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Abstract
Given R a binary relation between words (which we treat as a language over a product alphabet
A×B), a uniformisation of it is another relation L included in R which chooses a single word over B,
for each word over A whenever there exists one. It is known that MSO, the full class of regular
languages, is strong enough to define a uniformisation for each of its relations. The quest of this
work is to see which other formalisms, weaker than MSO, also have this property. In this paper, we
solve this problem for pseudo-varieties of semigroups: we show that no nonempty pseudo-variety
weaker than MSO can provide uniformisations for its relations.
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1 Introduction

Regular languages of finite words lie at the core of modern automata theory. The study of
their properties has led to multiple fundamental discoveries. Among these discoveries was
a formal introduction of the model of non-deterministic automata by Rabin and Scott [16].
Later, the results of Büchi, Elgot, and Trakhtenbrot [2, 7, 25] laid the foundations of
the correspondence between automata and Monadic Second-Order (MSO) logic. That
correspondence is now considered a golden standard, with notable extensions to other
structures, like finite and infinite trees. Another breakthrough obtained over finite words
was the effective characterisation of the class of star-free languages by McNaughton, Papert
and Schützenberger [19, 11]. Again, this result has opened a rich area of extensions, first to
infinite words [24], and later to other structures and classes of languages [23, 21, 1]. From
the perspective of these results, the theory of regular languages of finite words can be seen
as a test ground for novel problems and methods.

The situation is a bit different with the problem of uniformisation. This problem asks,
to find an effectively definable graph of a function that is contained in a given relation R.
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Thus, it can be seen as an instance of the choice axiom: the relation R(x, y) admits multiple
witnesses y for each argument x and our task is to choose one of them. The origins of that
problem come from descriptive set theory, with the famous theorems like that of Novikov
and Kondô [9, Theorem 36.12].

The problem of uniformisation was translated to the context of automata theory by
Rabin [15], directly for the most complex structures – infinite trees. In that context, the
relation R is given by an MSO-definable language over a product alphabet A× B, and the
question of uniformisation asks to find an MSO-definable language that realises a function
from structures over A to structures over B. Therefore, the question of uniformisability can
be read as the problem of effective selection of witnesses – a way of making non-determin-
ism somehow controlled. In the course of research over that problem, it was shown that
MSO-definable uniformisation is always possible over infinite words [20, 10, 17]; but not
over infinite trees [8, 4]. In parallel, a study of sequential uniformisation was performed in
the context of games and problems of synthesis [3].

The fact that MSO has1 the uniformisation property over finite words is easy to prove
and is considered folklore: it is enough to choose the lexicographically minimal witness.
That is probably the reason why the case of finite words was somehow ignored in the study
of uniformisation problems. It was opened by a recent paper [12], where the author asks
about the possibility to uniformise for certain logics weaker than MSO. The results of
that work are not unequivocal. On the one hand, it is shown that for multiple pairs of
logics L1 ⊆ L2 ⊆ MSO, there exists a relation R definable in L1 with no L2-definable
uniformisation. On the other hand, it is shown that each relation definable in FO[ ]
(First-Order logic with only equality and letter tests) can be effectively uniformised within
First-Order logic with the order predicate. This leads to an intriguing graph of logics, one
(not) uniformising another. To simplify the situation, the author formulated the above
question for L1 = L2, i.e. the problem whether a given logic uniformises itself. Based on the
provided results, the following conjectured:

I Conjecture 1 (Conjecture 1 in [12]). Let L be a fragment of MSO such that FO2[ ] ⊆ L
and L satisfies some closure properties (to be specified). If L has the uniformisation property,
then L is MSO.

The main result of the present paper is a positive answer to the above conjecture. The
assumption that the logic FO2[ ] (the two-variable fragment of First-Order logic) is contained
in a given logic turned out to be unnecessary, and the relevant closure properties boil down
to the standard notion of a pseudo-variety.

I Theorem 2. MSO is the unique nonempty self-uniformisable pseudo-variety of semigroups.

A class of languages corresponds to a pseudo-variety of semigroups if it is closed under
Boolean combinations, left and right quotients, and pre-images under non-erasing homomorph-
isms. It is known that most of the classically considered logics correspond to pseudo-varieties
of semigroups [18]. Since we restrict to semigroups instead of monoids (i.e. we require the
considered homomorphisms of words to be non-erasing), this definition also captures logics
with successor instead of the order. Among the notable examples of logics that do not
correspond to pseudo-varieties of semigroups are the logics with modulo predicates, like
FO[≤,MOD2]. These logics are not covered by the presented arguments. To deal with
them, one would need to consider homomorphisms of words that are length-preserving or
length-multiplying, see e.g. [14].

1 We identify a logic with the class of languages it defines. Therefore MSO = REG, i.e. the class of all
regular languages.
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When read in terms of logics, the above result says that most of the widely considered
formalisms over finite words weaker than MSO do not have the uniformisation property.
As generally in the case of negative results, the consequences of that are more theoretical
than practical: there is no hope in finding a robust formalism, that would be easier to handle
than MSO and still retain the ability to choose unique witnesses.

