
Constant Delay Enumeration with
FPT-Preprocessing for Conjunctive Queries of
Bounded Submodular Width
Christoph Berkholz
Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
berkholz@informatik.hu-berlin.de

Nicole Schweikardt
Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
schweikn@informatik.hu-berlin.de

Abstract
Marx (STOC 2010, J. ACM 2013) introduced the notion of submodular width of a conjunctive
query (CQ) and showed that for any class Φ of Boolean CQs of bounded submodular width, the
model-checking problem for Φ on the class of all finite structures is fixed-parameter tractable (FPT).
Note that for non-Boolean queries, the size of the query result may be far too large to be computed
entirely within FPT time. We investigate the free-connex variant of submodular width and generalise
Marx’s result to non-Boolean queries as follows: For every class Φ of CQs of bounded free-connex
submodular width, within FPT-preprocessing time we can build a data structure that allows to
enumerate, without repetition and with constant delay, all tuples of the query result. Our proof
builds upon Marx’s splitting routine to decompose the query result into a union of results; but we
have to tackle the additional technical difficulty to ensure that these can be enumerated efficiently.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Finite Model Theory; Theory of computation → Fixed parameter tractability;
Theory of computation → Database theory; Theory of computation → Database query processing
and optimization (theory)

Keywords and phrases conjunctive queries, constant delay enumeration, hypertree decompositions,
submodular width, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.58

Funding Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
SCHW 837/5-1.

1 Introduction

In the past decade, starting with Durand and Grandjean [19], the fields of logic in computer
science and database theory have seen a large number of contributions that deal with the
efficient enumeration of query results. In this scenario, the objective is as follows: given a
finite relational structure (i.e., a database) and a logical formula (i.e., a query), after a short
preprocessing phase, the query results shall be generated one by one, without repetition,
with guarantees on the maximum delay time between the output of two tuples. In this vein,
the best that one can hope for is constant delay (i.e., the delay may depend on the size of
the query but not on that of the input structure) and linear preprocessing time (i.e., time
f(ϕ)·O(N) where N is the size of a reasonable representation of the input structure, ϕ is the
query, and f(ϕ) is a number only depending on the query but not on the input structure).
Constant delay enumeration has also been adopted as a central concept in factorised databases
that gained recent attention [37, 36].

© Christoph Berkholz and Nicole Schweikardt;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 58; pp. 58:1–58:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:berkholz@informatik.hu-berlin.de
mailto:schweikn@informatik.hu-berlin.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Constant Delay Enumeration with FPT-Preprocessing

Quite a number of query evaluation problems are known to admit constant delay algorithms
preceded by linear or pseudo-linear time preprocessing. This is the case for all first-order
queries, provided that they are evaluated over classes of structures of bounded degree [19,
27, 13, 30], low degree [20], bounded expansion [28], locally bounded expansion [41], and
on classes that are nowhere dense [39]. Also different data models have been investigated,
including tree-like data and document spanners [8, 29, 7]. Recently, also the dynamic setting,
where a fixed query has to be evaluated repeatedly against a database that is constantly
updated, has received quite some attention [31, 13, 12, 25, 14, 5, 35, 34, 6].

This paper deals with the classical, static setting without database updates. We focus on
evaluating conjunctive queries (CQs, i.e., primitive-positive formulas) on arbitrary relational
structures.1 In the following, FPT-preprocessing (resp., FPL-preprocessing) means prepro-
cessing that takes time f(ϕ)·NO(1) (resp., f(ϕ)·O(N)), and constant delay means delay f(ϕ),
where f is a computable function, ϕ is the query, and N is the size of the input structure.

Bagan et al. [10] showed that every free-connex acyclic CQ allows constant delay enu-
meration after FPL-preprocessing. More refined results in this vein are due to Bagan [9]
and Brault-Baron [16]; see [40] for a survey. Bagan et al. [10] complemented their result
by a conditional lower bound: assuming that Boolean matrix multiplication cannot be
accomplished in time O(n2), self-join-free acyclic CQs that are not free-connex cannot be
enumerated with constant delay and FPL-preprocessing. This demonstrates that even if the
evaluation of Boolean queries is easy (as known for all acyclic CQs [42]), the enumeration
of the results of non-Boolean queries might be hard (here, for acyclic CQs that are not
free-connex).

Bagan et al. [10] also introduced the notion of free-connex (fc) treewidth (tw) of a CQ
and showed that for every class Φ of CQs of bounded fc-tw, within FPT-preprocessing time,
one can build a data structure that allows constant delay enumeration of the query results.
This can be viewed as a generalisation, to the non-Boolean case, of the well-known result
stating that the model-checking problem for classes of Boolean CQs of bounded treewidth is
FPT. Note that for non-Boolean queries – even if they come from a class of bounded fc-tw –
the size of the query result may be NΩ(||ϕ||), i.e., far too large to be computed entirely within
FPT-preprocessing time; and generalising the known tractability result for Boolean CQs to
the non-Boolean case is far from trivial.

In a series of papers, the FPT-result for Boolean CQs has been strengthened to more and
more general width-measures, namely to classes of queries of bounded generalised hypertree
width (ghw) [23], bounded fractional hypertree width (fhw) [24], and bounded submodular
width (subw) [33]. The result on bounded fhw has been generalised to the non-Boolean
case in the context of factorised databases [37], which implies constant delay enumeration
after FPT-preprocessing for CQs of bounded free-connex fractional hypertree width (fc-fhw).
Related data structures that allow constant delay enumeration after FPT-preprocessing for
(quantifier-free) CQs of bounded (fc-)fhw have also been provided in [18, 26].

An analogous generalisation of the result on bounded submodular width, however, is still
missing. The present paper’s main result closes this gap: we show that on classes of CQs of
bounded fc-subw, within FPT-preprocessing time one can build a data structure that allows
constant delay enumeration of the query results. And within the same FPT-preprocessing
time, one can also construct a data structure that enables to test in constant time whether
an input tuple belongs to the query result. Our proof uses Marx’s splitting routine [33] to
decompose the query result of ϕ on A into the union of results of several queries ϕi on several

1 In this paper, structures will always be finite and relational.

C. Berkholz and N. Schweikardt 58:3

structures Ai but we have to tackle the additional technical difficulty to ensure that the
results of all the ϕi on Ai can be enumerated efficiently. Once having achieved this, we can
conclude by using an elegant trick provided by Durand and Strozecki [21] for enumerating,
without repetition, the union of query results.

As an immediate consequence of the lower bound provided by Marx [33] in the context
of Boolean CQs of unbounded submodular width, one obtains that our main result is tight
for certain classes of CQs, namely, recursively enumerable classes Φ of quantifier-free and
self-join-free CQs: assuming the exponential time hypothesis (ETH), such a class Φ allows
constant delay enumeration after FPT-preprocessing if, and only if, Φ has bounded fc-subw.

