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Abstract
Recently, M. Kompatscher proved that for each finite supernilpotent algebra A in a congruence
modular variety, there is a polynomial time algorithm to solve polynomial equations over this algebra.
Let µ be the maximal arity of the fundamental operations of A, and let

d := |A|log2 µ+log2 |A|+1.

Applying a method that G. Károlyi and C. Szabó had used to solve equations over finite nilpotent
rings, we show that for A, there is c ∈ N such that a solution of every system of s equations in
n variables can be found by testing at most cnsd (instead of all |A|n possible) assignments to the
variables. This also yields new information on some circuit satisfiability problems.
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1 Introduction

We study systems of polynomial equations over a finite algebraic structure A. Such a system
is given by equations of the form p(x1, . . . , xn) ≈ q(x1, . . . , xn), where p, q are polynomial
terms of A; a polynomial term of A is a term of the algebra A∗ which is obtained by
expanding A with one nullary function symbol for each a ∈ A. A solution to a system
pi(x1, . . . , xn) ≈ qi(x1, . . . , xn) (i = 1, . . . , s) is an element a = (a1, . . . , an) ∈ An such
that pA

i (a) = qA
i (a) for all i ∈ {1, . . . , s}. The problem to decide whether such a solution

exists has been called PolSysSat(A), and PolSat(A) if the system consists of one single
equation, and the terms of the input are encoded as strings over {x1, . . . , xn} ∪A∪F , where
F is the set of function symbols of A. A survey of results on the computational complexity of
this problem is given, e.g., in [13, 17]. In algebras such as groups, rings or Boolean algebras,
one can reduce an equation p(x ) ≈ q(x ) to an equation of the form f(x ) ≈ y, where y ∈ A.
A system of equations of this form then has the form fi(x ) ≈ yi (i = 1, . . . , s). For n ∈ N,
let Poln(A) denote the n-ary polynomial functions on A [19, Definition 4.4]. For a finite

© Erhard Aichinger;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 72; pp. 72:1–72:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8998-4138
https://www.jku.at/institut-fuer-algebra/
mailto:erhard@algebra.uni-linz.ac.at
https://doi.org/10.4230/LIPIcs.MFCS.2019.72
https://arxiv.org/abs/1901.07862
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


72:2 Solving Systems of Equations in Supernilpotent Algebras

nilpotent ring or group A, [10, 12] establish the existence of a natural number dA such that
for every f ∈ Poln(A) and for every a ∈ An, there exists b such that fA(a) = fA(b) and b

has at most dA components that are different from 0. Hence the equation f(x ) ≈ y has a
solution if and only if it has a solution with at most dA nonzero entries. Thus for the algebra
A, testing only vectors with at most dA nonzero entries is an algorithm, which, given an
equation f(x ) ≈ y of length n, takes at most c(A) · ndA+1 many steps to find whether this
equation is solvable: there are at most

∑dA
i=0
(
n
i

)
(|A| − 1)i ≤ c1(A) · ndA many evaluations

to be done, each of them taking at most c2(A) · n many steps. The number dA in [12] is
obtained from Ramsey’s Theorem and therefore rather large. In [17], it is proved that for
every finite supernilpotent algebra in a congruence modular variety, such a number dA exists,
again using Ramsey’s Theorem. For rings, lower values of dA have been obtained in [15] (cf.
[14]). In [7, 8], A. Földvári provides polynomial time algorithms for solving equations over
finite nilpotent groups and rings relying on the structure theory of these algebras. In this
paper, we extend the method developed in [15] from finite nilpotent rings to arbitrary finite
supernilpotent algebras in congruence modular varieties. For such algebras, we compute
dA as |A|log2 µ+log2 |A|+1, where µ is the maximal arity of the fundamental operations of A
(Theorem 10). The technique that allows to generalize Károlyi’s and Szabó’s method is the
coordinatization of nilpotent algebras of prime power order by elementary abelian groups
from [1, Theorem 4.2]. The method can be generalized to systems of equations: we show for
a given finite supernilpotent algebra A in a congruence modular variety, and a given s ∈ N0,
there is a polynomial time algorithm to test whether a system of at most s polynomial
equations over A has a solution. If s is not fixed in advance, then [18, Corollary 3.13] implies
that if A is not abelian, PolSysSat(A) is NP-complete.