The provided proof is independent from the results of [12] – instead of comparing two
logics L1 ⊆ L2, we focus on one formalism L with the assumption that L can uniformise itself.
Based on that assumption, we gradually bootstrap the expressive power of the considered
formalism. It is done in a sequence of steps, showing that L must be able to express more
and more complex properties: test the letters that appear in a given word; recognise the
order in which the letters appear; etc. Each of these steps is based on the assumption that L
has the uniformisation property and therefore must be sensitive to certain modifications of
the input words. Thus, the proofs of the lemmas are of a similar structure.

Nevertheless, we believe that it is non-trivial and instructive to see the ways in which uni-
formisability guarantees the considered expressive abilities. The difficulty of these arguments
lies in the fact that the assumptions about L speak about the algebraic properties of the
semigroups recognising languages in L, while the notion of uniformisability is a set-theoretical
property of the actual languages in L.

While the proof goes on, we have more and more tools at hand, but at the same time we
need to prove stronger and stronger expressibility properties about L. Ultimately, it turns
out that L is able to guess evaluations with respect to arbitrary finite semigroups (i.e. in
a sense is closed under projection) and therefore must contain all regular languages of finite
words. From this perspective, the proof can be seen as a variety of concrete recipes (ranging
from the least complex properties to the most complex) explaining what is the interplay
between the considered expressibility property and uniformisability.

Although the results are expressed over finite words, we believe that similar arguments
can be adapted to the more complex structures, like infinite words or finite trees. Therefore,
finite words are used here again as a testing ground, providing new understanding that can
later be transferred to richer structures.

The paper is organised as follows. Section 2 is devoted to an introduction of all relevant
technical notions. Then, Sections 3.1 up to 3.7 gradually increase the expressive power of
the considered class of languages L. Finally, in Section 4 we conclude.

2 Technical background

Words and languages

We identify each natural number n with the set {0, . . . , n−1}, and we denote the set of all
natural numbers by ω. An alphabet A is any finite set. A function from a natural number n
to an alphabet A is called a (finite) word over A. The natural number n is the length of w,
and we denote it by |w|. For each i ∈ n the element w(i) ∈ A is called the ith letter of w.
We write w = w(0) · w(1) · · ·w(n−1), but notice that this notation is ambiguous when the
alphabet is not clear in the context: if we write w = a · b, we do not know a priori if we see w
as a word over {a, b}, or over any other alphabet containing {a, b}. We extend this notation:
if w1 and w2 are two words over A, then w1 ·w2, the concatenation of w1 and w2, is the word
w over A of length |w1|+ |w2| defined by w(i) = w1(i) for i ∈ |w1| and w(i) = w2(i− |w1|)
for i ≥ |w1|.

A word of length 0 is denoted by ε and called the empty word. The set of all words over A
is denoted by A∗, An is the set of all words of length n ∈ ω, and A+ is A∗ \ {ε}, i.e. the set
of nonempty words over A. Note that ∅∗ = {ε} and ∅+ = ∅.

MFCS 2019
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In this paper, a language of words over an alphabet A is any subset2 of A+. Once again,
notice that a language has to be given with its alphabet. To avoid any ambiguity like the
one above, we sometimes write 〈L,A〉 to emphasise the choice of the alphabet.

In order to ease the reading of the paper, we will denote by A,A0,A1 . . . alphabets of
letters a, b, . . . , x, y . . . and by B,B0,B1 . . . alphabets of symbols �, •,4, . . . Words over the
alphabets of letters will be denoted by u, v, w . . . while words over the alphabets of symbols
will be denoted by π, σ, τ, . . .

Semigroups and pseudo-varieties

In this paper, the classes of languages which we focus on correspond to pseudo-varieties
of semigroups.

A semigroup is a set S provided with an associative binary operation, which we will
denote by ·. We identify the semigroup 〈S, ·〉 with its set S. For s ∈ S and for a natural
number n ≥ 1, sn denotes the product s · · · s, where s appears n times. An element e ∈ S is
said to be idempotent if e2 = e.

It is considered folklore to prove that for every finite semigroup S, there exists a natural
number n ≥ 1 such that sn is idempotent for each s ∈ S. We denote this natural number by
](S). When the semigroup is known from the context, we just write ] instead of ](S). Notice
that in the literature the symbol ω is often used instead of ].

If S is a semigroup, then S′ ⊆ S is said to be a sub-semigroup of S if it is stable by the
operation of S, that is, if for all s, t in S′, s · t ∈ S′. Finally, if S1 and S2 are two semigroups,
then S1 × S2 provided with the operation defined by 〈s1, s2〉 · 〈t1, t2〉 = 〈s1 · s2, t1 · t2〉 is also
a semigroup. It is called the product of S1 and S2.

Let S1 and S2 be two semigroups. A homomorphism from S1 to S2 is a function α from
S1 to S2 such that for all x, y in S1, we have α(x · y) = α(x) · α(y). Such a homomorphism
is surjective (resp. injective, bijective) if so is the respective function α.

For each alphabet A, the set A+ provided with the concatenation operation, is a semigroup
that is known as the free semigroup on A. The fact that a homomorphism α : A+ → S must
preserve the operations of the semigroups, implies that α is uniquely determined by its action
on the single letters in A.