Let us mention a related recent result which, however, is incomparable to ours. Abo Kha-
mis et al. [3] designed an algorithm for evaluating a quantifier-free CQ ϕ of submodular width
w within time O(Nw)·(logN)f(ϕ) + O(r· logN); and an analogous result is also achieved
for non-quantifier-free CQs of fc-subw w [2]. Here, N is the size of the input structure, r
is the number of tuples in the query result, and f(ϕ) is at least exponential in number of
variables of ϕ. In particular, the algorithm does not distinguish between a preprocessing
phase and an enumeration phase and does not provide a guarantee on the delay. Also, due
to the factor (logN)f(ϕ), where f(ϕ) is not bounded in terms of w, it seems unlikely that
the approach can easily be adapted to yield a method for constant delay enumeration after
FPT-preprocessing for classes of CQs of bounded fc-subw.

Outline. The rest of the paper is structured as follows. Section 2 provides basic notations
concerning structures, queries, and constant delay enumeration. Section 3 recalls concepts
of (free-connex) decompositions of queries, provides a precise statement of our main result,
and collects the necessary tools for obtaining this result. Section 4 is devoted to the detailed
proof of our main result. We conclude in Section 5. Due to space restrictions, some proof
details had to be deferred to the full version of the paper.

2 Preliminaries

In this section we fix notation and summarise basic definitions.

Basic notation. We write N and R>0 for the set of non-negative integers and reals, respect-
ively, and we let N>1 := N \ {0} and [n] := {1, . . . , n} for all n ∈ N>1. By 2S we denote the
power set of a set S. Whenever G denotes a graph, we write V (G) and E(G) for the set of
nodes and the set of edges, respectively, of G. Whenever writing a to denote a k-tuple (for
some arity k ∈ N), we write ai to denote the tuple’s i-th component; i.e., a = (a1, . . . , ak).
For a k-tuple a and indices i1, . . . , i` ∈ [k] we let πi1,...,i`(a) := (ai1 , . . . , ai`). For a set S of
k-tuples we let πi1,...,i`(S) := {πi1,...,i`(a) : a ∈ S}.

If h and g are mappings with domains X and Y , respectively, we say that h and g are
joinable if h(z) = g(z) holds for all z ∈ X ∩ Y . In case that h and g are joinable, we write
h on g to denote the mapping f with domain X ∪ Y where f(x) = h(x) for all x ∈ X

and f(y) = g(y) for all y ∈ Y . If A and B are sets of mappings with domains X and Y ,
respectively, then A on B := {h on g : h ∈ A, g ∈ B, and h and g are joinable}.

We use the following further notation where A is a set of mappings with domain X

and h ∈ A. For a set I ⊆ X, the projection πI(h) is the restriction h|I of h to I; and
πI(A) := {πI(h) : h ∈ A}. For objects z, c where z 6∈ X, we write h ∪ {(z, c)} for the
extension h′ of h to domain X ∪ {z} with h′(z) = c and h′(x) = h(x) for all x ∈ X.

MFCS 2019

58:4 Constant Delay Enumeration with FPT-Preprocessing

Signatures and structures. A signature is a finite set σ of relation symbols, where each
R ∈ σ is equipped with a fixed arity ar(R) ∈ N>1. A σ-structure A consists of a finite set A
(called the universe or domain of A) and an ar(R)-ary relation RA ⊆ Aar(R) for each R ∈ σ.
The size ||σ|| of a signature σ is |σ|+

∑
R∈σ ar(R). We write nA to denote the cardinality

|A| of A’s universe, we write mA to denote the number of tuples in A’s largest relation,
and we write NA or ||A|| to denote the size of a reasonable encoding of A. To be specific,
let NA = ||A|| = ||σ|| + nA +

∑
R∈σ ||RA||, where ||RA|| = ar(R)·|RA|. Whenever A is clear

from the context, we will omit the superscript ·A and write n,m,N instead of nA,mA, NA.
Consider signatures σ and τ with σ ⊆ τ . The σ-reduct of a τ -structure B is the σ-structure
A with A = B and RA = RB for all R ∈ σ. A τ -expansion of a σ-structure A is a τ -structure
B whose σ-reduct is A.

Conjunctive Queries. We fix a countably infinite set var of variables. We allow queries to
use arbitrary relation symbols of arbitrary arities. An atom α is of the form R(v1, . . . , vr)
with r = ar(R) and v1, . . . , vr ∈ var. We write vars(α) to denote the set of variables occurring
in α. A conjunctive query (CQ, for short) is of the form ∃z1 · · · ∃z`

(
α1 ∧ · · · ∧ αd

)
, where

` ∈ N, d ∈ N>1, αj is an atom for every j ∈ [d], and z1, . . . , z` are pairwise distinct elements
in vars(α1) ∪ · · · ∪ vars(αd). For such a CQ ϕ we let atoms(ϕ) = {α1, . . . , αd}. We write
vars(ϕ) and σ(ϕ) for the set of variables and the set of relation symbols occurring in ϕ,
respectively. The set of quantified variables of ϕ is quant(ϕ) := {z1, . . . , z`}, and the set of
free variables is free(ϕ) := vars(ϕ) \ quant(ϕ). We sometimes write ϕ(x1, . . . , xk) to indicate
that x1, . . . , xk are the free variables of ϕ. The arity of ϕ is the number k := |free(ϕ)|. The
query ϕ is called quantifier-free if quant(ϕ) = ∅, it is called Boolean if its arity is 0, and it is
called self-join-free if no relation symbol occurs more than once in ϕ.

The semantics are defined as usual: A valuation for ϕ on a σ(ϕ)-structure A is
a mapping β : vars(ϕ) → A. A valuation β is a homomorphism from ϕ to a A if
for every atom R(v1, . . . , vr) ∈ atoms(ϕ) we have

(
β(v1), . . . , β(vr)

)
∈ RA. The query

result JϕKA of a CQ ϕ on the σ(ϕ)-structure A is defined as the set {πfree(ϕ)(β) :
β is a homomorphism from ϕ to A}. Often, we will identify the mappings g ∈ JϕKA with
tuples (g(x1), . . . , g(xk)), where x1, . . . , xk is a fixed listing of the free variables of ϕ.

The size ||ϕ|| of a query ϕ is the length of ϕ when viewed as a word over the alphabet
σ(ϕ) ∪ vars(ϕ) ∪ {∃, ∧ , (,) } ∪ { , }.

Model of computation. For the complexity analysis we assume the RAM-model with a
uniform cost measure. In particular, storing and accessing elements from a structure’s universe
requires O(1) space and time. For an r-ary relation RA we can construct in time O(‖RA‖) an
index that allows to enumerate RA with O(1) delay and to test for a given r-tuple a whether
a ∈ RA in time O(r). Moreover, for every {i1, . . . , i`} ⊆ [r] we can build a data structure
where we can enumerate for every `-tuple b the selection {a ∈ RA : πi1,...,i`(a) = b} with
O(1) delay. Such a data structure can be constructed in time O(‖RA‖), for instance by a
linear scan over RA where we add every tuple a ∈ RA to a list Lπi1,...,i`

(a). Using a constant
access data structure of linear size, the list Lb can be accessed in time O(`) when receiving
an `-tuple b.

