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Abstract
Let P = (p1, p2, . . . , pn) be a polygonal chain. The stretch factor of P is the ratio between the total
length of P and the distance of its endpoints,

∑n−1
i=1 |pipi+1|/|p1pn|. For a parameter c ≥ 1, we call

P a c-chain if |pipj |+ |pjpk| ≤ c|pipk|, for every triple (i, j, k), 1 ≤ i < j < k ≤ n. The stretch factor
is a global property: it measures how close P is to a straight line, and it involves all the vertices of
P ; being a c-chain, on the other hand, is a fingerprint-property: it only depends on subsets of O(1)
vertices of the chain.

We investigate how the c-chain property influences the stretch factor in the plane: (i) we show
that for every ε > 0, there is a noncrossing c-chain that has stretch factor Ω(n1/2−ε), for sufficiently
large constant c = c(ε); (ii) on the other hand, the stretch factor of a c-chain P is O

(
n1/2), for every

constant c ≥ 1, regardless of whether P is crossing or noncrossing; and (iii) we give a randomized
algorithm that can determine, for a polygonal chain P in R2 with n vertices, the minimum c ≥ 1 for
which P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n log n) space.
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1 Introduction

Given a set S of n point sites in the plane, what is the best way to connect S into a geometric
network (graph)? This question has motivated researchers for a long time, going back as far
as the 1940s, and beyond [19,35]. Numerous possible criteria for a good geometric network

© Ke Chen, Adrian Dumitrescu, Wolfgang Mulzer, and Csaba D. Tóth;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 56; pp. 56:1–56:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kechen@uwm.edu
mailto:dumitres@uwm.edu
mailto:mulzer@inf.fu-berlin.de
mailto:csaba.toth@csun.edu
https://doi.org/10.4230/LIPIcs.MFCS.2019.56
http://arxiv.org/abs/1906.10217
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


56:2 On the Stretch Factor of Polygonal Chains

have been proposed, perhaps the most basic being the length. In 1955, Few [20] showed that
for any set of n points in a unit square, there is a traveling salesman tour of length at most√

2n+ 7/4. This was improved to at most 0.984
√

2n+ 11 by Karloff [23]. Similar bounds
also hold for the shortest spanning tree and the shortest rectilinear spanning tree [13, 16, 21].
Besides length, two further key factors in the quality of a geometric network are the vertex
dilation and the geometric dilation [31], both of which measure how closely shortest paths in
a network approximate the Euclidean distances between their endpoints.

The dilation (also called stretch factor [29] or detour [1]) between two points p and q in a
geometric graph G is defined as the ratio between the length of a shortest path from p to q
and the Euclidean distance |pq|. The dilation of the graph G is the maximum dilation over
all pairs of vertices in G. A graph in which the dilation is bounded above by t ≥ 1 is also
called a t-spanner (or simply a spanner if t is a constant). A complete graph in Euclidean
space is clearly a 1-spanner. Therefore, researchers focused on the dilation of graphs with
certain additional constraints, for example, noncrossing (i.e., plane) graphs. In 1989, Das
and Joseph [15] identified a large class of plane spanners (characterized by two simple local
properties). Bose et al. [6] gave an algorithm that constructs for any set of planar sites
a plane 11-spanner with bounded degree. On the other hand, Eppstein [18] analyzed a
fractal construction showing that β-skeletons, a natural class of geometric networks, can
have arbitrarily large dilation.

The study of dilation also raises algorithmic questions. Agarwal et al. [1] described
randomized algorithms for computing the dilation of a given path (on n vertices) in R2 in
O(n logn) expected time. They also presented randomized algorithms for computing the
dilation of a given tree, or cycle, in R2 in O(n log2 n) expected time. Previously, Narasimhan
and Smid [30] showed that an (1 + ε)-approximation of the stretch factor of any path, cycle,
or tree can be computed in O(n logn) time. Klein et al. [24] gave randomized algorithms for
a path, tree, or cycle in R2 to count the number of vertex pairs whose dilation is below a
given threshold in O(n3/2+ε) expected time. Cheong et al. [12] showed that it is NP-hard to
determine the existence of a spanning tree on a planar point set whose dilation is at most a
given value. More results on plane spanners can be found in the monograph dedicated to
this subject [31] or in several surveys [8, 17,29].