The following variant of Ramsey’s theorem is often used when working with finite
semigroups.

I Theorem 3 (Simon [22], see also Section II.11.1 in [13]). Let A be an alphabet and α

a homomorphism from A+ to some finite semigroup S. For each natural number n ≥ 2, there
exists a natural number N(n) such that for each word w over A of length at least N(n), there
exists an idempotent e in S and a decomposition w = u · w0 · · ·wn−1 · v, where for all i ∈ n,
wi is nonempty and α(wi) = e.

Let L be a language of words over some alphabet A and let S be a finite semigroup. We
say that S recognises L if there exists a homomorphism α from A+ to S and T ⊆ S such
that L = α−1(T ). In such a case we also say that the tuple 〈S, α, T 〉 recognises L.

A language of words over A is regular if it is recognised by some finite semigroup S. We
denote the class of all regular languages by REG. As mentioned in the introduction, the
class REG coincides with the class of languages definable in Monadic Second-Order logic
(denoted MSO); however as logic is not directly involved in the presentation, we will rather
use REG to emphasise the automata- and semigroup-based approach.

2 It is more standard to define languages as subsets of A∗ but then the natural algebraic structures are
monoids, and not semigroups.
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Let L be a class of languages and S a class of finite semigroups, we say that L corresponds
to S if it is exactly the class of languages recognised by the semigroups S of S. Notice that,
under this assumption, L only contains regular languages.

We define now an important notion: the notion of pseudo-varieties.

I Definition 4. Let S be a class of finite semigroups. We say that S is a pseudo-variety of
(finite) semigroups if it has the following properties:

if S1 ∈ S and if S2 is a sub-semigroup of S1, then S2 ∈ S,
if S1 and S2 are in S, then the product semigroup S1 × S2 is in S,
if S1 ∈ S and if there exists a surjective homomorphism from S1 to S2, then S2 ∈ S.

The following theorem is a part of the so-called Eilenberg’s variety theory.

I Theorem 5 (Eilenberg [6]). Let L be a class of regular languages. Then the following
propositions are equivalent:

L corresponds to a pseudo-variety of semigroups;
L has the following closure properties:

L is closed under Boolean operations: for each 〈L1,A〉 and 〈L2,A〉 in L, 〈L1 ∪ L2,A〉
and 〈Lc

1 := A+ \ L1,A〉 are in L (and therefore also 〈L1 ∩ L2,A〉),
L is closed under quotients: for each 〈L,A〉 ∈ L and each word w ∈ A+, 〈w−1 · L,A〉
and 〈L ·w−1,A〉 are in L, where w−1 ·L = {u ∈ A+ | w ·u ∈ L}, and L ·w−1 is defined
symmetrically,
L is closed under pre-images of semigroup homomorphisms: for each alphabet A,
language 〈L,B〉 ∈ L, and homomorphism ϕ from A+ to B+, the language 〈ϕ−1(L),A〉
is in L.

All the classes of languages discussed in [12] are pseudo-varieties of semigroups. The most
common are MSO and FO[<] (First-Order logic with the order). Other examples include
FO2[<], the fragment of FO[<] where only two distinct variables are allowed; and FO[s],
where instead of the order one allows the successor function s.

Uniformisation

Let A and B be two alphabets. If a ∈ A and � ∈ B are two letters then their pair is denoted(
a
�

)
∈ A× B. Let w, π be two words over A and B respectively, such that |w| = |π|. Then

the pair 〈w, π〉 ∈ A∗ × B∗ can be identified with
(
w
π

)
, the word over the product alphabet

A× B satisfying
(
w
π

)
(i) =

(w(i)
π(i)

)
for all i ∈ |w|. This vertical notation is also extended to

sets of words of fixed length, for instance,
( {a,b}

�

)
=
{(

a
�

)
,
(
b
�

)}
is a set of two letters in

A× B.
Let R ⊆ (A × B)+. Based on the previous identification, R can be seen as a binary

relation between words over A and words over B. The projection of R is the set of words
w ∈ A+ such that there exists a word π ∈ B|w| with

(
w
π

)
∈ R. We denote this set by Π(R).

A uniformisation of R is a relation F ⊆ R such that Π(F ) = Π(R), and being functional,
i.e. if

(
w
π1

)
∈ F and

(
w
π2

)
∈ F then π1 = π2. In that case, for each word w ∈ Π(R), the

unique π such that
(
w
π

)
∈ F is called the image of w by F .

A class L of languages is said to have the uniformisation property if each relation R ∈ L
admits a uniformisation F ∈ L. We also call such a class self-uniformisable. The fact that
REG (i.e. the class of all regular languages) has the uniformisation property is considered
folklore.

MFCS 2019
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3 Proof of the theorem

We now begin the proof of Theorem 2. For the rest of the section, L denotes a class of regular
languages corresponding to a nonempty pseudo-variety S of semigroups, and we assume that
L has the uniformisation property. In the following subsections, we show that L contains
certain specific languages and allows to express more and more complex properties of words.
Ultimately, we show in Subsection 3.7 that L can validate evaluations with respect to finite
semigroups, and therefore can recognise all regular languages.