Let us finally explain to which class of algebras our results applies: A finite algebra A from
a congruence modular variety with finitely many fundamental operations is supernilpotent
if and only if it is a direct product of nilpotent algebras of prime power order; modulo
notational differences explained, e.g., in [1, Lemma 2.4], this result has been proved in [16,
Theorem 3.14]. Such an algebra is therefore always nilpotent, has a Mal’cev term (cf. [9,
Theorem 6.2], [16, Theorem 2.7]), and hence generates a congruence permutable variety. For
a more detailed introduction to supernilpotency and, for k ∈ N, to k-supernilpotency, we
refer to [2, 3, 1].

2 A theorem of Károlyi and Szabó

In this section, we state a special case of [15, Theorem 3.1]. Since their result is much
more general than needed for our purpose, we also include a self-contained proof, which is a
reduction Károlyi’s and Szabó’s proof to the case of elementary abelian groups.

For n ∈ N = {1, 2, 3, . . .}, we denote the set {1, 2, . . . , n} by n. Let A be a set with an
element 0 ∈ A, and let J ⊆ n. For a ∈ An, a (J) is defined by a (J) ∈ An, a (J)(j) = a(j)
for j ∈ J and a (J)(j) = 0 for j ∈ n \ J . Suppose that 1 is an element of A. Then by 1 ,
we denote the vector (1, 1, . . . , 1) in An, and for J ⊆ n, 1 (J) is the vector (v1, . . . , vn) with
vj = 1 if j ∈ J and vj = 0 if j 6∈ J . For any sets C,D, we write C ⊂ D for (C ⊆ D and
C 6= D).

We first need the following variation of [5, Theorem 1] and [15, Theorem 3.2], which is
proved using several arguments from the proof of [4, Theorem 3.1] and from [5].

I Lemma 1. Let F be a finite field, let k,m, n ∈ N, let q := |F |, let p1, . . . , pm ∈ F [x1, . . . , xn]
be polynomials such that for each i ∈ m, each monomial of pi contains at most k variables.
Then there exists J ⊆ n such that |J | ≤ km(q − 1) and pi(1 (J)) = pi(1 ) for all i ∈ m.
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Proof. We proceed by induction on n. If n ≤ km(q − 1), then we take J := n. For the
induction step, we assume that n > km(q − 1).

We first produce a set J1 ⊂ n such that pi(1 (J1)) = pi(1 ) for all i ∈ m. Seeking a
contradiction, we suppose that no such J1 exists. Following an idea from the proof of [4,
Theorem 3.1], we consider the polynomials

q1(x1, . . . , xn) :=
∏m
i=1(1− (pi(x )− pi(1 ))q−1),

q2(x1, . . . , xn) := x1x2 · · ·xn − q1(x1, . . . , xn).

We first show that for all a ∈ {0, 1}n, q2(a) = 0. To this end, we first consider the case
a = 1 . Then q2(a) = 1−

∏m
i=1 1 = 0. If a ∈ {0, 1}n \ {1}, then by the assumptions, there

is i ∈ m such that pi(a) 6= pi(1 ). Then 1 − (pi(a) − pi(1 ))q−1 = 0. Therefore q2(a) = 0.
Hence the polynomial q2 vanishes at {0, 1}n. By the Combinatorial Nullstellensatz [4,
Theorem 1.1] applied to gj(xj) := x2

