
Computational Complexity of Synchronization
under Regular Constraints
Henning Fernau
Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier, Germany
fernau@uni-trier.de

Vladimir V. Gusev
Leverhulme Research Centre for Functional Materials Design, University of Liverpool, UK
https://www.liverpool.ac.uk/chemistry/staff/vladimir-gusev/
vladimir.gusev@liverpool.ac.uk

Stefan Hoffmann
Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier, Germany
hoffmanns@uni-trier.de

Markus Holzer
Institut für Informatik, Universität Gießen, Germany
holzer@informatik.uni-giessen.de

Mikhail V. Volkov
Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
http://csseminar.imkn.urfu.ru/volkov/
m.v.volkov@urfu.ru

Petra Wolf
Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier, Germany
wolfp@uni-trier.de

Abstract
Many variations of synchronization of finite automata have been studied in the previous decades.
Here, we suggest studying the question if synchronizing words exist that belong to some fixed
constraint language, given by some partial finite automaton called constraint automaton. We show
that this synchronization problem becomes PSPACE-complete even for some constraint automata with
two states and a ternary alphabet. In addition, we characterize constraint automata with arbitrarily
many states for which the constrained synchronization problem is polynomial-time solvable. We
classify the complexity of the constrained synchronization problem for constraint automata with two
states and two or three letters completely and lift those results to larger classes of finite automata.
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1 Introduction

Synchronization is an important concept for many applied areas: parallel and distributed
programming, system and protocol testing, information coding, robotics, etc. At least some
aspects of synchronization are captured by the notion of a synchronizing automaton; for
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63:2 Computational Complexity of Synchronization under Regular Constraints

instance, synchronizing automata adequately model situations in which one has to direct a
certain system to a particular state without a priori knowledge of its current state. We only
refer to some survey papers [24, 28], as well as to Chapter 13 in [17], that also report on
some of these applications. An automaton is called synchronizing if there exists a word that
brings it to a known state independently of the starting state. This concept is quite natural
and has been investigated intensively in the last six decades. It is related to the arguably
most famous open combinatorial question in automata theory, formulated by Černý in [8].
The Černý conjecture states that every n-state synchronizing automaton can be synchronized
by a word of length smaller or equal (n− 1)2. Although this bound was proven for several
classes of finite-state automata, the general case is still widely open. The currently best
upper bound on this length is cubic, and only very little progress has been made, basically
improving on the multiplicative constant factor in front of the cubic term, see [25, 27].

Due to the importance of this notion of synchronizing words, quite a large number of
generalizations and modifications have been considered in the literature. We only mention
four of these in the following. Instead of synchronizing the whole set of states, one could
be interested in synchronizing only a subset of states. This and related questions were
first considered by Rystsov in [23]. Instead of considering deterministic finite automata
(DFAs), one could alternatively study the notion of synchronizability for nondeterministic
finite automata [12, 21]. The notion of synchronizability naturally transfers to partially
defined transition functions where a synchronizing automata avoiding undefined transitions
is called carefully synchronizing, see [9, 20, 21]. To capture more adaptive variants of
synchronizing words, synchronizing strategies have been introduced in [19]. Recall that the
question of synchronizability (without length bounds) is solvable in polynomial time for
complete DFAs [28]. However, in all of the mentioned generalizations, this synchronizability
question becomes even PSPACE-complete. This general tendency can also be observed in
the generalization that we introduce in this paper, which we call regular constraints. These
constraints are defined by some (fixed) finite automaton describing a regular language R, and
the question is, given some DFA A, if A has some synchronizing word from R. This notion
explicitly appeared in [13] as an auxiliary tool: it was shown that the synchronization problem
of every automaton A = (Σ, Q, δ) whose letters σ have ranks at most r, i.e., |δ(Q, σ)| ≤ r, is
equivalent to the synchronization of an r-state automaton A′ under some regular constraints.

The main research question that we look into is to understand for which regular constraints
the question of synchronizability is solvable in polynomial time (as it is for R = Σ∗), or for
which it is hard. Furthermore, it would be interesting to see complexity classes different from P
and PSPACE to show up (depending on R). In our paper, we give a complete description of
the complexity status for constraints that can be described by partial 2-state deterministic
automata on alphabets with at most three letters. In this case, indeed, we only observe P and
PSPACE situations. However, we also find 3-state automata (on binary input alphabets) that
exhibit an NP-complete synchronization problem when considered as constraints. We describe
several ways how to generalize our results to larger constraint automata. Moreover, we
identify several classes of constraint automata that imply feasible synchronization problems.
We motivate our study of synchronization under regular constraints by the following example.

A motivating result. In the theory of synchronizing automata, one normally allows the
directing instruction to be an arbitrary word over the input language of the corresponding
automaton. In reality, however, available commands might be subject to certain restrictions;
for instance, it is quite natural to assume that a directing instruction should always start
and end with a specific command that first switches the automaton to a “directive” mode
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and then returns the automaton to its usual mode. In its simplest form, the switching
between “normal mode” and “directive” (synchronization) mode can be modeled as ab∗a.
This scenario produces an NP-complete synchronization problem. In order to state our first
result formally, we make use of some (standard) notions defined in Section 2.

I Proposition 1. The following problem is NP-complete: Given a deterministic finite complete
automaton A with L(A) ⊆ {a, b}∗, is there a synchronizing word w ∈ ab∗a for A?

Notice that this contrasts with the complexity of the synchronizability question for
complete DFAs, which can be solved in quadratic time; see, e.g., [24, 28]. Also, it contrasts
the complexity of synchronizability for partial DFAs, which is PSPACE-complete; see [21].