3.1 Testing letters
Recall that by Theorem 5 we know that L is closed under Boolean operations. Also, as
S is nonempty, we know that every full language A+ over some alphabet A belongs to L:
A+ = α−1(S), for any semigroup S ∈ S, and any homomorphism from A+ to S.

This section is devoted to a first step of the proof: we show that L must be able to detect
which letters appear in the given word. More formally, the main result of this section is the
following lemma.

I Lemma 6. For all alphabets A1 ⊆ A2, the language 〈A+
1 ,A2〉 is in L.

One can equivalently state the above lemma by saying that FO1[ ] ⊆ L, or that S contains
the pseudo-variety J1 of finite idempotent commutative semigroups, see [5]. However, the
above statement seems to better fit the rest of the presentation.

This whole subsection is devoted to a proof of Lemma 6. To prove it, notice first that
it is enough to show that the semigroup 2 = {0, 1} with the operation max belongs to S.
Indeed, given two alphabets A1 ⊆ A2 one can consider the homomorphism α from words
over A2 to 2, defined by α(a) = 0 for a ∈ A1 and α(a) = 1 otherwise. Then, A+

1 = α−1({0}),
and therefore belongs to L.

Let R be the full relation between words over A = {x} and words over B = {�,4}:
R = 〈(A× B)+,A× B〉. As discussed above, R is in L. By the assumption, L must contain
a uniformisation F of R that is recognised by some tuple 〈S, α, T 〉, with S ∈ S.

Let N = N(2) be the number we obtain from Theorem 3 applied for S and α in the
particular case n = 2. Consider the word w = xN , and take the unique word π ∈ {�,4}N
such that

(
w
π

)
∈ F . For convenience, for all i ∈ j ∈ N+1, we write wi,j (resp. πi,j) for the

word w(i) . . . w(j−1) (resp. π(i) . . . π(j−1)), and si,j for α(
(wi,j
πi,j

)
).

By the definition of N , we know that there exists an idempotent e of S, and i ∈ j ∈ k ∈
N+1, such that si,j = sj,k = e. Since j − i > 0 and |B| ≥ 2, there exists a word π′ ∈ Bj−i
distinct from πi,j . We define s′ = α(

(wi,j
π′
)
).

As e is idempotent, we know that for every ` ≥ 1 we have s0,i · e` · sk,N = s0,N ∈ T .
Recall that ] = ](S) is a number such that for every s ∈ S the element s] is idempotent.
Consider the particular case of the above equality for ` = 3× ], we obtain:(w0,i

π0,i

)
·
((wi,j

πi,j

)
·
(wi,j
πi,j

)
·
(wi,j
πi,j

))]
·
(wk,N
πk,N

)
∈ F.

As π′ 6= πi,j and F is a uniformisation, we know that

(w0,i
π0,i

)
·
((wi,j

πi,j

)
·
(wi,j
π′

)
·
(wi,j
πi,j

))]
·
(wk,N
πk,N

)
/∈ F.
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This implies that e′ :=
(
si,j ·s′ ·si,j

)] =
(
e ·s′ ·e

)] 6= e. Now, we set s0 = e and s1 = e′. As
both e and e′ are idempotents, we know that s0 · s0 = s0 and s1 · s1 = s1. Moreover, because
e is idempotent, it is immediate to see that s1 · s0 =

(
e · s′ · e

)] · e =
(
e · s′ · e

)] = s1, and that
we also have s0 ·s1 = s1 symmetrically. Therefore, the subset {s0, s1} of S is a sub-semigroup
and it is isomorphic to 〈2,max〉. Because S is stable by taking sub-semigroups and images
by surjective images, 〈2,max〉 ∈ S. This concludes the proof of Lemma 6.

3.2 Changing alphabets
The aim of this short section is to show that L is strong enough not to depend on the actual
alphabet of a given language. This property is expressed by the following two lemmas.

I Lemma 7. Let A1 ⊆ A2 be two alphabets and L ⊆ A+
1 . If 〈L,A2〉 ∈ L then 〈L,A1〉 ∈ L.

Proof. Let 〈S, α, T 〉 be a tuple recognising L, with S ∈ S. Let βbe the homomorphism from
A+

1 to S defined by β(a) = α(a) for a ∈ A1. Then, by the assumption, we have L = β−1(T ),
and therefore 〈L,A1〉 ∈ L. J

I Lemma 8. Let A1 ⊆ A2 be two alphabets and L ⊆ A+
1 . If 〈L,A1〉 ∈ L then 〈L,A2〉 ∈ L.

Proof. Let 〈L,A1〉 ∈ L with and 〈S1, α1, T1〉 a tuple recognising it, with S1 ∈ S. Assume
that A1 ⊆ A2. We prove that 〈L,A2〉 is in L.

We showed in the proof of Lemma 6 that the semigroup 〈2,max〉 is in S. This implies that
S1 × 2, with the natural product operation, is also in S. Now, let β be the homomorphism
from A+

2 to S1 × S2 defined by β(a) = 〈α1(a), 0〉 for a ∈ A1, and β(a) = 〈α1(a), 1〉 for
a ∈ A2 \ A1.

