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Abstract
Pudlák [17] lists several major conjectures from the field of proof complexity and asks for oracles
that separate corresponding relativized conjectures. Among these conjectures are:

DisjNP: The class of all disjoint NP-pairs has no many-one complete elements.
SAT: NP contains no many-one complete sets that have P-optimal proof systems.
UP: UP has no many-one complete problems.
NP ∩ coNP: NP ∩ coNP has no many-one complete problems.

As one answer to this question, we construct an oracle relative to which DisjNP, ¬SAT, UP, and
NP∩coNP hold, i.e., there is no relativizable proof for the implication DisjNP∧UP∧NP∩coNP ⇒ SAT.
In particular, regarding the conjectures by Pudlák this extends a result by Khaniki [9]. Since Khaniki
[9] constructs an oracle showing that the implication SAT ⇒ DisjNP has no relativizable proof, we
obtain that the conjectures DisjNP and SAT are independent in relativized worlds, i.e., none of the
implications DisjNP ⇒ SAT and SAT ⇒ DisjNP can be proven relativizably.
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1 Introduction

The main motivation for the present paper is an article by Pudlák [17] that is “motivated
by the problem of finding finite versions of classical incompleteness theorems”, investigates
major conjectures in the field of proof complexity, discusses their relations, and draws
new connections between the conjectures. Among others, Pudlák conjectures the following
assertions (note that within the present paper all reductions are polynomial-time-bounded):

CON (resp., SAT): coNP (resp., NP) contains no many-one complete sets that have
P-optimal proof systems
CONN: coNP contains no many-one complete sets that have optimal proof systems,
(note that CONN is the non-uniform version of CON)
DisjNP (resp., DisjCoNP): The class of all disjoint NP-pairs (resp., coNP-pairs) has no
many-one complete elements,
TFNP: The class of all total polynomial search problems has no complete elements,
NP ∩ coNP (resp., UP): NP ∩ coNP (resp., UP, the class of problems accepted by NP
machines with at most one accepting path for each input) has no many-one complete
elements.

The following figure contains the conjectures by Pudlák and illustrates the state of the
art regarding (i) known implications and (ii) separations in terms of oracles that prove the
non-existence of relativizable proofs for implications. O denotes the oracle constructed in
the present paper.
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Figure 1 Solid arrows mean implications. All implications in the graphic can be proven with
relativizable proofs. A dashed arrow from A to B means that there is an oracle X against the
implication A ⇒ B, i.e., relative to X, it holds A ∧ ¬B. Pudlák [17] also defines the conjecture RFN1

and lists it between CON ∨ SAT and P 6= NP, i.e., CON ∨ SAT ⇒ RFN1 ⇒ P 6= NP. Khaniki [9] even
shows CON ∨ SAT ⇔ RFN1, which is why we omit RFN1 in the figure.

The main conjectures of [17] are CON and TFNP. Let us give some background on these
conjectures (for details we refer to [16]) and on the notion of disjoint pairs. The first main
conjecture CON refers to the notion of proof systems introduced by Cook and Reckhow [2],
who define a proof system for a set A to be a polynomial-time computable function whose
range is A. The remainder of this paragraph originates from [5]. CON has an interesting
connection to some finite version of an incompleteness statement. Denote by ConT (n) the
finite consistency of a theory T , i.e., ConT (n) is the statement that T has no proofs of
contradiction of length ≤ n. Krajícek and Pudlák [12] raise the conjectures CON and CONN

and show that the latter is equivalent to the statement that there is no finitely axiomatized
theory S which proves the finite consistency ConT (n) for every finitely axiomatized theory T
by a proof of polynomial length in n. In other words, ¬CONN expresses that a weak version
of Hilbert’s program (to prove the consistency of all mathematical theories) is possible [15].
Correspondingly, ¬CON is equivalent to the existence of a theory S such that, for any fixed
theory T , proofs of ConT (n) in S can be constructed in polynomial time in n [12].

The conjecture TFNP was raised by Megiddo and Papadimitriou, is implied by the non-
existence of disjoint coNP-pairs [1, 17], and implies that no NP-complete set has P-optimal
proof systems [1, 17]. It states the non-existence of total polynomial search problems that
are complete with respect to polynomial reductions.

The notion of disjoint NP-pairs, i.e., pairs (A,B) with A ∩B = ∅ and A,B ∈ NP, was
introduced by Grollman and Selman [7] in order to characterize promise problems. Razborov
[18] connects it with the concept of propositional proof systems (pps), i.e., proof systems
for the set of propositional tautologies TAUT, defining for each pps f a disjoint NP-pair,
the so-called canonical pair of f , and showing that the canonical pair of an optimal pps f is
complete. Hence, DisjNP⇒ CONN.

In contrast to the many implications only very few oracles were known separating two
of the relativized conjectures [17], which is why Pudlák asks for further oracles showing
relativized conjectures to be different.

Khaniki [9] partially answers this question: besides proving two of the conjectures to
be equivalent, he presents two oracles V and W showing that SAT and CON (just as TFNP
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and CON) are independent in relativized worlds, which means that none of the two possible
implications between the two conjectures has a relativizable proof. To be more precise,
relative to V, there exist P-optimal propositional proof systems but no many-one complete
disjoint coNP-pairs, where, as mentioned above, the latter implies TFNP and SAT. Relative
to W , there exist no P-optimal propositional proof systems and each total polynomial search
problem has a polynomial-time solution, where the latter implies ¬SAT [10].

Dose and Glaßer [5] construct an oracle X that also separates some of the above relativized
conjectures. Relative to X there exist no many-one complete disjoint NP-pairs, UP has
many-one complete problems, and NP ∩ coNP has no many-one complete problems. In
particular, relative to X, there do not exist P-optimal propositional proof systems. Thus,
among others, X shows that the conjectures CON and UP as well as NP ∩ coNP and UP
cannot be proven equivalent with relativizable proofs.

In another paper [3], the author adds one more oracle to this list proving that there is no
relativizable proof for the implication TFNP⇒ DisjCoNP.

Our Contribution

In the present paper we construct an oracle O relative to which
1. The class of all disjoint NP-pairs has no many-one complete elements.
2. NP contains no many-one complete sets that have P-optimal proof systems.
3. UP has no many-one complete problems.
4. NP ∩ coNP has no many-one complete problems.
Indeed, relative to O there even exist no disjoint NP-pairs hard for NP∩ coNP, which implies
both 1 and 4. Among others, the oracle shows that there are no relativizable proofs for the
implications NP ∩ coNP⇒ SAT and UP⇒ SAT. Let us now focus on the properties 1 and 2
of the oracle. Regarding these, our oracle has similar properties as the aforementioned oracle
W by Khaniki [9]: both oracles show that there is no relativizable proof for the implication
CON⇒ SAT. Relative to Khaniki’s oracle W it even holds that each total polynomial search
problem has a polynomial time solution, which implies not only ¬SAT but also that all
optimal proof systems for SAT are P-optimal [10]. Regarding Pudlák’s conjectures, however,
our oracle O extends Khaniki’s result as relative to O we have the even stronger result
that there is no relativizable proof for the implication DisjNP ⇒ SAT. Since due to the
oracle V by Khaniki [9] none of the implications DisjCoNP⇒ DisjNP, TFNP⇒ DisjNP, and
SAT⇒ DisjNP can be proven relativizably, our oracle shows that DisjNP is independent of
each of the conjectures DisjCoNP, TFNP, and SAT in relativized worlds, i.e., none of the six
possible implications has a relativizable proof.