We investigate a basic question about the dilation of polygonal chains. More precisely,
we ask how the dilation between the endpoints of a polygonal chain (which we will call
the stretch factor, to distinguish it from the more general notion of dilation) is influenced
by fingerprint properties of the chain, i.e., by properties that are defined on O(1)-size
subsets of the vertex set. Such fingerprint properties play an important role in geometry,
where classic examples include the Carathéodory property1 [26, Theorem 1.2.3] or the Helly
property2 [26, Theorem 1.3.2]. In general, determining the effect of a fingerprint property
may prove elusive: given n points in the plane, consider the simple property that every 3
points determine 3 distinct distances. It is unknown [9, p. 203] whether this property implies
that the total number of distinct distances grows superlinearly in n.

Furthermore, fingerprint properties appear in the general study of local versus global
properties of metric spaces that is highly relevant to combinatorial approximation algorithms
that are based on mathematical programming relaxations [5]. In the study of dilation,

1 Given a finite set S of points in d dimensions, if every d + 2 points in S are in convex position, then S
is in convex position.

2 Given a finite collection of convex sets in d dimensions, if every d + 1 sets have nonempty intersection,
then all sets have nonempty intersection.
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interesting fingerprint properties have also been found. For example, a (continuous) curve C
is said to have the increasing chord property [14,25] if for any points a, b, c, d that appear
on C in this order, we have |ad| ≥ |bc|. The increasing chord property implies that C has
(geometric) dilation at most 2π/3 [33]. A weaker property is the self-approaching property: a
(continuous) curve C is self-approaching if for any points a, b, c that appear on C in this
order, we have |ac| ≥ |bc|. Self-approaching curves have dilation at most 5.332 [22] (see
also [3]), and they have found interesting applications in the field of graph drawing [4, 7, 32].

We introduce a new natural fingerprint property and see that it can constrain the stretch
factor of a polygonal chain, but only in a weaker sense than one may expect; we also provide
algorithmic results on this property. Before providing details, we give a few basic definitions.

Definitions. A polygonal chain P in the Euclidean plane is specified by a sequence of n
points (p1, p2, . . . , pn), called its vertices. The chain P consists of n−1 line segments between
consecutive vertices. We say P is simple if only consecutive line segments intersect and they
only intersect at their endpoints. Given a polygonal chain P in the plane with n vertices
and a parameter c ≥ 1, we call P a c-chain if for all 1 ≤ i < j < k ≤ n, we have

|pipj |+ |pjpk| ≤ c|pipk|. (1)

Observe that the c-chain condition is a fingerprint condition that is not really a local dilation
condition – it is more a combination between the local chain substructure and the distribution
of the points in the subchains.

The stretch factor δP of P is defined as the dilation between the two end points p1 and
pn of the chain:

δP =
∑n−1

i=1 |pipi+1|
|p1pn|

.

Note that this definition is different from the more general notion of dilation (also called
stretch factor [29]) of a graph which is the maximum dilation over all pairs of vertices. Since
there is no ambiguity in this paper, we will just call δP the stretch factor of P .

For example, the polygonal chain P = ((0, 0), (1, 0), . . . , (n, 0)) is a 1-chain with stretch
factor 1; and Q = ((0, 0), (0, 1), (1, 1), (1, 0)) is a (

√
2 + 1)-chain with stretch factor 3.

Without affecting the results, the floor and ceiling functions are omitted in our calculations.
For a positive integer t, let [t] = {1, 2, . . . , t}. For a point set S, let conv(S) denote the
convex hull of S. All logarithms are in base 2, unless stated otherwise.

Our results. We deduce three upper bounds on the stretch factor of a c-chain P with n
vertices (Section 2). In particular, we have (i) δP ≤ c(n− 1)log c, (ii) δP ≤ c(n− 2) + 1, and
(iii) δP = O

(
c2√n− 1

)
.

From the other direction, we obtain the following lower bound (Section 3): For every
c ≥ 4, there is a family Pc = {P k}k∈N of simple c-chains, so that P k has n = 4k + 1 vertices
and stretch factor (n− 1)

1+log(c−2)−log c
2 , where the exponent converges to 1/2 as c tends to

infinity. The lower bound construction does not extend to the case of 1 < c < 4, which
remains open.

Finally, we present two algorithmic results (Section 4): (i) A randomized algorithm that
decides, given a polygonal chain P in R2 with n vertices and a threshold c > 1, whether P is
a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space. (ii) As a corollary, there

is a randomized algorithm that finds, for a polygonal chain P with n vertices, the minimum
c ≥ 1 for which P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space.