It is easy to verify that L = β−1(T1 × {0}), and therefore, 〈L,A2〉 ∈ L. J

Lemmas 7 and 8 imply that if L ⊆ A+
1 ∩A

+
2 , then 〈L,A1〉 ∈ L iff. 〈L,A2〉 ∈ L. Therefore,

we can simply say that L ∈ L, without being specific about its alphabet. Thus, from that
moment on we will speak simply about languages L, instead of 〈L,A〉.

Using Lemma 6, we can deduce the following result:

I Corollary 9. Let a be any letter if an alphabet A. By [∃a]A we denote the language of
words over A that contain at least one occurrence of a. Then [∃a]A ∈ L.

Moreover, by A⊕ if we denote the set of all words w over A such that each letter of A
appears in w, then A⊕ too is in L.

Proof. It is enough to observe that [∃a]A =
(
(A \ {a})+)c, where c denotes the complement

over the full language A+. Lemma 6 tells us that (A \ {a})+ ∈ L, and, since L is closed
under Boolean combinations, [∃a]A ∈ L.

Now, A⊕ =
⋂
a∈A[∃a]A, and therefore A⊕ ∈ L. J

3.3 Counting letters
Our next step towards Theorem 2 is to notice that L is able to test single occurrences of
letters, as expressed by the following lemma:

I Lemma 10. Let a be a letter of an alphabet A. Then the language of words over A having
exactly one occurrence of a is in L. We denote this language by [∃=1a]A.

MFCS 2019



61:8 Uniformisation Gives the Full Strength of Regular Languages

Similarly as in the case of Lemma 6, the above lemma can be equivalently expressed by
saying that FO2[ ] ⊆ L (i.e. the two-variable fragment of FO without any predicates except
equality and letter tests).

To prove the above lemma, consider three distinct letters, x, y, and z, and four distinct
symbols ⊗, ⊕, 	, and �. Let Rx and Ry be the relations defined as:

Rx =
{(

x
⊕
)
,
(
x
	
)
,
( y
⊗
)
,
(
z
�
)}⊕

,

Ry =
{(

x
⊗
)
,
( y
⊕
)
,
( y
	
)
,
(
z
�
)}⊕

.

We know that Rx and Ry are in L because of Corollary 9. Finally, we define R = Rx∪Ry,
which is in L because it is closed under unions.

Since L has the uniformisation property, there exists F ∈ L uniformising R. Let 〈S, α, T 〉,
with S ∈ S, be a triple recognising F .

Now, for p, q ∈ ω, we define Lxp and Lyq as the following two relations:

Lxp =
{(

u
σ

)
∈
{(

x
⊗
)
,
(
z
�
)}+ | ⊗ appears exactly p times in σ

}
,

Lyq =
{(

v
τ

)
∈
{( y
⊗
)
,
(
z
�
))
}+ | ⊗ appears exactly q times in τ

}
.

Notice that
⋃
p∈ω L

x
p =

{(
x
⊗
)
,
(
z
�
)}+ and similarly

⋃
q∈ω L

y
q =

{( y
⊗
)
,
(
z
�
)}+.

B Claim 11. At least one of the two following propositions is true:
for all p ≥ 2 we have α(Lx1) ∩ α(Lxp) = ∅,
for all q ≥ 2 we have α(Ly1) ∩ α(Lxq ) = ∅.

Proof. Assume the contrary and take:

p ≥ 2,
(
u1
σ1

)
∈ Lx1 , and

( up
σp

)
∈ Lxp such that α(

(
u1
σ1

)
) = α(

( up
σp

)
); and (1)

q ≥ 2,
(
v1
τ1

)
∈ Ly1, and

( vp
τq

)
∈ Lyq such that α(

(
v1
τ1

)
) = α(

( vq
τq

)
). (2)

Let w be the word up · vq · z and assume that π is the unique word over {⊕,	,⊗,�} such
that

(
w
π

)
∈ F . Clearly, w is in the projection of both Rx and Ry; suppose that

(
w
π

)
∈ Rx

(the case
(
w
π

)
∈ Ry is symmetric). As Rx determines the symbols below the letters y and z,

we know that π is of the form σ · τq · �, for some word σ over {⊕,	,�} of length |up|.
Consider now the new word w′ over {x, y, z} defined with w′ = u1 · vq · z. We know that

w′ belongs to the projection of Ry but not to the projection of Rx, because u1 has only
one occurrence of x. Let π′ be the unique word such that

(
w′

π′

)
∈ F . Similarly as before,

π′ = σ1 · τ ′ · � for some word τ ′ over {⊕,	,�} of length |vq|.
Using (1) we know that α(

(
u1
σ1

)
) = α(

( up
σp

)
), and therefore

( up
σp

)
·
( vq
τ ′
)
·
(
z
�
)
∈ F , whose

projection onto A equals w, which contradicts the fact that F is a uniformisation. J

By the symmetry, let us assume that the first item of Claim 11 holds, i.e. for all
(
u1
σ1

)
∈ Lx1

and
( up
σp

)
∈ Lxp with p ≥ 2, we have α(

(
u1
σ1

)
) 6= α(

( up
σp

)
).