2 Preliminaries

Major parts of this section are copied from our paper [5] coauthored by Christian Glaßer.
Throughout this paper let Σ be the alphabet {0, 1}. We denote the length of a word w ∈ Σ∗
by |w|. Let Σ≤n = {w ∈ Σ∗ | |w| ≤ n} and Σ>n = {w ∈ Σ∗ | |w| > n}. The empty word
is denoted by ε and the i-th letter of a word w for 0 ≤ i < |w| is denoted by w(i), i.e.,
w = w(0)w(1) · · ·w(|w| − 1). If v is a prefix of w, i.e., |v| ≤ |w| and v(i) = w(i) for all
0 ≤ i < |v|, then we write v v w. For any finite set Y ⊆ Σ∗, let `(Y ) df=

∑
w∈Y |w|.

Z denotes the set of integers, N denotes the set of natural numbers, and N+ = N− {0}.
The set of primes is denoted by P = {2, 3, 5, . . .} and P≥3 denotes the set P− {2}.

We identify Σ∗ with N via the polynomial-time computable, polynomial-time invertible
bijection w 7→

∑
i<|w|(1 + w(i))2|w|−1−i, which is a variant of the dyadic encoding. Hence,

notations, relations, and operations for Σ∗ are transferred to N and vice versa. In particular,

MFCS 2019
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|n| denotes the length of n ∈ N. We eliminate the ambiguity of the expressions 0i and 1i by
always interpreting them over Σ∗.

Let 〈·〉 :
⋃
i≥0 Ni → N be an injective, polynomial-time computable, polynomial-time

invertible pairing function such that |〈u1, . . . , un〉| = 2(|u1|+ · · ·+ |un|+ n).
Given two sets A and B, A − B denotes the set difference between A and B. The

complement of a set A relative to the universe U is denoted by A = U − A. The universe
will always be apparent from the context. Furthermore, the symmetric difference is denoted
by 4, i.e., A4B = (A−B) ∪ (B −A) for arbitrary sets A and B.

The domain and range of a function t are denoted by dom(t) and ran(t), respectively.
FP, P, and NP denote standard complexity classes [14]. Define coC = {A ⊆ Σ∗ | A ∈ C}

for a class C. UP is the class of all problems accepted by nondeterministic polynomial-time
Turing machines with at most one accepting path for each input. If A,B ∈ NP (resp.,
A,B ∈ coNP) and A ∩ B = ∅, then we call (A,B) a disjoint NP-pair (resp., a disjoint
coNP-pair). The set of all disjoint NP-pairs (resp., coNP-pairs) is denoted by DisjNP (resp.,
DisjCoNP). We also consider all these complexity classes in the presence of an oracle O and
denote the corresponding classes by FPO, PO, NPO, and so on.

Let M be a Turing machine. MD(x) denotes the computation of M on input x with
D as an oracle. For an arbitrary oracle D we let L(MD) = {x | MD(x) accepts}. For
a deterministic polynomial-time Turing transducer (i.e., a Turing machine computing a
function), depending on the context, FD(x) either denotes the computation of F on input x
with D as an oracle or the output of this computation.

I Definition 1. A sequence (Mi)i∈N+ is called standard enumeration of nondeterministic,
polynomial-time oracle Turing machines, if it has the following properties:
1. All Mi are nondeterministic, polynomial-time oracle Turing machines.
2. For all oracles D and all inputs x the computation MD

i (x) stops within |x|i + i steps.
3. For every nondeterministic, polynomial-time oracle Turing machine M there exist in-

finitely many i ∈ N such that for all oracles D it holds that L(MD) = L(MD
i ).

4. There exists a nondeterministic, polynomial-time oracle Turing machine M such that
for all oracles D and all inputs x it holds that MD(〈i, x, 0|x|i+i〉) nondeterministically
simulates the computation MD

i (x).
Analogously we define standard enumerations of deterministic, polynomial-time oracle Turing
transducers.

Throughout this paper, we fix some standard enumerations. Let M1,M2, . . . be a standard
enumeration of nondeterministic polynomial-time oracle Turing machines. Then for every
oracle D, the sequence (Mi)i∈N+ represents an enumeration of the languages in NPD, i.e.,
NPD = {L(MD

i ) | i ∈ N}, where as usual a computation MD
i (x) accepts if and only if it has

at least one accepting path. Let F1, F2, . . . be a standard enumeration of polynomial time
oracle Turing transducers. By the properties of standard enumerations, for each oracle D
the following problem is NPD-complete (in particular it is in NPD):

KD = {〈0i, 0t, x〉 |MD
i (x) accepts within t steps}.

Let D be an oracle and A,B,A′, B′ ⊆ Σ∗ such that A∩B = A′∩B′ = ∅. In this paper we
always use the following reducibility for disjoint pairs [18]. (A′, B′) is polynomially many-one
reducible to (A,B), denoted by (A′, B′)≤pp,D

m (A,B), if there exists f ∈ FPD with f(A′) ⊆ A
and f(B′) ⊆ B. If A′ = B′, then we also write A′≤p,D

m (A,B) instead of (A′, B′)≤pp,D
m (A,B).

We say that (A,B) is ≤pp,D
m -hard (≤pp,D

m -complete) for DisjNPD if (A′, B′)≤pp,D
m (A,B)

for all (A′, B′) ∈ DisjNPD (and (A,B) ∈ DisjNPD). Moreover, a pair (A,B) is ≤p,D
m -hard

for NPD ∩ coNPD if A′≤p,D
m (A,B) for every A ∈ NPD ∩ coNPD.
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I Definition 2 ([2]). A function f ∈ FP is called proof system for the set ran(f). For
f, g ∈ FP we say that f is simulated by g (resp., f is P-simulated by g) denoted by f ≤ g

(resp., f ≤p g), if there exists a function π (resp., a function π ∈ FP) and a polynomial p
such that |π(x)| ≤ p(|x|) and g(π(x)) = f(x) for all x. A function g ∈ FP is optimal (resp.,
P-optimal), if f ≤ g (resp., f ≤p g) for all f ∈ FP with ran(f) = ran(g). Corresponding
relativized notions are obtained by using PO, FPO, and ≤p,O in the definitions above.

