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Abstract
In this work we use a framework of finite-state automata constructions based on equivalences over
words to provide new insights on the relation between well-known methods for computing the
minimal deterministic automaton of a language.
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1 Introduction

In this paper we consider the problem of building the minimal deterministic finite-state
automaton generating a given regular language. This is a classical issue that arises in many
different areas of computer science such as verification, regular expression searching and
natural language processing, to name a few.

There exists a number of methods, such as Hopcroft’s [10] and Moore’s algorithms [14],
that receive as input a deterministic finite-state automaton (DFA for short) generating a
language and build the minimal DFA for that language. In general, these methods rely on
computing a partition of the set of states of the input DFA which is then used as the set of
states of the minimal DFA.

On the other hand, Brzozowski [4] proposed the double-reversal method for building the
minimal DFA for the language generated by an input non-deterministic automaton (NFA for
short). This algorithm alternates a reverse operation and a determinization operation twice,
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relying on the fact that, for any given NFA N , if the reverse automaton of N is determ-
inistic then the determinization operation yields the minimal DFA for the language of N .
This method has been recently generalized by Brzozowski and Tamm [5]. They showed
the following necessary and sufficient condition: the determinization operation yields the
minimal DFA for the language of N if and only if the reverse automaton of N is atomic.

It is well-known that all these approaches to the DFA minimization problem aim to
compute Nerode’s equivalence relation for the considered language. However, the double-
reversal method and its later generalization appear to be quite isolated from other methods
such as Hopcroft’s and Moore’s algorithms. This has led to different attempts to better explain
Brzozowski’s method [3] and its connection with other minimization algorithms [1, 7, 16].
We use a framework of automata constructions based on equivalence classes over words to
give new insights on the relation between these algorithms.

In this paper we consider equivalence relations over words on an alphabet Σ that induce
finite partitions over Σ∗. Furthermore, we require that these partitions are well-behaved
with respect to concatenation, namely, congruences. Given a regular language L and an
equivalence relation satisfying these conditions, we use well-known automata constructions
that yield automata generating the language L [6, 13]. In this work, we consider two types
of equivalence relations over words verifying the required conditions.

First, we define a language-based equivalence, relative to a regular language, that behaves
well with respect to right concatenation, also known as the right Nerode’s equivalence
relation for the language. When applying the automata construction to the right Nerode’s
equivalence, we obtain the minimal DFA for the given language [6, 13]. In addition, we
define an automata-based equivalence, relative to an NFA. When applying the automata
construction to the automata-based equivalence we obtain a determinized version of the
input NFA.

On the other hand, we also obtain counterpart automata constructions for relations
that are well-behaved with respect to left concatenation. In this case, language-based and
automata-based equivalences yield, respectively, the minimal co-deterministic automaton
and a co-deterministic NFA for the language.

The relation between the automata constructions resulting from the language-based
and the automata-based congruences, together with the the duality between right and left
congruences, allows us to relate determinization and minimization operations. As a result,
we formulate a sufficient and necessary condition that guarantees that determinizing an
automaton yields the minimal DFA. This formulation evidences the relation between the
double-reversal and the state partition refinement minimization methods.

We start by giving a simple proof of Brzozowski’s double-reversal method [4], to later
address the generalization of Brzozowski and Tamm [5]. Furthermore, we relate the iterations
of Moore’s partition refinement algorithm, which works on the states of the input DFA, to
the iterations of the greatest fixpoint algorithm that builds the right Nerode’s partition on
words. We conclude by relating the automata constructions introduced by Brzozowski and
Tamm [5], named the átomaton and the partial átomaton, to the automata constructions
described in this work.

Structure of the paper. After preliminaries in Section 2, we introduce in Section 3 the
automata constructions based on congruences on words and establish the duality between these
constructions when using right and left congruences. Then, in Section 4, we define language-
based and automata-based congruences and analyze the relations between the resulting
automata constructions. In Section 5, we study a collection of well-known constructions for
the minimal DFA. Finally, we give further details on related work in Section 6. For space
reasons, missing proofs are deferred to the extended version of this paper [9].



P. Ganty, E. Gutiérrez, and P. Valero 77:3

2 Preliminaries

Languages. Let Σ be a finite nonempty alphabet of symbols. Given a word w ∈ Σ∗, wR

denotes the reverse of w. Given a language L ⊆ Σ∗, LR def= {wR | w ∈ L} denotes the reverse
language of L. We denote by Lc the complement of the language L. The left (resp. right)
quotient of L by a word u is defined as the language u−1L

def= {x ∈ Σ∗ | ux ∈ L} (resp.
Lu−1 def= {x ∈ Σ∗ | xu ∈ L}).