j − xj , q2 then lies in the ideal V of F [x1, . . . , xn]
generated by G = {x2

j − xj | j ∈ n}. Hence x1x2 · · ·xn − q1(x1, . . . , xn) ∈ V . Since the
leading monomials of the polynomials in G are coprime, G is a Gröbner basis of V (with
respect to x1 > x2 > · · · > xn, lexicographic order, cf. [6, p.337]). Therefore, reducing
q1(x1, . . . , xn) modulo G, we must obtain x1x2 · · ·xn as the remainder (as defined, e.g., in
[6, p.334]). Because of the form of all polynomials in G (all variables of gj occur in the
leading term of gj), none of the reduction steps increases the number of variables in any
monomial. Therefore, q1(x1, . . . , xn) must contain a monomial that contains all n variables.
Computing the expansion of q1 by multiplying out all products from its definition, we see
that each monomial in q1 contains at most km(q− 1) variables. Hence n ≤ km(q− 1), which
contradicts the assumption n > km(q − 1). This contradiction shows that there is a set
J1 ⊂ n such that pi(1 (J1)) = pi(1 ) for all i ∈ m. Now we let n′ := |J1|, and we assume that
J1 = {j1, . . . , jn′} with j1 < · · · < jn′ . For i ∈ m, we define p′i ∈ F [y1, . . . , yn′ ] by

p′i(xj1 , . . . , xjn′ ) = pi(x (J1)).

By the induction hypothesis, there exists J2 ⊆ n′ with |J2| ≤ km(q−1) such that p′i(1 (J2)) =
p′i(1 ) for all i ∈ m. Now we define J := {jt | t ∈ J2}. We have J ⊆ J1, and therefore
1 (J) = (1 (J))(J1). Then pi(1 (J)) = pi((1 (J))(J1)) = p′i(1 (J)(j1), . . . ,1 (J)(jn′)) = p′i(1 (J2)) =
p′i(1 ) = pi(1 (J1)) = pi(1 ), which completes the induction step. J

We will need the following special case of [15, Theorem 3.1]. For a set U , let P≤k(U)
denote the set {I ⊆ U : |I| ≤ k} of subsets of U with at most k elements.

I Theorem 2 (cf. [15, Theorem 3.1]). Let n ∈ N, let k ∈ N0, let p be a prime, and let m ∈ N.
Let ϕ : P≤k(n)→ Zmp . Then there is U ⊆ n with |U | ≤ km(p− 1) such that∑

J∈P≤k(n)

ϕ(J) =
∑

J∈P≤k(U)

ϕ(J).

Proof. We denote the vector ϕ(J) by ((ϕ(J))1, . . . , (ϕ(J))m), and we define m polynomial
functions f1, . . . , fm ∈ Zp[x1, . . . , xn] by

fi(x1, . . . xn) :=
∑

J∈P≤k(n)

(
(ϕ(J))i ·

∏
j∈J

xj
)
.

for i ∈ m. By Lemma 1, there is a subset U of n with |U | ≤ km(p − 1) such that for
all i ∈ m, we have fi(1 ) = fi(1 (U)). Hence

∑
J∈P≤k(n)(ϕ(J))i = fi(1 ) = fi(1 (U)) =∑

J∈P≤k(n),J⊆U (ϕ(J))i =
∑
J∈P≤k(U)(ϕ(J))i. J
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3 Absorbing components

Let A be a set, let 0A be an element of A, let B = (B,+,−, 0) be an abelian group,
let n ∈ N, let f : An → B, and let I ⊆ n. By Dep(f) we denote the set {i ∈ n |
f depends on its i th argument}. We say that f is absorbing in its j th argument if for all
a = (a(1), . . . ,a(n)) ∈ An with a(j) = 0A we have f(a) = 0. In the sequel, we will denote
0A simply by 0. We say that f is absorbing in I if Dep(f) ⊆ I and for every i ∈ I, f is
absorbing in its i th argument.