B Claim 12. The language Lx1 is in L.

Proof. The language Lx0 = {
(
z
�
)
}+ is in L. Therefore,

⋃
p≥1 L

x
p = {

(
x
⊗
)
,
(
z
�
)
}+ \ Lx0

also belongs to L. Thus, the above assumption about α-values implies the claim, because
Lx1 = α−1(α(Lx1)) ∩

⋃
p≥1 L

x
p . C



N. Lhote, V. Michielini, and M. Skrzypczak 61:9

Now take a ∈ A as in the statement of Lemma 10. Consider a homomorphism β from A+ to
{
(
x
⊗
)
,
(
z
�
)
}+ defined by β(a) =

(
x
⊗
)
and β(b) =

(
z
�
)
for b 6= a. We have [∃=1a]A = β−1(F x1 ),

and, because L is closed under pre-images under homomorphisms, [∃=1a]A is in L. This
concludes the proof of Lemma 10.

With a similar – yet more technical – proof, one can show that for all p ∈ ω, L contains
[∃=pa]A, the language of words over A having exactly p letters a, but this point will not
be involved in the following demonstrations. This results show that L must contain FO[ ],
First-Order logic with only equalities between positions and letter tests. Recall that by
Proposition 2 in [12], FO[ ] can be uniformised within FO[<]. This explains why our proof
of Theorem 2 needs to use the fact that L uniformises itself more than once.

I Corollary 13. By modifying the homomorphism used in the proof of Lemma 10, we obtain
that if A1 ⊆ A2 then the language [∃=1A1]A2 of words over A2 that contain exactly one
occurrence of a letter from A1 also belongs to L.

3.4 Order on letters

Our next goal is to introduce the order < on the positions of letters in a given word. This is
achieved gradually, with the first instance of the order expressed by the following lemma:

I Lemma 14. Let A be an alphabet and a0, . . . , ap−1 be p ≥ 1 pairwise distinct letters, that
do not belong to A. Then the language L = A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ is in L.

Proof. The proof is quite similar to the previous one. We consider two distinct letters, x and
y, and p+1 distinct symbols �, 40, . . . ,4p−1, and we define the relation R := C⊕, where C
is the alphabet {

( y
�

)
} ∪ {

( x
4i
)
| i ∈ p}.

We know that R ∈ L and therefore it admits a uniformisation F ∈ L. Let 〈S, α, T 〉 be
a triple recognising it, with S ∈ S. Fix ] = ](S).

We define now the word u = y] · x · y] · · · y] · x · y], where x appears exactly p times.
Since u is in the projection of R, it also belongs to the projection of F . Let π be the image
of u by F , i.e. the unique word π satisfying

(
u
π

)
∈ F . The word π is necessarily of the shape

�] · 4σ(0) ·�] · · ·�] · 4σ(p−1) ·�], where σ is a permutation of p = {0, . . . , p−1}.
Let e = α(

( y
�

)]) ∈ S. By the definition of ](S), e is idempotent. Consider β the
homomorphism from words over A′ := At{ai | i ∈ p} to S defined by β(ai) = e ·α(

( x
4σ(i)

)
) ·e

for i ∈ p, and β(a) = e for a ∈ A.
Now, consider σ′ a second permutation of p, and w the word w0 · aσ′(0) · w1 · · ·wp−1 ·

aσ′(p−1) · wp ∈ A′∗, where the wi’s are arbitrary words over A. Because e is idempotent, we
know that

β(w) = α(
( y
�

)] · ( x
4σ′(σ(0))

)
·
( y
�

)] · · · ( y� )] · ( x
4σ′(σ(p−1))

)
·
( y
�

)]).
Since F is a uniformisation, β(w) ∈ T if and only if σ′ is the identity. Therefore,

β−1(T ) ∩
⋂
i∈p

[∃=1ai]A′ = A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ = L.

Using Lemma 10, each of the languages [∃=1 ai]A′ is in L. Because L is closed under
intersections, we can conclude that L is in L. J

MFCS 2019
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3.5 Subsequences
Now we need to strengthen the above lemma, to be able to compare the positions of not
necessarily distinct letters. This ability is expressed by the following lemma:

I Lemma 15. Let A be an alphabet, and let a0, . . . , ap−1 be letters of A, with p ≥ 1. Then the
language A∗ ·a0 ·A∗ · · ·A∗ ·ap−1 ·A∗ is in L. We denote this language by [∃a0<a1< . . .<ap−1]A.

Again, this lemma is equivalent to saying that BΣ1[<] ⊆ L (i.e. Boolean combinations of
existential First-Order sentences with the order) or equivalently that the pseudo-variety of
J-trivial semigroups J is contained in S.

Let B := {40, . . . ,4p−1,�} be an alphabet containing p+1 pairwise distinct symbols.
First, we consider the following relation:

R =
( A
�

)∗ · ( a0
40

)
·
( A
�

)∗ · · · ( A
�

)∗ · ( ap−1
4p−1

)
·
( A
�

)∗
It is immediate to see that Π(R) is exactly [∃a0< . . .<ap−1]A. Consider the relations
R1 := R ·

( •
•
)
·
( A
�

)∗ and R2 :=
( A
�

)∗ · ( •• ) ·R, where • is a fresh letter (i.e. not in A nor in
B).