The constraint automaton describing ab∗a has three states. As we will see below, only P-
and PSPACE-results can be observed for two-state constraint automata over binary and
ternary input alphabets. Hence, in a sense, Proposition 1 is a minimal example of a complexity
status inbetween P and PSPACE. A proof sketch of Proposition 1 is given below.

Rystsov [23] considered a problem that he called Global Inclusion Problem for
Non-initial Automata. As we will see below, this problem (together with a variation)
will be the key problem in our reductions. Looking at the proof of [23, Theorem 2.1], we
can observe the following refined result. We consider the next problem that we call PΣ for
brevity. Given a complete DFA A with state set Q and input alphabet Σ, with a ∈ Σ, as
well as a designated state subset S, is there some word w ∈ {a}(Σ \ {a})∗ such that w drives
A into S, irrespectively of where A starts processing w? Trivially, PΣ is in P if |Σ| = 1.

I Theorem 2. PΣ is NP-hard if |Σ| = 2, and PSPACE-hard if |Σ| > 2.

In particular, the case distinction between binary input alphabets and larger input alphabets
(concerning hardness results) comes from the fact that the reduction of Rystsov uses DFA-
Intersection Nonemptiness, the non-emptiness of intersection problem for deterministic
finite automata on the alphabet Σ \ {a}, using Theorem 6.1 in [26] (more details in [11, 18]).
In Rystsov’s reduction, the state set of the automaton A consists of a part Q∩, which just
copies the n automata Ai (over alphabet Σ \ {a}) of a DFA-Intersection Nonemptiness
instance, together with n new states ti ∈ Q→ that move on input a into the initial state si
of Ai. Likewise, from any state qi of Ai, letter a leads to si. All transitions not yet defined
are self-loops. Set S collects all final states of all Ai. Hence, a word w ∈ (Σ\{a})∗ is accepted
by all of the Ai iff aw drives A into S, starting out from any state. The promised proof
sketch follows. Modify A to obtain an automaton A′ such that A′ has a synchronizing word
awa, with w ∈ (Σ\{a})∗ iff aw drives A into S as follows: add a new state s where all letters
loop; for all q ∈ S, replace the a-transitions leading from q into si by a-transitions leading
into s. For more details (membership in NP for Σ = {a, b} is non-trivial), see Theorem 19.

2 Preliminaries and Definitions

Throughout the paper, we consider deterministic finite automata (DFAs). Recall that a
DFA A is a tuple A = (Σ, Q, δ, q0, F ), where the alphabet Σ is a finite set of input symbols, Q
is the finite state set, with start state q0 ∈ Q, and final state set F ⊆ Q. The transition
function δ : Q × Σ → Q extends to words from Σ∗ in the usual way. The function δ

can be further extended to sets of states in the following way. For every set S ⊆ Q with
S 6= ∅ and w ∈ Σ∗, we set δ(S,w) := { δ(q, w) | q ∈ S }. We sometimes refer to the
function δ as a relation and we identify a transition δ(q, σ) = q′ with the tuple (q, σ, q′).
We call A complete if δ is defined for every (q, a) ∈ Q× Σ; if δ is undefined for some (q, a),
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(a) Unary automaton Aσ consisting of 3 sun-structures.

Automata notation (code)
[ 1 2 ‡ - 2 ]

PDFA

1start 2

a

b

b

(b) Automata notation and PDFA using
its standard interpretation.

Figure 1 Illustration of sun-structures and of the notation of PDFAs.

the automaton A is called partial. If |Σ| = 1, we call A a unary automaton. The set
L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F } denotes the language accepted by A. A semi-automaton is
a finite automaton without a specified start state and with no specified set of final states.
Notice that (Σ,

(
Q
≤k
)
, δ) can be viewed as a semi-automaton for each k ≤ |Q|, when

(
Q
≤k
)
is the

set formed by all subsets of Q of cardinality at most k. The properties of being deterministic,
partial, and complete of semi-automata are defined as for DFA. When the context is clear,
we call both deterministic finite automata and semi-automata simply automata. We call a
deterministic complete semi-automaton a DCSA and a partial deterministic finite automaton
a PDFA for short. If we want to add an explicit initial state r and an explicit set of final
states S to a DCSA A or change them in a DFA A, we use the notation Ar,S .

An automaton A is called synchronizing if there exists a word w ∈ Σ∗ with |δ(Q,w)| = 1.
In this case, we call w a synchronizing word for A. For a word w, we call a state in δ(Q,w)
an active state. We call a state q ∈ Q with δ(Q,w) = {q} for some w ∈ Σ∗ a synchronizing
state. A state from which some final state is reachable is called co-accessible. For a set S ⊆ Q,
we say S is reachable from Q or Q is synchronizable to S if there exists a word w ∈ Σ∗ such
that δ(Q,w) = S. An automaton A is called returning, if for every state q ∈ Q, there exists
a word w ∈ Σ∗ such that δ(q, w) = q0, where q0 is the start state of A.

I Fact 1. [28] For any DCSA, we can decide if it is synchronizing in polynomial time
O(|Σ||Q|2). Additionally, if we want to compute a synchronizing word w, then we need
time O(|Q|3 + |Q|2|Σ|)) and the length of w will be O(|Q|3).

The following obvious remark will be used frequently without further mentioning.