The following proposition states the relativized version of a result by Köbler, Messner, and
Torán [11], which they show with a relativizable proof.

I Proposition 3 ([11]). For every oracle O, if A has a PO-optimal (resp., optimal) proof
system and B≤p,O

m A, then B has a PO-optimal (resp., optimal) proof system.

I Corollary 4. For every oracle O, if there exists a ≤p,O
m -complete A ∈ NPO that has a

PO-optimal (resp., optimal) proof system, then all sets in NPO have PO-optimal (resp.,
optimal) proof systems.

Let us introduce some notations that are designed for the construction of oracles [5]. The
support supp(t) of a real-valued function t is the subset of the domain that consists of all
values that t does not map to 0. We say that a partial function t is injective on its support if
t(i, j) = t(i′, j′) for (i, j), (i′, j′) ∈ supp(t) implies (i, j) = (i′, j′). If a partial function t is
not defined at point x, then t ∪ {x 7→ y} denotes the extension of t that at x has value y.

If A is a set, then A(x) denotes the characteristic function at point x, i.e., A(x) is 1
if x ∈ A, and 0 otherwise. An oracle D ⊆ N is identified with its characteristic sequence
D(0)D(1) · · · , which is an ω-word. In this way, D(i) denotes both, the characteristic function
at point i and the i-th letter of the characteristic sequence, which are the same. A finite word
w describes an oracle that is partially defined, i.e., only defined for natural numbers x < |w|.
We can use w instead of the set {i | w(i) = 1} and write for example A = w ∪B, where A
and B are sets. For nondeterministic oracle Turing machines M we use the following phrases:
a computation Mw(x) definitely accepts, if it contains a path that accepts and the queries
on this path are < |w|. A computation Mw(x) definitely rejects, if all paths reject and all
queries are < |w|. For a nondeterministic Turing machine M we say that the computation
Mw(x) is defined, if it definitely accepts or definitely rejects. For a polynomial time oracle
transducer F , the computation Fw(x) is defined, if all queries are < |w|.

3 Oracle Construction

The following lemma is a slightly adapted variant of a result from [5].

I Lemma 5. For all y ≤ |w| and all v w w it holds y ∈ Kv ⇔ y ∈ Kw.

I Theorem 6. There exists an oracle O such that the following statements hold:
DisjNPO contains no pairs that are ≤p,O

m -hard for NPO ∩ coNPO.
Each L ∈ NPO has PO-optimal proof systems.
UPO contains no ≤p,O

m -complete problems.
Observe that the first of the three statements implies that both DisjNPO contains no
≤pp,O

m -complete pairs and NPO ∩ coNPO contains no ≤p,O
m -complete problems.

MFCS 2019
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Proof. Let D be a (possibly partial) oracle and p (resp., q) be in P3 (resp., P1). We define

ADp := {0p
k

| k ∈ N+,∃
x∈Σpkx ∈ D and x odd} ∪ {0pk | k ∈ N+}

BDp := {0p
k

| k ∈ N+,∃
x∈Σpkx ∈ D and x even}

CDq := {0q
k

| k ∈ N+,∃
x∈Σqkx ∈ D}

Note that ADp , BDp ∈ NPD and ADp = BDp if |Σpk ∩D| = 1 for each k ∈ N+. In that case
ADp ∈ NPD ∩ coNPD. Moreover, CDq ∈ UPD if and only if |Σqk ∩D| ≤ 1 for each k ∈ N+.

For the sake of simplicity, let us call a pair (Mi,Mj) an NPD ∩ coNPD-machine if
L(MD

i ) = L(MD
j ). For i ∈ N+ and x, y ∈ N we write c(i, x, y) := 〈0i, 0|x|i+i, x, y〉. Thus,

|c(i, x, y)| is even. Note that throughout this proof we sometimes omit the oracles in the
superscript, e.g., we write NP or Ap instead of NPD or ADp . However, we do not do that in
the “actual” proof but only when explaining ideas in a loose way in order to give the reader
the intuition behind the occasionally very technical arguments.
Preview of construction. We sketch some of the very basic ideas our construction uses.
1. For all positive i 6= j the construction tries to achieve that (Mi,Mj) is not an NP∩ coNP-

machine. If this is not possible, then (L(Mi), L(Mj)) inherently is an NP∩coNP-machine.
Once we know this, we choose some odd prime p and diagonalize against all FP-functions
such that Ap = Bp and Ap is not ≤p

m-reducible to (L(Mi), L(Mj)).
2. For all i ≥ 1 the construction intends to make sure that Fi is not a proof system for K.

If this is not possible, then Fi inherently is a proof system for K and then we start to
encode the values of Fi into the oracle. However, it is important to also allow encodings
for functions that are not known to be proof systems for K yet. Regarding the P-optimal
proof systems, our construction is based on ideas by Dose and Glaßer [5].

3. For all i ≥ 1 the construction tries to ensure that Mi is not a UP-machine. If this is not
possible, we know that Mi inherently is a UP machine, which enables us to diagonalize
against all FP-functions so that Cq for some q that we choose is not reducible to L(Mi).

B Claim 7. Let w ∈ Σ∗ be an oracle, i ∈ N+, and x, y ∈ N such that c(i, x, y) ≤ |w|. Then
the following holds.
1. Fwi (x) is defined and Fwi (x) < |w|.
2. Fwi (x) ∈ Kw ⇔ Fwi (x) ∈ Kv for all v w w.

During the construction we maintain a growing collection of requirements that is repre-
sented by a partial function belonging to the set

T =
{
t : N+ ∪ (N+)2 → Z | dom(t) is finite, t is injective on its support,

t(N+) ⊆ {0} ∪ N+

t({(i, i) | i ∈ N+}) ⊆ {0} ∪ {−q | q ∈ P1}
t({(i, j) ∈ (N+)2 | i 6= j}) ⊆ {0}∪{−p | p ∈ P3}

}
.

A partial oracle w is called t-valid for t ∈ T if it satisfies the following properties.
V1 For all i ∈ N+ and all x, y ∈ N, if c(i, x, y) ∈ w, then Fwi (x) = y ∈ Kw.

(meaning: if the oracle contains the codeword c(i, x, y), then Fwi (x) outputs y ∈ Kw;
hence, c(i, x, y) ∈ w is a proof for y ∈ Kw)

V2 For all distinct i, j ∈ N+, if t(i, j) = 0, then there exists x such that Mw
i (x) and Mw

j (x)
definitely accept.
(meaning: for every extension of the oracle, (L(Mi), L(Mj)) is not a disjoint NP-pair.)
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V3 For all distinct i, j ∈ N+ with t(i, j) = −p for some p ∈ P3 and each k ∈ N+, it holds (i)
|Σpk ∩ w| ≤ 1 and (ii) if w is defined for all words of length pk, then |Σpk ∩ w| = 1.
(meaning: if t(i, j) = −p, then ensure that Ap = Bp (i.e., Ap ∈ NP ∩ coNP) relative to
the final oracle.)