I Lemma 3. Let A be a set, let 0 be an element of A, let B = (B,+,−, 0) be an abelian
group, let n ∈ N, and let f : An → B. Then there is exactly one sequence (fI)I⊆n of functions
from An to B such that for each I ⊆ n, fI is absorbing in I and f =

∑
I⊆n fI . Furthermore,

each function fI lies in the subgroup F of BAn that is generated by the functions x 7→ f(x (I)),
where I ⊆ n.

Proof. We first prove the existence of such a sequence. To this end, we define fI by recursion
on |I|. We define f∅(a) := f(0, . . . , 0) and for I 6= ∅, we let

fI(a) := f(a (I))−
∑
J⊂I

fJ(a).

By induction on |I|, we see that Dep(fI) ⊆ I and that fI lies in the subgroup F. We will
now show that each fI is absorbing in I, and we again proceed by induction on |I|. Let i ∈ I,
and let a ∈ An be such that a(i) = 0. We have to show fI(a) = 0. We compute fI(a) =
f(a (I))−

∑
J⊂I fJ (a). By the induction hypothesis, we have fJ (a) = 0 for those J with i ∈ J .

Hence f(a (I))−
∑
J⊂I fJ (a) = f(a (I))−

∑
J⊆I\{i} fJ (a), and because of a (I) = a (I\{i}), this

is equal to f(a (I\{i}))−
∑
J⊆I\{i} fJ (a) = f(a (I\{i}))−

∑
J⊂I\{i} fJ (a)− fI\{i}(a). By the

definition of fI\{i}, the last expression is equal to fI\{i}(a)− fI\{i}(a) = 0. This completes
the induction proof; hence each fI is absorbing in I. In order to show f =

∑
I⊆n fI , we

choose a ∈ An and compute
∑
I⊆n fI(a) = fn(a) +

∑
I⊂n fI(a) = f(a (n))−

∑
J⊂n fJ (a) +∑

I⊂n fI(a) = f(a). This completes the proof of the existence of such a sequence.
For the uniqueness, assume that f =

∑
I⊆n fI =

∑
I⊆n gI and that for all I, fI and

gI are absorbing in I. We show by induction on |I| that fI = gI . Let I := ∅. First
we notice that f(0, . . . , 0) =

∑
J⊆n fJ(0, . . . , 0) =

∑
J⊆n gJ(0, . . . , 0). Since fJ and gJ are

absorbing, the summands with J 6= ∅ are 0, and thus f∅(0, . . . , 0) =
∑
J⊆n fJ(0, . . . , 0) =

f(0, . . . , 0) =
∑
J⊆n gJ(0, . . . , 0) = g∅(0, . . . , 0). Since both f∅ and g∅ are constant func-

tions, they are equal. For the induction step, we assume |I| ≥ 1. Let a ∈ An. Then∑
J⊆n fJ(a (I)) =

∑
J⊆n gJ(a (I)). Only the summands with J ⊆ I can be nonzero, and

therefore
∑
J⊆I fJ(a (I)) =

∑
J⊆I gJ(a (I)). By the induction hypothesis, fJ = gJ for J ⊂ I.

Therefore, fI(a (I)) = gI(a (I)). Since fI and gI depend only on the arguments at positions
in I, we obtain fI(a) = fI(a (I)) = gI(a (I)) = gI(a). Thus fI = gI . J

Actually, the component fI can be computed by fI(a) =
∑
J⊆I(−1)|I|+|J|f(a (J)).

I Definition 4. Let A be a set, let 0 be an element of A, let B = (B,+,−, 0) be an abelian
group, let n ∈ N, let f : An → B, and let J ⊆ n. Then we call the sequence (fI)I⊆n such
that for each I ⊆ n, fI is absorbing in I, and f =

∑
I⊆n fI the absorbing decomposition

of f , and fJ the J-absorbing component of f . We define the absorbing degree of f by
adeg(f) := max ({−1} ∪ {|J | : J ⊆ n and fJ 6= 0}).
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I Theorem 5. Let A be a set, let 0 be an element of A, let p be a prime, let k ∈ N0, let
n ∈ N, and let f1, . . . , fm : An → Zp. We assume that each fi is of absorbing degree at most
k. Let a ∈ An. Then there is U with |U | ≤ km(p − 1) such that for all i ∈ m, we have
fi(a) = fi(a (U)).