Automata. A (nondeterministic) finite-state automaton (NFA for short), or simply auto-
maton, is a 5-tuple N = (Q,Σ, δ, I, F ), where Q is a finite set of states, Σ is an alphabet,
I ⊆ Q are the initial states, F ⊆ Q are the final states, and δ : Q × Σ → ℘(Q) is the
transition function. We denote the extended transition function from Σ to Σ∗ by δ̂. Given
S, T ⊆ Q, WNS,T

def= {w ∈ Σ∗ | ∃q ∈ S, q′ ∈ T : q′ ∈ δ̂(q, w)}. In particular, when S = {q} and
T = F , we define the right language of state q as WNq,F . Likewise, when S = I and T = {q},
we define the left language of state q as WNI,q. We define postNw (S) def= {q ∈ Q | w ∈WNS,q} and
preNw (S) def= {q ∈ Q | w ∈WNq,S}. In general, we omit the automaton N from the superscript
when it is clear from the context. We say that a state q is unreachable iff WNI,q = ∅ and we say
that q is empty iff WNq,F = ∅. Finally, note that L(N ) =

⋃
q∈I W

N
q,F =

⋃
q∈F W

N
I,q = WNI,F .

Given an NFA N = (Q,Σ, δ, I, F ), the reverse NFA for N , denoted by NR, is defined as
NR = (Q,Σ, δr, F, I) where q ∈ δr(q′, a) iff q′ ∈ δ(q, a). Clearly, L(N )R = L(NR).

A deterministic finite-state automaton (DFA for short) is an NFA such that, I = {q0},
and, for every state q ∈ Q and every symbol a ∈ Σ, there exists exactly one q′ ∈ Q such
that δ(q, a) = q′. According to this definition, DFAs are always complete, i.e., they define a
transition for each state and input symbol. In general, we denote NFAs by N , using D for
DFAs when the distinction is important. A co-deterministic finite-state automata (co-DFA
for short) is an NFA N such that NR is deterministic. In this case, co-DFAs are always
co-complete, i.e., for each target state q′ and each input symbol, there exists a source state q
such that δ(q, a) = q′. Recall that, given an NFA N = (Q,Σ, δ, I, F ), the well-known subset
construction builds a DFA D = (℘(Q),Σ, δd, {I}, Fd) where Fd = {S ∈ ℘(Q) | S ∩ F 6= ∅}
and δd(S, a) = {q′ | ∃q ∈ S, q′ ∈ δ(q, a)} for every a ∈ Σ, that accepts the same language as
N [11]. Given an NFA N = (Q,Σ, δ, I, F ), we denote by ND the DFA that results from
applying the subset construction to N where only subsets (including the empty subset) that
are reachable from the initial subset of ND are used. Then, ND possibly contains empty
states but no state is unreachable. A DFA for the language L(N ) is minimal, denoted by
NDM , if it has no unreachable states and no two states have the same right language. The
minimal DFA for a regular language is unique modulo isomorphism.

Equivalence Relations and Partitions. Recall that an equivalence relation on a set X is a
binary relation ∼ that is reflexive, symmetric and transitive. Every equivalence relation ∼
on X induces a partition P∼ of X, i.e., a family P∼ = {Bi}i∈I ⊆ ℘(X) of subsets of X, with
I ⊆ N, such that:
(i) Bi 6= ∅ for all i ∈ I;
(ii) Bi ∩Bj = ∅, for all i, j ∈ I with i 6= j; and
(iii) X =

⋃
i∈I Bi.

We say that a partition is finite when I is finite. Each Bi is called a block of the partition.
Given u ∈ X, then P∼(u) denotes the unique block that contains u and corresponds to the
equivalence class u w.r.t. ∼, P∼(u) def= {v ∈ X | u ∼ v}. This definition can be extended
in a natural way to a set S ⊆ X as P∼(S) def=

⋃
u∈S P∼(u). We say that the partition P∼

MFCS 2019
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represents precisely S iff P∼(S) = S. An equivalence relation ∼ is of finite index iff ∼
defines a finite number of equivalence classes, i.e., the induced partition P∼ is finite. In the
following, we will always consider equivalence relations of finite index, i.e., finite partitions.

Finally, denote Part(X) the set of partitions of X. We use the standard refinement
ordering � between partitions: let P1, P2 ∈ Part(X), then P1 � P2 iff for every B ∈ P1 there
exists B′ ∈ P2 such that B ⊆ B′. Then, we say that P1 is finer than P2 (or equivalently,
P2 is coarser than P1). Given P1, P2 ∈ Part(X), define the coarsest common refinement,
denoted by P1 fP2, as the coarsest partition P ∈ Part(X) that is finer than both P1 and P2.
Likewise, define the finest common coarsening, denoted by P1 g P2, as the finest partition P
that is coarser than both P1 and P2. Recall that (Part(X),�,g,f) is a complete lattice
where the top (coarsest) element is {X} and the bottom (finest) element is {{x} | x ∈ X}.

3 Automata Constructions from Congruences

We will consider equivalence relations on Σ∗ (and their corresponding partitions) with good
properties w.r.t. concatenation. An equivalence relation ∼ is a right (resp. left) congruence
iff for all u, v ∈ Σ∗, we have that u ∼ v ⇒ ua ∼ va, for all a ∈ Σ (resp. u ∼ v ⇒ au ∼ av).
We will denote right congruences (resp. left congruences) by ∼r (resp. ∼`). The following
lemma gives a characterization of right and left congruences.