I Lemma 3. Let A = (Σ, Q, δ) be a DCSA and w ∈ Σ∗ be a synchronizing word for A. Then
for every u, v ∈ Σ∗, the word uwv is also synchronizing for A.

For an automaton A over the alphabet Σ, we denote with AΣ′ for every Σ′ ⊂ Σ the
restriction of A to the alphabet Σ′. Automaton AΣ′ is obtained from A by deleting all
transitions with labels in Σ \ Σ′. We will identify A{σ} with Aσ for every σ ∈ Σ. For a
complete deterministic automaton Aσ, each connected component of Aσ consists of exactly
one cycle and some tails leading into the cycle (see Figure 1a). A cycle is a sequence of
states q1, q2, . . . , qk, for k ∈ N such that δ(qi, σ) = qi+1 and δ(qk, σ) = q1. In particular, a
cycle may consist of one single state only. The tails are only leading into the cycle since A is
deterministic. We call components of this form sun-structures as illustrated in Figure 1a.

We call two automata A and A′ isomorphic if one automaton can be obtained from
the other one by renaming states and alphabet-symbols. Notice that the number of non-
isomorphic automata can be quite huge even for small number of states and alphabet sizes;
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see [3, 10, 14]. In order to address the presented automata in a compact way, we introduce a
short notation motivated by [1, 2, 22], where we assume some order is given on the alphabet
and on the state set. Each automaton is denoted by a tuple of size |Q| · |Σ| where for each
state the mapping of this state with each alphabet symbol is listed. The states themselves
are separated by ‡-signs. For example, the first entry of the tuple denotes the transition
of the first state under the first symbol (and “-” for an undefined transition), while the
second entry denotes the transition of the first state by the second symbol, and so on. We
will always assume the first state in the ordering of the states to be the start state of the
automaton. See Figure 1b for an example. Final states are not part of this coding.
For a fixed PDFA B = (Σ, P, µ, p0, F ), we define the constrained synchronization problem:

I Definition 4. L(B)-Constr-Sync
Input: DCSA A = (Σ, Q, δ).
Question: Is there a synchronizing word w for A with w ∈ L(B)?

The automaton B will be called the constraint automaton. If an automaton A is a
yes-instance of L(B)-Constr-Sync we call A synchronizing with respect to B. Occasionally,
we do not specify B and rather talk about L-Constr-Sync. We are going to inspect the
complexity of this problem for different (small) constraint automata. We assume the reader
to have some basic knowledge in computational complexity theory and formal language
theory, as contained, e.g., in [15]. For instance, we make use of regular expressions to describe
languages. We also identify singleton sets with its elements. We also make use of complexity
classes like P, NP, or PSPACE. At one point, we also mention the parameterized complexity
class XP. With ≤log

m we denote a logspace many-one reduction. If for two problems L1, L2 it
holds that L1 ≤log

m L2 and L2 ≤log
m L1, then we write L1 ≡log

m L2.
For establishing some of our results, we need the following computational problems taken

from [6], which are PSPACE-complete problems for at least binary alphabets, also see [23, 24].

I Definition 5. Sync-From-Subset
Input: DCSA A = (Σ, Q, δ) and S ⊆ Q.
Question: Is there a word w with |δ(S,w)| = 1?

I Definition 6. Sync-Into-Subset
Input: DCSA A = (Σ, Q, δ) and S ⊆ Q.
Question: Is there a word w with δ(Q,w) ⊆ S?

I Remark 7. The terminology is not homogeneous in the literature. For instance, Sync-
Into-Subset has different names in [6] and in [23].

3 Placing Constrained Problems Within Complexity Classes

In this section we present several criteria for L which lead to the membership of L-Constr-
Sync in different complexity classes, starting by studying unary languages.

I Lemma 8. Let A = ({σ}, Q, δ) be a unary synchronizing DCSA. For all i ≥ |Q| − 1, we
have δ(Q, σi) = δ(Q, σi+1). A shortest word w synchronizing S ⊆ Q obeys |w| ≤ |Q| − 1.

I Corollary 9. If L(B) ⊆ {σ}∗ for a PDFA B, then L(B)-Constr-Sync ∈ P.

I Theorem 10. If L is regular, then L-Constr-Sync is contained in PSPACE.

We continue with 1-state constraint automata and unions of constraint languages.

MFCS 2019
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I Lemma 11. Let B = (Σ, P, µ, p0, F ) be a PDFA. If L(B) = L(BΣ\{σ}) for some σ ∈ Σ,
then L(B)-Constr-Sync ≡log

m L(BΣ\{σ})-Constr-Sync.

I Corollary 12. L(B)-Constr-Sync ∈ P for every one-state constraint automaton B.

I Lemma 13. If L is a finite union of languages L1, L2, . . . , Ln such that for each 1 ≤ i ≤ n
the problem Li-Constr-Sync ∈ P, then L-Constr-Sync ∈ P.

I Theorem 14. Let L ⊆ Σ∗. If { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L } = Σ∗, L-Constr-Sync ∈ P.

Proof. Let A = (Σ, Q, δ) be a DCSA. To decide if A has a synchronizing word from L, simply
test if A is synchronizing at all, cf. Fact 1. Assume v ∈ Σ∗ is a synchronizing word for A.
By assumption, uvw ∈ L for some u,w ∈ Σ∗. Moreover, uvw also synchronizes A. J

With the same type of reasoning, one can show:

I Theorem 15. Let L ⊆ L′ ⊆ Σ∗. If L′ ⊆ { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L }, then
L-Constr-Sync ≡log

m L′-Constr-Sync.