Constant delay enumeration and testing. An enumeration algorithm for query evaluation
consists of two phases: the preprocessing phase and the enumeration phase. In the prepro-
cessing phase the algorithm is allowed to do arbitrary preprocessing on the query ϕ and
the input structure A. We denote the time required for this phase by tp. In the subsequent

C. Berkholz and N. Schweikardt 58:5

enumeration phase the algorithm enumerates, without repetition, all tuples (or, mappings)
in the query result JϕKA, followed by the end-of-enumeration message EOE. The delay td is
the maximum time that passes between the start of the enumeration phase and the output
of the first tuple, between the output of two consecutive tuples, and between the last tuple
and EOE.

A testing algorithm for query evaluation also starts with a preprocessing phase of time tp
in which a data structure is computed that allows to test for a given tuple (or, mapping) b
whether it is contained in the query result JϕKA. The testing time tt of the algorithm is an
upper bound on the time that passes between receiving b and providing the answer.

One speaks of constant delay (testing time) if the delay (testing time) depends on the
query ϕ, but not on the input structure A.

We make use of the following result from Durand and Strozecki, which allows to efficiently
enumerate the union of query results, provided that each query result in the union can be
enumerated and tested efficiently. Note that this is not immediate, because the union might
contain many duplicates that need to be avoided during enumeration.

I Theorem 2.1 ([21]). Suppose that there is an enumeration algorithm A that receives a
query ϕ and a structure A and enumerates JϕKA with delay td(ϕ) after tp(ϕ,A) preprocessing
time. Further suppose that there is a testing algorithm B that receives a query ϕ and a
structure A and has tp(ϕ,A) preprocessing time and tt(ϕ) testing time. Then there is an
algorithm C that receives ` queries ϕi and structures Ai and allows to enumerate

⋃
i∈[`]JϕiK

Ai

with O(
∑
i∈[`] td(ϕi) +

∑
i∈[`] tt(ϕi)) delay after O(

∑
i∈[`] tp(ϕi,Ai)) preprocessing time.

Proof (sketch). The induction start ` = 1 is trivial. For the induction step `→ `+ 1 start
an enumeration of

⋃
i∈[`]JϕiK

Ai and test for every tuple whether it is contained in Jϕ`+1KA`+1 .
If the answer is no, then output the tuple. Otherwise discard the tuple and instead output
the next tuple in an enumeration of Jϕ`+1KA`+1 . Subsequently enumerate the remaining
tuples from Jϕ`+1KA`+1 . J

3 Main Result

At the end of this section, we provide a precise statement of our main result. Before we can
do so, we have to recall the concept of free-connex decompositions of queries and the notion
of submodular width. It will be convenient for us to use the following notation.

I Definition 3.1. Let ϕ = ∃z1 · · · ∃z`
(
α1 ∧ · · · ∧ αd

)
be a CQ and S ⊆ vars(ϕ). We write

ϕ〈S〉 for the CQ that is equivalent to the expression(
∃y1 · · · ∃yr α1

)
∧ · · · ∧

(
∃y1 · · · ∃yr αd

)
, (1)

where {y1, . . . , yr} = vars(ϕ) \ S.

Note that ϕ〈S〉 is obtained from ϕ by discarding existential quantification and projecting
every atom to S, hence free(ϕ〈S〉) = S. However, Jϕ〈S〉KA shall not be confused with the
projection of JϕKA to S. In fact, it might be that JϕKA is empty, but Jϕ〈S〉KA is not, as the
following example illustrates:

ϕ = E(x, y) ∧ E(y, z) ∧ E(x, z) and (2)
ϕ〈{x, z}〉 ≡ ∃yE(x, y) ∧ ∃yE(y, z) ∧ ∃yE(x, z) (3)

≡ E(x, z) . (4)

MFCS 2019

58:6 Constant Delay Enumeration with FPT-Preprocessing

3.1 Constant delay enumeration using tree decompositions
We use the same notation as [22] for decompositions of queries: A tree decomposition (TD,
for short) of a CQ ϕ is a tuple TD = (T, χ), for which the following two conditions are
satisfied:
1. T = (V (T), E(T)) is a finite undirected tree.
2. χ is a mapping that associates with every node t ∈ V (T) a set χ(t) ⊆ vars(ϕ) such that

a. for each atom α ∈ atoms(ϕ) there exists t ∈ V (T) such that vars(α) ⊆ χ(t), and
b. for each variable v ∈ vars(ϕ) the set χ−1(v) := {t ∈ V (T) : v ∈ χ(t)} induces a

connected subtree of T (this condition is called path condition).

To use a tree decomposition TD = (T, χ) of ϕ for query evaluation one considers, for
each t ∈ V (T) the query ϕ〈S〉 for S := χ(t), evaluates this query on the input structure
A, and then combines these results for all t ∈ V (T) along a bottom-up traversal of T . If
the query is Boolean, this yields the result of ϕ on A; if it is non-Boolean, JϕKA can be
computed by performing additional traversals of T . This approach is efficient if the result
sets Jϕ〈χ(t)〉KA are small and can be computed efficiently (later on, we will sometimes refer
to the sets Jϕ〈χ(t)〉KA as projections on bags).

The simplest queries where this is the case are acyclic queries [11, 15]. A number of
equivalent characterisations of the acyclic CQs have been provided in the literature (cf.
[1, 23, 25, 17]); among them a characterisation by Gottlob et al. [23] stating that a CQ is
acyclic if and only if it has a tree-decomposition where every bag is covered by an atom, i.e.,
for every bag χ(t) there is some atom α in ϕ with χ(t) ⊆ vars(α). The approach described
above leads to a linear time algorithm for evaluating an acyclic CQ ϕ that is Boolean, and if
ϕ is non-Boolean, JϕKA is computed in time linear in ||A||+ | JϕKA|. This method is known
as Yannakakis’ algorithm. But this algorithm does not distinguish between a preprocessing
phase and an enumeration phase and does not guarantee constant delay enumeration. In fact,
Bagan et al. identified the following additional property that is needed to ensure constant
delay enumeration.

I Definition 3.2 ([10]). A tree decomposition TD = (T, χ) of a CQ ϕ is free-connex if there
is a subset U ⊆ V (T) that induces a connected subtree of T and that satisfies the condition
free(ϕ) =

⋃
t∈U χ(t).

Bagan et al. [10] identified the free-connex acyclic CQs, i.e., the CQs ϕ that have a
free-connex tree decomposition where every bag is covered by an atom, as the fragment of the
acyclic CQs whose results can be enumerated with constant delay after FPL-preprocessing:

I Theorem 3.3 (Bagan et al. [10]). There is a computable function f and an algorithm
which receives a free-connex acyclic CQ ϕ and a σ(ϕ)-structure A and computes within
tp = f(ϕ)O(||A||) preprocessing time and space a data structure that allows to
(i) enumerate JϕKA with f(ϕ) delay and
(ii) test for a given tuple (or, mapping) b if b ∈ JϕKA within f(ϕ) testing time.