Proof. We define a function ϕ : P≤k(n)→ Zmp by ϕ(J) := ((f1)J(a), . . . , (fm)J(a)), where
for i ∈ m,

(
(fi)J

)
J⊆n is the absorbing decomposition of fi. Then Theorem 2 yields a subset

U of n with |U | ≤ km(p− 1) such that
∑
J∈P≤k(n) ϕ(J) =

∑
J∈P≤k(U) ϕ(J). Since (fi)J = 0

for all J with |J | > k, we have
∑
J∈P≤k(n) ϕ(J) =

∑
J∈P≤k(n)((f1)J(a), . . . , (fm)J(a))

=
∑
J⊆n((f1)J(a), . . . , (fm)J(a)) = (f1(a), . . . , fm(a)) and

∑
J∈P≤k(U)

ϕ(J) =
∑

J∈P≤k(U)

((f1)J(a), . . . , (fm)J(a))

=
∑
J⊆U

((f1)J(a), . . . , (fm)J(a)) =
∑
J⊆U

((f1)J(a (U)), . . . , (fm)J(a (U)))

=
∑
J⊆n

((f1)J(a (U)), . . . , (fm)J(a (U))) = (f1(a (U)), . . . , fm(a (U))).

J

4 Polynomial mappings

In this section, we develop a property of polynomial mappings of finite supernilpotent algebras
in congruence modular varieties. We call an algebra A = (A,+,−, 0, (fi)i∈S) an expanded
group if its reduct A+ = (A,+,−, 0) is a group, an expanded abelian group if A+ is an abelian
group, and an expanded elementary abelian group if A+ is elementary abelian, meaning that
A+ is abelian and all its nonzero elements have the same prime order.

I Lemma 6. Let k, n ∈ N, let A be a k-supernilpotent expanded abelian group, and let
f ∈ Poln(A). Then f is of absorbing degree at most k.

Proof. Let J ⊆ n with |J | > k, and let fJ be the J-absorbing component of f . Let m := |J |
and let J = {i1, . . . , im}. Using Lemma 3, we obtain that the function g : Am → A defined
by g(ai1 , . . . , aim) := fJ(a) for a ∈ An is an absorbing function in Polm(A). Hence [1,
Lemma 2.3] and the remark immediately preceding that Lemma yield that g is the zero
function. Thus fJ = 0. Hence the absorbing degree of f is at most k. J

We first consider polynomial mappings of supernilpotent expanded elementary abelian
groups of prime power order.

I Theorem 7. Let k, n, s, α ∈ N, let p ∈ P, and let A be a k-supernilpotent expanded
elementary abelian group of order pα. Let F = (f1, . . . , fs) ∈ Poln(A)s, and let a ∈ An.
Then there is U ⊆ n with |U | ≤ ksα(p− 1) such that F (a) = F (a (U)).

Proof. We let π be a group isomorphism from (A,+,−, 0) to Zαp , and for a ∈ A, we denote
π(a) by (π1(a), . . . , πα(a)). For each r ∈ s and each β ∈ α, let fr,β : An → Zp be defined by
fr,β(a) = πβ(fr(a)); hence fr,β(a) is the β th component of fr(a). Since fr ∈ Poln(A) and
A is k-supernilpotent, Lemma 6 implies that each of these fr,β is of absorbing degree at most
k. Setting m := sα, Theorem 5 yields U with |U | ≤ ksα(p−1) such that fr,β(a) = fr,β(a (U))
for all r ∈ s and β ∈ α. Then clearly F (a) = F (a (U)). J

MFCS 2019
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We apply this result to polynomial mappings of direct products of finite supernilpotent
expanded elementary abelian groups. For a vector a ∈ An, we call the number of its nonzero
entries the weight of a; formally, wt(a) := |{j ∈ n : a(j) 6= 0}|.