V4 For all i ∈ N+ with t(i) = 0, there exists x such that Fwi (x) is defined and Fwi (x) /∈ Kv

for all v w w.
(meaning: for every extension of the oracle, Fi is not a proof system for K)

V5 For all i ∈ N+ and x ∈ N with 0<t(i)≤c(i, x, Fwi (x))< |w|, it holds c(i, x, Fwi (x)) ∈ w.
(meaning: if t(i) > 0, then from t(i) on, we encode the values of Fi into the oracle.
Note that V5 is not in contradiction with e.g. V3 or V7 as |c(·, ·, ·)| is even.)

V6 For all i ∈ N+ with t(i, i) = 0, there exists x such that Mw
i (x) is defined and has two

accepting paths.
(meaning: for every extension of the oracle, Mi is not a UP-machine.)

V7 For all i ∈ N+ with t(i, i) = −q ∈ P1 and each k ∈ N+, it holds |Σqk ∩ w| ≤ 1.
(meaning: if t(i, i) = −q, ensure that Cq is in UP.)

B Claim 8. Let t, t′ ∈ T such that t′ is an extension of t. For all oracles w ∈ Σ∗, if w is
t′-valid, then w is t-valid.

B Claim 9. Let t ∈ T and u, v, w ∈ Σ∗ be oracles such that u v v v w and both u and w
are t-valid. Then v is t-valid.

Oracle construction. Let T be an enumeration of
⋃3
i=1(N+)i having the property that

(i, j) appears earlier than (i, j, r) for all i, j, r ∈ N+. Each element of T stands for a task.
We treat the tasks in the order specified by T and after treating a task we remove it and
possibly other tasks from T . We start with the nowhere defined function t0 and the t0-valid
oracle w0 = ε. Then we define functions t1, t2, . . . in T such that ti+1 is an extension of ti
and partial oracles w0 vp w1 vp w2 vp . . . such that each wi is ti-valid. Finally, we choose
O =

⋃∞
i=0 wi (note that O is totally defined since in each step we strictly extend the oracle).

We describe step s > 0, which starts with a ts−1-valid oracle ws−1 and extends it to a ts-valid
ws wp ws−1 (it will be argued later that all these steps are indeed possible). Let us recall that
each task is immediately deleted from T after it is treated.

Task i: Let t′ = ts−1 ∪ {i 7→ 0}. If there exists a t′-valid v wp ws−1, then let ts = t′ and
ws = v. Otherwise, let ts = ts−1 ∪ {i 7→ |ws−1|} and choose ws = ws−1b for b ∈ {0, 1}
such that ws is ts-valid.
(meaning: try to ensure that Fi is not a proof system for K. If this is impossible, require
that the values of Fi are encoded into the oracle.)
Task (i, j) with i 6= j: Let t′ = ts−1 ∪ {(i, j) 7→ 0}. If there exists a t′-valid v wp ws−1,
then let ts = t′ as well as ws = v and delete all tasks (i, j, ·) from T . Otherwise, let
z = |ws−1|, choose p ∈ P3 greater than |z| and all p′ with p′ ∈ P≥3 and −p′ ∈ ran(ts−1),
let ts = ts−1 ∪ {(i, j) 7→ −p}, and choose ws = ws−1b for b ∈ {0, 1} such that ws is
ts-valid.
(meaning: try to ensure that (L(Mi), L(Mj)) is not a disjoint NP-pair. If this is impossible,
choose a sufficiently large prime p. It will be made sure later that Ap does not reduce to
(L(Mi), L(Mj)).)
Task (i, j, r) with i 6= j: It holds ts−1(i, j) = −p for a prime p ∈ P3, since otherwise, this
task would have been deleted in the treatment of task (i, j). Define ts = ts−1 and choose
a ts-valid ws wp ws−1 such that for some n ∈ N+ one of the following two statements
holds:

MFCS 2019
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0n ∈ Avp for all v w ws and Mws
i (Fwsr (0n)) definitely rejects.

0n ∈ Bvp for all v w ws and Mws
j (Fwsr (0n)) definitely rejects.

(meaning: make sure that it does not hold Ap≤p
m(L(Mi), L(Mj)) via Fr)

Task (i, i): Let t′ = ts−1∪{(i, i) 7→ 0}. If there exists a t′-valid v wp ws−1, then let ts = t′ as
well as ws = v and delete all tasks (i, i, ·) from T . Otherwise, let z = |ws−1|, choose q ∈ P1
greater than |z| and all p′ with p′ ∈ P≥3 and −p′ ∈ ran(ts−1), let ts = ts−1∪{(i, i) 7→ −q},
and choose ws = ws−1b for b ∈ {0, 1} such that ws is ts-valid.
(meaning: try to ensure that Mi is not a UP-machine. If this is impossible, choose a
sufficiently large prime q. It will be made sure later that Cq does not reduce to L(Mi).)
Task (i, i, r): It holds ts−1(i, j) = −q for a prime q ∈ P1, since otherwise, this task would
have been deleted in the treatment of task (i, i). Define ts = ts−1 and choose a ts-valid
ws wp ws−1 such that for some n ∈ N+ one of the following conditions holds:

0n ∈ Cvq for all v w ws and Mws
i (Fwsr (0n)) definitely rejects.

0n /∈ Cvq for all v w ws and Mws
i (Fwsr (0n)) definitely accepts.

(meaning: make sure that it does not hold Cq≤p
mL(Mi) via Fr)

We now show that the construction is possible. For that purpose, we first describe how a
valid oracle can be extended by one bit such that it remains valid.

B Claim 10. Let s ∈ N and w ∈ Σ∗ be a ts-valid oracle with w w ws. It holds for z = |w|:
1. If z = c(i, x, y) for i ∈ N+ and x, y ∈ N, 0 < ts(i) ≤ z, and Fwi (x) = y, then y ∈ Kv for

all v w w.
2. There exists b ∈ {0, 1} such that wb is ts-valid. In detail, the following statements hold.

a. If |z| is odd and for all p ∈ P and k ∈ N+ with −p ∈ ran(ts) it holds |z| 6= pk, then w0
and w1 are ts-valid.

b. If there exist p ∈ P3 and k ∈ N+ with −p ∈ ran(ts) such that |z| = pk, z 6= 1pk , and
w ∩ Σpk = ∅, then w0 and w1 are ts-valid.

c. If there exist p ∈ P3 and k ∈ N+ with −p ∈ ran(ts) such that z = 1pk and w∩Σpk = ∅,
then w1 is ts-valid.

d. If there exist q ∈ P1 and k ∈ N+ with −q ∈ ran(ts) such that |z| = qk and w∩Σqk = ∅,
then w0 and w1 are ts-valid.

e. If z = c(i, x, y) for i ∈ N+ and x, y ∈ N, 0 < ts(i) ≤ z, and Fwi (x) = y, then w1 is
ts-valid and Fw1

i (x) = y.
f. In all other cases (i.e., none of the assumptions in (a)–(e) holds) w0 is ts-valid.