The approach of using free-connex tree decompositions for constant delay enumeration
can be extended from acyclic CQs to arbitrary CQs. To do this, we have to compute for every
bag χ(t) in the tree decomposition the projection Jϕ〈χ(t)〉KA. This reduces the task to the
acyclic case, where the free-connex acyclic query contains one atom α with vars(α) = χ(t) for
every bag χ(t) and the corresponding relation is defined by Jϕ〈χ(t)〉KA. Because the runtime
in this approach is dominated by computing Jϕ〈χ(t)〉KA, it is only feasible if the projections
are efficiently computable for every bag. If the decomposition has bounded treewidth or

C. Berkholz and N. Schweikardt 58:7

bounded fractional hypertree width, then it is possible to compute Jϕ〈χ(t)〉KA for every bag
in time f(ϕ)·||A||O(1) [24], which in turn implies that the result can be enumerated after
FPT-preprocessing time for CQs of bounded fc-tw [10] and for CQs of bounded fc-fhw [37].

3.2 Submodular width and statement of the main result
Before providing the precise definition of the submodular width of a query, let us first consider
an example. The central idea behind algorithms that rely on submodular width [33, 3, 38] is to
split the input structure into several parts and use for every part a different tree decomposition
of ϕ. This will give a significant improvement over the fractional hypertree width, which uses
only one tree decomposition of ϕ. A typical example to illustrate this idea is the following
4-cycle query (see also [3, 38]): ϕ4 := E12(x1, x2) ∧ E23(x2, x3) ∧ E34(x3, x4) ∧ E41(x4, x1).

There are essentially two non-trivial tree decompositions TD′ = (T, χ′), TD′′ = (T, χ′′)
of ϕ4, which are both defined over the two-vertex tree T = ({t1, t2}, {(t1, t2)}) by χ′(t1) =
{x1, x2, x3}, χ′(t2) = {x1, x3, x4} and χ′′(t1) = {x2, x3, x4}, χ′′(t2) = {x1, x2, x4}. Both tree
decompositions lead to an optimal fractional hypertree decomposition of width fhw(ϕ4) = 2.
Indeed, for the worst-case instance A with

EA12 = EA34 := [`]× {a} ∪ {b} × [`] EA23 = EA41 := [`]× {b} ∪ {a} × [`]

we have ‖A‖ = O(`) while the projections on the bags have size Ω(`2) in both decompositions:2

Jϕ4〈χ′(t1)〉KA = Jϕ4〈χ′(t2)〉KA = [`]× {a} × [`] ∪ {b} × [`]× {b},
Jϕ4〈χ′′(t1)〉KA = Jϕ4〈χ′′(t2)〉KA = [`]× {b} × [`] ∪ {a} × [`]× {a}.

However, we can split A into A′ and A′′ such that Jϕ4KA is the disjoint union of Jϕ4KA
′ and

Jϕ4KA
′′ and the bag-sizes in the respective decompositions are small:

EA
′

12 = EA
′

34 := {b} × [`] EA
′

23 = EA
′

41 := [`]× {b}

EA
′′

12 = EA
′′

34 := [`]× {a} EA
′′

23 = EA
′′

41 := {a} × [`]

Jϕ4〈χ′(t1)〉KA
′

= Jϕ4〈χ′(t2)〉KA
′

= {b} × [`]× {b},

Jϕ4〈χ′′(t1)〉KA
′′

= Jϕ4〈χ′′(t2)〉KA
′′

= {a} × [`]× {a}.

Thus, we can efficiently evaluate ϕ4 on A′ using TD′ and ϕ4 on A′′ using TD′′ (in time
O(`) in this example) and then combine both results to obtain ϕ4(A). Using the strategy
of Alon et al. [4], it is possible to split every database A for this particular 4-cycle query
ϕ4 into two instances A′ and A′′ such that the bag sizes in TD′ on A′ as well as in TD′′

on A′′ are bounded by ‖A‖3/2 and can be computed in time O(‖A‖3/2) (see [3, 38] for a
detailed account on this strategy). As both decompositions are free-connex, this also leads
to a constant delay enumeration algorithm for ϕ4 with O(‖A‖3/2) time preprocessing, which
improves the O(‖A‖2) preprocessing time that follows from using one decomposition.

In general, whether such a data-dependent decomposition is possible is determined
by the submodular width subw(ϕ) of the query. The notion of submodular width was
introduced in [33]. To present its definition, we need the following terminology. A function
g : 2vars(ϕ) → R>0 is

monotone if g(U) 6 g(V) for all U ⊆ V ⊆ vars(ϕ).

2 recall from Section 2 our convention to identify mappings in query results with tuples; the free variables
are listed canonically here, by increasing indices

MFCS 2019

58:8 Constant Delay Enumeration with FPT-Preprocessing

edge-dominated if g(vars(α)) 6 1 for every atom α ∈ atoms(ϕ).
submodular, if g(U) + g(V) > g(U ∩ V) + g(U ∪ V) for every U, V ⊆ vars(ϕ).

We denote by S(ϕ) the set of all monotone, edge-dominated, submodular functions
g : 2vars(ϕ) → R>0 that satisfy g(∅) = 0, and by T(ϕ) the set of all tree decompositions
of ϕ. The submodular width of a conjunctive query ϕ is

subw(ϕ) := sup
g∈S(ϕ)

min
(T,χ)∈T(ϕ)

max
t∈V (T)

g(χ(t)). (5)

In particular, if the submodular width of ϕ is bounded by w, then for every submodular
function g there is a tree decomposition in which every bag B satisfies g(B) 6 w.

It is known that subw(ϕ) 6 fhw(ϕ) for all queries ϕ [33, Proposition 3.7]. Moreover,
there is a constant c and a family of queries ϕ such that subw(ϕ) 6 c is bounded and
fhw(ϕ) = Ω(

√
log ‖ϕ‖) is unbounded [32, 33]. The main result in [33] is that the submodular

width characterises the tractability of Boolean CQs in the following sense.

I Theorem 3.4 ([33]).
(1) There is a computable function f and an algorithm that receives a Boolean CQ ϕ,

subw(ϕ), and a σ(ϕ)-structure A and evaluates ϕ on A in time f(ϕ)||A||O(subw(ϕ)).
(2) Let Φ be a recursively enumerable class of Boolean, self-join-free CQs of unbounded

submodular width. Assuming the exponential time hypothesis (ETH) there is no algorithm
which, upon input of a query ϕ ∈ Φ and a structure A, evaluates ϕ on A in time
||A||o(subw(ϕ)1/4).