In [28], the unconstrained synchronization problem can be decided in polynomial time
by verifying that every pair of states can be synchronized. In essence, we generalize this
algorithm here for returning constraint automata.

I Lemma 16. Let A = (Σ, Q, δ) be a DCSA. If the constraint automaton B = (Σ, P, µ, p0, F )
is returning, then A is synchronizing with respect to B if and only if for all q, q′ ∈ Q we find
w ∈ Σ∗ with µ(p0, w) = p0 such that δ(q, w) = δ(q′, w).

Proof sketch. If u ∈ L(B) is a synchronizing word for A, u collapses any pair of states, but
this is also true for w = uv with µ(p0, w) = p0 that must exist as B is returning. Repeatedly
using this idea to prolong collapsing words, the somewhat more involved argument for proving
the converse implication can be adapted from the unconstrained setting. J

As we just have to check pairs of states we can devise a polynomial-time algorithm to
decide L(B)-Constr-Sync of a returning automaton B.

I Theorem 17. If B = (Σ, P, µ, p0, F ) is returning, then L(B)-Constr-Sync ∈ P.

Proof. Let A = (Σ, Q, δ) be an DCSA with n = |Q|. Let m = |P |. From A, we construct
the DCSA A≤2 = (Σ,

(
Q
≤2
)
, δ′). Then, for each two-element set {q1, q2} ∈

(
Q
≤2
)
, define

A′ = A≤2
{q1,q2},Q, identifying Q with all 1-element state sets. We check for each two-element

set {q1, q2} ∈
(
Q
≤2
)
if L(A′) ∩ L(Bp0,{p0}) 6= ∅. By Lemma 16, the DCSA A is synchronizing

with respect to B if and only if each intersection is non-empty. Each of the
(
n
2
)
intersections

can be checked by using the product-automaton construction in time O
(
(n+

(
n
2
)
)m
)
. J

Our considerations can be turned into a polynomial-time algorithm for computing a
synchronizing word for A with respect to B, which implies the following result.

I Corollary 18. If the constraint automaton B is returning, a shortest synchronizing word
with respect to B is polynomially bounded in the size of the input automaton.

I Theorem 19. Let B = (Σ, P, µ, p0, F ) be a PDFA. Then, L(B)-Constr-Sync ∈ NP if
there is a σ ∈ Σ such that for all states p ∈ P , if L(Bp,{p}) is infinite, then L(Bp,{p}) ⊆ {σ}∗.
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Proof. By assumption, the letters in Σ \ {σ} do not appear in any pumpable substring.
Hence, their number in a word in L(B) is bounded by |P | = m. Therefore, any word w ∈ L(B)
can be partitioned into at most 2m− 1 substrings w = u1v1 . . . um−1vm−1um with ui ∈ {σ}∗
and vi ∈ (Σ \ {σ})∗ for all i ≤ m. Note that |vi| ≤ m− 1, for all i < m. Let A = (Σ, Q, δ) be
a yes-instance of L(B)-Constr-Sync with |Q| = n. Let k be the number of sun-structures
in Aσ. Let w ∈ L(B) be a synchronizing word for A partitioned as mentioned above.

B Claim 1. If for some i ≤ m, |ui| > (mn)k + n, then we can replace ui by some u′i ∈ {σ}∗
with |u′i| ≤ (mn)k + n, yielding a word w′ ∈ L(B) that synchronizes A.

We will now show that we can decide whether A is synchronizing with respect to B in
polynomial time using nondeterminism despite the fact that an actual synchronizing word
might be exponentially large. This problem is circumvented by some preprocessing based on
modulo arithmetics. This allows us to guess a binary representation bin(ui) of |ui| instead
of ui itself. Hence, we guess wbin = bin(u1)v1 . . . bin(um−1)vm−1 bin(um). Since all ui are
single exponential in size, the length of wbin is polynomially bounded in the size of A.

B Claim 2. For each q ∈ Q, one can compute in polynomial time numbers `(q), τ(q) ≤ n

such that, given some number x in binary, based on `(q), τ(q), one can compute in polynomial
time a number y ≤ n such that δ(q, ax) = δ(q, ay).

As B is even fixed, we can do a similar preprocessing also for B in polynomial time.
The NP-machine guesses wbin part-by-part, keeping track of the set S of active states

of A and of the current state p of B. Initially, S = Q and p = p0. When guessing the number
xi = |ui| in binary, by Claim 1 we guess log(|ui|) ≤ log((mn)k + n) ∈ O(n logn) many bits.
By Claim 2, we can update S := δ(S, σxi) and p := µ(p, σxi) in polynomial time. After
guessing vi, we can simply update S := δ(S, vi) and p := µ(p, vi) by simulating this input, as
|vi| ≤ m = |P |, which is a constant in our setting. Finally, check if |S| = 1 and if p ∈ F . J

Observe that our NP-algorithm was guessing at most b(n, k) ∈ O((k + 1) log(nm)) many bits
with b(n, k) ≤ m2 log(|Σ|) + (m− 1)(k + 1)(log(m) + log(n)). As m and |Σ| are constants
and as n, k < n depend on A, we can determinize this algorithm by testing b(n, k) many bits.

I Corollary 20. Under the assumptions of Theorem 19, L(B)-Constr-Sync is in XP with
parameter k counting the number of sun-structures in Aσ for an input DCSA A.

When k = 1, we face a one-cluster automaton, see [4].
After these more general thoughts, we focus on two-state constraint automata B, giving

a complete picture of the complexity of L(B)-Constr-Sync over alphabets Σ with |Σ| ≤ 3.