MFCS 2019
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2 Upper Bounds

At first glance, one might expect the stretch factor of a c-chain, for c ≥ 1, to be bounded by
some function of c. For example, the stretch factor of a 1-chain is necessarily 1. We derive
three upper bounds on the stretch factor of a c-chain with n vertices in terms of c and n
(cf. Theorems 1–3); see Fig. 1 for a visual comparison between the bounds. For large n,
the bound in Theorem 1 is the best for 1 ≤ c ≤ 21/2, while the bound in Theorem 3 is the
best for c > 21/2. In particular, the bound in Theorem 1 is tight for c = 1. The bound in
Theorem 2 is the best for c ≥ 2 and n ≤ 111c2.

500 1000 1500 2000

2

4

6

8

10

Figure 1 The values of n and c for which (i) Theorem 1, (ii) Theorem 2, and (iii) Theorem 3
give the current best upper bound.

Our first upper bound is obtained by a recursive application of the c-chain property. It
holds for any positive distance function that may not even satisfy the triangle inequality.

I Theorem 1. For a c-chain P with n vertices, we have δP ≤ c(n− 1)log c.

Proof. We prove, by induction on n, that

δP ≤ cdlog(n−1)e, (2)

for every c-chain P with n ≥ 2 vertices. In the base case, n = 2, we have δP = 1 and
cdlog(2−1)e = 1. Now let n ≥ 3, and assume that (2) holds for every c-chain with fewer than
n vertices. Let P = (p1, . . . , pn) be a c-chain with n vertices. Then, applying (2) to the first
and second half of P , followed by the c-chain property for the first, middle, and last vertex
of P , we get

n−1∑
i=1
|pipi+1| ≤

dn/2e−1∑
i=1

|pipi+1|+
n−1∑

i=dn/2e

|pipi+1|

≤ cdlog(dn/2e−1)e (|p1pdn/2e|+ |pdn/2epn|
)

≤ cdlog(dn/2e−1)e · c|p1pn|

≤ cdlog(n−1)e|p1pn|,

so (2) holds also for P . Consequently,

δP ≤ cdlog(n−1)e ≤ clog(n−1)+1 = c · clog(n−1) = c (n− 1)log c,

as required. J
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Our second bound interprets the c-chain property geometrically and makes use of the
fact that P resides in the Euclidean plane.

I Theorem 2. For a c-chain P with n vertices, we have δP ≤ c(n− 2) + 1.

c−1
2

p1

1
pn

c−1
2

c
2

c
2

Figure 2 The entire chain P lies in an ellipse with foci p1 and pn.

Proof. Without loss of generality, assume that |p1pn| = 1. Since P is a c-chain, for every
1 < j < n, we have |p1pj |+ |pjpn| ≤ c|p1pn| = c. If we fix the points p1 and pn, then every
pj lies in an ellipse E with foci p1 and pn, for 1 < j < n, see Figure 2. The diameter of E
is its major axis, whose length is c. Since E contains all vertices of the chain P , we have
|p1p2|, |pn−1pn| ≤ c+1

2 ≤ c and |pjpj+1| ≤ c for all 1 < j < n − 1. Therefore the stretch
factor of P is bounded above by

δP =
∑n−1

j=1 |pjpj+1|
|p1pn|

= |p1p2|+ |pn−1pn|+
n−2∑
j=2
|pjpj+1|

≤ c+ 1
2 + c+ 1

2 + c(n− 3) = c(n− 2) + 1,

as required. J

Our third upper bound uses a volume argument to bound the number of long edges in P .

I Theorem 3. Let P = (p1, . . . , pn) be a c-chain, for some constant c ≥ 1, and let L =∑n−1
i=1 |pipi+1| be its length. Then L = O

(
c2√n− 1

)
|p1pn|, hence δP = O

(
c2√n− 1

)
.

Proof. We may assume that p1pn is a horizontal segment of unit length. By the argument
in the proof of Theorem 2, all points pi (i = 1, . . . , n) are contained in an ellipse E with foci
p1 and pn, where the major axis of E has length c. Let U be the minimal axis-aligned square
containing E; its side is of length c.