The free-connex submodular width of a conjunctive query ϕ is defined in a similar way
as submodular width, but this time ranges over the set fcT(ϕ) of all free-connex tree
decompositions of ϕ (it is easy to see that we can assume that fcT(ϕ) is finite).

fc-subw(ϕ) := sup
g∈S(ϕ)

min
(T,χ)∈fcT(ϕ)

max
t∈V (T)

g(χ(t)). (6)

Note that if ϕ is either quantifier-free or Boolean, we have fc-subw(ϕ) = subw(ϕ). In
general, this is not always the case. Consider for example the following quantified version
ϕ′4 := ∃x1∃x3 ϕ4 of the quantifier-free 4-cycle query ϕ4. Here we have subw(ϕ′4) = 3

2 ,
but fc-subw(ϕ′4) = 2: one can verify fc-subw(ϕ′4) > 2 by noting that every free-connex
tree decomposition contains a bag {x1, x2, x3, x4} and taking the submodular function
g(U) := 1

2 |U |. Now we are ready to state the main theorem of this paper.

I Theorem 3.5. For every δ > 0 and w > 1 there is a computable function f and an
algorithm which receives a CQ ϕ with fc-subw(ϕ) 6 w and a σ(ϕ)-structure A and computes
within tp = f(ϕ)||A||(2+δ)w preprocessing time and space f(ϕ)||A||(1+δ)w a data structure that
allows to
(i) enumerate JϕKA with f(ϕ) delay and
(ii) test for a given tuple (or, mapping) b if b ∈ JϕKA within f(ϕ) testing time.

The following corollary is an immediate consequence of Theorem 3.5 and Theorem 3.4. A
class Φ of CQs is said to be of bounded free-connex submodular width if there exists a number
w such that fc-subw(ϕ) 6 w for all ϕ ∈ Φ. And by an algorithm for Φ that enumerates with
constant delay after FPT-preprocessing we mean an algorithm that receives a query ϕ ∈ Φ
and a σ(ϕ)-structure A and spends f(ϕ)||A||O(1) preprocessing time and then enumerates
JϕKA with delay f(ϕ), for a computable function f .

C. Berkholz and N. Schweikardt 58:9

I Corollary 3.6.
(1) For every class Φ of CQs of bounded free-connex submodular width, there is an algorithm

for Φ that enumerates with constant delay after FPT-preprocessing.
(2) Let Φ be a recursively enumerable class of quantifier-free self-join-free CQs and assume

that the exponential time hypothesis (ETH) holds.
Then there is an algorithm for Φ that enumerates with constant delay after FPT-
preprocessing if, and only if, Φ has bounded free-connex submodular width.

4 Proof of the Main Result

To prove Theorem 3.5, we make use of Marx’s splitting routine for queries of bounded
submodular width. In the following, we will adapt the main definitions and concepts
from [33] to our notions. While doing this, we provide the following additional technical
contributions: First, we give a detailed time and space analysis of the algorithm and improve
the runtime of the consistency algorithm [33, Lemma 4.5] from quadratic to linear (see
Lemma 4.2). Second, we fix an oversight in [33, Lemma 4.12] by establishing strong M -
consistency (unfortunately, this fix incurs a blow-up in running time). Afterwards we prove
our main theorem, where the non-Boolean setting requires us to relax Marx’s partition into
refinements (Lemma 4.5) so that the subinstances are no longer disjoint.

Let ϕ be a quantifier-free CQ with vars(ϕ) = {x1, . . . , xk}, and let σ := σ(ϕ). For every
S = {xi1 , . . . , xi`} ⊆ vars(ϕ) where i1 < · · · < i` we set xS := (xi1 , . . . , xi`) and let RS /∈ σ
be a fresh `-ary relation symbol. For every collection s ⊆ 2vars(ϕ) we let

σs := σ ∪ {RS : S ∈ s} and (7)
ϕs := ϕ ∧

∧
S∈sRS(xS). (8)

A refinement of ϕ and a σ-structure A is a pair (s,B), where s ⊆ 2vars(ϕ) is closed under
taking subsets and B is a σs-expansion of A. Note that if (s,B) is a refinement of ϕ and
A, then JϕsKB ⊆ JϕKA. In the following we will construct refinements that do not change
the result relation, i. e., JϕsKB = JϕKA. Subsequently, we will split refinements in order to
partition the query result.

The following definition collects useful properties of refinements. Recall from Section 2 that
for a CQ ψ and a structure B, the query result JψKB actually is a set of mappings from free(ψ)
to B. For notational convenience we define RBS := JRS(xS)KB and use the set RBS of mappings
instead of the relation RBS . In particular, by addressing/inserting/deleting a mapping
h : S → B from RBS we mean addressing/inserting/deleting the tuple (h(xi1), . . . , h(xi`))
from RBS , where (xi1 , . . . , xi`) = xS .

I Definition 4.1. Let ϕ be a quantifier-free σ-CQ, A a σ-structure, (s,B) a refinement of ϕ
and A, and M an integer.
1. The refinement (s,B) is consistent if

RBS = Jϕs〈S〉KB for all S ∈ s and (9)
RBS = πS

(
RBT
)
for all S, T ∈ s with S ⊂ T . (10)

2. The refinement (s,B) is M -consistent if it is consistent and

S ∈ s ⇐⇒ for all T ⊆ S: | Jϕs〈T 〉KB| 6M . (11)

3. The refinement (s,B) is strongly M -consistent if it is M -consistent and

S ∈ s, T ∈ s, (S ∪ T) /∈ s =⇒ | Jϕs〈S ∪ T 〉KB| > M . (12)

MFCS 2019

58:10 Constant Delay Enumeration with FPT-Preprocessing

The proof of the following lemma is deferred to the full version of the paper.

I Lemma 4.2. There is an algorithm that receives a refinement R = (s,B) of ϕ and A and
computes in time O(|s| · ‖B‖) a consistent refinement (s,B′) with RB′

S ⊆ RBS for all S ∈ s

and JϕsKB
′ = JϕsKB.

I Lemma 4.3. Let ϕ be a quantifier-free CQ, let A be a σ(ϕ)-structure where the largest
relation contains m tuples, and let M > m. There is an algorithm that computes in time
O(2|vars(ϕ)| ·M2) and space O(2|vars(ϕ)| ·M) a strongly M -consistent refinement (s,B) that
satisfies JϕKA = JϕsKB.