I Lemma 1. The following properties hold:
1. ∼r is a right congruence iff P∼r (v)u ⊆ P∼r (vu), for all u, v ∈ Σ∗.
2. ∼` is a left congruence iff uP∼`(v) ⊆ P∼`(uv), for all u, v ∈ Σ∗.

Given a right congruence ∼r and a regular language L ⊆ Σ∗ such that P∼r represents
precisely L, i.e., P∼r (L) = L, the following automata construction recognizes exactly the
language L [13].

I Definition 2 (Automata construction Hr(∼r, L)). Let ∼r be a right congruence and let P∼r

be the partition induced by ∼r. Let L ⊆ Σ∗ be a language. Define the automaton Hr(∼r, L) =
(Q,Σ, δ, I, F ) where Q = {P∼r (u) | u ∈ Σ∗}, I = {P∼r (ε)}, F = {P∼r (u) | u ∈ L}, and
δ(P∼r (u), a) = P∼r (v) iff P∼r (u)a ⊆ P∼r (v), for all u, v ∈ Σ∗ and a ∈ Σ.

I Remark 3. Note that Hr(∼r, L) is finite since we assume ∼r is of finite index. Note also
that Hr(∼r, L) is a complete deterministic finite-state automaton since, for each u ∈ Σ∗ and
a ∈ Σ, there exists exactly one block P∼r (v) such that P∼r (u)a ⊆ P∼r (v), which is P∼r (ua).
Finally, observe that Hr(∼r, L) possibly contains empty states but no state is unreachable.

I Lemma 4. Let ∼r be a right congruence and let L ⊆ Σ∗ be a language such that P∼r (L) = L.
Then L(Hr(∼r, L)) = L.

Due to the left-right duality between ∼` and ∼r, we can give a similar automata con-
struction such that, given a left congruence ∼` and a language L ⊆ Σ∗ with P∼`(L) = L,
recognizes exactly the language L.

I Definition 5 (Automata construction H`(∼`, L)). Let ∼` be a left congruence and let P∼`

be the partition induced by ∼`. Let L ⊆ Σ∗ be a language. Define the automaton H`(∼`, L) =
(Q,Σ, δ, I, F ) where Q = {P∼`(u) | u ∈ Σ∗}, I = {P∼`(u) | u ∈ L}, F = {P∼`(ε)}, and
P∼`(v) ∈ δ(P∼`(u), a) iff aP∼`(v) ⊆ P∼`(u), for all u, v ∈ Σ∗ and a ∈ Σ.

I Remark 6. In this case, H`(∼`, L) is a co-complete co-deterministic finite-state auto-
maton since, for each v ∈ Σ∗ and a ∈ Σ, there exists exactly one block P∼`(u) such that
aP∼`(v) ⊆ P∼`(u), which is P∼`(av). Finally, observe that H`(∼`, L) possibly contains
unreachable states but no state is empty.
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I Lemma 7. Let ∼` be a left congruence and let L ⊆ Σ∗ be a language such that P∼`(L) = L.
Then L(H`(∼`, L)) = L.

Lemma 8 shows that H` and Hr inherit the left-right duality between ∼` and ∼r.

I Lemma 8. Let ∼r and ∼` be a right and left congruence respectively, and let L ⊆ Σ∗ be a
language. If the following property holds

u ∼r v ⇔ uR ∼` vR (1)

then Hr(∼r, L) is isomorphic to
(
H`(∼`, LR)

)R.

4 Language-based Congruences and their Approximation using NFAs

Given a language L ⊆ Σ∗, we recall the following equivalence relations on Σ∗, which are
often denoted as Nerode’s equivalence relations (e.g., see [13]).

I Definition 9 (Language-based Equivalences). Let u, v ∈ Σ∗ and let L ⊆ Σ∗ be a language.
Define:

u ∼r
L v ⇔ u−1L = v−1L Right-language-based Equivalence (2)

u ∼`
L v ⇔ Lu−1 = Lv−1 Left-language-based Equivalence (3)

Note that the right and left language-based equivalences defined above are, respectively,
right and left congruences. Furthermore, when L is a regular language, ∼r

L and ∼`
L are of

finite index [6, 13]. Since we are interested in congruences of finite index (or equivalently,
finite partitions), we will always assume that L is a regular language over Σ.

The following result states that, given a language L, the right Nerode’s equivalence
induces the coarsest partition of Σ∗ which is a right congruence and precisely represents L.

I Lemma 10 (de Luca and Varricchio [8]). Let L ⊆ Σ∗ be a regular language. Then,

P∼r
L

=
j
{P∼r | ∼r is a right congruence and P∼r (L) = L} .