We set x = 8c2/
√
n− 1; and let L0 and L1 be the sum of lengths of all edges in P of

length at most x and more than x, respectively. By definition, we have L = L0 + L1 and

L0 ≤ (n− 1)x = (n− 1) · 8c2/
√
n− 1 = 8c2√n− 1. (3)

We shall prove that L1 ≤ 8c2√n− 1, implying L ≤ 2x(n− 1) = O
(
c2√n− 1

)
. For this, we

further classify the edges in L1 according to their lengths: For ` = 0, 1, . . . ,∞, let

P` =
{
pi : 2`x < |pipi+1| ≤ 2`+1x

}
. (4)

Since all points lie in an ellipse of diameter c, we have |pipi+1| ≤ c, for all i = 0, . . . , n− 1.
Consequently, P` = ∅ when c ≤ 2`x, or equivalently log(c/x) ≤ `.

MFCS 2019
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We use a volume argument to derive an upper bound on the cardinality of P`, for
` = 0, 1, . . . , blog(c/x)c. Assume that pi, pk ∈ P`, and w.l.o.g., i < k. If k = i + 1, then
by (4), 2`x < |pipk|. Otherwise,

2`x < |pipi+1| < |pipi+1|+ |pi+1pk| ≤ c|pipk|, or
2`x

c
< |pipk|.

Consequently, the disks of radius

R = 2`x

2c = 4 · 2`c√
n− 1

(5)

centered at the points in P` are interior-disjoint. The area of each disk is πR2. Since P` ⊂ U ,
these disks are contained in the R-neighborhood UR of the square U , i.e., the Minkowski
sum R+ U . For ` ≤ log(c/x), we have 2`x ≤ c, hence R = 2`x

2c ≤
c

2c = 1
2 ≤

c
2 . Then we can

bound the area of UR from above as follows:

area(UR) < (c+ 2R)2 ≤ (2c)2 = 4c2. (6)

Since UR contains |P`| interior-disjoint disks of radius R, we obtain

|P`| ≤
area(UR)
πR2 <

4c2

πR2 = 16c4

π22`x2 . (7)

For every segment pi−1pi with length more than x, we have that pi ∈ P`, for some ` ∈
{0, 1, . . . , blog(c/x)c}. The total length of these segments is

L1 ≤
blog(c/x)c∑

`=0
|P`| · 2`+1x <

blog(x/c)c∑
`=0

16c4

π22`x2 · 2
`+1x =

blog(x/c)c∑
`=0

32c4

π2`x

<
32c4

πx

∞∑
`=0

1
2`

= 64c4

πx
= 8c2

π
·
√
n− 1,

as required. Together with (3), this yields L ≤ 8
(
1 + c2/π

)
·
√
n− 1. J

3 Lower Bounds

We now present our lower bound construction, showing that the dependence on n for the
stretch factor of a c-chain cannot be avoided.

I Theorem 4. For every constant c ≥ 4, there is a set Pc = {P k}k∈N of simple c-chains, so
that P k has n = 4k + 1 vertices and stretch factor (n− 1)

1+log(c−2)−log c
2 .

By Theorem 3, the stretch factor of a c-chain in the plane is O
(
(n− 1)1/2) for every

constant c ≥ 1. Since

lim
c→∞

1 + log(c− 2)− log c
2 = 1

2 ,

our lower bound construction shows that the limit of the exponent cannot be improved.
Indeed, for every ε > 0, we can set c = 22ε+1

22ε−1 , and then the chains above have stretch factor
(n− 1)

1+log(c−2)−log c
2 = (n− 1)1/2−ε = Ω(n1/2−ε).

We first construct a family Pc = {P k}k∈N of polygonal chains. Then we show, in
Lemmata 5 and 6, that every chain in Pc is simple and indeed a c-chain. The theorem follows
since the claimed stretch factor is a consequence of the construction.
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Construction of Pc. The construction here is a generalization of the iterative construction
of the Koch curve; when c = 6, the result is the original Cesàro fractal (which is a variant
of the Koch curve) [10]. We start with a unit line segment P 0, and for k = 0, 1, . . . , we
construct P k+1 by replacing each segment in P k by four segments such that the middle
three points achieve a stretch factor of c∗ = c−2

2 (this choice will be justified in the proof of
Lemma 6). Note that c∗ ≥ 1, since c ≥ 4.