To conclude the proof of Lemma 15, we will use a fairly technical fact. It may be seen as
an abstract generalisation of the technique used in the proof of Lemma 3 in [12].

I Fact 16. Let R be a relation over a product alphabet A× B, i.e. R ⊆
(
A× B

)+. Assume
that •, � are two symbols, with • /∈ A. Define R1 := R ·

( •
•
)
·
( A
�

)∗, R2 :=
( A
�

)∗ · ( •• ) · R,
and P := R1 ∪R2. If P is in L then Π(R) is in L.

Proof. Let F ∈ L be a uniformisation of the above relation P , and let 〈S, α, T 〉 be a triple
recognising F , with S ∈ S.

Let β be the homomorphism from A+ to S defined by β(a) = α(
(
a
�

)
), for all a ∈ A. Put

L := Π(R). Notice that if for all words w1, w2 in A+, the equality β(w1) = β(w2) implies
the equivalence w1 ∈ L⇔ w2 ∈ L, then in fact L is in L, because β−1(β(L)

)
= L ∈ L.

We show now that this implication holds for all w1, w2. Suppose that there exist w1 ∈ L
and w2 ∈ Lc such that β(w1) = β(w2), in order to provide a contradiction.

Let w be the word w1 · • ·w1, over the alphabet At{•}. This word w is in Π(R1)∩Π(R2),
let π the unique word over B ∪ {•,�} such that

(
w
π

)
∈ F .

We suppose for instance that
(
w
π

)
∈ R1 (the case

(
w
π

)
∈ R2 is symmetric). Because

• /∈ A, π is necessarily of the shape π1 · • ·�|w1|, with π1 ∈ B|w1|.
Let now w′ be the word w2 · • · w1 and let π′ be the unique word such that

(
w′

π′

)
∈ F .

Again, π′ is of the shape �|w2| · • · π′1, with π′1 ∈ B|w1|. Since β(w2) = β(w1), we know
that α(

( w′

�|w2|·•·π′1

)
) = α(

( w
�|w1|·•·π′1

)
). The latter value does not belong to T because( w

�|w1|·•·π′1

)
/∈ F – we know that F is a uniformisation and π 6= �|w1| · • · π′1. This means

that
(
w′

π′

)
is not in F , contradicting the assumption, and concluding the proof of this fact. J

Now we go back to the proof of Lemma 15. The letters
( a0
40

)
, . . . ,

( ap−1
4p−1

)
,
( •
•
)
are all

pairwise distinct, and none of them is in the alphabet A× {�}. Therefore, Lemma 14 tells
us that R1 and R2 are in L. This means that P := R1 ∪ R2 is in L, and we can conclude
with Fact 16 that [∃a0< . . .<ap−1]A = Π(R) is in L.

I Corollary 17. Let A0, . . . ,Ap−1 be pairwise disjoint alphabets contained in A. Then the
language L = A∗0 · A∗1 . . .A∗p−1 \ {ε} is in L.

Proof. It is enough to observe that L =
⋂
i∈j∈p

⋂
ai∈Ai

⋂
aj∈Aj [∃aj < ai]cA (where A is

the union of the Ai’s). J
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3.6 Polynomials
We will now prove a variant of Lemma 15 for polynomials. A monomial is a language of
the shape L0 · L1 · · ·Lp−1, where each Li is either of the form A∗i , or a set of single-letter
words over Ai, and such that at least one of the Li’s is of the latter kind. An example of
a monomial is the language

{a, b}∗ · {x, y} · {x}∗.

Notice that the alphabets Ai are not required to be pairwise disjoint in that definition.
A polynomial is a finite union of monomials. This section is devoted to a proof of the
following lemma.

I Lemma 18. Any polynomial is in L.

First notice that L is closed under unions and therefore it is enough to prove the lemma
for monomials. Consider a monomial L over an alphabet A, i.e. L = Aξ0

0 ·A
ξ1
1 · · ·A

ξp−1
p−1 , where

each ξi is either ∗ or 1 (because A1
i = Ai). Take A′ := A t {•}, B := {∆0, . . . ,∆p−1, •,�}.

Let R :=
( A0

∆0

)ξ0 · · ·
( Ap−1

∆p−1

)ξp−1 , R1 := R ·
( •
•
)
·
( A
�

)∗, and R2 :=
( A
�

)∗ · ( •• ) ·R.
Notice that

R1 =
( A0

∆0

)∗ · · · ( Ap−1
∆p−1

)∗ · ( •• )∗ · ( A
�

)∗ ∩ [∃=1( •
•
)]

A′×B ∩
⋂
i∈p

Ξi, (3)

where each Ξi is either:
(
A′ × B

)+ if ξi = ∗; or
[
∃=1Ai × {∆i}

]
A′×B if ξi = 1. Now, the first

ingredient on the right-hand side of (3) is as in Corollary 17 and thus belongs to L. The
other ingredients also belong to L, see Lemma 10, and Corollary 13. Similarly we know that
R2 ∈ L. Thus, Fact 16 implies that L = Π(R) ∈ L, which concludes the proof of Lemma 18.
I Remark 19. The family of polynomials is closed under union and concatenation.