In a similar way, one can prove that the same property holds for the left Nerode’s
equivalence. Therefore, as we shall see, applying the construction H to these equivalences
yields minimal automata. However, computing them becomes unpractical since languages
are possibly infinite, even if they are regular. Thus, we will consider congruences based on
the states of the NFA-representation of the language which induce finer partitions of Σ∗
than Nerode’s equivalences. In this sense, we say that the automata-based equivalences
approximate Nerode’s equivalences.

I Definition 11 (Automata-based Equivalences). Let u, v ∈ Σ∗ and let N = (Q,Σ, δ, I, F ) be
an NFA. Define:

u ∼r
N v ⇔ postNu (I) = postNv (I) Right-automata-based Equivalence (4)

u ∼`
N v ⇔ preNu (F ) = preNv (F ) Left-automata-based Equivalence (5)

Note that the right and left automata-based equivalences defined above are, respectively,
right and left congruences. Furthermore, they are of finite index since each equivalence class
is represented by a subset of states of N .

The following result gives a sufficient and necessary condition for the language-based
(Definition 9) and the automata-based equivalences (Definition 11) to coincide.

I Lemma 12. Let N = (Q,Σ, δ, I, F ) be an automaton with L = L(N ). Then,

∼r
L = ∼r

N iff ∀u, v ∈ Σ∗, WNpostNu (I),F = WNpostNv (I),F ⇔ postNu (I) = postNv (I) . (6)

MFCS 2019
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4.1 Automata Constructions

In what follows, we will use Min and Det to denote the construction H when applied,
respectively, to the language-based congruences induced by a regular language and the
automata-based congruences induced by an NFA.

I Definition 13. Let N be an NFA generating the language L = L(N ). Define:

Minr(L) def= Hr(∼r
L, L) Detr(N ) def= Hr(∼r

N , L)

Min`(L) def= H`(∼`
L, L) Det`(N ) def= H`(∼`

N , L) .

Given an NFA N generating the language L = L(N ), all constructions in the above
definition yield automata generating L. However, while the constructions using the right
congruences result in DFAs, the constructions relying on left congruences result in co-
DFAs. Furthermore, since the pairs of relations (2)-(3) and (4)-(5), from Definition 9 and 11
respectively, are dual, i.e., they satisfy the hypothesis of Lemma 8, it follows that Min`(L) is
isomorphic to (Minr(LR))R and Det`(N ) is isomorphic to (Detr(NR))R.

On the other hand, since Minr relies on the language-based congruences, the resulting
DFA is minimal, which is not guaranteed to occur with Detr. This easily follows from the
fact that the states of the automata constructions are the equivalence classes of the given
congruences and there is no right congruence (representing L precisely) that is coarser than
the right Nerode’s equivalence (see Lemma 10).

Finally, since every co-deterministic automaton satisfies the right-hand side of Equa-
tion (6), it follows that determinizing (Detr) a co-deterministic automaton (Det`(N )) results
in the minimal DFA (Minr(L(N ))), as already proved by Sakarovitch [15, Proposition 3.13].

We formalize all these notions in Theorem 14. Finally, Figure 1 summarizes all these
well-known connections between the automata constructions given in Definition 13.

I Theorem 14. Let N be an NFA generating language L = L(N ). Then the following
properties hold:
(a) L(Minr(L)) = L(Min`(L)) = L = L(Detr(N )) = L(Det`(N )).
(b) Minr(L) is isomorphic to the minimal deterministic automaton for L.
(c) Detr(N ) is isomorphic to ND.
(d) Min`(L) is isomorphic to (Minr(LR))R.
(e) Det`(N ) is isomorphic to (Detr(NR))R.
(f) Detr(Det`(N )) is isomorphic to Minr(L).

5 A Congruence-based Perspective on Known Algorithms

We can find in the literature several well-known independent techniques for the construction
of minimal DFAs. Some of these techniques are based on refining a state partition of an input
DFA, such as Moore’s algorithm [14], while others directly manipulate an input NFA, such
as the double-reversal method [4]. Now, we establish a connection between these algorithms
through Theorem 16, which gives a necessary and sufficient condition on an NFA so that
determinizing it yields the minimal DFA.

I Lemma 15. Let N = (Q,Σ, δ, I, F ) be an NFA with L = L(N ) and ∼r
L=∼r

N . Then
∀q ∈ Q, P∼r

L
(WNI,q) = WNI,q.
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N Det`(N ) Detr(Det`(N ))

NR Detr(NR) Det`(Detr(NR))

R

Det`

Minr

R

Detr

R

Detr

Min`

Det`

The upper part of the diagram follows
from Theorem 14 (f). Both squares of
the diagram follow from Theorem 14 (e),
which states that Det`(N ) is isomorphic
to (Detr(NR))R. Finally, the bottom
curved arc follows from Theorem 14 (d).
Incidentally, the diagram shows a new
relation which follows from the left-right
dualities between ∼`

L and ∼r
L, and ∼`

N
and ∼r

N : Min`(L(NR)) is isomorphic to
Det`(Detr(NR)).

Figure 1 Relations between the constructions Det`, Detr, Min` and Minr. Note that constructions
Minr and Min` are applied to the language generated by the automaton in the origin of the labeled
arrow, while constructions Detr and Det` are applied directly to the automaton.