In order to show that the above construction is possible, assume that it is not possible
and let s > 0 be the least number such that it fails in step s.

If step s treats a task t ∈ N+ ∪ (N+)2, then ts−1(t) is not defined, since the value of t is
defined in the unique treatment of the task t. If ts(t) is chosen to be 0, then the construction
clearly is possible. Otherwise, due to the choice of ts(t), the ts−1-valid oracle ws−1 is even
ts-valid and Claim 10 ensures that there exists a ts-valid ws−1b for some b ∈ {0, 1}. Hence,
the construction does not fail in step s, a contradiction.

For the remainder of the proof that the construction above is possible we assume that
step s treats a task (i, j, r) ∈ (N+)3. We treat the cases i = j and i 6= j simultaneously
whenever it is possible. Recall that in the case i = j we work for the diagonalization ensuring
that L(Mi) is not a complete UP-set and in the case i 6= j we work for the diagonalization
ensuring that the pair (L(Mi), L(Mj)) is not hard for NP ∩ coNP.

In any case, ts = ts−1 and ts(i, j) = −p for some p ∈ P≥3 (recall p ∈ P1 if i = j and
p ∈ P3 if i 6= j). Let γ(x) = (xr + r)i+j + i+ j and choose n = pk for some k ∈ N+ such that

22n−2 > 2n+1 · γ(n) (1)
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and ws−1 is not defined for any word of length n. Note that γ(n) is not less than the running
time of each of the computations MD

i (FDr (0n)) and MD
j (FDr (0n)) for any oracle D.

We define u w ws−1 to be the minimal ts-valid oracle that is defined for all words of
length < n. Such an oracle exists by Claim 10.2. Moreover, for z ∈ Σn, let uz wp u be the
minimal ts-valid oracle that contains z and that is defined for all words of length ≤ γ(n). By
Claim 10.2, such oracles exist and uz ∩Σn = {z} (in detail, the second part follows from (2b,
2c, and 2f) or (2d and 2f) depending on whether p ∈ P3 or p ∈ P1, for the first part we also
need that each valid oracle can be extended by one bit without losing its validity).

B Claim 11. Let z ∈ Σn.
1. For each α ∈ uz ∩ Σ>n one of the following statements holds.

α = 1p′κ for some p′ ∈ P3 with −p′ ∈ ran(ts) and some κ > 0.
α = c(i′, x, y) for some i′, x, y ∈ N with i′ > 0, 0 < ts(i′) ≤ c(i′, x, y), Fuzi′ (x) = y, and
y ∈ Kuz .

2. For all p′ ∈ P3 with −p′ ∈ ran(ts) and all κ > 0, if n < p′
κ ≤ γ(n), then uz∩Σp′κ = {1p′κ}.

Proof. 1. Let α ∈ uz ∩ Σ>n. Moreover, let u′ be the prefix of uz that has length α, i.e., α is
the least word that u′ is not defined for. In particular, it holds u′ ∩ Σ≤n = uz ∩ Σ≤n and
thus, z ∈ u′. As u v u′ v uz and both u and uz are ts-valid, Claim 9 yields that u′ is also
ts-valid. Let us apply Claim 10.2 to the oracle u′. If one of the cases 2a, 2b, 2d, and 2f can
be applied, then u′0 is ts-valid and can be extended to a ts-valid oracle u′′ with |u′′| = |uz|
by Claim 10.2. As u′′ and uz agree on all words < α and α ∈ u′′ − uz, we obtain z ∈ u′′ and
u′′ < uz. This is a contradiction to the choice of uz (recall that uz is the minimal ts-valid
oracle that is defined for all words of length ≤ γ(n) and contains z).

Hence, by Claim 10.2, either (i) α = 1p′κ for some p′ ∈ P3 and κ > 0 with −p′ ∈ ran(ts)
or (ii) α = c(i′, x, y) for i′, x, y ∈ N, i′ > 0, 0 < ts(i′) ≤ α, and Fu′

i′ (x) = y. In the latter
case Fu′

i′ (x) is defined by Claim 7 and y ∈ Kv for all v w u′ by Claim 10.1, which implies
Fuzi′ (x) = y ∈ Kuz .

2. As −p′ ∈ ran(ts) and uz is ts-valid, V3 yields that there exists β ∈ Σp′κ ∩ uz. Let β
be the minimal element of Σp′κ ∩ uz. It suffices to show β = 1p′κ . For a contradiction, we
assume β < 1p′κ . Let u′ be the prefix of uz that is defined for exactly the words of length
< p′

κ. Then u v u′ v uz and both u and uz are ts-valid. Then by Claim 9, the oracle u′
is ts-valid as well. By Claim 10.2 u′ can be extended to a ts-valid oracle u′′ that satisfies
|u′′| = |uz| and u′′ ∩ Σp′κ = {1p′κ}. The last property guarantees that u′′ < uz because
β ∈ uz − u′′ and the oracles u′′ and uz agree on all words smaller than β. As furthermore
z ∈ u′′, we obtain a contradiction to the choice of uz. This finishes the proof of Claim 11.

C

We study the case that for some odd (resp., even) z ∈ Σn the computation Muz
i (Fuzr (0n))

(resp., Muz
j (Fuzr (0n))) rejects. Then it even definitely rejects since uz is defined for all words

of length γ(n). If i 6= j, then p ∈ P3 and since z ∈ uz, we have 0n ∈ Avp for all v w uz (resp.,
0n ∈ Bvp for all v w uz if z is even). Analogously, if i = j, then p ∈ P1 and as z ∈ uz, we
have 0n ∈ Cvp for all v w uz. Hence, in all these cases we can choose ws = uz and obtain a
contradiction to the assumption that step s of the construction fails.

Therefore, for the remainder of the proof that the construction is possible we assume
the following: For each z ∈ Σn odd (resp., even) the computation Muz

i (Fuzr (0n)) (resp.,
Muz
j (Fuzr (0n))) definitely accepts.
Let Uz for z ∈ Σn odd (resp., z ∈ Σn even) be the set of all those oracle queries of the

least accepting path ofMuz
i (Fuzr (0n)) (resp., Muz

j (Fuzr (0n))) that are of length ≥ n. Observe
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`(Uz) ≤ γ(n). Moreover, define Q0(Uz) := Uz and for m ∈ N, define

Qm+1(Uz) :=
⋃

c(i′,x,y)∈Qm(Uz)
i′,x,y∈N,i′>0

{q ∈ Σ≥n | q is queried by Fuzi′ (x)}.

Let Q(Uz) :=
⋃
m∈NQm(Uz). Note that all words in Q(Uz) have length ≥ n.