3.7 Semigroups
We can now conclude the proof of Theorem 2. Let L be a regular language over some
alphabet A, that is recognised by a tuple 〈S, α, T 〉 with a finite semigroup S that may
a priori not belong to S. Our aim is to prove that L ∈ L.

Consider a word
(
w
σ

)
∈
(
A× S

)+ of length n. We say that such a word is an evaluation
if for every i ∈ n we have σ(i) = α

(
w(0) · · ·w(i)

)
. Notice that in that case w ∈ L if and

only if σ(n−1) ∈ T . Let E be the set of words
(
w
σ

)
∈
(
A × S

)+ that are evaluations and
σ(n−1) ∈ T .

B Claim 20. Using the above notions, we have Π(E) = L.

Proof. Every word w ∈ An with n ≥ 1 admits a unique word σ ∈ Sn such that
(
w
σ

)
is

an evaluation. In that case α(w) = σ(n−1). Thus, w ∈ L iff. σ(n−1) ∈ T iff.
(
w
σ

)
∈ E. C

Our aim is to show that a variant of the set of evaluations E belongs to L and then
invoke Fact 16 to project away the S coordinate of the evaluations.

Consider a, b ∈ A and r, s ∈ S and define

Ia,r :=
(
a
r

)
·
(
A
S

)∗
, Ma,r,b,s :=

(
A
S

)∗ · ( ar ) · ( bs ) · ( A
S

)∗
, Fa,r :=

(
A
S

)∗ · ( ar ).
Let W be the union of the languages: Ia,r ranging over a ∈ A, r ∈ S such that α(a) 6= r;

Ma,r,b,s ranging over those a, b ∈ A, r, s ∈ S such that r · α(b) 6= s; and Fa,r ranging over
r /∈ T . Notice that W defined that way is a polynomial.

MFCS 2019
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B Claim 21. The complement of W equals E.

Proof. Clearly E ∩W = ∅. Thus, it is enough to prove that if
(
w
σ

)
/∈W then

(
w
σ

)
∈ E. Let

n = |w| = |σ|. Since
(
w
σ

)
/∈W , we know that σ(n−1) ∈ T (see the languages Fa,r), thus it is

enough to show that
(
w
σ

)
is an evaluation. It is done inductively, for i = 0, 1, . . . , n−1. The

fact that σ(0) = α
(
w(0)

)
follows from the assumption that

(
w
σ

)
/∈W (see the languages Ia,r).

Take i < n−1 and assume that σ(i) = α
(
w(0) · · ·w(i)

)
. Observe that σ(i+1) must equal

σ(i) · α
(
w(i+1)

)
(see the languages Ma,r,b,s). Thus, σ(i+1) = α

(
w(0) · · ·w(i+1)

)
. C

Consider fresh letters • and •, and the alphabets A′ := A t {•}, S′ := S t {•,∆}. Let:

R1 := W ·
( •
•
)
·
( A

∆
)∗
, R2 :=

( A
∆
)∗ · ( •• ) ·W,

R′1 := Rc
1 ∩

(
A
S

)∗ · ( •• ) · ( A
∆
)∗
, R′2 := Rc

2 ∩
( A

∆
)∗ · ( •• ) · ( A

S

)∗
, P := R′1 ∪R′2.

Notice that both R1 and R2 are polynomials (see Remark 19) and therefore all the five
relations defined above belong to L.

B Claim 22. Using the above notions, we have

R′1 = E ·
( •
•
)
·
( A

∆
)∗
, R′2 =

( A
∆
)∗ · ( •• ) · E.

Proof. These equalities follow directly from the definition and Claim 21. C

Therefore, Fact 16 applied to P guarantees that Π(E) ∈ L. Thus, by Claim 20 we know
that L ∈ L. This concludes the proof of Theorem 2.

4 Conclusions

The main result of this work shows that among pseudo-varieties of semigroups, only REG
=MSO is strong enough to have the uniformisation property over finite words. It seems
that exactly the same techniques work also for infinite words and finite trees, however the
technical details are more involved there. This means that, to be able to choose witnesses
in a definable way, one needs to have access to the unrestricted quantification over these
witnesses (i.e. monadic quantifiers).

The actual arguments used in the presented proof are rather direct: they boil down to
finding an appropriate relation R that is definable in the considered formalism, such that
any uniformisation of R must provide some added expressive power. However, the difficulty
of that reasoning lies in the deliberate design of the relations R. From this perspective, the
proof can be read as a collection of instances showing how uniformisability (or generally
ability to choose witnesses) leads to an increased expressive power.

The results of this work are in a sense negative, showing that all formalisms below MSO
do not admit uniformisation. However, still some relations can be uniformised within the
limited expressive power. This leads to the following decision problem:

I Problem 23. Given a regular language R over a product alphabet A×B, decide if R admits
an FO[<]-definable uniformisation.

Note that even if R itself is not FO[<]-definable, it might be the case that there is
an FO[<]-definable uniformisation of R. The status of this problem is open at the moment.
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