I Theorem 8. Let n, s, t, k1, . . . , kt ∈ N. For each i ∈ t, let Bi a ki-supernilpotent expanded
elementary abelian group with |Bi| = pαi

i , where pi is a prime and αi ∈ N. Let A :=
∏t
i=1 Bi,

let F ∈ Poln(A)s, and let a ∈ An. Then there is y ∈ An with wt(y) ≤
∑t
i=1 kisαi(pi − 1)

such that F (a) = F (y).

Proof. For i ∈ t, let νi be the i th projection kernel. Applying Theorem 7 to A/νi, which
is isomorphic to Bi, and b := a/νi, we obtain Ui ⊆ n with |Ui| ≤ kisαi(pi − 1) such that
FA/νi(b(Ui)) = FA/νi(b). Lifting b(Ui) to A, we obtain (xi,1, . . . , xi,n) ∈ An such that
(xi,1, . . . , xi,n)/νi = b(Ui) and xi,j = 0 for j ∈ n \ Ui. Now for every j ∈ n, we define yj ∈ A
by the equations

yj ≡νi
xi,j for all i ∈ t.

For each i ∈ t, we have F (y1, . . . , yn)/νi = FA/νi(xi,1/νi, . . . , xi,n/νi) = FA/νi(b(Ui)) =
FA/νi(b) = FA/νi(a/νi) = F (a)/νi. Hence F (y) = F (a). For j ∈ n \ (U1 ∪ · · · ∪ Ut), and
for all i ∈ t, we have xi,j = 0, and therefore yj = 0. Hence the number of nonzero entries in
y is at most

∑t
i=1 |Ui| ≤

∑t
i=1 kisαi(pi − 1). J

Now we consider arbitrary finite supernilpotent algebras in congruence modular varieties.
In these algebras, we can introduce group operations preserving nilpotency using [1].

I Lemma 9. Let µ ∈ N, let A = (A, (fi)i∈S) be a finite supernilpotent algebra in a congruence
modular variety all of whose fundamental operations have arity at most µ, and let z ∈ A. Let
t ∈ N0, let p1, . . . , pt be different primes, and let α1, . . . , αt ∈ N such that |A| =

∏t
i=1 p

αi
i .

For i ∈ t, let ki := (µ(pαi
i − 1))αi−1. Then there are operations + (binary), − (unary), 0

(nullary) on A such that A′ = (A,+,−, 0, (fi)i∈S) is isomorphic to a direct product
∏t
i=1 B′i,

where each B′i is a ki-supernilpotent expanded elementary abelian group, and 0A′ = z.

Proof. Since the result is true for |A| = 1, we henceforth assume |A| ≥ 2. By [16], A is
isomorphic to a direct product

∏t
i=1 Bi of nilpotent algebras of prime power order. We

let (π1(a), . . . , πt(a)) denote the image of a of the underlying isomorphism. As a finite
supernilpotent algebra in a congruence modular variety, A is nilpotent (cf. [1, Lemma 2.4])
and therefore has a Mal’cev term [9, Theorem 6.2]. We use [1, Theorem 4.2] to expand each
Bi with operations +i and −i such that the expansion B′i is a nilpotent expanded elementary
abelian group with zero element πi(z). By [1, Theorem 1.2], B′i is ki-supernilpotent. J

We note that the supernilpotency degree of A′ may be strictly larger than the supernil-
potency degree of A.

Combining these results, we obtain the following result on polynomial mappings on
arbitrary finite supernilpotent algebras in congruence modular varieties.