Proof.

P∼r
L

(WNI,q) = [By definition of P∼r
L
]

{w ∈ Σ∗ | ∃u ∈WNI,q, w
−1L = u−1L} = [Since ∼r

L=∼r
N ]

{w ∈ Σ∗ | ∃u ∈WNI,q, postNw (I) = postNu (I)} ⊆ [u ∈WNI,q ⇐⇒ q ∈ postNu (I)]
{w ∈ Σ∗ | q ∈ postNw (I)} = [By definition of WNI,q]

WNI,q .

By reflexivity of ∼r
L, we conclude that P∼r

L
(WNI,q) = WNI,q. J

I Theorem 16. Let N = (Q,Σ, δ, I, F ) be an NFA with L = L(N ). Then Detr(N ) is the
minimal DFA for L iff ∀q ∈ Q, P∼r

L
(WNI,q) = WNI,q.

Proof. Assume Detr(N ) is minimal. Then P∼r
N

(u) = P∼r
L

(u) for all u ∈ Σ∗, i.e. ∼r
L = ∼r

N .
It follows from Lemma 15 that P∼r

L
(WNI,q) = WNI,q.

Now, assume that P∼r
L

(WNI,q) = WNI,q, for each q ∈ Q. Then, for every u ∈ Σ∗,

P∼r
N

(u) =
⋂

q∈postNu (I)

WNI,q ∩
⋂

q /∈postNu (I)

(WNI,q)c =
⋂

q∈postNu (I)

P∼r
L

(WNI,q) ∩
⋂

q /∈postNu (I)

(P∼r
L

(WNI,q))c

where the first equality follows by rewriting P∼r
N

(u) = {v ∈ Σ∗ | postNu (I) = postNv (I)}
with universal quantifiers, hence intersections, and the last equality follows from the initial
assumption P∼r

L
(WNI,q) = WNI,q.

It follows that P∼r
N

(u) is a union of blocks of P∼r
L
. Recall that ∼r

L induces the coarsest
right congruence such that P∼r

L
(L) = L (Lemma 10). Since ∼r

N is a right congruence
satisfying P∼r

N
(L) = L then P∼r

N
4 P∼r

L
. Therefore, P∼r

N
(u) necessarily corresponds to one

single block of P∼r
L
, namely, P∼r

L
(u). Since P∼r

N
(u) = P∼r

L
(u) for each u ∈ Σ∗, we conclude

that Detr(N ) = Minr(L). J

5.1 Double-reversal Method
In this section we give a simple proof of the well-known double-reversal minimization algorithm
of Brzozowski [4] using Theorem 16. Note that, since Detr(N ) is isomorphic to ND by
Theorem 14 (c), the following result coincides with that of Brzozowski.

MFCS 2019
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I Theorem 17 ([4]). Let N be an NFA. Then Detr((Detr(NR))R) is isomorphic to the
minimal DFA for L(N ).

Proof. Let L = L(N ). By definition, N ′ = (Detr(NR))R is a co-DFA and, therefore, satisfies
the condition on the right-hand side of Equation (6). It follows from Lemma 12 that ∼r

L=∼r
N ′

which, by Lemma 15 and Theorem 16, implies that Detr(N ′) is minimal. J

Note that Theorem 17 can be inferred from Figure 1 by following the path starting at N ,
labeled with R− Detr −R− Detr and ending in Minr(L(N )).

5.2 Generalization of the Double-reversal Method
Brzozowski and Tamm [5] generalized the double-reversal algorithm by defining a necessary
and sufficient condition on an NFA which guarantees that the determinized automaton is
minimal. They introduced the notion of atomic NFA and showed that ND is minimal iff NR

is atomic. We shall show that this result is equivalent to Theorem 16 due to the left-right
duality between the language-based equivalences (Lemma 8).

I Definition 18 (Atom [5]). Let L be a regular language L. Let {Ki | 0 ≤ i ≤ n−1} be the set
of left quotients of L. An atom is any non-empty intersection of the form K̃0∩K̃1∩. . .∩K̃n−1,
where each K̃i is either Ki or Kc

i .

This notion of atom coincides with that of equivalence class for the left language-based
congruence ∼`

L. This was first noticed by Iván [12].

I Lemma 19. Let L be a regular language. Then for every u ∈ Σ∗,

P∼`
L

(u) =
⋂

u∈w−1L
w∈Σ∗

w−1L ∩
⋂

u/∈w−1L
w∈Σ∗

(w−1L)c .

I Definition 20 (Atomic NFA [5]). An NFA N = (Q,Σ, δ, I, F ) is atomic iff for every state
q ∈ Q, the right language WNq,F is a union of atoms of L(N ).