4 Constraint Automata with Two States and Two or Three Letters

There are already very many 2-state PDFA. We explain why we need to consider only one
automaton for each automaton code listed in Tables 1 and 2. Here, we consider 1 as the start
state and {2} as the set of final states and call this the standard interpretation of a code.

I Lemma 21. Let B = (Σ, P, µ) be some partial deterministic semi-automaton with two states,
i.e., P = {1, 2}. Then, for each p0 ∈ P and each F ⊆ P , either L(Bp0,F )-Constr-Sync ∈ P,
or L(Bp0,F )-Constr-Sync ≡log

m L(B′)-Constr-Sync for a PDFA B′ = (Σ, P ′, µ′, 1, {2}).

Hence, we only need to specify B = (Σ, {1, 2}, µ) in the following. Let Σij := { a ∈ Σ |
µ(i, a) = j } for 1 ≤ i, j ≤ 2. As B is deterministic, Σi1 ∩ Σi2 = ∅. Consider easy cases first.

MFCS 2019
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Table 1 List of all PDFAs with two states and a binary alphabet, with Σ1,2 = {a, b} or Σ1,2 = {b}.

Automaton code Why in P?

[ * 2 ‡ 1 * ] a ∈ Σ2,1 Propos. 22, (2)
[ * 2 ‡ * 1 ] b ∈ Σ2,1 Propos. 22, (2)
[ * 2 ‡ 2 2 ] Σ1,1 ∪ Σ1,2 = Σ2,2 Propos. 22, (3)

[ 1 2 ‡ {-,2} - ] Theorem 24
[ 1 2 ‡ - 2 ] Theorem 24

Automaton code Why in P?

[ 2 2 ‡ 2 - ] Theorem 24
[ 2 2 ‡ - 2 ] Isomorphic to [ 2 2 ‡ 2 - ]

[ {2,-} 2 ‡ - - ] Σ1,1 ∪ Σ2,2 = ∅ Propos. 22, (4)

[ - 2 ‡ 2 - ] Theorem 24
[ - 2 ‡ - 2 ] Σ1,1 ∪ Σ1,2 = Σ2,2 Propos. 22, (3)

I Proposition 22. If one of the following conditions hold, then L(B1,{2})-Constr-Sync ∈ P:
(1) Σ1,2 = ∅, (2) Σ2,1 6= ∅, (3) Σ1,1 ∪ Σ1,2 ⊆ Σ2,2, or (4) Σ1,1 ∪ Σ2,2 = ∅.

Proof. (1) If Σ1,2 = ∅ means L(B1,{2}) = ∅. (2) If Σ2,1 6= ∅, then B is returning (Theorem 17).
(3) Lemma 11 and Theorem 14 cover this case. (4) Now, L(B1,{2}) is finite. J

For B = (Σ, {1, 2}, µ) and x ∈ Σ1,2, let Bx denote the variation with transition function µx
defined by µx = µ ∩ ({ (p, y, p) | p ∈ {1, 2}, y ∈ Σ } ∪ {(1, x, 2)}). Then Lemma 13 implies:

I Lemma 23. If L(Bx1,{2})-Constr-Sync ∈ P for each x ∈ Σ1,2 and if Σ2,1 = ∅, then
L(B1,{2})-Constr-Sync ∈ P.

Lemma 23 gives some final arguments why we only study the standard interpretation.
For 2-state constraint automata with alphabet Σ = {a, b}, in order to avoid isomorphic

automata and by Proposition 22, we can assume that either (1) a ∈ Σ1,1 and b ∈ Σ1,2 and
|Σ2,2| ≤ 1 or (2) a ∈ Σ1,2 but b /∈ Σ1,1 and |Σ2,2| > 0. See Table 1.

The constrained synchronization problem for constraint automata with a binary alphabet
is not easy in general, as we have seen already in Proposition 1 for 3-state constraint PDFA.

I Theorem 24. For any two-state binary PDFA B, L(B)-Constr-Sync ∈ P.

Proof. By Table 1, we only need to show the claim for B1 = [ 1 2 ‡ 2 - ], B2 =
[ 1 2 ‡ - 2 ], B3 = [ 1 2 ‡ - - ], B4 = [ - 2 ‡ 2 - ], and B5 = [ 2 2 ‡ 2 - ]. Let
A = (Σ, Q, δ) be a DCSA with n := |Q|− 1. Consider the first PDFA B1 with L(B1) = a∗ba∗.
Let a`bam be some synchronizing word for A, then by Lemma 8, applied to Aa, we have
δ(Q, a`) = δ(Q, aj) for some j ≤ n, and moreover, by a similar argument, we find k ≤ n

with δ(δ(Q, ajb), am) = δ(δ(Q, ajb), ak). So, the word ajbak is synchronizing and according
to Lemma 3 the word anban is also synchronizing. In order to decide synchronizability with
respect to B1, we simply have to check this last word. With the same argument, for B2
we only have to test the word anbn, for B3 the word anb, and for B4 the word ban. As B5
accepts the union of L(B4) and a unary regular language, the claim follows with Corollary 9
and Lemma 13. J

Next, we give a full classification on the complexity of the constrained synchronization
problem for constraint automata with two states and a ternary alphabet. As can be verified
by a case-by-case analysis, the only automaton with a constrained synchronization problem
in P not covered by the generalization results in Section 3 is [ 1 2 - ‡ - - 2 ].