Algorithm 1 Computing a strongly M -consistent refinement.
1: INPUT: quantifier-free CQ ϕ(x1, . . . , xk), σ(ϕ)-structure A
2: s← ∅ ; B ← A
3: repeat
4: for ` = 1, · · · , k do . Step 1: Ensure consition (11).
5: for S = {xi1 , . . . , xi`} ⊆ vars(ϕ) do
6: if S /∈ s and S \ {x} ∈ s for all x ∈ S then
7: RBS ← ∅
8: Choose x ∈ S arbitrary
9: for h ∈ RBS\{x} and c ∈ A do
10: if h ∪ {(x, c)} ∈ Jϕs〈S〉KB then RBS ← RBS ∪ {h ∪ {(x, c)}}
11: if |RBS | 6M then s← s ∪ {S}
12:
13: for S, T ∈ s such that S ∪ T /∈ s do . Step 2: Ensure condition (12).
14: for g ∈ RBS and h ∈ RBT do
15: if g on h ∈ Jϕs〈S ∪ T 〉KB then RBS∪T ← RBS∪T ∪ {g on h}
16: if |RBS∪T | > M then break
17: if |RBS∪T | 6M then s← s ∪ {S ∪ T}
18:
19: (s,B)← Consistent(s,B) . Step 3: Apply Lemma 4.2 to ensure (9), (10).
20: until s remains unchanged
21: return (s,B)

Proof. The pseudocode of the algorithm is shown in Algorithm 1. For computing the
strongly M -consistent refinement we first compute all sets S where for all T ⊆ S we have
| Jϕs〈T 〉KB| 6M ; as in [33], we say that such sets S are M -small. First note that the empty
set isM -small. For nonempty sets S we know that S is onlyM -small if for every x ∈ S the set
S \ {x} is M -small and hence already included in s. If this is the case, then Jϕs〈S〉KB can be
computed in time O(M ·n) by testing for every h ∈ RBS\{x} (for an arbitrary x ∈ S) and every
element c in the structure’s universe, whether h ∪ {(x, c)} ∈ Jϕs〈S〉KB. If |Jϕs〈S〉KB| 6 M ,
then we include S and RBS := Jϕs〈S〉KB into our current refinement. Afterwards, we want
to satisfy the condition on strong M -consistency (12) by trying all pairs of M -small sets S
and T . This is the bottleneck of our algorithm and requires time O(|RBS | · |RBT |) 6 O(M2).
In the third step we apply Lemma 4.2 to enforce consistency of the current refinement. In
particular, every set S ∪ T that was found in step 2 becomes M -small. Note that after
deleting tuples to ensure consistency, new sets may become M -small. Therefore, we have to

C. Berkholz and N. Schweikardt 58:11

repeat steps 1–3 until no more sets became M -small. Overall, we repeat the outer loop at
most 2k times, step 1 takes time 2O(k) ·M · n, step 2 takes time 2O(k) ·M2 and step 3 takes
time 2O(k) ·M . Since n 6M this leads to the required running time. J

The key step in the proof of Theorem 3.5 is to compute f(ϕ) strongly M -consistent
refinements (si,Bi) of ϕ and A such that JϕKA =

⋃
iJϕsiKBi . In addition to being strongly

M -consistent, we want the structures Bi to be uniform in the sense that the degree of tuples
(i. e. the number of extensions) is roughly the average degree. We make this precise in a
moment, but for illustration it might be helpful to consult the example from Section 3.2
again. In every relation in A there is one vertex (a or b) of out-degree ` and there are `
vertices of out-degree 1. Hence the average out-degree is 2`/(`+ 1) and the vertex degrees are
highly imbalanced. However, after splitting the instance in A′ and A′′, in every relation, all
vertices have either out-degree ` or 1 and the out-degree of every vertex matches the average
out-degree of the corresponding relation. The next definition generalises this to tuples of
variables. We call a refinement (s,B) non-trivial, if every additional relation in the expansion
B is non-empty. For a non-trivial consistent refinement (s,B) and S, T ∈ s, S ⊆ T , we let

avgdeg(S, T) := |RBT |/|RBS | and (13)
maxdeg(S, T) := max

g∈RB
S

{
h ∈ RBT : πS(h) = g

}
. (14)

Note that consistency ensures that these numbers are well-defined and non-zero. Fur-
thermore, we can compute them from (s,B) in time O(|s|2 · ‖B‖). By definition we have
maxdeg(S, T) > avgdeg(S, T). The next definition states that maximum degree does not
deviate too much from the average degree.

I Definition 4.4. Let (s,B) be a non-trivial consistent refinement of ϕ and A, and let m be
the number of tuples of largest relation of A. The refinement (s,B) is ε-uniform if for all
S, T ∈ s with S ⊆ T we have maxdeg(S, T) 6 mε · avgdeg(S, T).

The next lemma uses Marx’s splitting routine to obtain a partition into strongly M -
consistent ε-uniform refinements, for M := mc.

I Lemma 4.5. Let ϕ be a quantifier-free CQ, let A be a σ(ϕ)-structure where the largest
relation contains m tuples, and let c > 1 and ε > 0 be real numbers. There is a computable
function f and an algorithm that computes in time O(f(ϕ, c, ε) ·m2c) and space O(f(ϕ, c, ε) ·
mc) a sequence of ` 6 f(ϕ, c, ε) strongly mc-consistent ε-uniform refinements (si,Bi) such
that JϕKA is the disjoint union of the sets Jϕsi

KBi

Proof (sketch). We follow the same splitting strategy as in [33], but use the improved
algorithm from Lemma 4.3 to ensure strong mc-consistency. Starting with the trivial
refinement (∅,A), in each step we first apply Lemma 4.3 to ensure strong mc-consistency.
Afterwards, we check whether the current refinement (s,B) contains sets S, T ∈ s that
contradict ε-uniformity, i. e., S ⊆ T and maxdeg(S, T) > mε · avgdeg(S, T). If this is the
case, we split the refinement (s,B) into (s,B′) and (s,B′′) such that RBS is partitioned into
tuples of small degree and tuples of large degree:

RB
′

U = RB
′′

U := RBU for all U ∈ s \ {S}, (15)

RB
′

S :=
{
g ∈ RBS :

∣∣{h ∈ RBT : πS(h) = g
}∣∣ 6 mε/2 · avgdeg(S, T)

}
(16)

RB
′′

S :=
{
g ∈ RBS :

∣∣{h ∈ RBT : πS(h) = g
}∣∣ > mε/2 · avgdeg(S, T)

}
(17)

MFCS 2019

58:12 Constant Delay Enumeration with FPT-Preprocessing

It is clear that JϕKB is the disjoint union of JϕKB
′ and JϕKB

′′ and that the recursion terminates
at some point with a sequence of strongly mc-consistent ε-uniform refinements that partition
JϕKA. It is also not hard to show that the height of the recursion tree is bounded by
2O(|vars(ϕ)|)· cε (see [33, Lemma 4.11]). Hence, by Lemma 4.3 the procedure can be implemented
in time O(f(ϕ, c, ε) ·m2c) and space O(f(ϕ, c, ε) ·mc). J

The nice thing about ε-uniform and strongly mc-consistent refinements is that they define,
for small enough ε, a submodular function g ∈ S(ϕ), which in turn guarantees the existence
of a tree decomposition with small projections on the bags. The following lemma from [33,
Lemma 4.12] provides these functions. However, there is an oversight in Marx’s proof and in
order to fix this, we have to ensure strong mc-consistency instead of only mc-consistency as
stated in [33, Lemma 4.12]. As suggested by Marx (personal communication), an alternative
way to achieve strong mc-consistency would be to enforce m2c-consistency, which leads to
the same runtime guarantees, but requires more space.