We continue with the details. Let P 0 be the unit line segment from (0, 0) to (1, 0); see
Figure 3 (left). Given the polygonal chain P k (k = 0, 1, . . . ), we construct P k+1 by replacing
each segment of P k by four segments as follows. Consider a segment of P k, and denote
its length by `. Subdivide this segment into three segments of lengths ( 1

2 −
a
c∗

)`, 2a
c∗
`, and

( 1
2 −

a
c∗

)`, respectively, where 0 < a < c∗
2 is a parameter to be determined later. Replace the

middle segment with the top part of an isosceles triangle of side length a`. The chains P 0,
P 1, P 2, and P 4 are depicted in Figures 3 and 4.

(0, 0)
1

(1, 0) (0, 0)

1
2 −

a
c∗

a a

1
2 −

a
c∗

(1, 0)

2a
c∗

Figure 3 The chains P 0 (left) and P 1 (right).

Note that each segment of length ` in P k is replaced by four segments of total length
(1 + 2a(c∗−1)

c∗
)`. After k iterations, the chain P k consists of 4k line segments of total length(

1 + 2a(c∗−1)
c∗

)k

.
By construction, the chain P k (for k ≥ 1) consists of four scaled copies of P k−1. For

i = 1, 2, 3, 4, let the ith subchain of P k be the subchain of P k consisting of 4k−1 segments
starting from the ((i− 1)4k−1 + 1)th segment. By construction, the ith subchain of P k is
similar to the chain P k−1, for i = 1, 2, 3, 4.3 The following functions allow us to refer to
these subchains formally. For i = 1, 2, 3, 4, define a function fk

i : P k → P k as the identity
on the ith subchain of P k that sends the remaining part(s) of P k to the closest endpoint(s)
along this subchain. So fk

i (P k) is similar to P k−1. Let gi : Pc \ {P 0} → Pc be a piecewise
defined function such that gi(C) = σ−1 ◦ fk

i ◦ σ(C) if C is similar to P k, where σ : C → P k

is a similarity transformation. Applying the function gi on a chain P k can be thought of as
“cutting out” its ith subchain.

Figure 4 The chains P 2 (left) and P 4 (right).

3 Two geometric shapes are similar if one can be obtained from the other by translation, rotation, and
scaling; and are congruent if one can be obtained from the other by translation and rotation.

MFCS 2019
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Clearly, the stretch factor of the chain monotonically increases with the parameter a.
However, if a is too large, the chain is no longer simple. The following lemma gives a sufficient
condition for the constructed chains to avoid self-crossings.

I Lemma 5. For every constant c ≥ 4, if a ≤ c−2
2c , then every chain in Pc is simple.

Proof. Let T = conv(P 1). Observe that T is an isosceles triangle; see Figure 5 (left). We
first show the following:

B Claim. If a ≤ c−2
2c , then conv(P k) = T for all k ≥ 1.

Proof. We prove the claim by induction on k. It holds for k = 1 by definition. For the
induction step, assume that k ≥ 2 and that the claim holds for k − 1. Consider the chain
P k. Since it contains all the vertices of P 1, T ⊂ conv(P k). So we only need to show that
conv(P k) ⊂ T .

1
2 −

a
c∗

a a

1
2 −

a
c∗

2a
c∗

p

t

a
(

1
2 −

a
c∗

)
(

1
2 −

a
c∗

)2

Figure 5 Left: Convex hull T of P 1 in light gray; Right: Convex hulls of gi(P 2), i = 1, 2, 3, 4, in
dark gray, are contained in T .

By construction, P k ⊂
⋃4

i=1 conv(gi(P k)); see Figure 5 (right). By the inductive hypoth-
esis, conv(gi(P k)) is an isosceles triangle similar to T , for i = 1, 2, 3, 4. Since the bases of
conv(g1(P k)) and conv(g4(P k)) are collinear with the base of T by construction, due to
similarity, they are contained in T . The base of conv(g2(P k)) is contained in T . In order to
show conv(g2(P k)) ⊂ T , by convexity, it suffices to ensure that its apex p is also in T . Note
that the coordinates of the top point is t =

(
1/2, a

√
c2
∗ − 1/c∗

)
, so the supporting line ` of

the left side of T is

y =
2a
√
c2
∗ − 1
c∗

x, and

p =
(

1
2 −

a

2c∗
−
a2 (c2

∗ − 1
)

c2
∗

,

(
a

2c∗
+ a2

c2
∗

)√
c2
∗ − 1

)
.

By the condition of a ≤ c−2
2c = c∗

2(c∗+1) in the lemma, p lies on or below `. Under the same
condition, we have conv(g3(P k)) ⊂ T by symmetry. Then P k ⊂

⋃4
i=1 conv(gi(P k)) ⊂ T .