It follows from Lemma 19 that the set of atoms of a language L corresponds to the partition
P∼`

L
. Therefore, a set S ⊆ Σ∗ is a union of atoms iff P∼`

L
(S) = S. This property, together

with Definition 20, shows that an NFA N = (Q,Σ, δ, I, F ) with L = L(N ) is atomic iff

∀q ∈ Q, P∼`
L

(WNq,F ) = WNq,F . (7)

We are now in condition to give an alternative proof of the generalization of Brzozowski
and Tamm [5] relying on Theorem 16.

I Lemma 21. Let N = (Q,Σ, δ, I, F ) be an NFA with L = L(N ). Then NR is atomic iff
Detr(N ) is the minimal DFA for L.

Proof. Let NR = (Q,Σ, δr, F, I) and LR = L(NR). Then,

∀q ∈ Q, P∼`

LR
(WN

R

q,I ) = WN
R

q,I ⇐⇒ [By A = B ⇔ AR = BR]

∀q ∈ Q,
(
P∼`

LR
(WN

R

q,I )
)R

=
(
WN

R

q,I

)R

⇐⇒ [By u ∼`
L v ⇔ uR ∼r

LR vR]

∀q ∈ Q, P∼r
L

((
WN

R

q,I

)R
)

=
(
WN

R

q,I

)R

⇐⇒ [By
(
WN

R

q,I

)R

= WNI,q]

∀q ∈ Q, P∼r
L

(WNI,q) = WNI,q .

It follows from Theorem 16 that Detr(N ) is minimal. J
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We conclude this section by collecting all the conditions described so far that guarantee
that determinizing an automaton yields the minimal DFA.

I Corollary 22. Let N = (Q,Σ, δ, I, F ) be an NFA with L = L(N ). The following are
equivalent:
(a) Detr(N ) is minimal.
(b) ∼r

N = ∼r
L.

(c) ∀u, v ∈ Σ∗, WNpostNu (I),F = WNpostNv (I),F ⇔ postNu (I) = postNv (I).
(d) ∀q ∈ Q, P∼r

L
(WNI,q) = WNI,q.

(e) NR is atomic.

5.3 Moore’s Algorithm
Given a DFA D, Moore [14] builds the minimal DFA for the language L = L(D) by removing
unreachable states from D and then performing a stepwise refinement of an initial partition
of the set of reachable states of D. Since we are interested in the refinement step, in what
follows we assume that all DFAs have no unreachable states. In this section, we will describe
Moore’s state-partition QD and the right-language-based partition P∼r

L
as greatest fixpoint

computations and show that there exists an isomorphism between the two at each step of
the fixpoint computation. In fact, this isomorphism shows that Moore’s DFA M satisfies
P∼r

L
(WM

I,q) = WM
I,q for every state q. Thus, by Theorem 16, M is isomorphic to Minr(L(D)).

First, we give Moore’s algorithm which computes the state-partition that is later used to
define Moore’s DFA.

Moore’s Algorithm Algorithm for constructing Moore’s partition.

Data: DFA D = 〈Q,Σ, δ, I, F 〉 with L = L(D).
Result: QD ∈ Part(Q).

1 QD := {F, F c}, Q′ := ∅;
2 while QD 6= Q′ do
3 Q′ := QD;
4 forall a ∈ Σ do
5 Qa :=

c
p∈QD{preDa (p), (preDa (p))c};

6 QD := QD f
c

a∈ΣQa;
7 return QD;

I Definition 23 (Moore’s DFA). Let D = (Q,Σ, δ, I, F ) be a DFA, and let QD be the partition
of Q built by using Moore’s algorithm. Moore’s DFA for L(D) is M = (QM ,Σ, δM , IM , FM )
where QM = QD, IM = {QD(q) | q ∈ I}, FM = {QD(q) | q ∈ F} and, for each S, S′ ∈ QM

and a ∈ Σ, we have that δM (S, a) = S′ iff ∃q ∈ S, q′ ∈ S′ with δ(q, a) = q′.

Next, we describe Moore’s state-partition QD and the right-language-based partition
P∼r

L
as greatest fixpoint computations and show that there exists an isomorphism between

the two at each step of the fixpoint computation.

I Definition 24 (Moore’s state-partition). Let D = (Q,Σ, δ, I, F ) be a DFA. Define Moore’s
state-partition w.r.t. D, denoted by QD, as follows.

QD def= gfp(λX.
k

a∈Σ,S∈X

{prea(S), (prea(S))c}f {F, F c}) .

MFCS 2019
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On the other hand, by Theorem 14 (b), each state of the minimal DFA for L corresponds
to an equivalence class of ∼r

L. These equivalence classes can be defined in terms of non-empty
intersections of complemented or uncomplemented right quotients of L.

I Lemma 25. Let L be a regular language. Then, for every u ∈ Σ∗,

P∼r
L

(u) =
⋂

u∈Lw−1

w∈Σ∗

Lw−1 ∩
⋂

u/∈Lw−1

w∈Σ∗

(Lw−1)c .

It follows from Lemma 25 that P∼r
L

=
c

w∈Σ∗{Lw−1, (Lw−1)c}, for every regular language
L . Thus, P∼r

L
can also be obtained as a greatest fixpoint computation as follows.

