploit the tight relations to criticality in the proof that recognizing
β-vertex-critical graphs is Θp

2-hard, yielding the first completeness result for Θp
2 in the field.
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