Since T is convex, conv(P k) ⊂ T . So conv(P k) = T , as claimed. C

We can now finish the proof of Lemma 5 by induction. Clearly, P 0 and P 1 are simple.
Assume that k ≥ 2, and P k−1 is simple. Consider the chain P k. For i = 1, 2, 3, 4, gi(P k) is
similar to P k−1, hence simple by the inductive hypothesis. Since P k =

⋃4
i=1 gi(P k), it is

sufficient to show that for all i, j ∈ {1, 2, 3, 4}, where i 6= j, a segment in gi(P k) does not
intersect any segments in gj(P k), unless they are consecutive in P k and they intersect at a
common endpoint. This follows from the above claim together with the observation that for
i 6= j, the intersection gi(P k) ∩ gj(P k) is either empty or contains a single vertex which is
the common endpoint of two consecutive segments in P k. J
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In the remainder of this section, we assume that

a = c− 2
2c = c∗

2(c∗ + 1) . (8)

Under this assumption, all segments in P 1 have the same length a. Therefore, by construction,
all segments in P k have the same length

ak =
(

c∗
2(c∗ + 1)

)k

.

There are 4k segments in P k, with 4k + 1 vertices, and its stretch factor is

δP k = 4k

(
c∗

2(c∗ + 1)

)k

=
(

2c∗
c∗ + 1

)k

.

Consequently, k = log4(n− 1) = log(n−1)
2 , and

δP k =
(

2c∗
c∗ + 1

) log(n−1)
2

=
(

2c− 4
c

) log(n−1)
2

= (n− 1)
1+log(c−2)−log c

2 ,

as claimed. To finish the proof of Theorem 4, it remains to show the constructed polygonal
chains are indeed c-chains.

I Lemma 6. For every constant c ≥ 4, Pc is a family of c-chains.

We first prove a couple of facts that will be useful in the proof of Lemma 6. We defer an
intuitive explanation until after the formal statement of the lemma.

I Lemma 7. Let k ≥ 1 and let P k = (p1, p2, . . . , pn), where n = 4k + 1. Then the following
hold:
(i) There exists a sequence (q1, q2, . . . , qm) of m = 2 · 4k−1 points in R2 such that the chain

Rk = (p1, q1, p2, q2, . . . , pm, qm, pm+1) is similar to P k.
(ii) For k ≥ 2, define g5 : Pc \ {P 0, P 1} → Pc by

g5(P k) =
(
g3 ◦ g2(P k)

)
∪
(
g4 ◦ g2(P k)

)
∪
(
g1 ◦ g3(P k)

)
∪
(
g2 ◦ g3(P k)

)
.

Then g5(P k) is similar to P k−1.

Part (i) of Lemma 7 says that given P k, we can construct a chain Rk similar to P k

by inserting one point between every two consecutive points of the left half of P k, see
Figure 6 (left). Part (ii) says that the “top” subchain of P k that consists of the right half of
g2(P k) and the left half of g3(P k), see Figure 6 (right), is similar to P k−1.

Figure 6 Left: Chain P k with the scaled copy of itself Rk (in red); Right: Chain P k with its
subchain g5(P k) marked by its convex hull.
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Proof of Lemma 7. For (i), we review the construction of P k, and show that Rk and P k

can be constructed in a coupled manner. In Figure 7 (left), consider P 1 = (p1, p2, p3, p4, p5).
Recall that all segments in P 1 are of the same length a = c∗

2(c∗+1) . The isosceles triangles
∆p1p2p3 and ∆p1p3p5 are similar. Let σ : ∆p1p3p5 → ∆p1p2p3 be the similarity transfor-
mation. Let q1 = σ(p2) and q2 = σ(p4). By construction, the chain R1 = (p1, q1, p2, q2, p3)
is similar to P 1. In particular, all of its segments have the same length. So the isosceles
triangle ∆p1q1p2 is similar to ∆p1p3p5. Moreover, its base is the segment p1p2, so ∆p1q1p2
is precisely conv(g1(P 2)), see Figure 7 (right).

p1 p2

p3

p4 p5

q1

q2

v1 v2

v3

v4 v5

v6

v7 v8

v9

v10 v11

v17

Figure 7 Left: the chains P 1 and R1 (red); Right: the chains P 2 and R1 (red).