I Theorem 10. Let µ ∈ N, let A be a finite supernilpotent algebra in a congruence mod-
ular variety all of whose fundamental operations have arity at most µ. Let p1, . . . , pt be
distinct primes, and let α1, . . . , αt ∈ N such that |A| =

∏t
i=1 p

αi
i . Let F ∈ Poln(A)s be a

polynomial map from An to As, and let z ∈ A. Then for every a ∈ An there is y ∈ An
such that F (y) = F (a) and |{j ∈ n : y(j) 6= z}| ≤ s

∑t
i=1(µ(pαi

i − 1))αi−1αi(pi − 1) ≤
sµ−1|A|log2 µ+log2 |A| log2 |A| ≤ s|A|log2 µ+log2 |A|+1.
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Proof. Let A′ =
∏t
i=1 B′i with |B′i| = pαi

i be the expansion of A produced by Lemma 9.
Clearly, F is a also a polynomial map of A′. Let ki = (µ(pαi

i − 1))αi−1. Then Theorem 8
yields y ∈ An such that |{j ∈ n : y(j) 6= z}| ≤

∑t
i=1 kisαi(pi − 1). Using the obvious

estimate αi ≤ log2 |A|, we obtain

t∑
i=1

kisαi(pi − 1) = s

t∑
i=1

(µ(pαi
i − 1))αi−1 log2 |A|(pi − 1)

≤ s log2 |A|
t∑
i=1

µαi−1(pαi
i )αi−1pαi

i ≤ s log2 |A|
t∑
i=1

µlog2 |A|−1(pαi
i )αi

≤ sµlog2 |A|−1 log2 |A|
t∑
i=1

(pαi
i )log2 |A| ≤ sµlog2 |A|−1 log2 |A|(

t∑
i=1

pαi
i )log2 |A|

≤ sµlog2 |A|−1 log2 |A|(
t∏
i=1

pαi
i )log2 |A| ≤ sµlog2 |A|−1 log2 |A| |A|log2 |A|

= sµ−1|A|log2 µ+log2 |A| log2 |A| ≤ s|A|log2 µ+log2 |A|+1.

J

5 Systems of equations

We will now explain how these results give a polynomial time algorithm for solving systems
of a fixed number of equations over the finite supernilpotent algebra A. The size m of a
system of polynomial equations is measured as the length of the polynomial terms used to
represent the system. For measuring the “running time” of our algorithm, we count the
number of A-operations: each such A-operation, may, for example, be done by looking up
one value in the operation tables defining A.

I Theorem 11. Let A be a finite supernilpotent algebra in a congruence modular variety
all of whose fundamental operations are of arity at most µ, and let s ∈ N. We consider the
following algorithmic problem s-PolSysSat(A):

Given: 2s polynomial terms f1, g1, . . . , fs, gs over A.
Asked: Does the system f1 ≈ g1, . . . , fs ≈ gs have a solution in A?

Let m be the length of the input of this system, and let

e := s|A|log2 µ+log2 |A|+1 + 1.

Then we can decide s-PolSysSat(A) using at most O(me−1) evaluations of all terms
occuring in the system. Therefore, we have an algorithm that determines whether a system
of s polynomial equations over A has a solution using O(me) many A-operations.

Proof. Let n be the number of different variables that occur in the given system. We may
assume that these variables are x1, . . . , xn, and that our system is

∧s
i=1 fi(x1, . . . , xn) ≈

gi(x1, . . . , xn). We choose an element z ∈ A, and we will show: if this system has a solution
in An, then it has a solution in

C := {y ∈ An : |{j ∈ n : y(j) 6= z}| ≤ e− 1}.

For proving this claim, we first observe that A is a finite nilpotent algebra in a congruence
modular variety, and it therefore has a Mal’cev term d. We consider the polynomial map
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H = (h1, . . . , hs), where hi(x ) := d(fi(x ), gi(x ), z) for i ∈ s and x ∈ An. Since a is a
solution of the system, H(a) = (z, z, . . . , z). By Theorem 10, there is y ∈ C such that
H(y) = H(a). Then for every i ∈ s, we have d(fi(y), gi(y), z) = z. By [9, Corollary 7.4],
the function x 7→ d(x, gi(y), z) is injective. Since d(fi(y), gi(y), z) = z = d(gi(y), gi(y), z),
this injectivity implies that fi(y) = gi(y). Hence y is a solution that lies in C.