I Lemma 26. Let L be a regular language. Then

P∼r
L

= gfp(λX.
k

a∈Σ,B∈X

{Ba−1, (Ba−1)c}f {L,Lc}) . (8)

The following result shows that, given a DFA D with L = L(D), there exists a partition
isomorphism between QD and P∼r

L
at each step of the fixpoint computations given in

Definition 24 and Lemma 26 respectively.

I Theorem 27. Let D = (Q,Σ, δ, I, F ) be a DFA with L = L(D) and let ϕ : ℘(Q)→ ℘(Σ∗)
be a function defined by ϕ(S) def= WDI,S. Let QD(n) and P (n)

∼r
L

be the n-th step of the fixpoint
computation of QD (Definition 24) and P∼r

L
(Lemma 26), respectively. Then, ϕ is an

isomorphism between QD(n) and P (n)
∼r

L
for each n ≥ 0.

Proof. In order to show that ϕ is a partition isomorphism, it suffices to prove that ϕ is a
bijective mapping between the partitions. We first show that ϕ(QD(n)) = P

(n)
∼r

L
, for every

n ≥ 0. Thus, the mapping ϕ is surjective. Secondly, we show that ϕ is an injective mapping
from QD(n) to P (n)

∼r
L
. Therefore, we conclude that ϕ is a bijection.

To show that ϕ(QD(n)) = P
(n)
∼r

L
, for each n ≥ 0, we proceed by induction.

Base case: By definition, QD(0) = {F, F c} and P (0)
∼r

L
= {L,Lc}. Since D is deterministic

(and complete), it follows that ϕ(F ) = WDI,F = L and ϕ(F c) = WDI,F c = Lc.
Inductive step: Before proceeding with the inductive step, we show that the following
equations hold for each a, b ∈ Σ and S, Si, Sj ∈ QD(n) with n ≥ 0:

ϕ(prea(S)c) = ((WDI,S)a−1)c (9)
ϕ(prea(Si) ∩ preb(Sj)) = (WDI,Si

)a−1 ∩ (WDI,Sj
)b−1 . (10)

For each S ∈ QD(n) and a ∈ Σ we have that:

ϕ(prea(S)c) = [By definition of ϕ]
WDI,prea(S)c = [I = {q0} and def. of WDI,prea(S)c ]

{w ∈ Σ∗ | ∃q ∈ prea(S)c, q = δ̂(q0, w)} = [D is deterministic and complete]

{w ∈ Σ∗ | ∃q ∈ prea(S), q = δ̂(q0, w)}c = [By definition of prea(S)]

{w ∈ Σ∗ | ∃q ∈ S, q = δ̂(q0, wa)}c = [By definition of (WDI,S)a−1]
((WDI,S)a−1)c .
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Therefore Equation (9) holds at each step of the fixpoint computation. Consider now
Equation (10). Let Si, Sj ∈ QD(n). Then,

ϕ(prea(Si) ∩ preb(Sj)) = [By Def. ϕ]
WDI,(prea(Si)∩preb(Sj)) = [I = {q0} and def. WI,S ]

{w ∈ Σ∗ | ∃q ∈ prea(Si) ∩ preb(Sj), q = δ̂(q0, w)} = [By Def. of ∩]

{w ∈ Σ∗ | ∃q ∈ prea(Si), q ∈ preb(Sj), q = δ̂(q0, w)} = [D is deterministic]
WDI,prea(Si) ∩W

D
I,preb(Sj) = [By Def. of (WDI,S)a−1]

(WDI,Si
)a−1 ∩ (WI,Sj

)b−1 .

Therefore Equation (10) holds at each step of the fixpoint computation.
Let us assume that ϕ

(
QD(n)) = P

(n)
∼r

L
for every n ≤ k with k > 0. Then,

ϕ
(
QD(k+1)) = [By Def. 24 with X = QD(k)]

ϕ
( k

a∈Σ,S∈X

{prea(S),prea(S)c}f {F, F c}
)

= [By Eqs. (9), (10) and def. of
k

]

k

a∈Σ
ϕ(S)∈ϕ(X)

{(WDI,S)a−1, ((WDI,S)a−1)c}f {L,Lc} = [By induction hypothesis, ϕ(X) = P
(k)
∼r

L
]

k

a∈Σ,B∈X′

{Ba−1, (Ba−1)c}f {L,Lc} = [By Lemma 26 with X ′ = P
(k)
∼r

L
]

P
(k+1)
∼r

L
.

Finally, since D is a DFA then, for each Si, Sj ∈ QD(n)(n ≥ 0) with Si 6= Sj we have that
WDI,Si

6= WDI,Sj
, i.e., ϕ(Si) 6= ϕ(Sj). Therefore, ϕ is an injective mapping. J

I Corollary 28. Let D be a DFA with L = L(D). Let QD(n) and P (n)
∼r

L
be the n-th step of

the fixpoint computation of QD and P∼r
L
respectively. Then, for each n ≥ 0,

P
(n)
∼r

L
(WDI,S) = WDI,S , for each S ∈ QD(n) .