Write P 2 = (v1, v2, . . . , v17), then v3 = q1 by the above argument and v7 = q2 by
symmetry. Now ∆v1v2v3, ∆v3v4v5, ∆v5v6v7, and ∆v7v8v9 are four congruent isosceles
triangles, all of which are similar to ∆v1v9v17, since the angles are the same. Repeat the
above procedure on each of them to obtain R2 = (v1, u1, v2, u2, . . . , v8, u8, v9), which is similar
to P 2. Continue this construction inductively to get the desired chain Rk for any k ≥ 1.

For (ii), see Figure 7 (right). By definition, g5(P 2) is the subchain (v7, v8, v9, v10, v11).
Observe that the segments v7v8 and v10v11 are collinear by symmetry. Moreover, they are
parallel to v1v17 since ∠v7v8v9 = ∠v1v5v9. So g5(P 2) is similar to P 1; see Figure 7 (left).
Then for k ≥ 2, g5(P k) is the subchain of P k starting at vertex v7, ending at vertex v11. By
the construction of P k, g5(P k) is similar to P k−1. J

Due to space constraints, the proof of Lemma 6 is deferred to the full version.

4 Algorithm for Recognizing c-Chains

In this section, we design a randomized Las Vegas algorithm to recognize c-chains. More
precisely, given a polygonal chain P = (p1, . . . , , pn), and a parameter c ≥ 1, the algorithm
decides whether P is a c-chain, in O

(
n2.5 polylog n

)
expected time. By definition, P =

(p1, . . . , pn) is a c-chain if |pipj | + |pjpk| ≤ c |pipk| for all 1 ≤ i < j < k ≤ n; equivalently,
pj lies in the ellipse of major axis c with foci pi and pk. Consequently, it suffices to test,
for every pair 1 ≤ i < k ≤ n, whether the ellipse of major axis c|pipk| with foci pi and pk

contains pj , for all j, i < j < k. For this, we can apply recent results from geometric range
searching.

I Theorem 8. There is a randomized algorithm that can decide, for a polygonal chain
P = (p1, . . . , pn) in R2 and a threshold c > 1, whether P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space.

Agarwal, Matoušek and Sharir [2, Theorem 1.4] constructed, for a set S of n points in
R2, a data structure that can answer ellipse range searching queries: it reports the number
of points in S that are contained in a query ellipse. In particular, they showed that, for
every ε > 0, there is a constant B and a data structure with O(n) space, O

(
n1+ε

)
expected
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preprocessing time, and O
(
n1/2 logB n

)
query time. The construction was later simplified

by Matoušek and Patáková [27]. Using this data structure, we can quickly decide whether a
given polygonal chain is a c-chain.

Proof of Theorem 8. Subdivide the polygonal chain P = (p1, . . . , pn) into two subchains of
equal or almost equal sizes, P1 = (p1, . . . , pdn/2e) and P2 = (pdn/2e, . . . , pn); and recursively
subdivide P1 and P2 until reaching 1-vertex chains. Denote by T the recursion tree. Then,
T is a binary tree of depth dlogne. There are at most 2i nodes at level i; the nodes at level i
correspond to edge-disjoint subchains of P , each of which has at most n/2i edges. Let Wi be
the set of subchains on level i of T ; and let W =

⋃
i≥0 Wi. We have |W | ≤ 2n.

For each polygonal chain Q ∈ W , construct an ellipse range searching data structure
DS(Q) described above [2] for the vertices of Q, with a suitable parameter ε > 0. Their
overall expected preprocessing time is

dlog ne∑
i=0

2i ·O
(( n

2i

)1+ε
)

= O

n1+ε

dlog ne∑
i=0

(
1
2i

)ε
 = O

(
n1+ε

)
,

their space requirement is
∑dlog ne

i=0 2i ·O
(
n/2i

)
= O(n logn), and their query time at level i

is O
((
n/2i

)1/2 polylog
(
n/2i

))
= O

(
n1/2 polylog n

)
.

For each pair of indices 1 ≤ i < k ≤ n, we do the following. Let Ei,k denote the ellipse of
major axis c|pipk| with foci pi and pk. The chain (pi+1, . . . , pk−1) is subdivided into O(logn)
maximal subchains in W , using at most two subchains from each set Wi, i = 0, . . . , dlogne.
For each of these subchains Q ∈W , query the data structure DS(Q) with the ellipse Ei,k. If
all queries are positive (i.e., the count returned is |Q| in all queries), then P is a c-chain;
otherwise there exists j, i < j < k, such that pj /∈ Ei,k, hence |pipj | + |pjpk| > c|pipk|,
witnessing that P is not a c-chain.