The algorithm for solving the system now simply evaluates the system at all places in C;
if a solution is found, the answer is “yes”. If we find no solution inside C , we answer “no”,
and by the argument above, we know that in this case, the system has no solution inside An

at all.
We now estimate the complexity of this procedure: There is a c ∈ N such that for all

n ∈ N, |C| ≤ cne−1, hence we have to do O(ne−1) evaluations of all the terms fi, gi in the
system. Such an evaluation can be done using at most O(m) many A-operations. Since
the length of the input m is at least the number of variables n occuring in it, this solves
s-PolSysSat(A) using at most O(me) many A-operations. J

We remark that the exponent e involves neither the nilpotency nor the supernilpotency
degree of the algebra A; this is a result of the fact that Theorem 1.2 from [1] bounds the
supernilpotency degree of A in terms of only µ, |A|, and the height of the congruence lattice
of A, which is bounded from above by log2 |A|. In the same vein, we can now also bound
the exponent in the complexity bound for the identity checking or polynomial equivalence
problem for supernilpotent algebras (cf. [2, Theorem 2.2]). For every algebra A satisfying
the assumptions of Theorem 11, there is c ∈ N such that for any two n-ary polynomial
terms s(x1, . . . , xn) and t(x1, . . . , xn), we can check whether A |= s ≈ t using at most cnd
evaluations of both s and t, where d := (µ(|A| − 1))log2 |A|−1 comes from Corollary 1.3 of [1].

6 Circuit satisfiability

With every finite algebra A, [13] associates a number of computational problems that involve
circuits whose gates are taken from the fundamental operations of A. One of these problems
is SCsat(A). It takes as an input 2s circuits f1, g1, . . . , fs, gs over A with n input variables,
and asks whether there is an a ∈ An such that the evaluations at a satisfy fi(a) = gi(a) for
all i ∈ s. For finite algebras of finite type (i.e., with finitely many fundamental operations)
in congruence modular varieties, [18, Corollary 3.13] implies that SCsat(A) is in P when A
is abelian, and NP-complete otherwise. However, if we restrict the number s of circuits, we
obtain a different problem, which we call s-SCsat(A) in the sequel. Obviously, 1-SCsat(A)
is the circuit satisfiability problem called Csat(A) in [13]. The method used to prove
Theorem 11 immediately yields:

I Theorem 12. Let A be a finite supernilpotent algebra of finite type in a congruence modular
variety, and let s ∈ N. Then s-SCsat(A) is in P.

Hence a supernilpotent, but not abelian algebra A has s-SCsat(A) in P, whereas SCsat is
NP-complete. In the converse direction, Theorem 9.1 from [13] has the following corollary.

I Corollary 13. Let A be a finite algebra of finite type from a congruence modular variety.
If A has no homomorphic image A′ such that 2-SCsat(A′) is NP-complete, then A is
nilpotent.

Proof. Suppose that A has a homomorphic image A′ for which Csat(A′) is NP-complete.
Then also 2-SCsat(A′) is NP-complete because an algorithm solving 2-SCsat can be used
to solve an instance (∃a)(f(a) = g(a)) of Csat(A′) by solving 2-SCsat on the input
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(∃a)(f(a) = g(a) & f(a) = g(a)). Thus the assumptions imply that for no homomorphic
image A′ of A, the problem Csat(A′) is NP-complete. Now by [13, Theorem 9.1], A is
isomorphic to N × D, where N is nilpotent and D is a subdirect product of 2-element
algebras each of which is polynomially equivalent to a two element lattice. If |D| > 1, then
there is a homomorphic image A2 of A such that A2 is polynomially equivalent to a two
element lattice. By [11], 2-SCsat(A2) is NP-complete, contradicting the assumptions. Hence
|D| = 1, and therefore A is nilpotent. J
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