B Claim 12. Let z ∈ Σn. Then `(Q(Uz)) ≤ 2`(Uz) ≤ 2γ(n) and for all q ∈ Q(Uz), |q| ≤ γ(n).

Proof. We show that for all m ∈ N, `(Qm+1(Uz)) ≤ 1/2 · `(Qm(Uz)). Then
∑s
m=0

1/2m ≤ 2
for all s ∈ N implies `(Q(Uz)) ≤ 2 · `(Uz). Moreover, from `(Uz) ≤ γ(n) and `(Qm+1(Uz)) ≤
1/2 · `(Qm(Uz)) the second part of the claim follows.

Let m ∈ N and consider an arbitrary element α of Qm(U). If α is not of the form c(i′, x, y)
for i′ ∈ N+ and x, y ∈ N, then α generates no elements in Qm+1(U). Assume α = c(i′, x, y)
for i′ ∈ N+ and x, y ∈ N. The computation Fuzi′ (x) runs for at most |x|i′ + i′ < |α|/2 steps,
where “<” holds by the definition of c(·, ·, ·) and the properties of the pairing function 〈·〉.
Hence, the set of queries Q of Fuzi′ (x) satisfies `(Q) < |α|/2. Consequently,

`(Qm+1(U)) ≤
∑

c(i′,x,y)∈Qm(Uz)
i′,x,y∈N,i′>0

`
(
{q ∈ Σ≥n | q is queried by Fuzi′ (x)}

)

≤
∑

c(i′,x,y)∈Qm(Uz)
i′,x,y∈N,i′>0

|c(i′,x,y)|/2 ≤ `(Qm(Uz))/2,

which finishes the proof of Claim 12. C

For z, z′ ∈ Σn we say that Q(Uz) and Q(Uz′) conflict if there is a word α ∈ Q(Uz) ∩Q(Uz′)
in uz4uz′ . In that case, we say Q(Uz) and Q(Uz′) conflict in α. Note that whenever Q(Uz)
and Q(Uz′) conflict in a word α, then α ∈ uz ∪ uz′ . The next three claims show that for
all z ∈ Σn odd and z′ ∈ Σn even, the sets Q(Uz) and Q(Uz′) conflict in a word of length n.
Indeed, then they conflict in z or z′ as these are the only words of length n in uz ∪ uz′ .

B Claim 13. Let z, z′ ∈ Σn such that z is odd and z′ is even. If Q(Uz) and Q(Uz′) conflict,
then they conflict in a word of length n.

Proof. Let α be the least word in which Q(Uz) and Q(Uz′) conflict. Then α ∈ uz4uz′ . By
symmetry, it suffices to consider the case α ∈ uz − uz′ . For a contradiction, assume that
|α| > n. Then by Claim 11, two situations are possible.

1. Assume α = 1p′κ for p′ ∈ P3 with −p′ ∈ ran(ts) and κ > 0. Then by Claim 11.2,
α ∈ uz′ , a contradiction. Hence, α 6= 1p′κ for all p′ ∈ P3 with −p′ ∈ ran(ts) and κ > 0.

2. Here, α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < ts(i′) ≤ c(i′, x, y) and
Fuzi′ (x) = y ∈ Kuz . By construction, it holds ts(i′) = ts−1(i′) ≤ |ws−1| ≤ |u| < α. Thus,
F
uz′
i′ (x) 6= y, since otherwise, by the ts-validity of uz′ and V5, it would hold α ∈ uz′ .

Consequently, Fuz′
i′ (x) 6= Fuzi′ (x). Hence, there exists a query β that is asked by both Fuzi′ (x)

and Fuz′
i′ (x) and that is in uz4uz′ (otherwise, both computations would output the same

word). By definition of Q(Uz) and Q(Uz′), it holds β ∈ Q(Uz) ∩Q(Uz′). Hence, Q(Uz) and
Q(Uz′) conflict in β and |β| ≤ |x|i′ + i′ < |c(i′, x, y)| = |α|, in contradiction to the assumption
that α is the least word which Q(Uz) and Q(Uz′) conflict in. C

For showing that for all odd z ∈ Σn and all even z′ ∈ Σn the sets Q(Uz) and Q(Uz′)
conflict, we need one more claim. Let t′ be defined such that dom(t′) = dom(ts)−{(i, j)} and
t′(i′, j′) = ts(i′, j′) for (i′, j′) ∈ dom(t′). Then u and uz for z ∈ Σn are t′-valid by Claim 8.
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B Claim 14. Let t ∈ {t′, ts} and z, z′ ∈ Σn such that Q(Uz) and Q(Uz′) do not conflict.
For each t-valid oracle v wp u that is defined for exactly the words of length ≤ n and that
satisfies v(q) = uz(q) for all |v| > q ∈ Q(Uz) and v(q) = uz′(q) for all |v| > q ∈ Q(Uz), there
exists a t-valid oracle v′ wp v with |v′| = |uz|, v′(q) = uz(q) for all |v′| > q ∈ Q(Uz), and
v′(q) = uz′(q) for all |v′| > q ∈ Q(Uz).

Proof. Let w w u with |w| < |uz|, w(q) = uz(q) for all |w| > q ∈ Q(Uz), and w(q) = uz′(q)
for all |w| > q ∈ Q(Uz′). Moreover, let α = |w|. It suffices to show the following:

If α = 0p′κ for some p′ ∈ P3 with −p′ ∈ ran(t) and κ > 0, then there exists a t-valid
w′ wp w that is defined for the words of length p′

κ, undefined for all words of greater
length, and that satisfies w′(q) = uz(q) for all |w′| > q ∈ Q(Uz) and w′(q) = uz′(q) for
all |w′| > q ∈ Q(Uz′).
Note that in this case |w′| ≤ |uz| as uz is defined for exactly the words of length ≤ γ(n).
If α is not of length p′

κ for all p′ ∈ P3 with −p′ ∈ ran(t) and all κ > 0, then there
exists b ∈ {0, 1} such that wb is t-valid, wb(q) = uz(q) for all |wb| > q ∈ Q(Uz) and
wb(q) = uz′(q) for all |wb| > q ∈ Q(Uz′).

We study three cases.
1. Assume α = 0p′κ for some p′ ∈ P3 with −p′ ∈ ran(t) and κ > 0. Then we let w′ wp w

be the minimal oracle that is defined for all words of length p′κ and contains 1p′κ , i.e.,
w′ = w ∪ {1p′κ} when interpreting the oracles as sets. As uz ∩Σp′κ = uz′ ∩Σp′κ = {1p′κ}
by Claim 11.2, we obtain w′(q) = uz(q) for all |w′| > q ∈ Q(Uz) and w′(q) = uz′(q) for
all |w′| > q ∈ Q(Uz′). Moreover, by Claim 10.2b and Claim 10.2c, the oracle w′ is t-valid.