I Lemma 4.6. Let (s,B) be an ε-uniform strongly mc-consistent refinement of ϕ and A, and
let c > 1 and |vars(ϕ)|−3 > ε > 0 be real numbers. Then gs,B : 2vars(ϕ) → R>0 is a monotone,
edge-dominated, submodular function that satisfies gs,B(∅) = 0:

gs,B(U) :=
{

(1− ε1/3) · logm
(
|RBU |

)
+ h(U) if U ∈ s

(1− ε1/3) · c+ h(U) if U /∈ s,
(18)

where h(U) := 2ε2/3|U | − ε|U |2 > 0 for all U ⊆ vars(ϕ).

The proof can be copied verbatim from Marx’s proof of [33, Lemma 4.12] by using the
notion of strong consistency instead of plain consistency and is provided in the full version of
the paper. Now we are ready to prove our main theorem.

Proof of Theorem 3.5. We fix c = (1 + δ)w and let ε be the minimum of
(
1− 1/(1 + δ)

)4
and |vars(ϕ)|−4. Suppose that ϕ is of the form ∃x1 · · · ∃xk ϕ̃ where ϕ̃ is quantifier-free. We
apply Lemma 4.5 to ϕ̃, A, c, ε to obtain in time O(f(ϕ)m2c) a sequence of ` 6 f(ϕ) strongly
mc-consistent ε-uniform refinements (si,Bi) such that Jϕ̃KA is the disjoint union of Jϕ̃s1KB1 ,
. . . , Jϕ̃s`

KB` . By Lemma 4.6 we have gsi,Bi ∈ S(ϕ̃) = S(ϕ) for every i ∈ [`]. Hence, by the
definition of free-connex submodular width (5), we know that there is a free-connex tree
decomposition (Ti, χi) of ϕ such that gsi,Bi(χi(t)) 6 w for every t ∈ V (Ti). Note that by the
choice of c , ε and the non-negativity of h (see Lemma 4.6) we have

w = c/(1 + δ) 6 (1− ε1/4) · c < (1− ε1/3) · c+ h(U). (19)

Hence, gsi,Bi
(U) 6 w implies U ∈ s and therefore |RBi

U | = | Jϕsi
〈U〉KBi | 6 mc by (9) and (11).

Thus, every bag of the free-connex tree-decomposition (Ti, χi) is small in the ith refinement.
However, (Ti, χi) is a tree-decomposition of ϕ, but not necessarily of ϕsi

! In fact, ϕsi
can be

very dense, e. g., if si = 2vars(ϕ). To take care of this, we thin out the refinement and only
keep those atoms and relations that correspond to bags of the decomposition. In particular,
for every i ∈ [`] we define ψ̃i :=

∧
t∈V (Ti)Rχi(t)(xχi(t)) and let ψi := ∃x1 · · · ∃xk ψ̃i be the

quantified version. Note that ψi is a free-connex acyclic CQ. Additionally, we let Ci be the
σ(ψi)-reduct of Bi. We argue that Jϕ̃si

KBi ⊆ Jψ̃iKCi ⊆ Jϕ̃KA. The first inclusion holds because
ϕ̃si and Bi refine ψ̃i and Ci. The second inclusion holds because every atom from ϕ̃ is contained
in a bag of the decomposition and is hence covered by an atom in ψ̃i because of consistency.
It therefore also follows that πF

(
Jϕ̃si

KBi
)
⊆ πF

(
Jψ̃iKCi

)
⊆ πF

(
Jϕ̃KA

)
for F := free(ϕ), and

hence Jϕsi
KBi ⊆ JψiKCi ⊆ JϕKA. Overall, we have that JϕKA =

⋃
i∈[`]JψiK

Ci , where the union
is not necessarily disjoint, each ψi is free-connex acyclic, and ‖Ci‖ = O(|vars(ϕ)|2m(1+δ)w).
By combining Theorem 3.3 with Theorem 2.1, the theorem follows. J

C. Berkholz and N. Schweikardt 58:13

5 Final Remarks

In this paper, we have investigated the enumeration complexity of conjunctive queries and
have shown that every class of conjunctive queries of bounded free-connex submodular width
admits constant delay enumeration with FPT-preprocessing. These are by now the largest
classes of CQs that allow efficient enumeration in this sense.

For quantifier-free self-join-free CQs this upper bound is matched by Marx’s lower bound
[33]. I. e., recursively enumerable classes of quantifier-free self-join-free CQs of unbounded free-
connex submodular width do not admit constant delay enumeration after FPT-preprocessing
(assuming the exponential time hypothesis ETH).

A major future task is to obtain a complete dichotomy, or at least one for all self-join-free
CQs. The gray-zone for the latter are classes of CQs that have bounded submodular width,
but unbounded free-connex submodular width. An intriguing example in this gray-zone is the
k-star query with a quantified center, i. e., the query ψk of the form ∃z

∧k
i=1Ri(z, xi). Here

we have subw(ψk) = 1 and fc-subw(ψk) = k. It is open whether the class Ψ = {ψk : k ∈ N>1}
admits constant delay enumeration with FPT-preprocessing.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do Shannon-type inequalities, sub-

modular width, and disjunctive datalog have to do with one another? CoRR, abs/1612.02503,
2016. arXiv:1612.02503.

3 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What Do Shannon-type Inequalities,
Submodular Width, and Disjunctive Datalog Have to Do with One Another? In Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
PODS 2017, pages 429–444, 2017. doi:10.1145/3034786.3056105.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and Counting Given Length Cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

5 Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumeration on Trees under Relabelings.
In 21st International Conference on Database Theory, ICDT 2018, March 26-29, 2018, Vienna,
Austria, pages 5:1–5:18, 2018. doi:10.4230/LIPIcs.ICDT.2018.5.

6 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on
Trees with Tractable Combined Complexity and Efficient Updates. CoRR, abs/1812.09519,
2018. arXiv:1812.09519.

7 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-Delay
Enumeration for Nondeterministic Document Spanners. In 22nd International Conference on
Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, pages 22:1–22:19, 2019.
doi:10.4230/LIPIcs.ICDT.2019.22.

8 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, pages 167–181,
2006. doi:10.1007/11874683_11.

9 Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation
de requêtes logiques. (Algorithms and complexity of enumeration problems for the evaluation
of logical queries). PhD thesis, University of Caen Normandy, France, 2009. URL: https:
//tel.archives-ouvertes.fr/tel-00424232.

10 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries
and Constant Delay Enumeration. In Proceedings of the 16th Annual Conference of the
EACSL, CSL’07, Lausanne, Switzerland, September 11–15, 2007, pages 208–222, 2007. doi:
10.1007/978-3-540-74915-8_18.