I Theorem 25. Let B = [ 1 2 - ‡ - - 2 ]. Then L(B)-Constr-Sync is in P.

Proof. The language accepted by the constraint automaton B = [ 1 2 - ‡ - - 2 ] is
a∗bc∗. Let A = (Σ, Q, δ) be a DCSA, n = |Q|. By arguments along the lines of the proof of
Theorem 24, one can show that there is a synchronizing word for A with respect to B if and
only if anbcn synchronizes A. This condition is easy to check. J
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Table 2 Constraint automata (2 states, 3 letters) causing PSPACE-hard synchronization.

Case Automaton code Language

1 [ 2 - - ‡ - 2 2 ] a(b+ c)∗

[ 2 2 2 ‡ 2 2 - ] (a+ b+ c)(a+ b)∗

[ 2 2 - ‡ 2 - 2 ] (a+ b)(a+ c)∗

2 [ 1 1 2 ‡ - - - ] (a+ b)∗c
[ 1 1 2 ‡ 2 - - ] (a+ b)∗ca∗

[ 1 1 2 ‡ 2 2 - ] (a+ b)∗c(a+ b)∗

[ 1 1 2 ‡ - - 2 ] (a+ b)∗cc∗

Case Automaton code Language

3 [ 1 2 - ‡ 2 - 2 ] a∗b(a+ c)∗

[ 1 2 2 ‡ 2 2 - ] a∗(b+ c)(a+ b)∗

4 [ 1 2 - ‡ - 2 2 ] a∗b(b+ c)∗

[ 1 1 2 ‡ - 2 2 ] (a+ b)∗c(b+ c)∗

[ 1 2 2 ‡ - 2 2 ] a∗(b+ c)(b+ c)∗

The leftover two-state automata over a ternary alphabet are listed in Table 2. For all of
them, the corresponding constrained synchronization problem is PSPACE-complete (see
Theorem 26). We want to point out that there is no constraint automaton with two states
and a ternary alphabet for which the L(B)-Constr-Sync is not either PSPACE-complete or
contained in P, as we covered all possible automata of this kind.

I Theorem 26. For each constraint automaton B in Table 2 the problem L(B)-Constr-Sync
is PSPACE-hard.

Proof. We prove each case separately by giving an explicit reduction for one of the automata,
the statement for the other automata of that case follows by the same argument. Our
reductions are illustrated in Figure 2. Each reduction is starting out from (A,S), with
A = (Σ, Q, δ) being a DCSA and S ⊆ Q. Depending on the considered case, (A,S) is either
an instance of Sync-From-Subset (or of Sync-Into-Subset, resp.). We construct from A

a DCSA A′ = (Σ′, Q′, δ′), with Σ′ = Σ ∪ {σ} for an appropriately chosen letter σ /∈ Σ, such
that there exists w ∈ Σ∗ with |δ(S,w)| = 1 (or δ(Q,w) ⊆ S, resp.) if and only if A′ is
synchronizing with respect to B. This construction is described and illustrated in Figure 2.

Case 1: Consider the first automaton B = [ 2 - - ‡ - 2 2 ]. Then, L(B) = a(b+c)∗. We
reduce from the PSPACE-complete problem Sync-From-Subset for the binary alphabet
Σ = {b, c}. Since the constraint automaton forces us to read an a as the first letter, we
start synchronizing A′ with δ′(Q, a) = S. After the first a, we are allowed to read any
letter from Σ. Hence, if |δ(S,w)| = 1 by a word w ∈ Σ∗, then aw ∈ L(B) synchronizes A′.
Conversely, if there exists a word v that synchronizes A′ with respect to B, then v must
be of the form v = au with u ∈ {b, c}∗. By the definition of δ′, |δ(S, u)| = 1.
The PSPACE-hardness of constrained synchronization with respect to the PDFA [ 2 2 2
‡ 2 2 - ] with the language (a+ b+ c)(a+ b)∗ follows with the same reduction with
the letters a and c interchanged. The same idea applies to [ 2 2 - ‡ 2 - 2 ].

Case 2: The language accepted by B = [ 1 1 2 ‡ - - - ] is L(B) = (a+ b)∗c. We reduce
from Sync-Into-Subset. Note that by construction if A′ is synchronizing, p must
be the unique synchronization state. The state p can only be reached by a transition
with the letter c, but the constraint automaton only allows us to read one single c as
the last letter of the synchronizing word. Hence, if there exists a synchronizing word
w for A′ with respect to B, it is of the form uc with u ∈ {a, b}∗. Since δ′(Q,w) = p,
δ′(Q, u) ⊆ { q ∈ Q | δ′(q, c) = p }; by definition of δ′, this equals the set S ∪ {p}. Hence,
u synchronizes the automaton A into a subset of S. Conversely, if w is a word that
synchronizes A to a subset of S, by the construction of δ′, the word wc synchronizes A′
to {p} and since w ∈ {a, b}∗, wc ∈ L(B).
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Sync-From-Subset (Case 1) Sync-Into-Subset (Case 2)

t

a

a a

a

a
a

p

c

A

S

δ′(q, a) :=

{
q if q ∈ S

t otherwise.

δ′(q, b) := δ(q, b)

δ′(q, c) := δ(q, c)

p

c

c c

c
c c

c

A

S

δ′(q, a) :=

{
p if q = p,

δ(q, a) otherwise.

δ′(q, b) :=

{
p if q = p,

δ(q, b) otherwise.

δ′(q, c) :=
{

p if q ∈ S ∪ {p}
q otherwise.