It follows that Moore’s DFA M , whose set of states corresponds to the state-partition at the
end of the execution of Moore’s algorithm, satisfies that ∀q ∈ QM , P∼r

L
(WM

I,q) = WM
I,q with

L = L(M). By Theorem 16, we have that Detr(M)(= M , since M is a DFA) is minimal.

I Theorem 29. Let D be a DFA and M be Moore’s DFA for L(D) as in Definition 23.
Then, M is isomorphic to Minr(L(D)).

Finally, recall that Hopcroft [10] defined a DFA minimization algorithm which offers better
performance than Moore’s. The ideas used by Hopcroft can be adapted to our framework to
devise a new algorithm for computing P∼r

L
. However, by doing so, we could not derive a

better explanation than the one provided by Berstel et al. [2].

MFCS 2019
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6 Related Work and Conclusions

Brzozowski and Tamm [5] showed that every regular language defines a unique NFA, which
they call átomaton. The átomaton is built upon the minimal DFA NDM for the language,
defining its states as non-empty intersections of complemented or uncomplemented right
languages of NDM , i.e., the atoms of the language. They also observed that the atoms
correspond to intersections of complemented or uncomplemented left quotients of the language.
Then they proved that the átomaton is isomorphic to the reverse automaton of the minimal
deterministic DFA for the reverse language.

Intuitively, the construction of the átomaton based on the right languages of the minimal
DFA corresponds to Det`(NDM ), while its construction based on left quotients of the language
corresponds to Min`(L(N )).

I Corollary 30. Let NDM be the minimal DFA for a regular language L. Then,
(a) Det`(NDM ) is isomorphic to the átomaton of L.
(b) Min`(L) is isomorphic to the átomaton of L.

In the same paper, they also defined the notion of partial átomaton which is built upon
an NFA N . Each state of the partial atomaton is a non-empty intersection of complemented
or uncomplemented right languages of N , i.e., union of atoms of the language. Intuitively,
the construction of the partial átomaton corresponds to Det`(N ).

I Corollary 31. Let N be an NFA. Then, Det`(N ) is isomorphic to the partial átomaton
of N .

Finally, they also presented a number of results [5, Theorem 3] related to the átomaton
A of a minimal DFA D with L = L(D):
1. A is isomorphic to DRDR.
2. AR is the minimal DFA for LR

3. AD is the minimal DFA for L.
4. A is isomorphic to NRDMR for every NFA N accepting L.

All these relations can be inferred from Figure 2 which connects all the automata con-
structions described in this paper together with the constructions introduced by Brzozowski
and Tamm. For instance, property 1 corresponds to the path starting at NDM (the minimal
DFA for L(N )), labeled with R− Detr −R, and ending in the átomaton of L(N ). On the
other hand, property 4 corresponds to the path starting at N , labeled with R−Minr−R and
ending in the átomaton of L(N ). Finally, the path starting at N , labeled with R−Detr −R
and ending in the partial átomaton of N shows that the later is isomorphic to NRDR.

In conclusion, we establish a connection between well-known independent minimization
methods through Theorem 16. Given a DFA, the left languages of its states form a partition
on words, P , and thus, each left language is identified by a state. Intuitively, Moore’s
algorithm merges states to enforce the condition of Theorem 16, which results in merging
blocks of P that belong to the same Nerode’s equivalence class. Note that Hopcroft’s partition
refinement method [10] achieves the same goal at the end of its execution though, stepwise,
the partition computed may differ from Moore’s. On the other hand, any co-deterministic
NFA satisfies the right-hand side of Equation (6) hence, by Lemma 15, satisfies the condition
of Theorem 16. Therefore, the double-reversal method, which essentially determinizes a
co-determinized NFA, yields the minimal DFA. Finally, the left-right duality (Lemma 8) of
the language-based equivalences shows that the condition of Theorem 16 is equivalent to
that of Brzozowski and Tamm [5].
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N Partial átomaton
of N

NDM Átomaton
of L(N )

NR NRD Átomaton
of L(N R)

NRDM

Det`; C.31

R

Minr; T.14(b)

Min`; T.14(d)

Detr; T.14(c)

R

R

Det`; C.30(a)

R

Detr; T.14(f)

Detr; T.14(c)

Minr; T.14(b)

Min`; C.30(b)

Det`; T.14(e) Detr; T.14(c)

Det`; C.30(a)

Figure 2 Extension of the diagram of Figure 1 including the átomaton and the partial átomaton.
Recall that N DM is the minimal DFA for L(N ). The results referenced in the labels are those
justifying the output of the operation.

Some of these connections have already been studied in order to offer a better under-
standing of Brzozowski’s double-reversal method [1, 3, 7, 16]. In particular, Adámek et al. [1]
and Bonchi et al. [3] offer an alternative view of minimization and determinization methods
in a uniform way from a category-theoretical perspective. In contrast, our work revisits these
well-known minimization techniques relying on simple language-theoretical notions.
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