2. Now assume that α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < t(i′) ≤ α such that one
of the conditions Fuzi′ (x) = y and Fuz′

i′ (x) = y holds. By Claim 10.1, then even one of
the two conditions Fuzi′ (x) = y ∈ Kuz and Fuz′

i′ (x) = y ∈ Kuz′ holds. By symmetry, if
suffices to argue for the case Fuzi′ (x) = y ∈ Kuz . Recall that the oracles uz and uz′ are
t-valid. Hence, by V5 and 0 < t(i′) ≤ α < |uz|, it holds α ∈ uz. We consider two cases
depending on whether Fwi′ (x) returns y. In any case, if α ∈ Q(Uz) (resp., α ∈ Q(Uz′)),
then Fwi′ (x) = Fuzi′ (x) (resp., Fwi′ (x) = F

uz′
i′ (x)), since for all queries q of Fuzi′ (x) (resp.,

F
uz′
i′ (x)), it holds q ∈ Q(Uz) (resp., q ∈ Q(Uz′)), |q| ≤ |x|i′ + i′ < |α|, and by assumption,
w(q) = uz(q) (resp., w(q) = uz′(q)).
(i) Assume Fwi′ (x) = y. Choose b = 1. As w is t-valid, 0 < t(i′) ≤ α, and Fwi′ (x) = y,

Claim 10.2e yields that w1 is t-valid. As α ∈ uz, we have w1(q) = uz(q) for all
|w1| > q ∈ Q(Uz). It remains to show that w1(q) = uz′(q) for all |w1| > q ∈ Q(Uz′).
If α /∈ Q(Uz′), this trivially holds. If α ∈ Q(Uz′), then as observed above, Fuz′

i (x) =
Fwi (x) = y. Hence, as uz′ is t-valid and 0 < t′(i′) ≤ α < |uz′ |, it holds α ∈ uz′ by
V5. Thus, w1(q) = uz′(q) for all |w1| > q ∈ Q(Uz′).

(ii) Assume Fwi′ (x) 6= y. Choose b = 0. Then Claim 10.2f states that wb is t-valid.
It holds α /∈ Q(Uz), since otherwise, as observed above, Fwi′ (x) = Fuzi′ (x) = y,
which would yield a contradiction. Thus, wb(q) = uz(q) for all |wb| > q ∈ Q(Uz).
It remains to show wb(q) = uz′(q) for all |wb| > q ∈ Q(Uz′). If α /∈ Q(Uz′),
this trivially holds and otherwise, it also holds, since as observed above, we have
F
uz′
i′ (x) = Fwi′ (x) 6= y, which implies α /∈ uz′ (by V1, α ∈ uz′ would imply
F
uz′
i′ (x) = y).

3. We now consider the remaining cases, i.e., we may assume: (i) α is not of length p′κ for
all p′ ∈ P3 and κ > 0 with −p′ ∈ ran(t) and (ii) if α = c(i′, x, y) for some i′ ∈ N+ and
x, y ∈ N with 0 < t(i′) ≤ α, then none of the conditions Fuzi′ (x) = y and Fuz′

i′ (x) = y

holds.
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In this case, it holds α /∈ uz ∪ uz′ by Claim 11.1. We choose b = 0 and obtain that
wb(q) = uz(q) for all |wb| > q ∈ Q(Uz) and wb(q) = uz′(q) for all |wb| > q ∈ Q(Uz′).
Moreover, by Claim 10.2, wb is t-valid. This shows Claim 14. J

B Claim 15. For all odd z ∈ Σn and all even z′ ∈ Σn, Q(Uz) and Q(Uz′) conflict.

Proof. Let us first show that α ∈ Q(Uα) for all α ∈ Σn. For a contradiction, assume
α /∈ Q(Uα) for some α ∈ Σn. We study the cases i = j and i 6= j separately.

First assume i = j. In this case p ∈ P1. Let u′ be the oracle that is defined for exactly
the words of length ≤ n and satisfies u′ = u when the oracles are considered as sets. Then u′
is ts-valid by Claim 10.2d and u′ and uα agree on all words in Σn ∩Q(Uα) as uα ∩Σn = {α}
and α /∈ Q(Uα). Thus, we can apply Claim 14 to the oracle u′ for z = z′ = α. Hence, there
exists a ts-valid oracle v satisfying |v| = |uz|, v ∩Σn = ∅, and v(q) = uα(q) for all q ∈ Q(Uα).
By the latter property and the fact that Uα ⊆ Q(Uα) contains all queries asked by the least
accepting path of Muα

i (Fuαr (0n)), this path is also an accepting path of the computation
Mv
i (F vr (0n)). As v is defined for all words of length ≤ γ(n), the computation Mv

i (F vr (0n)) is
defined. Thus, 0n /∈ Cv′

q for all v′ w v and Mv
i (F vr (0n)) definitely accepts, in contradiction

to the assumption that step s of the construction fails.
Now let us consider the case i 6= j. Here p ∈ P3. By symmetry, it suffices to consider

the case that α is odd. Let α′ be the minimal even element of Σn that is not in Q(Uα).
Such α′ exists as it holds 2n−1 > 4(γ(n)) > 2γ(n) by (1), `(Q(Uα)) ≤ 2γ(n) by Claim 12,
and hence, `(Q(Uα)) ≤ 2γ(n) < 2n−1 = |{α′′ ∈ Σn | α′′ even}|. Now choose u′ to be the
oracle that is defined for exactly the words of length ≤ n and that satisfies u′ = u ∪ {α′}
when the oracles are considered as sets. Then u′ is ts-valid by Claim 10.2b and Claim 10.2f.
Moreover, as α, α′ /∈ Q(Uα), the oracles u′ and uα agree on all words in Σn ∩Q(Uα). Thus,
we can apply Claim 14 to the oracle u′ for z = z′ = α and obtain a ts-valid oracle v that
is defined for all words of length ≤ γ(n) and satisfies both v ∩ Σn = {α′} and v(q) = uα(q)
for all q ∈ Q(Uα). The latter property and the fact that Uα ⊆ Q(Uα) contains all queries
asked by the least accepting path of Muα

i (Fuαr (0n)) yield that this path is also an accepting
path of the computation Mv

i (F vr (0n)). As v is defined for all words of length ≤ γ(n), the
computation Mv

i (F vr (0n)) definitely accepts. Let us study two cases depending on whether
Mv
j (F vr (0n)) definitely accepts or definitely rejects (note that this computation is defined as

v is defined for all words of length ≤ γ(n)):
Assume that Mv

j (F vr (0n)) definitely accept. Let s′ be the step that treats the task
(i, j). Hence, s′ < s since ts(i, j) is defined. By Claim 8, the oracle v is ts′−1-valid.
Now, as both Mv

i (F vr (0n)) and Mv
j (F vr (0n)) definitely accept, v is even t′′-valid for

t′′ = ts′−1 ∪ {(i, j) 7→ 0}. But then the construction would have chosen ts′ = t′′ and a
suitable oracle ws′ (e.g., ws′ = v), a contradiction.
Assume that Mv

j (F vr (0n)) definitely rejects. As v ∩ Σn = {α′}, it holds 0n ∈ Bv′

p for all
v′ w v. This is a contradiction to the assumption that step s of the construction fails.