Sync-From-Subset (Case 3)

t

t′

b

a, c

b
b b

b

a, c a, c

b
b

b
b

A
S

S ′

δ′(p, a) :=
{

δ(p, a) if p ∈ Q

p if p ∈ S′

δ′(p, b) :=

 t if p ∈ Q \ S
p if p ∈ S

q if p ∈ S′ and p = q′
,

δ′(p, c) :=
{

δ(p, c) if p ∈ Q

p if p ∈ S′

Sync-From-Subset (Case 4)

t

r

a

a
a

b
a

a
a

b
b

b

a, c

a, c a, c a, c

A S

S ′

δ′(p, a) :=


r if p ∈ (Q \ S) ∪ {r}
p′ if p ∈ S

p if p ∈ S′

δ′(p, b) :=


δ(p, b) if p ∈ Q

t if p = r

q if p ∈ S′ and p = q′

δ′(p, c) :=


δ(p, c) if p ∈ Q

r if p = r

p if p ∈ S′

Figure 2 Schematic illustration of our reductions. Transitions inherited from A are not shown.

We can only reach the synchronizing state by reading the letter c and for each automaton
of this case we are only allowed to read one single letter c. Therefore, allowing additional
letters a and b in the synchronizing word after reading the letter c does not change the
synchronizability of A′ and hence the same construction works for the constraint automata
[ 1 1 2 ‡ 2 - - ] and [ 1 1 2 ‡ 2 2 - ]. The same holds if we allow only additional
letters c (and no a or b) after the first c. In A′, c only leads in the synchronization state
from states in S and is the identity on other states. Therefore, δ(q, cc) = δ(q, c) for any
state q and the construction of Case 2 also works for the constraint automaton [ 1 1 2
‡ - - 2 ].

Case 3: The language accepted by B = [ 1 2 - ‡ 2 - 2 ] is L(B) = a∗b(a + c)∗. We
reduce from Sync-From-Subset for Σ = {a, c} similar to the one in Case 1, but we
have to ensure that the whole set S is active after reading the letter b, since a preceding
a might already merge some states in S. The idea is to add for each state q ∈ S a new
state q′ for which we stay in q′ with the letters a, c and go to q with the letter b. Therefore,
we ensure that δ(Q, aib) = S for every integer i. Since, starting from the whole state set,
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A′ is precisely in the state set S after the first and only b letter, the rest of the argument
follows as in Case 1. For the constraint automaton [ 1 2 2 ‡ 2 2 - ], accepting the
language a∗(b+ c)(a+ b)∗, the same idea applies.

Case 4: The language accepted by B = [ 1 2 - ‡ - 2 2 ] is L(B) = a∗b(b + c)∗. Here,
we do not have a special letter which appears exactly once in a word from L(B). We
will use the optional a letters in order to jump into S, since a word from L(B) that does
not contain any a must synchronize the whole state set and therefore also the subset
S. We reduce from the problem Sync-From-Subset for the alphabet Σ = {b, c}. We
decompose the state set Q with the letter a in S and Q \ S. The states in S are stored in
an annotated copy S′ of S. The other states are gathered up in a new state r. With the
first b, we restore the set S as the set of active states. The remainder of a synchronizing
word then synchronizes S.

If the set S in A is synchronizable to a single state by a word u ∈ {b, c}∗, then the
word abu ∈ L(B) synchronizes A′ since δ′(Q′, ab) = S. For the other direction, assume A′
is synchronizing with respect to B by a word w. Then w is of the form ubv with u ∈ a∗,
v ∈ {b, c}∗. If u 6= ε, then δ(Q′, ub) = S and v synchronizes S to a single state. If u = ε,
then S ⊆ δ′(Q′, b) ⊆ Q since we never synchronized any states into r and we leave all states
in the set S′ ∪ {r} with b and are not able to reach them again. In particular δ′(S′, b) = S.
Therefore, bv synchronizes S to a single state without ever leaving Q. The same idea can be
applied to the constraing automata [ 1 1 2 ‡ - 2 2 ] and [ 1 2 2 ‡ - 2 2 ]. J

5 Generalizations to Lift Results

In this section, we aim for more general results, either by lifting existing cases by homomorphic
images, or by identifying common patterns. For a map ϕ : Σ→ Γ∗ we identify it with its
natural homomorphism extension ϕ : Σ∗ → Γ∗ without further mentioning.

I Theorem 27. Let L ⊆ Γ∗ and ϕ : Σ∗ → Γ∗ be an homomorphism such that ϕ(ϕ−1(L)) = L.
Then L-Constr-Sync ≤log

m ϕ−1(L)-Constr-Sync.

A typical application of the preceding theorem is to lift hardness results from smaller to
bigger alphabets; e.g., knowing PSPACE-hardness for the constraint language a(b+ c)∗ lifts to
PSPACE-hardness for the constraint language a(b+ c+ d)∗ via ϕ : a 7→ a, b 7→ b, c 7→ c, d 7→ c.

I Remark 28. It is impossible to further generalize the previous result from homomorphisms
to mappings induced by deterministic gsm. Such a machine allows to map (a+ b)(a+ b)∗ to
a(b+ c)∗, but the constraint (a+ b)(a+ b)∗ yields a synchronization problem in P.

I Theorem 29. Let L ⊆ Σ∗. Let ϕ : Σ→ Γ∗ be an homomorphism such that ϕ(Σ) is a prefix
code. Let c ∈ Γ with {c}Γ∗ ∩ ϕ(Σ) = ∅. Let k := max{ ` ≥ 0 | ∃u, v ∈ Γ∗ : uc`v ∈ ϕ(Σ) }.
Then L-Constr-Sync ≤log

m {ck+1}ϕ(L)-Constr-Sync .