The query time over all pairs 1 ≤ i < k ≤ n is bounded above by

(
n

2

) 2dlog ne∑
i=0

O
((
n/2i

)1/2 polylog
(
n/2i

))
=
(
n

2

)
·O
(
n1/2 polylog n

)
= O

(
n2.5 polylog n

)
.

This subsumes the expected time needed for constructing the structures DS(Q), for all
Q ∈W . So the overall running time of the algorithm is O

(
n2.5 polylog n

)
, as claimed. J

In the decision algorithm above, only the construction of the data structures DS(Q),
Q ∈W , uses randomization, which is independent of the value of c. The parameter c is used
for defining the ellipses Ei,k, and the queries to the data structures; this part is deterministic.
Hence, we can find the optimal value of c by Meggido’s parametric search [28] in the second
part of the algorithm.

Meggido’s technique reduces an optimization problem to a corresponding decision problem
at a polylogarithmic factor increase in the running time. An optimization problem is amenable
to this technique if the following three conditions are met [34]: (1) the objective function
is monotone in the given parameter; (2) the decision problem can be solved by evaluating
bounded-degree polynomials, and (3) the decision problem admits an efficient parallel
algorithm (with polylogarithmic running time using polynomial number of processors). All
three conditions hold in our case: The area of each ellipse with foci in S monotonically
increases with c; the data structure of [27] answers ellipse range counting queries by evaluating
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polynomials of bounded degree; and the
(

n
2
)
queries can be performed in parallel. Alternatively,

Chan’s randomized optimization technique [11] is also applicable. Both techniques yield the
following result.

I Corollary 9. There is a randomized algorithm that can find, for a polygonal chain P =
(p1, . . . , pn) in R2, the minimum c ≥ 1 for which P is a c-chain in O

(
n2.5 polylog n

)
expected

time and O(n logn) space.

We remark that, for c = 1, the test takes O(n) time: it suffices to check whether points
p3, . . . , pn lie on the line spanned by p1p2, in that order.

5 Concluding Remarks

We end with some final observations and pointers for further research.

1. For k ≥ 1, let P k
∗ = g2(P k) ∪ g3(P k), see Figure 8 (right). It is easy to see that P k

∗ is a
c-chain with n = 4k/2 + 1 vertices and has stretch factor

√
c(c− 2)/8(n−1)

1+log(c−2)−log c
2 .

Since
√
c(c− 2)/8 ≥ 1 for c ≥ 4, this improves the result of Theorem 4 by a constant

factor. Since this construction does not improve the exponent, and the analysis would be
longer (requiring a case analysis without new insights), we omit the details.

Figure 8 The chains P 4 (left) and P 4
∗ (right).

2. If c is used instead of c∗ = (c− 2)/2 in the lower bound construction, then the condition
c ≥ 4 in Theorem 4 can be replaced by c ≥ 1, and the bound can be improved from
(n− 1)

1+log(c−2)−log c
2 to (n− 1)

1+log c−log(c+1)
2 . However, we were unable to prove that the

resulting P k’s, k ∈ N, are c-chains, although a computer program has verified that the
first few generations of them are indeed c-chains.

3. The volume argument in Theorem 3 easily generalizes to higher dimensions. If P be a
c-chain in Rd for fixed c ≥ 1 and d ≥ 2, then δP = O

(
c2(n− 1)1−1/d

)
. It is interesting

to find out whether extra dimension(s) allows one to achieve a larger stretch factor.
4. The upper bounds in Theorem 1–3 are valid regardless of whether the chain is crossing

or not. On the other hand, the lower bound in Theorem 4 is given by noncrossing chains.
A natural question is whether a sharper upper bound holds if the chains are required to
be noncrossing. More specifically, can the exponent of n in the upper bound be reduced
to 1/2− ε, where ε > 0 depends on c?

5. Our algorithm in Section 4 can recognize c-chains with n vertices in O
(
n2.5 polylog n

)
expected time and O(n logn) space, using ellipse range searching data structures. It is
likely that the running time can be improved in the future, perhaps at the expense of
increased space, when suitable time-space trade-offs for semi-algebraic range searching
become available. The existence of such data structures is conjectured [2], but currently
remains open.
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