Hence, from now on we may assume that α ∈ Q(Uα) for all α ∈ Σn. Moreover, assume
there are z odd and z′ even such that Q(Uz) and Q(Uz′) do not conflict. Then let u′ wp u
be the minimal oracle that is defined for all words of length ≤ n and contains z and z′, i.e.,
interpreting oracles as sets it holds u′ = u ∪ {z, z′}. Since −p /∈ ran(t′), the oracle u′ is
t′-valid by Claim 10.2a. If Claim 14 cannot be applied to the oracle u′ for z and z′, then
z ∈ Q(Uz′) or z′ ∈ Q(Uz). Since we observed above that z ∈ Q(Uz) and z′ ∈ Q(Uz′) and
moreover, uz ∩Σn = {z} and uz′ ∩Σn = {z′}, in this case Q(Uz) and Q(Uz′) conflict. Hence,
it remains to consider the case that Claim 14 can be applied to the oracle u′ for z and z′.

Applying Claim 14, we obtain a t′-valid v w u′ that is defined for all words of length
≤ γ(n) and that satisfies v(q) = uz(q) for all q ∈ Q(Uz) and v(q) = uz′(q) for all q ∈ Q(Uz′).
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Let s′ be the step in which (i, j) is treated. As ts(i, j) is defined, it holds s′ < s. Hence,
t′ is an extension of ts′−1 and by Claim 8, v is ts′−1-valid. We claim that v is t′′-valid
for t′′ = ts′−1 ∪ {(i, j) 7→ 0}. Once this is proven, we obtain a contradiction as then the
construction would have chosen ts′ = t′′ and an appropriate ws′ (e.g. ws′ = v). Then our
assumption is wrong and for all odd z ∈ Σn and all even z′ ∈ Σn, Q(Uz) and Q(Uz′) conflict.

It remains to prove that v is t′′-valid for t′′ = ts′−1 ∪ {(i, j) 7→ 0}. We study two cases.
Case 1: first we assume that i 6= j, i.e., it suffices to prove thatMv

i (F vr (0n)) andMv
j (F vr (0n))

definitely accept. Recall that Muz
i (Fuzr (0n)) and Muz′

j (Fuz′
r (0n)) definitely accept. More-

over, v(q) = uz(q) for all q ∈ Q(Uz) and v(q) = uz′(q) for all q ∈ Q(Uz′) and in particular,
v is defined for all words in Q(Uz) ∪ Q(Uz′). This implies that the least accepting
paths of Muz

i (Fuzr (0n)) and Muz
i (Fuzr (0n)) are also accepting paths of the computations

Mv
i (F vr (0n)) and Mv

j (F vr (0n)).
Case 2: assume that i = j, i.e., we have to prove that on some input x the computation

Mv
i (x) has two accepting paths. As observed above, z ∈ Q(Uz) and z′ ∈ Q(Uz′). As

Q(Uz) and Q(Uz′) do not conflict, it holds z /∈ Q(Uz′), which implies Q(Uz) 6= Q(Uz′).
Let κ ∈ N be minimal such that Qκ(Uz) 6= Qκ(Uz′) and for a contradiction, assume κ > 0.
Let α ∈ Qκ(Uz)4Qκ(Uz′). Without loss of generality, we assume α ∈ Qκ(Uz)−Qκ(Uz′).
Then there exist i′, x, y ∈ N with i′ > 0 such that c(i′, x, y) ∈ Qκ−1(Uz) and Fuzi′ (x) asks
the query α. By the choice of κ, it holds Qκ−1(Uz′) = Qκ−1(Uz) and thus, c(i′, x, y) ∈
Qκ−1(Uz′). Consequently, all queries of Fuz′

i′ (x) are in Qκ(Uz′). However, α /∈ Qκ(Uz′)
and therefore, α cannot be asked by Fuz′

i′ (x). This shows that there is a word β ∈ uz4uz′

asked by both Fuzi′ (x) and Fuz′
i′ (x) (otherwise, the two computations would ask the same

queries). But then β ∈ Qκ(Uz) ∩Qκ(Uz′), which implies that Q(Uz) and Q(Uz′) conflict,
a contradiction. Hence, we obtain κ = 0 and Uz = Q0(Uz) 6= Q0(Uz′) = Uz′ . Recall that
Uz (resp., Uz′) is the set consisting of all oracle queries of the least accepting path P
(resp., P ′) of the computation Muz

i (Fuzr (0n)) (resp., Muz′
i (Fuz′

r (0n))). As uz(q) = v(q)
for all q ∈ Q(Uz) ⊇ Uz and uz′(q) = v(q) for all q ∈ Q(Uz′) ⊇ Uz′ , the paths P and P ′
are accepting paths of the computation Mv

i (F vr (0n)). Finally, P and P ′ are distinct paths
since Uz 6= Uz′ . This finishes the proof that v is t′′-valid. Hence, the proof of Claim 15 is
complete. J

The remainder of the proof that the construction is possible is based on an idea by
Hartmanis and Hemachandra [8]. Consider the set

E = {{z, z′} | z, z′ ∈ Σn, z odd ⇔ z′ even, (z ∈ Q(Uz′) ∨ z′ ∈ Q(Uz))}

=
⋃
z∈Σn

{{z, z′} | z′ ∈ Σn, z odd⇔ z′ even, z′ ∈ Q(Uz)}. (2)

Let z, z′ ∈ Σn such that (z odd⇔ z′ even). By Claim 15 and Claim 13, Q(Uz) and Q(Uz′)
conflict in a word of length n. Then, as observed above, they conflict in z or z′, i.e., z ∈ Q(Uz′)
or z′ ∈ Q(Uz). This shows E = {{z, z′} | z, z′ ∈ Σn, z odd ⇔ z′ even} and thus, |E| = 22n−2.
By Claim 12, for each z ∈ Σn it holds |Q(Uz)| ≤ `(Q(Uz)) ≤ 2γ(n). Consequently,

|E|
(2)
≤
∑
z∈Σn

|Q(Uz)| ≤ 2n · 2γ(n) = 2n+1 · γ(n)
(1)
< 22n−2 = |E|,

a contradiction to the assumption that the construction fails in step s treating the task
(i, j, r). This shows that the construction is possible and O is well-defined. It remains to
show that DisjNPO contains no pair ≤p,O

m -hard for NPO ∩ coNPO, each problem in NPO has
PO-optimal proof systems, and UPO has no ≤p,O

m -complete problem. As the corresponding
proofs are rather straightforward, we omit them. This completes the proof of Theorem 6. J
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