In the special case where c does not occur in ϕ(Σ) at all, it is sufficient to choose k = 0,
i.e., to consider the language {c}ϕ(L) as constraint language. With Theorem 29, we can
transfer hardness results with constraint language L over arbitrary alphabets to hardness
results with constraint languages over a binary alphabet.

I Remark 30. With the construction presented in Corollary 1 (see pp. 220-221) in [5] we can
lift our hardness results for constrained synchronization with constraint automata with two
states and a ternary alphabet to constrained synchronization problems with 6 states and a
binary alphabet. More generally we can reduce the alphabet size of a constraint automata
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from k = |Σ| to 2 by enlarging the size of its state set from n = |Q| to k · n without affecting
the hardness of the associated constrained synchronization problem.

Up to this point, we did not make use of the fact that constraint languages considered in
this paper are given by finite automata. This changes from here onward.

It is hardness-preserving to plug sub-automata of some kind in front of an automata
with a hard constrained synchronization problem. A partial automaton A is called carefully
synchronizing if there exists a synchronizing word w for A such that the transition function
of A is defined for w on every state of A.

I Theorem 31. Let B = (ΣB, PB, µB, pB0 , F ) and C = (ΣC , P C , µC , pC0 , ∅) be PDFAs with
PB ∩ P C = ∅. For px ∈ P C let ν ⊆ {px} × (ΣB ∪ ΣC) × {pB0 } define the automaton
B′ = (ΣB ∪ ΣC , PB ∪ P C , µB ∪ µC ∪ ν, pC0 , F ). If the following three conditions are satisfied:
1. automaton B′ is deterministic,
2. automaton C′ = (ΣB ∪ ΣC , P C ∪ {pB0 }, µC ∪ ν ∪ {pB0 } × (ΣB ∪ ΣC) × {pB0 }) is carefully

synchronizing, and
3. there exists a synchronizing word v = v1 . . . vn for C′ such that v1 . . . vn−1 ∈ L(Cpx),

where Cpx
results from C by adding px to the set of final states,

then L(B)-Constr-Sync ≤ L(B′)-Constr-Sync.

Proof. Note that the start state of B′ is the start state of C, but the final states of B′ are the
ones from B. Let A = (ΣB, Q, δ) be a DCSA. We extend A to a DCSA A′ = (ΣB ∪ΣC , Q′, δ′)
in the following way. For every state q ∈ Q we add a copy of C to A′, where a self-loop
is added for every yet undefined transition in A′. The C-copy is connected to q with the
transitions in ν where the target pB0 is replaced by q. Since the automaton B′ is deterministic
by condition (1), the C-copies, which are added to A, are also deterministic and so is A′.

It remains to show that A is synchronizing with respect to B if and only if A′ is
synchronizing with respect to B′. For the only if direction, assume w ∈ L(B) is a synchronizing
word for A. Considering A′, condition (2) states that there exists a word v that, applied to
all states of a copy of C, leads every state of this copy through the exit state px into the
original states of A. Further, condition (3) specifies that the last state leaves through px
with the last letter of v and that this last state is the image of the start state. Hence v is
the label of a path from pC0 to pB0 in B′ and vw ∈ L(B′). Starting in all states of A′, the
active states in each C-copy act synchronously. Hence, δ′(Q′, v) = Q. Note that no state of a
C-copy is reachable by a state of Q. Since A′ acts like A on Q, |δ′(Q,w)| = 1 and vw is a
synchronizing word for A′ with respect to B′. For the other direction, we refer to the long
version of this paper. J

As an illustration, we apply Theorem 31 to a family of languages.

I Corollary 32. Let the language-family L consists of languages Li := (b∗a)i with i ≥ 2. The
constrained synchronization problem for all languages in L is NP-complete.

6 Conclusions and Prospects

We have commenced a study of synchronization under regular constraints. The complexity
landscape of 2-state constraint automata with at most ternary input alphabets is completely
understood. In particular, binary alphabets yield polynomial-time solvable synchronization
problems, while ternary alphabets split the constrained synchronization problems into
polynomial-time solvable and PSPACE-complete cases. As already seen in the introduction,
this picture changes with 3-state automata, giving an NP-complete scenario with binary
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alphabets. Our general results also imply PSPACE-complete synchronization problems for
binary constraint automata with at least six states. In the following theorem, we present a
three state constraint automaton with a binary alphabet for which the associated constrained
synchronization problem is PSPACE-complete, also because of Theorem 10.

I Theorem 33. Let B = [ - 2 ‡ 3 3 ‡ 2 - ] be a three state PDFA over the alphabet
{0, 1} with start state 1 and final state 3. The problem L(B)-Constr-Sync is PSPACE-hard.

Hence, binary 3-state constraint automata offer easy synchronization problems as well
as problems complete for NP and for PSPACE. However, we have no complete complexity
picture here, giving a natural research question. Motivated by a remark of Rystsov [23] in
a related setting, one could also ask if there are regular language constraints that define
synchronization problems that are complete for other levels of the polynomial-time hierarchy.
We presented several criteria for a regular language L such that L-Constr-Sync ∈ P as
well as generalization-results to transfer the obtained hardness results for fixed L to larger
classes of constraint languages, but a full classification of the complexity of L-Constr-Sync
for regular constraint languages L is still an open research problem.
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