11 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of
Acyclic Database Schemes. J. ACM, 30(3):479–513, 1983. doi:10.1145/2402.322389.

MFCS 2019

http://webdam.inria.fr/Alice/
http://arxiv.org/abs/1612.02503
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1007/BF02523189
https://doi.org/10.4230/LIPIcs.ICDT.2018.5
http://arxiv.org/abs/1812.09519
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://doi.org/10.1007/11874683_11
https://tel.archives-ouvertes.fr/tel-00424232
https://tel.archives-ouvertes.fr/tel-00424232
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1145/2402.322389

58:14 Constant Delay Enumeration with FPT-Preprocessing

12 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries
under Updates. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS’17, Chicago, IL, USA, May 14–19, 2017, pages 303–318,
2017. Full version available at http://arxiv.org/abs/1702.06370. doi:10.1145/3034786.
3034789.

13 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD Queries
Under Updates on Bounded Degree Databases. In Michael Benedikt and Giorgio Orsi, editors,
20th International Conference on Database Theory, ICDT 2017, March 21–24, 2017, Venice,
Italy, volume 68 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ICDT.2017.8.

14 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under Updates
and in the Presence of Integrity Constraints. In 21st International Conference on Database
Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, pages 8:1–8:19, 2018. doi:10.4230/
LIPIcs.ICDT.2018.8.

15 Philip A. Bernstein and Nathan Goodman. Power of Natural Semijoins. SIAM J. Comput.,
10(4):751–771, 1981. doi:10.1137/0210059.

16 Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques propos-
itionnelle et du premier ordre. (The relevance of the list: propositional logic and complex-
ity of the first order). PhD thesis, University of Caen Normandy, France, 2013. URL:
https://tel.archives-ouvertes.fr/tel-01081392.

17 Johann Brault-Baron. Hypergraph Acyclicity Revisited. ACM Comput. Surv., 49(3):54:1–54:26,
2016. doi:10.1145/2983573.

18 Shaleen Deep and Paraschos Koutris. Compressed Representations of Conjunctive Query
Results. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 307–322, 2018. doi:
10.1145/3196959.3196979.

19 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4), 2007. doi:10.1145/
1276920.1276923.

20 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order
queries over databases of low degree. In Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June
22–27, 2014, pages 121–131, 2014. doi:10.1145/2594538.2594539.

21 Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems
with Second-order Variables. In Computer Science Logic, 25th International Workshop /
20th Annual Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen, Norway,
Proceedings, pages 189–202, 2011. doi:10.4230/LIPIcs.CSL.2011.189.

22 Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree Decompos-
itions: Questions and Answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pages 57–74, 2016. doi:10.1145/2902251.2902309.

23 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions and Tractable
Queries. J. Comput. Syst. Sci., 64(3):579–627, 2002. doi:10.1006/jcss.2001.1809.

24 Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers. ACM Trans.
Algorithms, 11(1):4:1–4:20, 2014. doi:10.1145/2636918.

25 Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Al-
gorithm: Compact and Efficient Query Processing Under Updates. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, pages 1259–1274, 2017. doi:10.1145/3035918.3064027.

26 Ahmet Kara and Dan Olteanu. Covers of Query Results. In 21st International Conference on
Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, pages 16:1–16:22, 2018.
doi:10.4230/LIPIcs.ICDT.2018.16.

http://arxiv.org/abs/1702.06370
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.ICDT.2017.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.1137/0210059
https://tel.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/2983573
https://doi.org/10.1145/3196959.3196979
https://doi.org/10.1145/3196959.3196979
https://doi.org/10.1145/1276920.1276923
https://doi.org/10.1145/1276920.1276923
https://doi.org/10.1145/2594538.2594539
https://doi.org/10.4230/LIPIcs.CSL.2011.189
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/2636918
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.4230/LIPIcs.ICDT.2018.16

C. Berkholz and N. Schweikardt 58:15

27 Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded
degree. Logical Methods in Computer Science, 7(2), 2011. doi:10.2168/LMCS-7(2:20)2011.

28 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 -
27, 2013, pages 297–308, 2013. doi:10.1145/2463664.2463667.

29 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.
ACM Trans. Comput. Log., 14(4):25:1–25:12, 2013. doi:10.1145/2528928.

30 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005133.

31 Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers under
updates. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 67:1–
67:10, 2014. doi:10.1145/2603088.2603137.

32 Dániel Marx. Tractable Structures for Constraint Satisfaction with Truth Tables. Theory
Comput. Syst., 48(3):444–464, 2011. doi:10.1007/s00224-009-9248-9.

33 Dániel Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive
Queries. Journal of the ACM (JACM), Volume 60, Issue 6, Article No. 42, November 2013.
doi:10.1145/2535926.

34 Matthias Niewerth. MSO queries on trees: Enumerating answers under updates using
forest algebras. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 769–778, 2018. doi:
10.1145/3209108.3209144.

35 Matthias Niewerth and Luc Segoufin. Enumeration of MSO Queries on Strings with Constant
Delay and Logarithmic Updates. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages
179–191, 2018. doi:10.1145/3196959.3196961.

36 Dan Olteanu and Maximilian Schleich. Factorized Databases. SIGMOD Record, 45(2):5–16,
2016. doi:10.1145/3003665.3003667.

37 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query
Results. ACM Trans. Database Syst., 40(1):2:1–2:44, 2015. doi:10.1145/2656335.

38 Francesco Scarcello. From Hypertree Width to Submodular Width and Data-dependent
Structural Decompositions. In Proceedings of the 26th Italian Symposium on Advanced
Database Systems, Castellaneta Marina (Taranto), Italy, June 24-27, 2018., 2018. URL:
http://ceur-ws.org/Vol-2161/paper24.pdf.

39 Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO Queries over
Nowhere Dense Graphs. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 151–163,
2018. doi:10.1145/3196959.3196971.

40 Luc Segoufin. Constant Delay Enumeration for Conjunctive Queries. SIGMOD Record,
44(1):10–17, 2015. doi:10.1145/2783888.2783894.

41 Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries over Databases
with Local Bounded Expansion. In 20th International Conference on Database Theory, ICDT
2017, March 21–24, 2017, Venice, Italy, pages 20:1–20:16, 2017. doi:10.4230/LIPIcs.ICDT.
2017.20.

42 Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 82–94,
1981.

MFCS 2019

https://doi.org/10.2168/LMCS-7(2:20)2011
https://doi.org/10.1145/2463664.2463667
https://doi.org/10.1145/2528928
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1007/s00224-009-9248-9
https://doi.org/10.1145/2535926
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3196959.3196961
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2656335
http://ceur-ws.org/Vol-2161/paper24.pdf
https://doi.org/10.1145/3196959.3196971
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://doi.org/10.4230/LIPIcs.ICDT.2017.20

	Introduction
	Preliminaries
	Main Result
	Constant delay enumeration using tree decompositions
	Submodular width and statement of the main result

	Proof of the Main Result
	Final Remarks

